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Well-designed lattice Boltzmann codes exploit the essentially embarrassingly parallel
features of the algorithm and so can be run with considerable efficiency on modern
supercomputers. Such scalable codes permit us to simulate the behaviour of increas-
ingly large quantities of complex condensed matter systems. In the present paper, we
present some preliminary results on the large-scale three-dimensional lattice Boltz-
mann simulation of binary immiscible fluid flows through a porous medium, derived
from digitized X-ray micro-tomographic data of Bentheimer sandstone, and from
the study of the same fluids under shear. Simulations on such scales can benefit
considerably from the use of computational steering, and we describe our implemen-
tation of steering within the lattice Boltzmann code, called LB3D, making use of
the RealityGrid steering library. Our large-scale simulations benefit from the new
concept of capability computing, designed to prioritize the execution of big jobs
on major supercomputing resources. The advent of persistent computational grids
promises to provide an optimal environment in which to deploy these mesoscale sim-
ulation methods, which can exploit the distributed nature of computer, visualization
and storage resources to reach scientific results rapidly; we discuss our work on the
grid-enablement of lattice Boltzmann methods in this context.

Keywords: lattice Boltzmann; porous media; complex fluids under shear;
grid computing; computational steering

1. Introduction

The length- and time-scales that can be modelled using microscopic modelling tech-
niques such as molecular dynamics are circumscribed by the limited computational
resources available today. Even with today’s fastest computers, the accessible length-
scales are of the order of nanometres and the time-scales are restricted to the nanosec-
ond range. Mesoscopic models open the way to studies of time-dependent, non-
equilibrium phenomena occurring in much larger systems and on orders of magnitude

One contribution of 21 to a Theme ‘Connecting scales: micro, meso and macro processes’.
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longer time-scales, thus bridging scales between microscopic models and macroscopic
or continuum approaches.

In this paper, we use the lattice Boltzmann method to model binary fluids under
shear and flow in a porous medium. In the porous medium case, we are now able to
reach length-scales for the simulated fluid flow which can be compared directly with
data gleaned from magnetic resonance imaging (MRI) experiments. In the case of
fluids under shear, one must take care of finite size effects which make it undesirable
to study cubic systems, but rather preferable to study systems of high aspect ratio.
In this paper we present preliminary results, but expect to return with extensive
descriptions of these applications in the future. Both problems are very computa-
tionally demanding and require today’s top-of-the-range supercomputers and large-
scale data storage facilities. Since these resources are expensive, we have to handle
them with care and minimize wastage of central-processing-unit (CPU) time and
disk space. A good initial position is to make sure that our simulations do not last
longer than needed and do not produce more data than necessary. But more than
this, computational steering allows us to interact with a running simulation and
adjust simulation parameters and data-dumping rates; it also enables us to monitor
the state of our simulations and react immediately if they do not behave as expected,
as we shall discuss later.

The worldwide effort to develop reliable computational grids gives us hope to run
our simulations in an even more efficient way. Computational grids are a collection of
geographically distributed and dynamically varying resources, each providing services
such as compute cycles, visualization, storage or even experimental facilities. It is
hoped that computational grids will offer for information technology what electricity
grids offer for other aspects of our daily life: a transparent and reliable resource that
is easy to use and conforms to commonly agreed standards (Foster & Kesselman
1999, pp. 15–25; Berman et al. 2003). Then we shall be able to use the available
computational resources in a transparent way, leaving to smart middleware the task
of finding the best available machines to run simulations on, and migrate them to
other platforms if necessary to ensure optimal performance. Grids should also allow
storage, computation and visualization resources to be widely distributed without
our having to care about their location.

The main purpose of the present paper is to introduce the concepts of compu-
tational steering and grid computing to an audience of computational scientists,
concerned here with simulation of fluid dynamics. The paper is structured as fol-
lows. After a short introduction to our lattice Boltzmann method in § 2, we give a
description of our implementation of computational steering in § 3 and explain the
advantages we expect to gain from the advent of computational grids in § 4. Sec-
tions 5 and 6 contain our preliminary results on large-scale grid-enabled simulations
of fluids under shear and in porous media. We present our conclusions in § 7.

2. A lattice Boltzmann model of immiscible fluids

During the last decade, many authors have shown that the lattice Boltzmann algo-
rithm is a powerful method for simulating fluid dynamics. This success is due to
its simplicity and to facile computational implementations (Chin et al. 2003; Love
et al. 2003; Nekovee et al. 2001; Succi 2001). Instead of tracking individual atoms
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or molecules, the lattice Boltzmann method describes the dynamics of the single-
particle distribution function of mesoscopic fluid packets.

In a continuum description, the single-particle distribution function f1(r,v, t) rep-
resents the density of fluid particles with position r and velocity v at time t, such
that the density and velocity of the macroscopically observable fluid are given by

ρ(r, t) =
∫

f1(r,v, t) dv and u(r, t) =
∫

f1(r,v, t)v dv,

respectively. In the non-interacting, long mean free path limit, with no externally
applied forces, the evolution of this function is described by the Boltzmann equation

(∂t + v · ∇)f1 = Ω[f1]. (2.1)

While the left-hand side describes changes in the distribution function due to free
particle motion, the right-hand side models pairwise collisions. The collision operator
Ω is an integral expression that is often simplified (Bhatnagar et al. 1954) to the
linear Bhatnagar–Gross–Krook (BGK) form

Ω[f ] � −1
τ

[f − f (eq)]. (2.2)

This collision operator describes the relaxation, at a rate controlled by a characteris-
tic time τ , towards a local Maxwell–Boltzmann equilibrium distribution f (eq). It can
be shown that distributions governed by the simple Boltzmann–BGK equation con-
serve mass, momentum and energy (Succi 2001). They obey a non-equilibrium form
of the second law of thermodynamics (Liboff 1990) and the Navier–Stokes equations
for macroscopic fluid flow are obeyed on coarse length- and time-scales (Chapman
& Cowling 1952; Liboff 1990).

By discretizing the single-particle distribution function in space and time, one
obtains the usual lattice Boltzmann formulation, where the positions r on which
f1(r,v, t) is defined are restricted to points ri on a Bravais lattice. The velocities v
are restricted to a set ci joining points on the lattice and the density of particles at
lattice site r travelling with velocity ci, at time-step t is given by fi(r, t) = f(r, ci, t).
The fluid’s density and velocity are given by

ρ(r) =
∑

i

fi(r), (2.3)

u(r) =
∑

i

fi(r)ci. (2.4)

The discretized Boltzmann description can be evolved as a two-step procedure.
In the collision step, particles at each lattice site are redistributed across the veloc-
ity vectors; this process corresponds to the action of the collision operator. In the
advection step, values of the post-collisional distribution function are propagated to
adjacent lattice sites.

By combining the two steps, one obtains the lattice Boltzmann equation (LBE)

fi(r, t + 1) − fi(r, t) = Ω[f ] = −1
τ

[fi(r, t) − Ni(ρ,u)], (2.5)

where Ni = Ni(ρ(r),u(r)) is a polynomial function of the local equilibrium density
and velocity, and can be found by discretizing the Maxwell–Boltzmann equilibrium
distribution.
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Our lattice Boltzmann implementation uses the Shan & Chen (1993) approach,
by incorporating an explicit forcing term in the collision operator in order to model
multi-component interacting fluids. Shan & Chen extended the single-particle distri-
bution function fi to the form fσ

i , where each component is denoted by a different
value σ, so that the density and momentum of a single component σ are given by

ρσ =
∑

i

fσ
i and ρσuσ =

∑
i

fσ
i ci,

respectively. The fluid viscosity νσ is proportional to (τσ − 1
2) and the mass of each

particle is mσ. This results in a lattice BGK equation (2.5) of the form

fσ
i (r, t + 1) − fσ

i (r, t) = − 1
τσ

[fσ
i − Ni(ρσ,vσ)]. (2.6)

The velocity vσ is found by calculating a weighted average velocity

u′ =
(∑

σ

ρσ

τσ
uσ

)(∑
σ

ρσ

τσ

)−1

, (2.7)

and then adding a term F σ to account for additional forces:

vσ = u′ +
τσ

ρσ
F σ. (2.8)

To produce nearest-neighbour interactions between fluid components, this term
assumes the form

F σ = −ψσ(x)
∑

σ̄

gσσ̄

∑
i

ψσ̄(x + ci)ci, (2.9)

where ψσ(x) = ψσ(ρσ(x)) is an effective charge for component σ, set equal to the
fluid component density, that is ψσ(x) = ρσ(x); gσσ̄ is a coupling constant controlling
the strength of the interaction between two components σ and σ̄. If gσσ̄ is set to
zero for σ = σ̄, and to a positive value for σ �= σ̄, then, in the interfacial region
between bulk domains of each component, particles experience a force in the direction
away from the interface, producing immiscibility. For two-component systems, we
use the notation gσσ̄ = gσ̄σ = gbr. External forces are added in a similar manner. For
example, in order to produce a gravitational force acting in the z-direction, the force
term F σ can take the form gρσẑ.

A convenient way to characterize binary fluid mixtures is in terms of the order
parameter or colour field

φ(x) = ρr(x) − ρb(x). (2.10)

The order parameter is positive in areas of high concentration of ‘red’ fluid and
negative in areas of ‘blue’ dominance; the isosurface φ(x) = 0 denotes the interface
between both fluid constituents.

The model has been extended to handle amphiphiles, which are treated as massive
point like dipoles with different interaction strengths on each end and an orientational
degree of freedom (Chen et al. 2000). Our code, LB3D, can handle binary and ternary
fluid mixtures with or without amphiphiles. But since we only discuss simulations
of binary fluids in this paper, we refer the reader to other papers (Chen et al. 2000;
Love et al. 2003; Nekovee et al. 2001) for a more comprehensive description of the
amphiphilic case.
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3. Computational steering of lattice Boltzmann simulations

This section outlines the benefits of computational steering for high-performance
computing applications. Our three-dimensional lattice Boltzmann code (LB3D) and
its computational steering implementation are used to illustrate the substantial
improvements which computational steering offers in terms of resource efficiency
and time to discover new physics.

Traditionally, large, compute-intensive simulations are run non-interactively. A
text file describing the initial conditions and parameters for the course of a simula-
tion is prepared, and then the simulation is submitted to a batch queue on a large
compute resource. The simulation runs entirely according to the prepared input file,
and outputs the results to disk for the user to copy to his local machine and examine
later.

This mode of working is sufficient for many simple investigations of mesoscale
fluid behaviour, but has several drawbacks. Firstly, consider the situation where one
wishes to examine the dynamics of the separation of two immiscible fluids: this is a
subject which has been of considerable interest in the modelling community in recent
years (González-Segredo et al. 2003; Kendon et al. 2001). Typically, a guess is made
as to how long the simulation must run before producing a phase separation, and
then the code is run for a fixed number of time-steps. If a phase transition does not
occur within this number of time-steps, then the job must be resubmitted to the
batch queue and restarted. However, if a phase transition occurs in the early stages
of the simulation, then the rest of the computation time will be spent simulating an
equilibrium system of very little interest. Even worse, the initial parameters of the
system might turn out not to produce a phase separation at all and all of the CPU
time invested in the simulation will have been wasted.

Computational steering is a way to overcome these drawbacks. It allows the sci-
entist to interact with a running simulation and to change or monitor simulation
parameters on the fly. Examples of monitored parameters are the time-step, sur-
face tension, density distributions or ‘colour’ fields. Steerable parameters are data-
dumping frequencies, relaxation times or shear rates. One can also ‘stop’, ‘pause’
or ‘restart’ from a previously saved checkpoint. A ‘checkpoint’ is a set of files rep-
resenting the state of the simulation and allowing the code to be restarted without
rerunning earlier steps of the simulation. The ‘restart’ functionality is particularly
important, since it provides the basis of a system that allows the scientist to ‘rewind’
a simulation. Having done so, it can then be run again, perhaps after having steered
some parameter or altered the frequency with which data from the simulation are
recorded.

We have implemented computational steering within the LB3D code with the help
of colleagues at Manchester Computing as part of the ongoing RealityGrid project
(http://www.realitygrid.org) (Brooke et al. 2003; Chin et al. 2003; Coveney 2003).
The RealityGrid project aims to enable the modelling and simulation of complex con-
densed matter structures at the molecular and mesoscale levels as well as the discov-
ery of new materials using computational grids. The project also involves biomolecu-
lar applications and its long-term ambition is to provide generic computational-grid-
based technology for scientific, medical and commercial activities.

Within RealityGrid, computational steering has been implemented in order to
enable existing scientific computer programs (often written in Fortran90 and designed
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for multi-processor/parallel supercomputers) to be made steerable while minimizing
the amount of work required. The steering software has been implemented as a library
written in C and is thus callable from a variety of languages (including C, C++ and
Fortran90). The library completely insulates the application from any implementa-
tion details. For instance, the process by which messages are transferred between
the steering client and the application (e.g. via files or sockets) is completely hid-
den from the application code and the steering library does not assume or prescribe
any particular parallel-programming paradigm (such as message passing or shared
memory). The steering protocol has been designed so that the use of steering is
never critical to the simulation. Thus, a steering client can attach and detach from
a running application without affecting its state.

The ability to monitor the state of a simulation and use this to make steering
decisions is very important. While a steering client provides some information via
the simulation’s monitored parameters, a visualization of some aspect of the simula-
tion’s state is often required. In our case this is usually a three-dimensional dataset,
visualized by a second software component using isosurfacing or volume rendering.

The steering library itself consists of two parts: an application side and a client
side. Using a generic steering client written in C++ and Qt (a graphical user interface
toolkit (http://www.trolltech.org)), one is capable of steering any application that
has been ‘steering enabled’ using the library.

The RealityGrid steering library and client are generic enough to be interfaced to
by almost any simulation code. Usually only a couple of hours have to be invested
in adapting a code to do simple parameter steering and monitoring. Indeed, since
the initial version of the steering library was written at least four other codes have
been made steerable in this way (these include molecular dynamics, Monte Carlo
and other lattice Boltzmann codes).

In addition to the features the steering library provides, LB3D has its own logging
and replay facilities which permit the user to ‘replay’ a steered simulation. This
is an important feature, since it allows the data from steered simulations to be
reproduced without human intervention. Moreover, this feature can be used as an
‘auto-steerer’. Thus multiple simulations, which read different input files at start-
up and are ‘steered’ in the same way, can be launched without the need for human
intervention during the simulation. One application of this particular feature appears
in studies of how changes in parameters affect a simulation that has evolved for
a given number of time-steps. Another application is the automatic adaptation of
data-dumping or checkpointing frequencies. If the user has found from a manually
steered simulation that no effects of interest are expected for a given number of initial
time-steps, he can reduce the amount of data written to disk for early times of the
simulation.

A more detailed description of computational steering and its implementation
within RealityGrid can be found in recently published papers (Brooke et al. 2003;
Chin et al. 2003). Chin et al. (2003) also contains an example demonstrating the use-
fulness of computational steering of three-dimensional lattice Boltzmann simulations:
parameter searches are a common task we have to handle because our lattice Boltz-
mann method has a range of free parameters. Only by choosing them correctly can
one simulate effects of physical interest. Previously, these parameter searches have
been performed using a taskfarming approach: many small simulations with different
parameters have been launched. In such cases we have used up many thousands of
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CPU hours and needed hundreds of gigabytes of simulation data to be stored for a
single large-scale parameter search. Computational steering offers the possibility to
‘joystick’ through parameter space in order to find regions of interest. In this way,
the resources needed can be substantially reduced. The main benefit, however, is the
reduced amount of data that has to be analysed subsequently, since this is the most
time-consuming and demanding task. While simulations can be completed within
days or weeks, analysis usually takes months. We have also found that if the amount
of data to be searched for interesting effects exceeds certain bounds, it is almost
impossible for a human to keep track of it. One might suggest automation of the
analysis process, but the human eye turned out to be the only reliable tool for our
simulations. It is often very easy to spot effects occurring in datasets by looking at
isosurfaces or volume-rendered visualizations; by contrast automation of the analysis
of the generated data is much harder because it can be difficult to define the effects
sufficiently well, impossible to anticipate the effects sought in advance, or simply not
worthwhile to invest additional effort in the development of algorithms to automate
the process.

4. Capability computing and terascale computational grids

Three-dimensional lattice Boltzmann simulations are very computationally demand-
ing and need high-performance computing resources (i.e. supercomputers). In order
to reach length- and time-scales which can be compared with experimental data and
to eliminate finite size effects, one needs large lattices, for example, 5123 or 10243.
Simulations also have to run for several thousands or tens of thousands of time-steps,
thus pushing the required computation and storage resources beyond what is typi-
cally available to users on medium scale supercomputers today. In the case of LB3D,
the main restriction is the per-CPU memory available, which, on all machines we
have access to currently, is not more than 1 Gb. For example, we require at least
1024 CPUs to simulate a 10243 system.

Obviously, computational steering becomes an even more useful tool here because
large-scale simulations are very expensive; it is essential that the simulation does
not generate useless data, and that the expensive resources are used as efficiently
as possible. The need for vast computational power has brought with it the concept
of ‘capability computing’. We understand this term as a description of how large
jobs are handled by supercomputing centres: large jobs are favoured and assigned
a higher priority by the queueing system. In these terms, ‘large’ refers to jobs that
request at least half of the total number of CPUs available. With standard job-
queue configurations operating on batch systems, there is a strong disincentive to
submit large jobs: if a user submits a ‘large’ job, turnaround times can be very long,
making such high-end resources uncompetitive compared with modern commodity
clusters, which are becoming widely available locally. In some cases, supercomputing
centres can offer discounts for large (capability computing) jobs if the simulation code
can be shown to scale well. LB3D has recently been awarded a gold-star rating for
its excellent scaling capabilities by the HPCx Consortium (http://www.hpcx.ac.uk)
allowing us to run simulations on 1024 CPUs (the full production partition) of their
1280 CPU IBM SP4, with a discount of 30% (Harting et al. 2003). The flow in
porous media simulations described later in this section have been done on up to
504 CPUs of a 512 CPU SGI Origin 3800 at the CSAR service in Manchester, UK
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(http://www.csar.cfs.ac.uk). LB3D scales linearly on all platforms available to us.
In addition to those mentioned above, these include a CRAY T3E, a 3000 CPU
Compaq Alpha cluster ‘Lemieux’ (at Pittsburgh Supercomputing Center), various
Linux clusters and SGI Origin 2000 and 3800 systems.

We expect it to become easier to simulate systems of a size which is comparable
with the experimental data with the advent of computational grids (Foster & Kessel-
man 1999, pp. 15–25; Berman et al. 2003). Grids are geographically distributed and
dynamically varying collections of resources such as supercomputers, storage facilities
or advanced experimental instruments that are connected by high-speed networks,
thus allowing widespread human collaborators to work together closely. In the same
way that large-scale lattice Boltzmann simulations require a supercomputer, the
visualization of the large and complex datasets that these simulations produce also
require specialist hardware that few scientists have direct access to. As we shall see,
visualization engines can also be treated as distributed resources on the grid.

Computational grids are related to traditional distributed computing, with the
major extension that they enable the supposedly transparent sharing and collective
use of resources across multiple administrative domains which would otherwise be
individual and isolated facilities. With growing intensity, significant effort is being
invested worldwide in grid computing (http://www.gridforum.org). The grid aims
to present the elements required for a computational task (e.g. calculation engine,
filters, visualization capability) as components which can be effectively and trans-
parently coupled through the grid framework using middleware. In this scenario, any
application or simulation code can be viewed simply as a data-producing or data-
consuming object on the grid and computational steering as a way of allowing users
to interact with such objects.

Our LB3D code is now a fully grid-enabled, steerable application. LB3D simu-
lations can then be launched and steered on a remote machine, with the visual-
izations being performed in other geographic locations. One or more users control
the workflow from a laptop running a steering client and client software to interact
remotely with the computation and visualization engines. Behind the scenes, the
‘grid middleware’ moves files, simulation data and commands between the resources
involved. We have used both Globus (http://www.globus.org) (Foster & Kesselman
1999, p.259) and Unicore (http://www.unicore.org) as the basic middleware fabric in
this work, and digital certificates provided by the UK e-science certification authority
(http://www.grid-support.ac.uk).

The grids being used in these demonstration activities have been assembled espe-
cially for each event. By contrast, the UK e-science community has constructed an
ambitious level-two grid (http://www.grid-support.ac.uk/l2g) and more recently still
a National Grid Service (http://www.ngs.ac.uk) that aim to provide the user com-
munity with a persistent grid of heterogenous resources. LB3D and the RealityGrid
steering framework have already been deployed on this level-two grid, which uses
Globus GT2 as middleware. Thus we are amongst the first groups in the world to
use a persistent grid for scientific research requiring high-performance computing
and computational steering.

In a major US–UK grid project leading up to and including the Supercomput-
ing 2003 conference, we studied the defect formation and dynamics within a self-
assembled gyroid mesophase (González-Segredo & Coveney 2004) using a fast net-
work between the ‘Extended Terascale Facility’ (http://www.teragrid.org) in the
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USA and the national supercomputing centres at Manchester (CSAR) and Daresbury
(HPCx) in the UK. This gives us access to machines in the US including Lemieux and
various Itanium (IA64) systems. In the UK, access to the total combined resources
of CSAR and HPCx provides us with a 1280 CPU IBM SP4 machine, a 504 CPU
SGI Origin 3800, and a 256 CPU SGI Altix. For visualization there are resources
available on both sides of the Atlantic as well, including various SGI Onyx machines
and commodity clusters which use ‘Chromium’ (http://chromium.sourceforge.net)
for parallel rendering. The Visualization Toolkit (VTK, http://www.kitware.com)
and more specialized ray-tracing codes allow us to generate isosurfaces or volume-
rendered visualizations of even our largest datasets on these platforms (see http://
www.realitygrid.org/TeraGyroid.html).

However, the vision of a computational grid that furnishes for information tech-
nology what electricity (and other utility) grids have achieved in terms of almost
universal and transparent access to energy (and other resources) within modern civ-
ilized societies is still a dream today. Many problems remain to be addressed before
computational grids become easy to use. At the time of writing, it remains very awk-
ward to both access and use grid-enabled resources, and the much vaunted advan-
tages are yet to be realized. In fact, our own experiences indicate that real progress
towards usability will be achieved most quickly with the development and deploy-
ment of lightweight middleware, in marked contrast with the existing heavyweight
behemoths (Chin & Coveney 2004).

Moreover, for effective use of computational steering together with large-scale sim-
ulations, it is very important that supercomputing centres change their policy of job
scheduling since advanced reservation for the co-allocation of computation and visu-
alization resources becomes essential. Today, this is possible for small scale simula-
tions which do not run on the grid if turnaround times are short, but for large-scale
jobs one needs special arrangements with the resource owners. It is also important
that users will be able to request access to resources at convenient times, i.e. during
working hours rather than in the middle of the night. We expect that the huge effort
currently being invested in the development of grid standards will result in a satisfac-
tory solution of these issues. We believe that computational grids will revolutionize
the way scientific simulations are performed in the future because they should then
offer an easy and effective way to access distributed resources in an optimal way for
the scientific problem under investigation.

5. Immiscible fluid mixtures under shear

Lees & Edwards published their method for the application of shearing in molecular
dynamics simulations in 1972 (Lees & Edwards 1972). Since then Lees–Edwards
boundary conditions have become a popular method for simulating fluid rheology
under shear using a variety of different methods and have been implemented in lattice
Boltzmann codes before (Wagner & Pagonabarraga 2002; Wagner & Yeomans 1999).

The method can be described as an extension of the use of standard periodic
boundary conditions and is illustrated in figure 1. While with periodic boundary
conditions particles that arrive at a system boundary leave the simulation volume
and ‘re-enter’ it on the opposite side, for a sheared system this is only true for the
boundaries not subject to shear. Particles crossing the shear planes, which are the
x = 0 and x = nx planes in our case, get their z-velocities altered by ±∆uZ and
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x = 0 

x = nx

d

−∆uZ

∆uZ

Figure 1. Our lattice Boltzmann code LB3D implements shearing by use of Lees–Edwards bound-
ary conditions: particles crossing the x = 0 = nx boundary have their z-velocities altered by
±∆uZ and are displaced in the ±z-direction by d = t∆uZ (t is the simulation time). The corre-
sponding shear rate is s = ∆uZ/nx; oscillatory shear is achieved by setting ∆u′

Z = cos(ωt)∆uZ .

are displaced in the ±z-direction by d = t∆uZ (t is the simulation time and nx
is the lattice size in the x-direction). The corresponding shear rate s is ∆uZ/nx.
This algorithm can be extended for simulations of fluids under oscillatory shear by
multiplying ∆uZ with a time-dependent cosine function of frequency ω: ∆u′

Z =
cos(ωt)∆uZ .

We have applied our model to study spinodal decomposition under shear, also
referred to as Couette flow. The phase separation of binary immiscible fluids without
shear has been studied in detail by different authors and LB3D has been shown to
model the underlying physics successfully (González-Segredo et al. 2003). It has
been shown in the non-sheared studies of spinodal decomposition that lattice sizes
need to be large in order to overcome finite size effects, i.e. 1283 has been found
the minimum acceptable number of lattice sites (González-Segredo et al. 2003). For
high shear rates, systems also have to be very long because, if the system is too
small, the domains interconnect across the z = 0 and z = nz boundary and form
interconnected lamellae in the direction of shear. Such artefacts need to be eliminated
from our simulations.

Computational steering is a very useful tool for checking on finite size effects in
an ongoing sheared fluid simulation. By virtue of its ability to constantly monitor
volume-rendered colour fields or fluid densities, the human eye turned out to be very
reliable in spotting the moment when these simulations become unphysical. In this
way, we were able to keep the computational resources required to a minimum.

From our studies we found that to avoid finite size effects 64 × 64 × 512 systems
are sufficient for low shear rates and short simulation times, but 128 × 128 × 1024
lattices are needed for higher shear rates and/or very long simulations.

The results presented in this section were all obtained for a 64 × 64 × 512 system
with all relaxation times and masses set to unity, i.e. τσ = 1.0, mσ = 1.0. The initial
oil and water fluid densities fr and fb were given by a random distribution between
0.0 and 0.7 (in lattice units). All simulations were performed on 64 CPUs of a SGI
Origin 3800 at CSAR in Manchester, UK. Shear rates s were set to 0, 7.8 × 10−4,
1.6×10−3, 3.1×10−3 and 4.7×10−3 (in lattice units) in order to study the influence
of shear on the domain growth. In order to compare different simulations, we define
the time-dependent lateral domain size L(t) along direction i = x, y, z as

Li(t) ≡ 2π√
〈k2

i (t)〉
, (5.1)
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Figure 2. The time-dependent lateral domain size L in the (a) x- and (b) z-directions for different
shear rates. Initial fluid densities are randomly distributed between 0 and 0.7, the system size
is 64 × 64 × 512, and τσ = mσ = 1 (all quantities are reported in lattice units).

where

〈k2
i (t)〉 ≡

∑
k k2

i S(k, t)∑
k S(k, t)

(5.2)

is the second-order moment of the three-dimensional structure function

S(k, t) ≡ 1
V

|φ′
k(t)|2 (5.3)

with respect to the Cartesian component i. 〈·〉 denotes the average in Fourier space,
weighted by S(k) and V is the number of nodes of the lattice, φ′

k(t) the Fourier
transform of the fluctuations of the order parameter φ′ ≡ φ − 〈φ〉, and ki is the ith
component of the wavevector.

Figure 2 shows the time-dependent lateral domain size in x- and z-directions for the
above-mentioned parameters up to 4000 time-steps. At the beginning of simulations,
there is a steep increase of L due to rapid diffusion of mass to nearest neighbours
before the domain growth starts. As expected, the behaviour of L(t) is identical in
x- and z-directions for s = 0.0, but is very different for s > 0.0. The average slope of
Lx(t) decreases for increasing s until phase separation almost arrests and multiple
peaks occur for s = 1.6 × 10−3 and s = 3.1 × 10−3 (in lattice units). These peaks
arise very regularly at approximately every 700 time-steps in the former case and
every 1500 time-steps in the latter case. For s = 4.7 × 10−3 these peaks cannot be
observed. They can be explained as follows: if a domain reaches a substantial size, the
probability of it coalescing with a similarly sized one becomes high, but the resulting
very large domain will be unable to withstand the strain caused by the shear and
will break up a few time-steps later. For higher shear rates, domain growth in the
x-direction is slower than for lower shear rates and the peaks occur with a lower
frequency. If s becomes too high (as in the s = 4.7 × 10−3 case), the imposed strain
prevents domains substantially larger than the average domain size from forming.

In the z-direction, shear causes elongated domains, resulting in increasing values
of L(t) for increasing shear rates. For s = 4.7 × 10−3, Lz(t) grows rapidly until it
saturates at t = 1100. A critical domain size is reached, after which domains still
grow but are very elongated and tilted by an angle. Due to this tilting, Lz saturates,
since it measures only the size of the domains in the z-direction.
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Figure 3. Volume rendered order parameter φ for increasing shear rates all shown at time-step
3000. The system size is 64 × 64 × 512. Blue areas denote high density of ‘blue’ fluid and red
denotes the interface between fluids. With increasing shear rate, domains become more elongated
and tilted. (a) s = 0, (b) s = 1.6 × 10−3, (c) s = 4.7 × 10−3.

This effect is illustrated in figure 3, which shows volume-rendered snapshots of the
order parameter φ for shear rates s = 0.0, 1.6 × 10−3, and 4.7 × 10−3, all at time-
step 3000. Areas of high density of ‘blue’ fluid are coloured blue and the interface
between both fluids is coloured red. The figure shows how the domains develop
evenly in the x- and z-directions for s = 0.0, but become tilted and elongated under
shear. This effect increases with increasing shear rate, resulting in very long and slim
lamellae in the s = 4.7 × 10−3 case.

The results presented in this section are preliminary. We hope to be able to report
on more detailed studies of essentially finite-size-free simulations of complex fluid
mixtures under shear in the near future. We are planning to use our code to quantify
domain growth and compare our results with previous theoretical work and exper-
imental results (Cates et al. 1999; Corberi et al. 2002; Wagner & Yeomans 1999).
Applying oscillatory instead of constant shear is a natural extension of this work and
simulations are already ongoing (Xu et al. 2003). We are also studying the properties
of amphiphilic fluid mixtures under shear including the effect shear has on previously
formed cubic mesophases such as the ‘P’-phase (Nekovee & Coveney 2001) and the
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gyroid cubic mesophase (González-Segredo & Coveney 2004). Such complex fluids
are expected to exhibit non-Newtonian properties.

6. Multiphase flow in porous media

The study of transport phenomena in porous media is of great interest in fields rang-
ing from oil recovery and water purification to industrial processes such as catalysis.
In particular, the oilfield industry uses complex, non-Newtonian, multi-component
fluids (containing polymers, surfactants and/or colloids, brine, oil and/or gas), for
processes like fracturing, well stimulation and enhanced oil recovery. The rheology
and flow behaviour of these complex fluids in a rock is different from their bulk prop-
erties. It is therefore of considerable interest to be able to characterize and predict
the flow of these fluids in porous media.

The flow of a single phase non-Newtonian fluid through two-dimensional porous
media has been addressed with lattice Boltzmann methods (Aharonov & Rothman
1993; Chin et al. 2002), using a ‘top-down’ approach, in which the effective dynamic
viscosity of the fluid, and hence the relaxation parameter in the BGK equation,
(2.5), explicitly depends on the strain rate tensor through a power law. However,
from the point of view of a modelling approach, the treatment of complex fluids in
three-dimensional complex geometries is an ambitious goal. In this paper we shall
only consider binary (oil–water) mixtures of Newtonian fluids, since this is a first
and necessary step in the understanding of multiphase fluid flow in porous media.

The advantage of using lattice Boltzmann (or lattice gas) techniques in study-
ing flow in porous media is that complex geometries can be easily implemented
and the flow problem solved therein, since the evolution of the particle distribu-
tion functions can be described in terms of local collisions with the obstacle sites
using simple bounce-back boundary conditions. Synchrotron-based X-ray micro-
tomography (XMT) imaging techniques provide high-resolution, three-dimensional
digitized images of rock samples. By using the lattice Boltzmann approach in com-
bination with these high-resolution images of rocks, not only it is possible to com-
pute macroscopic transport coefficients, such as the permeability of the medium, but
information on local fields, such as velocity or fluid densities, can also be obtained at
the pore scale, thus providing a detailed insight into local flow characterization and
assisting in the interpretation of experimental measurements (Auzerais et al. 1996).

The XMT technique measures the linear attenuation coefficient from which the
mineral concentration and composition of the rock can be computed. From the tomo-
graphic image of the rock volume the topology of the void space can be derived,
including pore-size distribution and tortuosity, and the permeability and conductiv-
ity of the rock can be computed (Spanne et al. 1994). The tomographic data are
represented by a reflectivity greyscale value and are arranged in voxels in a three-
dimensional coordinate system. The linear size of each voxel is defined by the imaging
resolution, which is usually of the order of micrometres. By introducing a threshold
to discriminate between pore sites and rock sites, these greyscale images can be
reduced to a binary (zeros and ones) representation of the rock geometry. Using the
lattice Boltzmann method, single phase or multiphase flow can then be described in
these real porous media.

Lattice Boltzmann and lattice gas techniques have already been applied to study
single and multiphase flow through three-dimensional micro-tomographic reconstruc-
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tion of porous media. For example, Martys & Chen (1996) and Ferréol & Rothman
(1995) studied relative permeabilities of binary mixtures in Fontainebleau sandstone.
These studies validated the model and the simulation techniques, but were limited
to small lattice sizes, of the order of 643.

The possibility of describing fluid flow in real rock samples furnishes the possibility
of being able to make comparisons with experimental results obtained on the same,
or similar, pieces of rock. Of course, to achieve a reasonable comparison, the size
of the rock used in lattice Boltzmann simulations should be of the same order of
magnitude as the system used in the experiments, or at least large enough to cap-
ture the rock’s topological features. The more inhomogeneous the rock, the larger
the sample size needs to be in order to describe the correct pore distribution and
connectivity. Another reason for needing to use large lattice sizes is the influence of
boundary conditions and lattice resolution on the accuracy of the lattice Boltzmann
method. It has been shown (see, for example, He et al. 1997; Chen & Doolen 1998;
and references therein) that if the BGK (Bhatnagar et al. 1954) approximation of the
lattice Boltzmann equation is used, the so-called bounce-back boundary condition
at the wall sites actually mimics boundaries which move with a speed that depends
on the relaxation parameter τ of the collision operator in the BGK equation (2.5).
The relaxation parameter determines the kinematic viscosity of the simulated fluid.
This implies that the computed permeability is a function of the viscosity.

The accuracy of lattice Boltzmann simulations also depends on the Knudsen num-
ber, which represents the ratio of the mean free path of the fluid particles and the
characteristic length-scale of the system (such as the pore diameter). To accurately
describe hydrodynamic behaviour this ratio has to be small. If the pores are resolved
with an insufficient number of lattice points, finite size effects arise, leading to an
inaccurate description of the flow field.

The error in solving the flow field increases with increasing viscosity (or equiva-
lently relaxation time), but this viscosity dependence becomes weak with increasing
lattice resolution. Hence it is desirable to use a high resolution within the pore space
in order to decrease the error induced by the use of bounce-back boundary condi-
tions. However, increasing the resolution means increasing the lattice size, and hence
the computational cost of the simulation.

Boundary conditions other than bounce-back have been proposed and shown to
give correct velocities at the boundaries. However, these methods are either suitable
only for flat interfaces (Inamuro et al. 1995) or cumbersome to implement (Verberg
& Ladd 2002), reducing the efficiency of the lattice Boltzmann method.

Large lattices require a highly scalable code, access to high-performance comput-
ing, terascale storage facilities and high-performance visualization. LB3D provides
the first of these, while the others are now offered by the UK High Performance Com-
puting services, and are also accessible via the UK e-science grid using RealityGrid
capabilities.

Using LB3D and capability computing services provided by the Manchester CSAR
SGI Origin 3800 supercomputer, we were able to simulate drainage and imbibition
processes in a 5123 subsample of Bentheimer sandstone X-ray tomographic data. The
whole set of XMT data represented the image of a Bentheimer sandstone of cylin-
drical shape with diameter 4 mm and length 3 mm. The XMT data were obtained
at the European Synchrotron Research Facility (Grenoble) at a resolution of 4.9 µm,
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resulting in a dataset of approximately 816 × 816 × 612 voxels. Figure 4 shows a
snapshot of the 5123 subsystem.

The aim of this study is to compare velocity distributions with the ones measured
by MRI of oil and brine infiltration into saturated Bentheimer rock core (Sheppard
et al. 2003). The rock sample used in these MRI experiments had a diameter of
38 mm and was 70 mm long; three-dimensional images of the rock were acquired at
a resolution of 280 µm. The system size we used in lattice Boltzmann simulations
was smaller than the sample used in MRI experiments, but still of a similar order
of magnitude and large enough to represent the rock geometry. On the other hand,
the higher spatial resolution provided by the lattice Boltzmann method permits a
detailed characterization of the flow field in the pore space, hence providing a useful
tool with which to interpret the MRI experiments, for example, in identifying regions
of stagnant fluid. Detailed results from these lattice Boltzmann simulations will be
presented in a future paper.

(a) Binary flow in a digitized Bentheimer rock sample

Darcy’s (1856) law for binary immiscible (oil–water) fluid mixtures was investi-
gated and the dependence of the relative permeability coefficients on water satura-
tion was derived and compared with lattice gas studies. The extended Darcy law for
binary flow takes the form

Ji =
2∑

j=1

kij(S)
k

µi
Xj , i = 1, 2, (6.1)

where Ji is the flux of the ith component and Xj is the force acting on the jth
component. kij(S) is the relative permeability coefficient depending on the saturation
S, k is the permeability of the medium and µi the viscosity of component i.

Using the lattice Boltzmann method, it is easy to selectively force only one com-
ponent in a binary mixture, leaving the other one unforced. In this way the diagonal
terms of the relative permeability matrix (kii) can be computed by analysing the
flux of one component when it is forced, while the cross terms (kij) can be computed
from the flux of one component when the other one is forced.

Since we want to study the flow behaviour for different forcing levels and for
forcing applied in turn to both fluids, a large number of simulations is required.
Hence, we limited the size of our system to a subsample of 64 × 64 × 32 voxels,
mirrored in the z-direction (flow direction) to give a final size of 643 lattice sites (see
figure 5). Periodic boundary conditions were applied in all directions. Immiscible,
binary mixtures of oil and water were flowed in this sample, at different forcing
levels and by forcing in turn either the water or the oil component. In each of these
numerical experiments, the system was initialized with a 50:50 mixture of oil and
water, both given the same viscosity and the same initial density distributions. The
rock walls were made fully water wettable, to reproduce experimental conditions and
to discriminate between the two fluids which would otherwise be equivalent. The rock
wettability is implemented by assigning each rock site a density distribution equal
to the initial density of water. These density distributions do not flow, but exert a
(repulsive) force on the oil component, pushing it away from the rock walls.

As the two components flow, they initially phase separate and, after some time, a
steady state is reached. Here we are only interested in the velocity field at the steady
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Figure 4. Rendering of an X-ray micro-tomographic image of a 5123 sample of Bentheimer
sandstone. The data have a resolution of 4.9 µm. The pore space is shown in red, while the rock
is represented in blue.

state. If the total time allocated for the simulation is longer than the time needed to
reach the steady state, we would waste CPU time performing calculations which are
of no value. If we run a simulation for less time than needed to reach the steady state,
using the checkpoint-restart facility within LB3D we can resume the simulation and
continue the run until the steady state is reached. In both cases, steering improves
the efficiency of the runs. By steering we can dump velocity and density fields at
variable frequency, check whether the fields at two different times differ or not and,
in case their difference is less than a given threshold, decide whether the steady state
is reached and stop the simulation. In the simulations presented here an average of
15 000 time-steps is needed to reach the steady state. At this time the total flux
(normalized by the pore volume) can be computed.

Figure 6a shows the force/flux dependence for the forced fluids. The linearity of
force/flux holds for all the forcing levels considered. At any given forcing level, the
wetting fluid flows less than the non-wetting one. This is due to the fact that the
wetting fluid interacts with the rock walls, and adheres to them, hence exerting
more resistance to flow, while the non-wetting fluid is lubricated by the wetting
fluid. Similar results have been achieved in three-dimensional lattice gas studies of
binary flow in Fontainebleau sandstone (Love et al. 2001; Olson & Rothman 1997).
A difference between our results and those for the lattice gas is that in the latter
the authors observed the presence of a capillary threshold, a minimum forcing level
required to make the non-wetting fluid flow, while here we observe flow even at small
forcing levels. The presence of this threshold is due to geometric constraints imposed
by the distribution and size of rock pores and throats, which can trap bubbles of
the non-wetting fluid. In the rock sample we used for this study there are no such
narrow throats and hence we would not expect to observe any capillary threshold.

In figure 6b the force/flux relation is plotted for the non-forced fluids. In this case
at any applied forcing the non-wetting fluid flows more than the wetting one. For
the non-wetting fluid we observe viscous coupling, i.e. the fluid flows even if it is
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Figure 5. A 643 sample of Bentheimer sandstone at a lattice resolution of 4.9 µm. The figure
shows the isosurface delimiting the pore volume. The pore space is in the inner region of the
isosurface.
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Figure 6. Flux of binary fluid when (a) forced and (b) unforced. All quantities
are given in lattice units and the flux is normalized by the pore volume.

not directly forced, and Darcy’s linearity is found for all forcing levels. On the other
hand, the wetting fluid does not flow until a sufficiently high force is applied. This is
due to the capillary forces. Hence Darcy’s law is observed to hold only for sufficiently
high forcing.

From the linear regime regions in both graphs we computed the relative permeabil-
ity coefficients: kww = 1.6, koo = 3.3, kow = 0.77, kwo = 0.57, where the subscripts
indicate water (w) and oil (o). The diagonal terms are one order of magnitude larger
than the cross terms, which can be expected because the cross terms represent the
response of one fluid when the other one is forced. This is also in agreement with
the results from lattice gas studies (Love et al. 2001).

A previous much debated issue is whether the off-diagonal terms in the relative
permeability matrix should satisfy a reciprocity relationship. The reciprocity of the
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coefficients in macroscopic linear transport laws of the form

Ji =
∑

j

LijXj , (6.2)

where Ji is a current and Xj is a force conjugate to the current, is a consequence of
Onsager’s regression hypothesis and it holds for systems which are linearly perturbed
from equilibrium (de Groot & Mazur 1985).

Our results show a linear dependence between force and flow, but the off-diagonal
coefficients we obtained from the linear regime region have slightly different values for
the wetting and non-wetting fluids. For binary immiscible fluid flow in porous media,
where complex interfacial dynamics plays a major role, it is not clear if Onsager’s
theory can be applied. In the aforementioned lattice gas studies, Onsager’s reciprocity
was found, but no clear theoretical justification has been given for the reason that
this should hold under the general nonlinear conditions pertaining (Flekkøy & Pride
1999).

It can also be observed that there are no error bars provided with our results. This
is due to the fact that in lattice Boltzmann, as opposed to lattice gas simulations,
there is no noise, and indeed this is one of the major computational advantages of
the method. Nevertheless, we plan to perform the same set of simulations starting
from different initial conditions, which may lead to different fluid–fluid interfacial
structures and fluid transport coefficients, and then derive error bars from the flow
computed in each of these simulations. More studies on different pore space geome-
tries and larger systems need to be done to address the general validity of Darcy’s
law for binary mixtures and Onsager’s reciprocity hypothesis.

7. Conclusions

This paper describes optimal implementation of large-scale lattice Boltzmann sim-
ulations of two-phase fluid dynamics through exploitation of capability computing
and computational steering. Capability computing promotes the execution of scal-
able codes that use a large fraction and sometime the entire allocation of processors
on a big supercomputer. Computational steering then ensures that this massive set of
resources is used optimally to generate meaningful scientific data. We illustrated the
use of these approaches by reporting preliminary results from two applications which
benefit substantially from large-scale simulation. The first of these was concerned
with Couette (shear) flow, where simulation cells of high aspect ratio are needed to
eliminate finite size effects; the second described two-phase flow in large portions of
digitized data obtained from X-ray micro-tomographic studies of Bentheimer sand-
stone. The most efficient use of computational steering of such large-scale simulations
uses a computational grid. These grids are in their infancy today and much more
work needs to be done to render them transparent to users. Nevertheless, important
advances have already been made, and here we described the grid-enablement of our
lattice Boltzmann codes. Our experience with grids to date leads us to conclude that
much lighter middleware solutions will be required to foster their widespread use.
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Nekovee, M., Chin, J., González-Segredo, N. & Coveney, P. V. 2001 Computational fluid dynam-

ics. In Proceedings of the Fourth UNAM Supercomputing Conference, Singapore (ed. E. Ramos
et al .), pp. 204–212. World Scientific.

Olson, J. F. & Rothman, D. H. 1997 J. Fluid Mech. 341, 343.
Shan, X. & Chen, H. 1993 Phys. Rev. E47, 1815.
Sheppard, S., Mantle, M., Sederman, A., Johns, M. & Gladden, L. F. 2003 Magn. Reson. Imaging

21, 365.
Spanne, P., Thovert, J. F., Jacquin, C. J., Lindquist, W. B., Jones, K. W. & Adler, P. M. 1994

Phys. Rev. Lett. 73, 2001.
Succi, S. 2001 The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University

Press
Verberg, R. & Ladd, A. J. C. 2002 Phys. Rev. E65, 056311.
Wagner, A. J. & Pagonabarraga, I. 2002 J. Stat. Phys. 107, 521.
Wagner, A. J. & Yeomans, J. M. 1999 Phys. Rev. E59, 4366.
Xu, A., Gonnella, G. & Lamura, A. 2003 Phys. Rev. E67, 056105.

Phil. Trans. R. Soc. Lond. A (2004)

 on June 3, 2010rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/

