
Scalable System Software for High Performance

Large-scale Applications

Alessandro Morari

Department of Computer Architecture

Universitat Politècnica de Catalunya

A thesis submitted for the degree of

Doctor of Philosophy

27 May 2014

Ai miei genitori Fabrizio ed Elena, a mia sorella Elisa ed ai miei nonni

Stefano e Vera.

Acknowledgements

I would like to thank my Thesis Director Prof. Mateo Valero, for his con-

tinuous support and prompt attention, even when we were separated by a

whole continent. I would also like to acknowledge my mentor Dr. Roberto

Gioiosa, for believing in me from the beginning, and for challenging me

with his thoughtful remarks. I would like to thank my friends and col-

leagues at Pacific Northwest National Laboratories, Dr. Oreste Villa and

Dr. Antonino Tumeo. Their friendship and teachings made me change rad-

ically, transforming this time in the laboratory to an amazing experience.

I would like to thank the director of the Center for Adaptive Supercom-

puter Software Dr. John Feo, for his incredible heart and honesty, and

for supporting me from the first day we met. I would also like to thank

my group leader at the Barcelona Supercomputing Center, Dr. Francisco

Cazorla, for continuously supporting my research activity and for patiently

dealing with my laziness with bureaucratic procedures. I would like to ac-

knowledge my colleagues in the CAOS group at Barcelona Supercomputing

Center Marco Paolieri, Roberta Piscitelli, Carlos Luque, Carlos Boneti, Bo-

jan Maric, Kamil Kedzierski, Victor Jimenez, Petar Radojkovic, Vladimir

Kacarevic, Dr. Eduardo Quiñones, Dr. Jaume Abella and Dr. Miquel

Moreto for the interesting discussions and the beautiful moments shared

when I was working in Barcelona. Also, I would like to thank my colleagues

at IBM T. J. Watson Dr. Robert Wisniewski, Dr. Bryan Rosenburg, Dr.

Jose Brunheroto, Dr. Chen-Yong Cher and Dr. Alper Buyuktosunoglu for

sharing with me their knowledge and giving me the opportunity of work-

ing on extremely interesting problems. Finally, I am deeply grateful to my

family for their incredible support, for their love and for giving me the gift

of curiosity that has taken me where I stand today.

Abstract

In the last decades, high-performance large-scale systems have been a fun-

damental tool for scientific discovery and engineering advances. The next

generation of supercomputers will be able to deliver a performance in the

order of 1018 floating point operations per seconds (ExaFlop). The design

of a new generation of supercomputers, called Exascale generation, is the

object of a large part of current research in HPC. The availability of large-

scale models and simulation and the availability of large instruments like

telescopes, colliders and light sources has generated a growing volume of

scientific data. Computing resources to move, analyze and manage this

exponentially growing volume of data is becoming the next big challenge,

commonly referred as big data. The steps toward the design of an Exas-

cale Supercomputer are increasingly pointing to the necessity of integrating

Exascale with big data.

Over the years, the difficulty of efficiently manage large-scale system re-

sources has repeatedly shown the importance of providing scalable system

software. System software has evolved to keep pace with technology and

applications evolution. Research on scalable system software for large-scale

system has historically been driven by two fundamental aspects: on one

side, performance, efficiency and reliability, on the other side the goal of

providing a productive developing environment.

Considered the challenges posed by the next-generation large-scale high-

performance systems and applications, it is clear that system software needs

to be significantly updated if not redesigned. In this Thesis, we propose

approaches to measure, design and implement scalable system software.

Overall, this Thesis proposes three orthogonal approaches that should be

integrated into a new system-software layer for next-generation large-scale

high performance computing systems:

• To obtain scalable applications a detailed measurement and under-

standing of system software performance and overhead are necessary.

We design and implement a methodology to provide detailed measure-

ment of system software interruptions and their effect on applications

performance.

• The runtime system is the right candidate to provide highly scalable

system services and to exploits low-level hardware optimizations. Some

system services could be moved from the operating system to the run-

time system. A specialized runtime system for a class of application

can leverage a deeper knowledge of the application behaviour and ex-

ploit low-level hardware features to improve scalability. We design and

implement a runtime system for the class of irregular applications and

show a performance improvement of several orders of magnitude with

respect to more traditional approaches.

• Exploiting low-level hardware features at user-level (i.e., in the appli-

cation) can lead to considerable performance improvement. We show

two instances of optimizations leveraging architecture-specific hard-

ware features and obtaining significant performance improvement.

To enhance the performance of an entire class of applications, those ap-

proaches should be integrated into a specialized runtime system.

Contents

Contents v

List of Figures xi

I Introduction and Backround 1

1 Introduction 3

1.1 Challenges of Next-generation High-performance Large-scale systems . . 3

1.2 Proposed approach and methodologies 5

1.3 Thesis contributions . 6

1.4 Thesis structure . 8

2 Background: current trends in High Performance Computing 9

2.1 Technology trends . 9

2.2 Scientific and large-scale applications . 12

2.2.1 Big data and exascale computing 14

2.2.2 Data-intensive and Irregular Applications 16

2.3 System software for large-scale systems 17

2.3.1 Operating Systems . 18

2.3.2 Runtime Systems and Parallel Programming Models 20

2.3.3 Trends in System Software . 26

II Operating System Scalability 29

3 General Purpose Operating Systems 31

3.1 Summary . 31

3.2 Experimental environment . 34

v

CONTENTS

3.3 Related Work . 34

3.4 Measuring OS noise . 36

3.4.1 LTTng-noise . 39

3.4.2 Tracing scalability . 40

3.4.3 Analyzing FTQ with LTTng-noise 40

3.5 Experimental Results . 43

3.5.1 Noise breakdown . 44

3.5.2 Page faults . 46

3.5.3 Scheduling . 48

3.5.4 Process preemption and i/o . 49

3.5.5 Periodic activities . 52

3.6 Noise disambiguation . 53

3.6.1 Disambiguation of qualitative similar activities 55

3.6.2 OS noise composition . 56

3.6.3 Conclusions . 56

4 Light-weight Operating Systems 59

4.1 Summary . 59

4.2 Experimental environment . 62

4.3 Related Work . 62

4.4 Memory management in general purpose OS and light-weight kernels . . 63

4.5 Methodology . 65

4.5.1 Adding support for TLB misses to CNK 66

4.5.2 Tracing TLB misses . 68

4.5.3 TLB noise injection . 69

4.6 Experimental results . 71

4.6.1 TLB pressure . 72

4.6.2 Analysis of TLB overhead at scale 73

4.6.3 TLB noise injection . 77

4.7 Conclusions . 82

III Runtime System Scalability 83

5 Scalable Runtimes for Distributed Memory Systems 85

5.1 Summary . 85

5.2 Experimental environment . 89

vi

CONTENTS

5.3 Related Work . 90

5.4 Programming model and API . 93

5.4.1 PGAS communication model . 93

5.4.2 Loop parallelism program structure model 95

5.4.3 Explicit data and code locality management 95

5.4.4 Blocking and Non-blocking semantics 96

5.4.5 Explicit synchronization . 96

5.4.6 Example . 96

5.5 Runtime architecture . 99

5.5.1 Overview . 100

5.5.2 Communication . 101

5.5.3 Aggregation . 103

5.5.4 Multithreading . 105

5.6 Experimental Evaluation . 107

5.6.1 Micro-benchmarks . 109

5.6.2 BFS . 110

5.6.3 Graph Random Walk . 113

5.6.4 Concurrent Hash Map Access . 115

5.7 Conclusions . 117

IV User-level Scalability Exploiting Hardware Features 119

6 Exploiting Hardware Thread Priorities on Multi-threaded Architec-

tures 121

6.1 Summary . 121

6.2 Experimental environment . 123

6.3 Related Work . 124

6.4 POWER5 and POWER6 Microarchitecture 125

6.4.1 POWER5 and POWER6 Core Microarchitecture 125

6.4.2 Simultaneous Multi-Threading 125

6.4.3 Software-controlled Hardware Thread Priorities 127

6.5 Experimental Setup . 128

6.5.1 Experimental environment . 129

6.5.2 The Linux kernel modification 130

6.5.3 Running the experiments . 131

6.5.4 Micro-benchmarks description . 131

vii

CONTENTS

6.5.4.1 Integer micro-benchmarks 132

6.5.4.2 Floating point micro-benchmarks 132

6.5.4.3 Memory micro-benchmarks 133

6.6 Analysis of results . 133

6.6.1 Default Priorities . 133

6.6.2 Malleability . 134

6.6.3 Higher Priority . 135

6.6.4 Lower Priority . 141

6.6.5 Maximum priority difference . 141

6.6.6 Malleability of SPEC CPU2006 142

6.7 Use cases . 144

6.7.1 Use case A - Load Balancing . 144

6.7.2 Use case B - Transparent threads 146

6.8 Conclusions . 148

7 Exploiting cache locality and network-on-chip to optimize sorting on

a Many-core architecture 151

7.1 Summary . 151

7.2 Experimental environment . 153

7.3 Tilera many-core processor . 153

7.3.1 Processor architecture . 153

7.3.2 Architectural characterization . 154

7.4 Background . 156

7.4.1 Radix sort . 156

7.4.2 Related work . 158

7.5 Parallel Radix Sort . 159

7.5.1 Local histogram . 160

7.5.2 Offset computation . 160

7.5.3 Keys distribution . 161

7.6 Optimizations . 161

7.6.1 Local Histogram . 162

7.6.2 Offset computation . 163

7.6.3 Keys Distribution . 164

7.7 Experimental evaluation . 166

7.7.1 Experimental setup . 166

7.7.2 Optimization effects . 167

viii

CONTENTS

7.7.3 Scaling . 167

7.7.4 Comparison . 169

7.8 Conclusions . 171

8 Conclusions 173

Pubblications 175

References 177

ix

CONTENTS

x

List of Figures

1.1 Next-generation runtime systems will include additional system services

and exploit low-level hardware features to optimize an entire class of

applications. 6

2.1 Exponential growth of supercomputing power as recorded by the TOP500

[10] - #1 refers to the first in the list, #500 refers to the 500th and Sum

is the sum of all supercomputers in the list. 10

2.2 Energy consumption for data communication, difference between today

and in 2018 [24] . 13

2.3 Percentage of the TOP500 using a given Operating System [10] 19

2.4 Effect of an OS interruption on a parallel application. 20

2.5 Programming model schema for current and next-generation runtime

systems. 27

3.1 Measuring OS noise using FTQ and LTTng-noise. Figures 3.1a and 3.2a

report the direct OS overhead obtained multiplying the execution time

of a basic operation by the number of missing operations. 37

3.2 Zoom on noise peak using FTQ and LTTng-noise. Figures 3.1b and 3.2b

report time as measured by LTTng-noise. 42

xi

LIST OF FIGURES

3.3 FTQ Execution Trace. Figure 3.3a shows a part (75 ms) of the FTQ

trace that highlights the periodic timer interrupts (black lines), the page

faults (red line), and a process preemption (green line). Figure 3.3b

zooms in and shows that the interruption consists of several kernel events.

At this level of detail we can distinguish the timer interrupt (2.178 µsec,

black) followed by the run timer softirq softirq (1.842 µsec, pink), the

first part of the schedule (0.382µsec, orange), the process preemption

(2.215 µsec, green), and the second part of the schedule (0.179µsec,

orange). 43

3.4 OS noise breakdown for Sequoia benchmarks 45

3.5 Page fault time series . 47

3.6 Page Fault Trace. Figures 3.6a and 3.6b show the execution trace of

AMG and LAMMPS, respectively. We filtered out all the events but the

page faults (red). The traces highlight the different distributions of page

fault for AMG (throughout all the execution) adn LAMMPS (mainly

located at the beginning and the end). Notice that in some regions page

faults are very dense and appear as one large page fault when, in fact,

there are thousands very close to each other but the pixel resolution does

not allow distinguishing them. 48

3.7 Domain rebalance softirq time series . 50

3.8 Process preemption experienced by LAMMPS. This picture shows the

complete execution trace of LAMMPS. We filtered out all events but

process preemptions (green). Though the pixel resolution does not al-

low distinguishing all the process preemption, it is clear that LAMMPS

suffers many frequent preemptions. 51

3.9 run timer softirq time series . 54

3.10 AMG - Synthetic OS noise graph . 55

3.11 Noise disambiguation . 57

4.1 Performance of AMG in weak scaling mode with a non-optimized version of Linux

and with CNK on BG/P. This figure shows the effects of Linux system noise on AMG

at scale: compared to CNK, Linux shows lower performance (3.62x with 128 cores)

and limited scalability. 66

4.2 Example of virtual-to-physical memory mapping for two MPI processes

(SMP mode) in CNK. 67

4.3 TLB miss trace of 3.52 seconds of AMG execution. 69

xii

LIST OF FIGURES

4.4 TLB miss handler execution time distribution for CNK-TLB and Linux. 70

4.5 TLB misses overhead with varying page sizes and concurrent cores. This

graph shows that the overall overhead is below 2% for 16MB-pages for

all the applications while 1MB-pages only guarantee overhead below 2%

for some application. 74

4.6 TLB miss handler execution time with varying page sizes and concurrent

cores. The graph shows that the time required to perform a virtual-to-

physical translation in CNK-TLB changes depending on the page size

(the larger the page, the longer the execution time), especially with pages

larger than 64KB. The TLB miss handler execution time influences the

applications’ overall overhead.Missing 4K page bars refer to experiments

that could not complete due to the high overhead with small pages (see

Table 4.3). Also, the 1M page experiment with IRS is missing due to

the very low number of TLB misses to sample (less than 1 TLB miss on

average). 76

4.7 Empirical relationship between TLB misses/second and TLB handler

execution time: when the TLB pressure is low (less than 1 TLB mis-

s/second) the probability of cache misses increases with the result that

the TLB handler takes longer to complete. 76

4.8 Noise injection with constant noise signature. This graphs shows that

the overall overhead of injecting TLB miss with a constant signature is

below 2% with 16MB-pages for all the applications. With 1MB-pages,

instead, UMT shows considerable overhead. 78

4.9 Noise injection with random uniform noise signature. This graphs shows

that the overall overhead of injecting TLB miss with a random uniform

signature is below 2% with 16MB-pages for all the applications. With

1MB-pages, instead, UMT shows considerable overhead. 81

5.1 Sequential queue-based BFS implementation 97

5.2 Parallel BFS implementation with GMT 98

5.3 Architecture overview of GMT . 100

5.4 Bandwidth between two nodes using a single Communication Server and

a single worker with varying message size. 103

5.5 Aggregation mechanism . 104

5.6 Fine grain multithreading in GMT. 107

xiii

LIST OF FIGURES

5.7 Transfer rates of put operations between 2 nodes while increasing con-

currency. Multiple lines show the transfer rate with message sizes from

8 bytes to 128 bytes. 109

5.8 Transfer rates of put operations among 128 nodes (one to all) while

increasing concurrency. This is the transfer rate of the outgoing messages

from the source node. Multiple lines show the transfer rate with message

sizes from 8 bytes to 128 bytes. 111

5.9 Million traversed edges per second for the GMT implementation of the

BFS (weak scaling) . 112

5.10 Million traversed edges per second for the BFS implementation on GMT,

UPC, Cray XMT, OpenMP (strong scaling). The horizontal scale for

GMT, XMT and UPC represents cluster-nodes while for OpenMP rep-

resents cores . 113

5.11 Millions of steps per second for the random walk implementation on

GMT and MPI (weak scaling) . 115

5.12 Number of strings hashed and inserted per second (Millions of access-

es/s) for the GMT implementation of the Concurrent Hash Map Access

benchmark. In the legend, W refers to the number of tasks and L to the

number of accesses performed by each task. 116

5.13 Number of strings hashed and inserted per second (Millions of access-

es/s) for the MPI implementation of the Concurrent Hash Map Access

benchmark. In the legend, W refers to the number of processes and L

to the number of accesses performed by each process. 117

6.1 POWER5 and POWER6 architecture 126

6.2 Correlation between the IPC in ST mode normalized to the IPC in SMT mode

on y-axis (IPCST

IPC
4/4
SMT

), and the malleability with priorities 6/2 on x-axis (
IPC

6/2
SMT

IPC
4/4
SMT

).136

6.3 Malleability of the primary thread when its priority is higher than the

priority of the secondary thread. Y-axis reports
IPC

P/Q
SMT

IPC
4/4
SMT

and X-axis is

the hardware priority for the primary and secondary threads (primary-

priority/secondary-priority). Please note the different scale for cpu int add

and ldint l2 . 137

6.4 Malleability of the primary thread when its priority is lower than the

priority of the secondary thread. Y-axis reports
IPC

P/Q
SMT

IPC
4/4
SMT

and X-axis is

the hardware priority for the primary and secondary threads (primary-

priority/secondary-priority). 138

xiv

LIST OF FIGURES

6.5 Execution time of the primary thread running with priority 6 against

a secondary thread with priority 1, normalized to the execution time

in single-thread mode. X-axis is the actual secondary thread micro-

benchmark. 142

6.6 Malleability of selected SPEC CPU2006 using higher priorities for the

primary thread.Y-axis reports
IPC

P/Q
SMT

IPC
4/4
SMT

and x-axis is the actual pair of

benchmarks running in SMT mode. 143

6.7 Transparent execution: percentage of the performance in single-thread

mode for the foreground and the background threads. Y-axis reports
IPC

P/Q
SMT

IPCST
× 100 and x-axis is the actual pair of benchmarks running in

SMT mode with priorities 6 and 1. 147

7.1 Read bandwidth. 155

7.2 Write bandwidth. 155

7.3 Write bandwidth for larger chunks of data. 157

7.4 Parallel prefix-sum with 8 threads. 161

7.5 Histogram computation bandwidth. 163

7.6 Prefix sum. 164

7.7 Key distribution bandwidth. 165

7.8 Throughput with and without optimizations for the TILEPro64 processor.168

7.9 Throughput with varying number of threads, 240 MK and striped allo-

cations. 169

7.10 Throughput with varying number of threads, 240 MK and allocations

on specific memory controllers. 170

7.11 Throughput with varying dataset sizes and 62 threads. 171

xv

LIST OF FIGURES

xvi

Part I

Introduction and Backround

1

Chapter 1

Introduction

In the last decades, high-peformance large-scale systems have been a fundamental tool

for scientific discovery and engineering advances. The sustained growth of supercom-

puting performance and the concurrent reduction in cost have made this techonology

available for a large number of scientists and engineers working on many different prob-

lems.

1.1 Challenges of Next-generation High-performance Large-

scale systems

Supercomputing performance has been growing at a faster pace than Moore’s law,

thanks to the ability to leverage systems scalability [10]. High Performance Computing

(HPC) employs large clusters of multicore nodes, interconnected with a high-speed

network. Today, scientific research and high-end technological firms leverage HPC

computational resources to perform extremely complex computations in order to solve

a large variety of problems. HPC is a necessary tool to face important scientific and

technological challenges that might have a huge impact on human life. Some of the

traditional HPC applications include: molecular dynamic, quantum chemistry, fluid

dynamic, nuclear simulations. Besides traditional ones new applications are emerging,

such as: improving therapy efficiency, extreme weather forecast, energy efficient aircraft

design and material science analysis [25].

Furthermore, an entirely new paradigm of scientific discovery is emerging . The

availability of large-scale models and simulations and the availability of very large in-

struments like colliders and light sources has generated a growing volume of scientific

data [48]. This very large volume of data has the potential of further improving scientific

3

1. INTRODUCTION

research and our understanding of many problems. Nonetheless, large-scale computing

systems were not designed to handle such a high data volume and are currently not

efficient in this task. The design of next-generation supercomputers will include tra-

ditional HPC requirements as well as the new requirements to handle data-intensive

computations.

Data intensive applications will hence play an important role in a variety of fields,

and are the current focus of several research trends in HPC. A particular class of data-

intensive applications is the class of irregular applications [67]. Applications of this class

are called irregular because they may have irregular memory access pattern, irregular

network communication and irregular instruction control logic. The unpredictable net-

work and data access pattern has a significant impact on performance. In fact, modern

large-scale HPC machine are not optimized for this type of applications and their per-

formance results sub-optimal [159]. A large number of relevant applications fall in this

class: bioinformatics, big science applications, complex network analysis, community

detection, data analytics, natural language processing, pattern recognition, semantic

databases and, in general, knowledge discovery applications. The challenges to sup-

port this class of applications is affecting the design of next-generation HPC hardware

and software. Large projects [153] have been following this approach. Current large-

scale systems focus around regular computations and data access patterns and exploit

complex cache-based architectures to reduce data access latencies.

The solution to this kind of problems includes a complete redesign of the whole

software stack. Being at the bottom of the software stack, the system software is

expected to change drastically to support the upcoming hardware and to meet new

application requirements [102].

Regarding the operating system (OS), two different approaches have been taken:

on one side adapting a general purpose operating system (e.g. Linux), on the other side

developing a specialized OS for HPC. The former solution leverages the large software

ecosystem and experience available for general purpose OS (GPOS), while the latter

solution guarantees better performance.

One of the drawbacks of using a GPOS is the difficulty of obtaining predictable

performance [140]. Linux, for instance, is not designed to provide a constant predictable

execution time to the applications. It features a variety of system services that can

interrupt the application at any moment. This phenomena, called OS noise [137], has

been frequently identified as an issue for large-scale systems. OS noise can, indeed,

significantly reduce applications scalability. With a GPOS a detailed understanding of

OS noise and its effects on applications performance is necessary. Once measured, OS

4

noise can be reduced by re-configuring or modifying the OS.

Operating systems that are specialized for HPC do not show significant OS noise,

because they are designed to be lightweight (so called lightweight kernels). Lightweight

kernels (e.g. IBM CNK) guarantee predictable performance and optimal scalabil-

ity [148]. The drawback of lightweight kernels is the lack of many features offered

by a GPOS (e.g. full featured dynamic memory allocation).

Because of the need for a low-overhead and low-noise OS, many features tradition-

ally provided by the OS are being moved into the runtime system. The runtime system,

because of the higher knowledge of the running application, is the best candidate to

provide services that depend on the application specific characteristics.

1.2 Proposed approach and methodologies

Considered the challenges posed by the next-generation large-scale high-performance

systems and applications, it is clear that system software needs to be significantly

updated, if not redesigned. In this Thesis, we propose an approach to measure, design

and implement scalable system software. The ideas behind this work are the following:

• Detailed measurement of system software overhead and its effect on

scalability is necessary: obtaining scalable system software can be achieved

only throughout a detailed measurement and understanding of system software

performance, overhead, and their effect on real applications. Without a deep

understanding of the sources of OS noise scalable system software is difficult to

design [89].

• Adaptive system software: system software has to adapt to the changing

hardware architecture and applications. The use of a standard, full-featured OS

it is not a viable solution anymore. Similarly, the exclusive use of a minimal

lightweight kernel is not the optimal solution to support the wide range of next-

generation applications [135]. These two approaches have to be merged in a

modular adaptive solution that can provide the benefits of both.

• The runtime system is the right candidate to provide highly scalable

system services and to exploit low-level hardware optimizations: some

of the system services traditionally provided by the OS have to be moved into

the runtime system. As shown in Figure 1.1 next-generation runtime systems

will include more system services and will exploit low level hardware features to

optimize performance and power [13].

5

1. INTRODUCTION

Services like scheduling, power management and data locality management can

be effectively provided by the runtime system, with the advantage of specializing

them for a particular class of applications (e.g. irregular applications). Moreover,

the runtime system is the software layer that can better exploit hardware fea-

tures provided by modern microprocessors such as on-chip communications and

hardware thread priorities. This approach allows the implementation of highly

adaptive system software to face the scalability and power efficiency challenges of

the next-generation large-scale machines [58]. Exploiting low-level hardware fea-

tures such as fine-grain cache locality management, core-to-core communications

and hardware thread priorities can significantly improve application performance.

Nonetheless, optimizing a single application can require considerable effort. The

runtime system, on the other hand, has detailed knowledge of the application

behavior and requirements. For this reason, the runtime system is one of the

best options to implement the optimization logic that exploit low-level hardware

features to optimize an entire class of applications.

Figure 1.1: Next-generation runtime systems will include additional system services
and exploit low-level hardware features to optimize an entire class of applications.

1.3 Thesis contributions

This Thesis address the problem of evaluating and designing scalable system software

for large-scale system. This work starts by addressing the scalability issues of the OS,

first regarding GPOS and then regarding lightweight kernels. Subsequently, we focus

on the runtime system. For shared memory systems we show how a runtime system

can be effectively used to improve data locality on emerging many-core architecture.

Finally, we implement a runtime system for distributed memory systems that includes

many of the system services required by next-generation applications.

The contribution of this thesis are as follows:

6

1. Operating System Scalability

We provide an accurate study of the scalability problems of modern Operating

Systems for HPC.

OS noise measurement and tracing: We design and implement a methodol-

ogy whereby detailed quantitative information may be obtained for each OS noise

event. We validate our approach by comparing it to other well-known standard

techniques to analyze OS noise, such FTQ (Fixed Time Quantum [154]). We

provide a case study in which we use our methodology to analyze the OS noise

when running benchmarks from the Lawrence Livermore National Lab (LLNL)

Sequoia applications.

Evaluation of the address translation management: we provide an apples-

to-apples comparison of different TLB management approaches — dynamic mem-

ory mapping, static memory mapping with replaceable TLB entries, and static

memory mapping with fixed TLB entries (no TLB misses) — on a real BG/P

system with up to 1024 nodes (4096 cores).

2. Runtime System Scalability

We show that a runtime system can efficiently incorporate system services and

improve scalability for a specific class of applications.

Design and implementation of a runtime library to efficiently execute

irregular applications on a commodity cluster: we design and implement a

full-featured runtime system and programming model to execute irregular appli-

cations on a commodity cluster. The runtime library is called Global Memory and

Threading library (GMT) and integrates a locality-aware Partitioned Global Ad-

dress Space communication model with a fork/join program structure. It supports

massive lightweight multithreading, overlapping of communication and computa-

tion and small messages aggregation to tolerate network latencies. We compare

GMT to other PGAS models, hand-optimized MPI code and custom architectures

(Cray XMT) on a set of large scale irregular applications: breadth first search,

random walk and concurrent hash map access. Our runtime system shows per-

formance orders of magnitude higher than other solutions on commodity clusters

and competitive with custom architectures.

3. User-level Scalability Exploiting Hardware Features

We show the high complexity of low-level hardware optimizations for single ap-

plications, as a motivation to incorporate this logic into an adaptive runtime

7

1. INTRODUCTION

system.

Exploiting hardware multi-thread priorities in multithreaded archi-

tectures: we evaluate the effects of controllable hardware-thread prioritization

mechanism that controls the rate at which each hardware-thread decodes instruc-

tion on IBM POWER5 and POWER6 processors.

Exploting cache-locality and network-on-chip to optimize sorting in

many-core architectures: we show how to effectively exploit cache locality

and network-on-chip on the Tilera many-core architecture to improve intra-core

scalability.

1.4 Thesis structure

The thesis is divided into four parts:

Part I includes the Introduction and Chapter 2 that provides the background for

this work.

Part II addresses the scalability problems of modern Operating Systems for HPC.

Chapter 3 describes the methodology to perform the detailed measurement of OS noise

for a GPOS, Chapter 4 describes the evaluation of the address translation management

for lightweight kernels.

Part III describes the issues of designing a specialized runtime system to improve a

specific class of applications. Chapter 5 describes a runtime system and a programming

model to efficiently execute irregular application on a commodity cluster.

Part IV shows that implementing optimization at user-level can require consid-

erable programming effort, suggesting that the runtime should be used to implement

this logic. Chapter 6 shows the potential hardware thread priorities to improve several

target metrics for various applications on POWER5 and POWER6 processors. Chap-

ter 7 how a radix sort kernel implemented for an emerging many-core architecture can

be optimized using hardware features like data locality management and network-on-

chip. The final Chapter concludes summarizing the work presented in this thesis and

proposing some possible future work.

8

Chapter 2

Background: current trends in

High Performance Computing

This chapter introduces concepts that will be further expanded in the following chap-

ters. In particular, this chapter describes the current technology trends, the charac-

teristics of future exascale and big-data applications and the system software enabling

those application to scale on future systems.

2.1 Technology trends

The last two decades witnessed an exponential growth of extreme scale systems perfor-

mance. As Moore’s law states, transistor densities double every 18 months. Industry

has been following Moore’s law to deliver more powerful processors every year. Leverag-

ing the Moore’s law and employing large-scale parallelism, supercomputer performance

managed to grow even faster than processor performance.

Figure 2.1 shows the exponential growth of supercomputing power as recorded by

the TOP500 [10]. From the early nineties GFlop systems to current PFlop systems, the

sustained growth rate of supercomputers performance has been two times the growth

rate of Moore’s law.

This impressive performance growth as been possible because of several concurrent

factors, including: sustained increase of processor performance, reduction of network

latency, increment of network and memory bandwidth. If this growth rate continues,

the next generation of supercomputers should be able to deliver a performance in

the order of 1018 floating point operations per seconds (ExaFlop). The design of a

new generation of supercomputers, called Exascale generation, is the object of large

9

2. BACKGROUND: CURRENT TRENDS IN HIGH PERFORMANCE
COMPUTING

Figure 2.1: Exponential growth of supercomputing power as recorded by the TOP500
[10] - #1 refers to the first in the list, #500 refers to the 500th and Sum is the sum of
all supercomputers in the list.

10

part of current research in HPC. The joint efforts of several institutions to design

an Exascale supercomputer are the driving force behind many new development in

computer architecture, operating systems, runtime systems, programming models, and

large scale applications. Exascale systems will be the results of current technology

trends meeting with application requirements, and leveraging the lessons learned from

more than two decades of supercomputing. For this reason, observing the direction

technology trends is a consistent and necessary approach to do sensible research in

HPC. In the context of this research efforts, the Defense Advanced Research Projects

Agency (DARPA) produced the first comprehensive study on the challenges in achieving

HPC systems with ExaFlop performance [24]. The study concluded that there are four

challenges to build exascale supercomputers:

1. The Energy and Power Challenge: Today it does not exist a technology able

to deliver sufficiently powerful systems at connected wattages well below 100 MW.

From a political-economic perspective has been suggested a power threshold of

20 MW, even though an exact power consumption constraint is not yet defined.

2. The Memory and Storage Challenge: There is a lack of mature memory and

storage technologies that will be able to fulfil the I/O bandwidth requirements of

future exascale systems within an acceptable power envelope.

3. The Concurrency and Locality Challenge: The end of increasing single

thread processing performance and the trend towards many-core processing ele-

ments pose challenges to achieve the expected level of parallelism. Projections

for exascale systems indicate that future applications may have to support more

than a billion of separate threads in order to efficiently use the hardware.

4. The Resilience Challenge: This challenge is related to the explosive growth in

the number of components in a supercomputer as well as the need to use advanced

technology at extreme voltage and temperature operating points. Individual de-

vices and circuits will become more and more sensitive to operating environments

and hence resiliency and reliability will be of utmost importance.

The expected technology trends toward exascale computing is summarized in Ta-

ble 2.1. As shown in Table 2.1, performance of various components of today extreme-

scale systems are expected to grow at different rate. This is a major game changer for

the design and implementation of extreme-scale systems, compared to today’s systems.

Dennard scaling states that while transistor size decreases (Moore’s law) power den-

sity remains constant, so the transistor power usage decreases too. In the last decade

11

2. BACKGROUND: CURRENT TRENDS IN HIGH PERFORMANCE
COMPUTING

Metric 2012 2015 exascale growth

System Peak [PF] 25 200 1000 100
Power [MW] 6-20 15-50 20-80 10
System Memory [PB] 0.3-0.5 5 32-64 100
Memory per Core [GB] 0.5-2 0.2-1 0.1-0.5 1/10
Node Perf. [GF] 160-103 500-7×104 103-104 10-103

Cores/Node 16-32 100-1,000 103-104 100 - 103

Node Mem. BW [GB/s] 70 100-103 400-4×103 100
Number of nodes 104-105 5×103-5×104 104-105 10-100
Total Concurrency O(106) O(107) O(109) 104

MTTI days O(1 day) O(1 day) 1/10

Table 2.1: Technology trends from current systems to ExaFlops systems [25]. Column
growth refers to the expected growth from 2012 to exascale.

Dennard scaling ended and was evident that power density could not be maintained

constant as transistor sizes were decreasing [64]. This implied a paradigm shift, because

performance could not anymore be obtained with higher clock frequencies. Processor

design started to change, from single core to multi and many core architectures. Because

of this paradigm shift, modern applications need to exploit thread-level parallelism to

compensate for the lack of single-core performance. New processors are expected to

have hundreds to thousands cores and to leverage hardware multi-threading. As a

consequence, the available memory per core is decreasing. While performance in older

system was dependent mostly on computational power (i.e , FLOPS) this is not the

case for exascale. Data-movement across the system, through the memory hierarchy

and even for register-to-register operations is expected to be the main contributor to

energy consumption.

Figure 2.2 shows the energy cost of data communication between several parts of

the system. The cost of register access is lower than the cost of a double precision

floating point operation. Nonetheless off-chip communications produce an increase in

energy consumption of two orders of magnitude.

2.2 Scientific and large-scale applications

Scientific applications are becoming more and more vital to do research in a wide variety

of scientific fields. Besides experimentation, simulation is today one of the fundamental

methodologies of modern scientific research. Through simulation of physical systems

scientists can validate hypothesis and make prediction with an increasing level of ac-

12

1 

10 

100 

1000 

10000 

DP
 FL
OP
 

Re
gis
te
r 

1m
m
 on
‐ch
ip 

5m
m
 on
‐ch
ip 

Off
‐ch
ip/
DR
AM

 

loc
al 
int
er
co
nn
ec
t 

Cr
os
s s
ys
te
m
 

Pi
co
Jo
ul
es
 

now 

2018 

Intranode/MPI 
CommunicaGon 

On‐chip  / CMP 
communicaGon 

Intranode/SMP 
CommunicaGon 

Figure 2.2: Energy consumption for data communication, difference between today and
in 2018 [24]

curacy. Simulations are an opportunity not only for scientific research but also for a

large number of industrial and service sectors such as Energy, Aeronautic, Mechanic,

Finance and Health. Scientific applications are commonly developed by domain experts

with a basic knowledge of the languages and programming models available on their

systems. Most of the scientific applications end to be very complex codes, because of

the necessity to solve complex scientific problems in the shortest possible time.

The European Exascale Software Initiative (ESSI) enumerates several grand chal-

lenges for exascale computing [25]. These challenges could improve the state of the

art of many scientific medical and engineering problems. Some of the grand challenges

identified by the ESSI are:

• Therapy efficiency: genetic sequencing is quickly becoming a primary tool to

identify and prevent health risks for a growing number of diseases. The improve-

ment of sequencing instruments by a factor of 103 to 106 it will make possible to

integrate genomic data into clinical trials. This will have a huge impact on drug

development and therapies. This will be possible only if exascale systems will

enable the management of ExaBytes of sequencing data.

• Extreme Weather Forecast: Computational modeling is a necessary tool to

13

2. BACKGROUND: CURRENT TRENDS IN HIGH PERFORMANCE
COMPUTING

integrate with physical earth observations to better understand the weather pro-

cesses. The accuracy of computational models has a direct impact on the ability

of predicting natural hazard and foster policy-making for risk-mitigation. Uncer-

tainty quantification also plays a central role in evaluating the potential outcomes

of extreme natural events. The economic, social and environmental impacts of

this challenge are enormous.

• Greening the Aircraft: as energy is becoming a huge issue for every aspect of

the social and economic life, future air transportation systems will have to reduce

their energy consumption and their impact on the environment. These reductions

include a reduction of emission by 50% and a decrease of external noise level by

10-20 dB (known as the vision-2020 plan).

• Materials: exascale is expected to bring major changes also in the Material

science. Focus of simulations is expected to shift from a qualitative description of

basic phenomena to the numerical optimization and quantitative analysis of soft

material properties, micro-structural evolution and chemistry-driven problems.

2.2.1 Big data and exascale computing

In the 20th century, simulation has been referred as the third paradigm of scientific

discovery, theory and experimentation being the first two. Large-scale scientific simu-

lations have in fact enabled deep understanding of physical systems where experimenta-

tion is difficult, hazardous, or very expensive. Enabling this new paradigm of scientific

discovery has fostered the design of state of the art HPC systems and software, driving

research in computer science and engineering. The availability of large-scale models

and simulation and the availability of large instruments like telescopes, colliders and

light sources has generated a growing volume of scientific data. Computing resources

to move, analyze and manage this exponentially growing volume of data is becom-

ing the next big challenge [48], commonly referred as big data. The efforts to extract

knowledge from large scientific dataset is considered today the fourth paradigm of sci-

entific discovery. Because of the increasing velocity, heterogeneity, and volume of the

data generated, extracting knowledge from large datasets is becoming a key aspect of

science.

The steps toward the design of an Exascale Supercomputer are increasingly point-

ing to the necessity of integrating Exascale with big data. The integration of this two

aspects of scientific discovery will be able to solve scientific problems orders of magni-

tude more complex than today. The Department of Energy (DOE) ASCAC Report for

14

Data Intensive computing identifies the typical knowledge discovery life-cycle as follows

[48]:

1. Generation: Data is generated using simulation with large-scale computational

facilities, sensors network and other type of high-throughput instruments. The

output of this phase is a raw dataset in the order of PetaBytes up to ExaBytes.

2. Processing and organization: The data is then processed to be more usable.

This phase includes, reorganization, filtering, subsets creation, distribution and

several pre-processing methodologies. The output of this phase is a pre-processed,

structured dataset.

3. Analytics, Mining and Knowledge discovery: In this phase domain-specific

scalable algorithms explore the data to analyze patterns and statistics, extract and

discover information or perform data-mining. The output of this phase is sensible

domain-specific knowledge, usually reduced by several order of magnitudes with

respect to the original dataset.

4. Action, Feedback and Refinement: In the last phase, the knowledge pro-

duced is used to close the loop validating or rejecting hypothesis, improve models

or take effective actions in the specific domain.

The life-cycle described above is implemented through a large variety of applica-

tions, from the high end large-scale simulations to the data-mining and knowledge

discovery algorithms. The critical aspect of applications working with big data is to

have higher data access rates than traditional compute-intensive applications. For this

reason, this type of applications are called data-intensive applications, i.e., applications

where performance are dominated by data access rather than computation. To exem-

plify this type of applications Table 2.2 shows a comparison of performance metrics for

compute-intensive and data-intensive benchmarks.

The benchmarks SPECINT and SPECFP [86] are used for integer and floating-

point operations, respectively. MediaBench [106] is used for multimedia workloads.

TPC-H [7] is a benchmark for decision support applications. MineBench is used as rep-

resentative of data mining and analytics applications. The performance metrics shown

in Table 2.2 shows that SPECINT SPECFP MediaBench and TPC-H have a different

behavior with respect to MineBench. In particular, MineBench shows significantly more

Data References than the others, resembling a characteristic data-intensive workload.

Because of the data references, MineBench also experiences more bus accesses and L2

15

2. BACKGROUND: CURRENT TRENDS IN HIGH PERFORMANCE
COMPUTING

Parameter SPECINT SPECFP MediaBench TPC-H MineBench

Data References 0.81 0.55 0.56 0.48 1.10
Bus Accesses 0.030 0.034 0.002 0.010 0.037
Instruction Decodes 1.17 1.02 1.28 1.08 0.78
Resource Related Stalls 0.66 1.04 0.14 0.69 0.43
ALU instructions 0.25 0.29 0.27 0.30 0.31
L1 misses 0.023 0.008 0.010 0.029 0.016
L2 Misses 0.0030 0.0030 0.0004 0.0020 0.0060
Branches 0.13 0.03 0.16 0.11 0.14
Branch misprediction 0.0090 0.0008 0.0160 0.0006 0.0060

Table 2.2: Performance metrics for compute-intensive and data-intensive benchmarks.
Numbers shown are values per instruction.[48]

misses. A high rate of data references characterize data-intensive applications, quan-

tifying the percentage of instructions that access in-memory data. Given the growing

cost of data access outside the chip and, even higher, outside the local node, perfor-

mance of applications with a high rate of data references are going to be dominated by

data-access instructions.

2.2.2 Data-intensive and Irregular Applications

As explained in the previous sections, data-intensive applications are going to play a

central role in scientific discovery in the next exascale systems. Besides being charac-

terized for the high data access rate, data-intensive applications often show very poor

data locality. The locality principle is a fundamental principle of computer architecture

[85], stating that programs tend to reuse data and instructions they have used recently.

Locality can mainly be of two different types: temporal locality and spatial locality : the

former states that data used recently is likely to be reused, while the latter states that

given a data access items which addresses are close are likely to be accessed soon.

Based on the degree of available locality in the data, applications can be divided

in regular applications and irregular applications. Regular applications can be pro-

grammed to access data in an organized fashion, thus exploiting the high temporal and

spatial locality available in their data. Typical examples of regular applications are

programs based on dense vectors and matrices, as in matrix factorization and stencil

computation. Given the regularity of such problems, the associated algorithms usually

employ synchronized blocking collectives to exploit data parallelism.

On the other side of the spectrum we have the so-called irregular applications.

Because of the unpredictable data access pattern, these applications have very poor

16

spatial and temporal locality. Irregular applications, thus present unpredictable mem-

ory and network access patterns. Moreover, applications in this class often show an

unpredictable instruction flow, reducing instructions locality and hence the ability to

predict their behaviour.

Big-data and in general data-intensive applications often fall into this class. Typi-

cally, these are applications that exploit pointer-based data structures, such as linked-

lists, graphs, unbalanced trees and unstructured grids. Applications of this class are

graph exploration algorithms, data mining, social network analysis and, in general,

tools related to knowledge discovery from large data sets. These accesses are usually

fine-grained and highly unpredictable. Besides being very large, the datasets are usually

very difficult to partition. Although these problems present high inherent parallelism,

modern HPC systems are not optimized for them. Besides irregular memory and net-

work access patterns, applications in this class often show an irregular instruction flow,

reducing the source code locality and the ability to predict their behaviour.

In fact, the current large-scale systems focus around regular computation and data

access patterns. They target flop intensive scientific applications that are easy to par-

tition, present high arithmetic intensity and can exploit complex cache-based architec-

tures to reduce data access latencies.

2.3 System software for large-scale systems

Even if research in system software has sometimes been marginalized, the difficulty of

efficiently manage large-scale system resources has repeatedly shown the importance

of providing scalable system software. Over the years, system software has evolved

to keep the pace with technology and applications evolution. Research on scalable

system software for large-scale system has historically been driven by two fundamen-

tal aspects: on one side, performance, efficiency and reliability, on the other side the

goal of providing a productive developing environment. As for most of the engineering

challenges, obtaining the right balance between two requirements such as performance

and productivity is not trivial. Computer scientist working in this field have taken

two different approaches: modifying the software stack used in high-end single node

machines (such as high-throughput servers), and on the other hand, trying to develop

part of the stack from scratch such as specialized runtime and operating systems. The

trends in hardware technologies described in the previous sections will introduce ad-

ditional complexity and the need for highly adaptable and scalable system software.

Moreover, the difficulty of developing large-scale applications with an explicit message

17

2. BACKGROUND: CURRENT TRENDS IN HIGH PERFORMANCE
COMPUTING

passing programming model (i.e., message passing interface - MPI) as it is commonly

done today, will introduce newer programming models. This new developments imply

radical changes at all levels of the system software stack, and in particular for the OS

and the runtime system.

2.3.1 Operating Systems

The role of the Operating System (OS) is to manage hardware resources on behalf

of the runtime system and the applications. The OS, because of its position at the

bottom of the software stack (if we exclude the Hypervisor) requires upper layers such

as runtime, libraries, and applications to be implemented using its API. For this reason,

the development and success of a new OS depends not only on its inherent technical

characteristics, but also on the availability of a rich software eco-system living on top

of the new OS.

The choice of a General Purpose Operating System (GPOS), rather than a special-

ized OS for large-scale systems, has its advantages precisely in its software ecosystem

and in the familiarity of applications developers with its API. The most used GPOS

for large-scale system, Linux, can count on a wide-range of services and libraries for

developing any kind of application, scientific applications included. Linux has been

ported on most of the processor produced and provides a large hardware-driver base

for any kind of device and component. Moreover, the Linux API is probably the most

taught system software API at industrial and academic level, because of the advantages

of the open source development philosophy. For all these reasons, Linux has naturally

been the candidate GPOS to run on large-scale high-performance systems.

Figure 2.3 shows that first Unix-like OSes and nowadays Linux have been the most

used operating systems for the supercomputers in the TOP500 list. As mentioned

before, using GPOS for large-scale high performance systems has its drawbacks. When

HPC systems approached larger scale, it became clear that predictable performance

was one of the fundamental requisite. Linux, on the other hand, is not designed to

provide a constant predictable execution time to the applications. Linux has a variety

of system services (daemons), scheduling policies and interrupts that provide necessary

services for desktop or server oriented applications. Those services can be a significant

source of noise (so called OS-noise or jitter) and worsen performance predictability.

A more important consequence of OS noise is observed for that applications based

on periodic collective synchronizations (such as MPI Waitall). Many of the currently

used scientific large-scale applications (e.g. Sequoia benchmarks [110]) are organized in

18

Figure 2.3: Percentage of the TOP500 using a given Operating System [10]

alternating computation and communication phases, and make an intensive use of this

type of collectives. The delays introduced by the OS-noise in synchronized collectives

may cause noise propagation that significantly increases execution time and reduces

performance predictability. Figure 2.4 shows the trace of a parallel application with

multiple threads. The computing phases (yellow) are followed by a communication

phase (barrier in black). OS interruptions (in blue) can delay one thread forcing all

the remaining threads to wait the delayed thread during the communication phase

(barrier). This effect is called noise propagation (or amplification) and its frequency

increases at scale because of the higher probability of an OS interruption on one of the

parallel threads.

To reduce the overhead and complexity of unnecessary system services and to reduce

OS noise, researchers have designed specialized lightweight OS for large-scale systems

(lightweight kernels or microkernels). The first lightweight kernel was popularized with

the development of Mach in 1985[79]. Then, lightweight kernels have been a constant

presence in the space of system software for supercomputers, even if not the most

common adopted solution. Today’s Sandia’s Kitten, IBM CNK and Cray CNL are three

19

2. BACKGROUND: CURRENT TRENDS IN HIGH PERFORMANCE
COMPUTING

Figure 2.4: Effect of an OS interruption on a parallel application.

of the most well-known example of this approach running on modern supercomputers.

In order to leverage the wide software base and the use of a familiar API, lightweight

kernels tend to implement a subset of the standard Linux API. The advantages of using

a lightweight kernel with respect to a GPOS are, between others, increased performance,

efficiency and reliability.

2.3.2 Runtime Systems and Parallel Programming Models

The runtime system is the layer of the software stack between the OS and the applica-

tions. Its role is to act on behalf of the application to make the best use of the hardware

resources exposed by the OS. With respect to the OS, the runtime system has specific

knowledge of the application characteristics and requirements. Furthermore, runtime

systems are often specialized to support applications with specific characteristics. The

presence of a runtime system simplify the development of applications providing com-

monly used software abstractions that hide the complexity of the underling OS API.

The software abstractions implemented in the runtime system are at the core of

the programming model used by the applications. Parallel programming models are

the software abstractions used to express the parallelism of a program. The term

parallel programming model is often used with different meanings: (a) to describe the

20

abstract parallel machine, the basic operations performed on the machine and their

semantic (b) to describe the actual implementation of a programming model, including

programming languages, compiler directives, libraries and programming environments.

It is sometimes difficult do draw a line between the abstract concepts composing a

programming model and its actual implementation. We will refer to the meaning (a)

as program structure model and communication model while to the meaning (b) as

programming models.

Three factors are very useful when evaluating the optimal programming model for

a given domain:

1. Perfomance: usually expressed in throughput or execution time.

2. Productivity: the advent of new kind of applications and the complexity of pro-

gramming current many-core clusters is pointing to the need for high-productivity

programming models.

3. Generality: the third factor is sometimes overlooked, but is of utmost importance

when combined with the other two. In fact, reducing a programming model gener-

ality is the only effective approach to increase both performance and productivity.

One of the lessons learned in the last decade with the proliferation of parallel pro-

gramming models is that the optimal programming model depends on the domain. An

efficient approach is to employ specialized runtime systems for the specific domain of

the problem, in order to obtain significant advantages in terms of performance and

productivity.

Research on parallel programming models spans several decades and has generated

a myriad of programming languages and libraries. The actual abstractions and ideas

behind many implementations are often the same, or a combination of them. In the

following, we describe some of the most well-known abstractions and ideas used in mod-

ern parallel programming models, the program structure model and the communication

model.

Program Structure Model:

• SPMD - Single Program Multiple Data is a program structure composed of a

fixed number of threads that run the same program on different sets of data. The

threads are started and terminated synchronously.

• Fork/Join - a single thread of execution (main thread) is started and then several

threads can be dynamically created from the main thread with the fork construct.

21

2. BACKGROUND: CURRENT TRENDS IN HIGH PERFORMANCE
COMPUTING

The main thread than waits for the children completion with a join construct.

A Fork/Join model support nested parallelism if the fork construct can be recur-

sively used by the children to create other threads.

• Master/Worker - a single master thread distribute the work to a fixed number of

workers threads. This construct is commonly used to provide an efficient use of

hardware resources (load balancing).

• Loop Parallelism - a for loop is used as basic construct to express parallelism. The

iteration of the loop are executed in parallel on several threads. This model can

support nested parallelism with the implementation of nested loops constructs.

• Dataflow parallelism - dataflow programming is a programming paradigm that

models a program as a directed graph of the data flowing between operations,

thus exploiting data parallelism and implementing dataflow principles and archi-

tecture [142] .

Communication Model:

• Message Passing - threads communicate with explicit exchange of messages. In

a two-sided communication, the receiver executes a receive operation that is

matched by a send operation of the sender. In a one-sided communication the

sender thread executes a put operation to send a message on a predefined location

that can be accessed by the receiver.

• Shared Memory - with a shared memory system different threads of execution can

communicate through the memory. They communicate by reading and writing

on the shared memory using the same memory locations.

• Partitioned Global Address Space - this model is the equivalent of a shared mem-

ory model for distributed memory systems (e.g. clusters). Since the underlying

hardware does not have a single memory system shared among the threads, the

programming model provide an abstraction for it. The abstraction is a global

address space that can be accessed by all the threads. System memory is par-

titioned between local and global memory. Each thread has access to its own

local memory and also to the global memory abstraction to communicate with

the other threads.

Many programming models express parallelism with one or more program structure

models and also more than one communication model (hybrid programming models).

22

Besides program structure and communication model there are other criteria that can

be used to compare programming models[99]:

• Implementation - whether the programming model is implemented with a new

programming language, extends a serial programming language (e.g. using com-

piler directives or adding keywords), or is implemented through programming

libraries (API).

• Worker management - this criteria describes the creation and management of

execution units whether they are tasks, threads or processes. Worker manage-

ment is called explicit when the programmer needs to express the creation and

termination of the execution units. Otherwise is called implicit.

• Workload partitioning scheme - worker partitioning is the way the workload is

partitioned into smaller units of work called tasks. Worker partitioning is explicit

when the programmer needs to express how the work is partitioned, while is

implicit when the programmer only has to specify a section of code to be parallel.

• Task-to-worker mapping - it defines how the units of work are mapped into the

workers. It can be explicit when the programmer has to manually define the

mapping, and implicit when the programming model automatically provides the

mapping.

• Synchronization - it defines the order in which the workers access shared data.

With explicit synchronization the programmer has to express the access order

with synchronization constructs, while with implicit synchronization the pro-

gramming model does it transparently.

The data locality can be managed by the programmer to efficiently exploit local

memory. We survey some of the most relevant parallel programming models for HPC

(alphabetical order):

Active Pebbles [166] is lightweight data-drive programming language based on ac-

tive messages [164]. Active pebbles combines fork/join program structure with a PGAS

communication model. It also supports messages coalescing and active routing to

speedup the communication.

CUDA is a parallel programming model developed by NVIDIA [133]. The CUDA

runtime is designed to scale transparently with the growing number of cores found in

modern GPUs. CUDA allows the programmer to use an high-level C programming

23

2. BACKGROUND: CURRENT TRENDS IN HIGH PERFORMANCE
COMPUTING

language. The CUDA programming model exploits data parallelism and is particularly

effective for regular floating-point intensive computations.

Chapel [46] (Cascade High Productivity Language) is a general-purpose parallel

programming language developed by Cray, Inc. under the Darpa High Productivity

Computing Systems (HPCS) program. Chapel has been developed for general parallel

programming, locality aware programming, object oriented programming and generic

programming [50].

Charm++ [96] is a parallel programming system based on a message-driven migratable-

objects programming model. The Charm++ runtime consist of a number of medium-

grained processes that communicate with messages. Charm++ supports communica-

tion latency tolerance through suspending the blocking process and executing a waiting

process.

Cilk [31] is a task-based implementation of a shared memory model trough work-

stealing . This approach is particularly good for highly recursive parallel problems.

It is implemented as a C/C++ extension and does not support distributed memory

systems, but can be easily combined with MPI.

Coarray Fortran [131] is a fortran extension for parallel systems. It features a

SPMD programming structure and provides constructs to specify the data distribution

through a PGAS model.

Global Arrays [129] provides a SPMD programming model with a PGAS commu-

nication model. The data locality can be managed by the programmer to efficiently

exploit local memory. Globaly Arrays is composed of a number of processes sharing a

global address space and communicating with one-sided primitives.

Habanero-Java [41] is an extension of the original Java definition of the X10 lan-

guage. The Habanero-Java extension is primarily focused on task parallelism and sup-

ports asynchronouse creation of tasks with a fork/join program structure model and a

PGAS communication model.

MPI [121] (Message Passing Interface) can be considered the most widely used

programming model for distributed memory systems. It is a pure message passing

programming model with an SPMD program structure. MPI is a specification for

24

message passing operations. Various MPI implementations provide libraries with one-

sided and two-sided communication mechanism to send messages to different nodes

in a cluster. The programmer has to explicitly specify each communication message

between processes. The execution threads (processes) do not share any data structure

and communicate explicitly through messages. Even if the use of explicit messages

has advantages for the application scalability, explicitly controlling the communication

for large parallel applications is extremely complex. Moreover, with MPI alone, SMP

systems with shared memory cannot benefit from the ability to share data structures

in the same node. Hybrid programming models use MPI for inter-node communication

and a shared memory programming model for intra-node communication.

OmpSs [37] is an extension of OpenMP to integrate features from the StarSs [103]

programming model. OmpSs enable asynchronous parallelism by the use of data-

dependencies between different tasks of the program. Tasks can be created dinamically

and the runtime transparently manages data-dependencies and task scheduling.

OpenCL [101] is a parallel open-standard programming model similar to CUDA.

However, OpenCL is more general-purpose than CUDA and can be used on a vari-

ety of heterogeneous architectures including CPUs and GPUs. Unlike CUDA, that

is primarily focused on data parallelism, OpenCL it is also designed to support task

parallelism.

OpenMP [134] is on the other hand the most widely used shared memory program-

ming model. It provides program structures such as fork/join and loop parallelism and

is implemented both as language extension and programming library. OpenMP it’s

easier to program than many other approaches but is restricted to a single multi-core

or many-core system.

ParalleX (PX) [70] is an experimental execution model that exploits a split-phase

multithreaded transaction distributed computing methodology that decuples compu-

tation and communication [70]. ParalleX supports fine-grain multithreading, global

address space, overlapping of communication and computation and is able to move

work to the data. High Performance PX (HPX) is a runtime system based on the

parallex execution model.

Pthreads [38] is a POSIX implementation of a thread library that enables explicit

25

2. BACKGROUND: CURRENT TRENDS IN HIGH PERFORMANCE
COMPUTING

control of each execution thread and shared memory access. Fine grain control of the

thread life-cycle introduces a higher level of complexity. It is often used as building

block for programming model with a higher level of abstractions.

SHMEM [136] allows developers to write a parallel application using a globally

accessible shared memory abstraction. The key features of SHMEM are one-sided point-

to-point communications, a shared memory view, and atomic operations on globally

visible variables.

Titanium [170] is a Java-derived language and system for HPC. It provides a SPMD

program structure with a global address space. An important feature of Titanium is

the possibility of running unmodified on uniprocessors, shared memory machines and

distributed memory systems.

Unified Parallel C (UPC) [60] is a programming model that employs a global ad-

dress space abstraction partitioned between all the nodes. UPC is an extension of the

C language designed for HPC systems. UPC uses the SPMD programming structure

and SPMD communication model.

X10 [47] is a Java-derived, object-oriented parallel language developed by IBM. X10

was designed to enable scalability, high-performance and high productivity. It is based

on a PGAS model and implements the Globally Asynchronous Locally Synchronous

model (GALS) originally developed for embedded hardware [123].

2.3.3 Trends in System Software

The ongoing changes in large-scale and high-performance technology and applications

are forcing traditional system software to renew. Next generation system software for

HPC is expected to provide system services with improved performance and power

efficiency. Currently, several trends are emerging in system software design.

One of the clear requirements is that next-generation system software has to be

low-overhead. Asynchronous OS noise and high system software overhead will not

be acceptable in an exascale system. For this reason, current GPOS are expected to

be heavily redesigned in order to reduce overhead. The availability of a large num-

ber of cores can be exploited to completely separate the execution of system software

code from the application code. Application and system software executions will be

26

time

current runtime systems next-generation runtime systems

Figure 2.5: Programming model schema for current and next-generation runtime sys-
tems.

separated by space (different cores) rather than time (time-sharing). Moreover, het-

erogeneous architectures with specialized cores for different workloads will allow higher

performance and power efficiency to execute application and system software code.

Another big change will be in the level of parallelism that system software is ex-

pected to manage. Current programming models are based on the idea of communicat-

ing processes (CSP) while next-generation will be a fine-grained event-driven and adap-

tive programming model. Current generation runtime systems are implemented with

a number of parallel processes that progress through execution exchanging (mostly)

synchronous messages. On the other side, in the next-generation of runtime systems

there will be a large number of small tasks communicating with each other with asyn-

chronous. Figure 2.5 shows a graphical representation of current and next-generation

programming models. If we look at new runtime systems such as Chapel, HPX, and

X10, and to architectural supports as TERAFLUX [77] we observe that they are in

fact developed according to this principles.

Given the expected changes in technology and programming models for the future

generation of supercomputers, the runtime system is expected to play a central role

towards the design of a scalable software stack.

In fact, because of the need for a lightweight OS, several services will be moved

into the runtime system. The runtime system has the advantage of a much closer

27

2. BACKGROUND: CURRENT TRENDS IN HIGH PERFORMANCE
COMPUTING

knowledge about the running application. Services such as scheduling, memory, locality

management and memory object synchronization can be more efficiently handled by

the runtime system.

Another important trend is that to obtain high power efficiency the system software

will feature a much higher level of adaptivity. Based on the application behavior, it

will be necessary to adapt the hardware (e.g. turning off cores, dynamic voltage and

frequency scaling, power capping) in order to save energy. To obtain adaptivity, a

higher level of logic will be included at the runtime system level in order to increase

the ability to take resource management decisions while the application is running.

All the mentioned trends point out the fact that the runtime system will be one of

the most important areas for improvements for next-generation large-scale systems.

28

Part II

Operating System Scalability

29

Chapter 3

General Purpose Operating

Systems

This part of the thesis addresses the problem of operating system scalability. The OS

often plays a fundamental role in the scalability of large parallel systems. Generally,

operating systems for large scale machines fall in two categories: general purpose OS

(e.g. Linux) and lightweight OS (CNK, Catamount etc.). In this chapter, we focus on

the effect of using a general purpose operating system on a large-scale high-performance

system. As mentioned before, general purpose OS offer the advantage of a well-known

programming environment, plenty of features and a large code-base. On the other

hand, they also present scalability issues. One of the most studied scalability issues

is the so-called OS noise (or Jitter). In the following sections, we present a method-

ology to analyze the scalability of general purpose operating systems through detailed

measurement of OS noise on real HPC applications.

3.1 Summary

Operating system (OS) noise (or jitter) is a well-known problem in the High Perfor-

mance Computing (HPC) community. Petrini et al.[137, 68] showed how OS noise may

limit application’s scalability, severely reducing performance on large scale machines

and large system activities (e.g., network file system server). Later studies[68, 148]

confirmed the early conclusions on different systems and identified timer interrupts

and process preemption as main sources of OS noise[75, 156]. Most of those studies are

“qualitative” in that they do a good job characterizing the overall effect of OS noise on

the scalability of parallel applications, but tend not to identify and characterize each

31

3. GENERAL PURPOSE OPERATING SYSTEMS

kernel noise event. For example, many studies showed that the timer interrupt is an im-

portant source of OS noise, but few of them provided information about which activities

are executed during each timer interrupt. Such information would be helpful to devel-

opers trying to reduce OS noise. For example, operating systems use timer interrupts

to periodically start several kinds of activities, such as bookkeeping, watchdogs, page

reclaiming, scheduling, or drivers’ bottom halves. Each activity has a specific frequency

and its duration varies according to the amount of work to process, and thus different

timer interrupts can introduce different amounts of OS noise. Our detailed quantitative

analysis allows developers to differentiate and characterize the noise induced by each

event triggered on an interrupt and thus address the pertinent sources.

Lightweight and micro kernels are common approaches taken to reduce OS noise on

HPC systems. Many supercomputers have run a lightweight kernel, such as Compute

Node Kernel (CNK)[71] or Catamount[140]. Lightweight kernels provide functional-

ity for a targeted set of applications (for example, HPC or embedded applications)

and usually introduce negligible noise. They usually do not take periodic timer inter-

rupts or TLB misses, but typically provide restricted scheduling and dynamic memory

capability.

The lightweight approach worked well in the past when HPC applications only

required scientific libraries and a message passing interface (MPI) implementation[121,

69]. The NAS benchmark suite[124] contains examples of these kind of applications.

Also, the requirements of many other of the largest applications, such as previous

Gordon Bell winners[39, 17], most of the Sequoia benchmark suite[110], and others[5, 2]

can be satisfied by this approach.

However, modern HPC applications are becoming more complex, such as UMT

from the LLNL Sequoia benchmarks[110], Climate code[100], and UQ[23]. More-

over, in order to improve performance there is a growing interest in richer shared-

memory programming models, e.g., OpenMP[134], PGAS, such as UPC, Charm++,

etc. At the same time, dynamic libraries, python scripts, dynamic memory allocation,

checkpoint-restart systems, tracers to collect performance and debugging information,

and virtualization[104], are seeing wider use in HPC systems. All these technologies

require richer support from the OS and the system software. Moreover, applications

being run on supercomputers are no longer coming strictly from classical scientific do-

mains but from new fields, such as financial, data analytics, and recognition, mining,

and synthesis (RMS), etc. Current trends indicate large petascale to exascale systems

are going to desire a richer system software ecosystem.

Possible solutions to support such complexity include: 1) extending lightweight and

32

micro kernels to provide support for modern applications needs as mentioned above; 2)

tailoring a general purpose OS, such as Linux or Solaris, to the HPC domain (e.g., the

Cray Linux Environment for Cray XT machines); and 3) running a general purpose OS

in a virtualized environment (e.g., Palacios[104]). All the three scenarios above have

the potential to induce more noise than yesterday’s lightweight kernels. Thus, it will

become more important to be able to accurately identify and characterize noise induced

by the system software.

We have developed a technique to provide a quantitative descriptive analysis for

each event of OS noise. The mechanism allows us to detail all sources of OS noise

through precise kernel instrumentation and provides frequency and duration analysis

for each event. In addition to providing a much richer set of data, we have integrated

this collected data with the Paraver[138] visualization tool allowing developers to more

easily analyze the data and get an intuitive sense for its implications. Paraver is a

classical tool for parallel application’s performance analysis, and integrated with our

data can provide a view of the OS noise introduced throughout the execution of HPC

applications.

Overall, in this chapter we describe the following three contributions: First, we

describe a methodology whereby detailed quantitative information may be obtained

for each OS noise event. As mentioned our methodology is most useful for HPC OS

designers and kernel developers trying to provide a system well suited to run HPC

applications. Though not the thrust of this work, we show how we implemented that

methodology by augmenting Linux Trace Toolkit Next Generation (LTTng) [55, 56].

We validate our approach by comparing it to other well-known standard techniques to

analyze OS noise, such FTQ (Fixed Time Quantum). Second, we provide a case study

in which we use our methodology to analyze the OS noise when running benchmarks

from the LLNL Sequoia applications. Although our methodology and tools may well

be useful for application programmers, in this work we focus on providing the insights

that can be gained at the system level. Thus, while we do run real applications, it is not

for the purpose of studying those applications, but rather for demonstrating that our

methodology allows us to obtain a better understanding of the system while running real

applications. Our experiments enrich and expand previous results with our quantitative

characterization. Third, we describe how this detailed characterization allows us to

disambiguate noise signatures of qualitatively similar events allowing developers to

address the true cause of a given noise event.

33

3. GENERAL PURPOSE OPERATING SYSTEMS

3.2 Experimental environment

Table 7.1 shows the experimental environment used in this chapter. The table in-

cludes the hardware system, the operating system, the communication library and the

benchmarks used for the experiments.

CPU Dual Quad-Core AMD Opteron(tm) processor workstation
at 2.1 GHz (2 sockets - 4 cores per socket)

Memory 64 Gigabyte of RAM
Network Ethernet (used only to support NFS)
System size single node
Operating System Linux 2.6.33.4
Communication Library OpenMPI
Benchmarks Sequoia benchmarks[110] (AMG, IRS, LAMMPS, SPHOT,

UMT)

Table 3.1: Experimental environment

3.3 Related Work

Operating system noise and its impact on parallel applications has been extensively

studied via various techniques, including noise injection [68]. In the HPC community,

Petrini et al. [137] explained how OS noise and other system activities, not necessarily

at the OS level, could dramatically impact the performance of a large cluster. In the

same work, they observed that the impact of the system noise when scaling on 8K

processors was large due to noise resonance and that leaving one processor idle to take

care of the system activities led to a performance improvement of 1.87×. Though the

authors did not identify each source of OS noise, a following paper [75] identified timer

interrupts, and the activities started by the paired interrupt handler, as the main source

of OS noise (micro OS noise). Nataraj et al. [125], also describe a technology to mea-

sure kernel events and make this information available to application-level performance

measurements tools.

Others [156, 53] found the same result using different methodologies. The work of

De et al. [53] is the most similar to ours. They perform an analysis of the OS noise

instrumenting the functions do IRQ and schedule, and obtaining interrupts and process

preemptions statistics. Our approach is similar, but we instrumented all kernel entry

points and activities, thus providing a complete OS noise analysis. As a consequence,

we are able to measure events like page faults and softirqs that significantly contribute

to OS noise.

34

The other major cause of OS noise is the scheduler. The kernel can swap HPC

processes out in order to run other processes, including kernel daemons. This problem

has also been extensively studied [137, 75, 156, 53, 95, 74], and several solutions are

available [155, 74]. The effects on multiprocessor memory subsystem of three causes

of OS noise (kernel memory references, process scheduling, virtual-to-physical address

translation) have been also evaluated through the use of real and synthetic traces [76]:

such approach allows for faster evaluations.

Studies group OS noise into two categories of high-frequency, short-duration noise

(e.g. timer interrupts) and low-frequency, long-duration noise (e.g. kernel threads) [68].

Impact on HPC applications is higher when the OS noise resonates with the application,

so that high-frequency, fine-grained noise affects more fine-grained applications, and

low-frequency, coarse-grained noise affects more coarse-grained applications [137, 68].

The impact of the operating system on classical MPI operations, such as collective,

is examined in Beckman et al. [22].

There are several examples of operating systems in the literature designed for HPC

applications. Solutions can be divided into three classes: micro kernels, lightweight

kernels (LWKs), and monolithic kernels. L4 [109] is a family of micro-kernels designed

and updated to achieve high independence from the platform and improve security, iso-

lation, and robustness. The Exokernel [62, 61, 63] was developed with the idea that the

OS should act as an executive for small programs provided by the application software,

so the Exokernel only guarantees that these programs use the hardware safely. K42 [16]

is a high performance, open source, general purpose research operating system kernel

for cache-coherent multiprocessors that was designed to scale to hundreds of processors

and to address the reliability and fault-tolerance requirements of large commercial ap-

plications. Sandia National Laboratories have also developed LWKs with predictable

performance and scalability as major goals for HPC systems [140].

IBM Compute Node Kernel for Blue Gene supercomputers [71, 119] is an exam-

ple of a lightweight OS targeted for HPC systems. CNK is a standard open-source,

vendor-supported, OS that provides maximum performance and scales to hundreds of

thousands of nodes. CNK is a lightweight kernel that provides only the services re-

quired by HPC applications with a focus of providing maximum performance. Besides

CNK, which runs on the compute nodes, Blue Gene solutions use other operating sys-

tems. The i/o nodes, which use the same processors as the compute nodes, run a

modified version of Linux that includes a special kernel daemon (CIOD) that handle

i/o operations, and front-end and service nodes that run a classical Linux OS [119].

Lightweight and micro kernels usually partner with library services, often in user

35

3. GENERAL PURPOSE OPERATING SYSTEMS

space, to perform traditional system functionality, either for design or performance rea-

sons. CNK maps hardware into the user’s address space allowing services such as mes-

saging to occur, for efficiency reasons, in user space. The disadvantages of CNK come

from its specialized implementation. It provides a limited number of processes/threads,

minimal dynamic memory support, and contains no fork/exec support[71]. Moreira

et al. [119] show two cases (socket i/o and support for Multiple Program Multiple

Data (MPMD) applications) where IBM had to extend CNK in order to satisfy the

requirements of a particular customer. Overall, experience shows that this situations

are quite common with micro and lightweight kernels. There are several variants of

full weight kernels that have customized general-purpose OSes. ZeptoOS [19, 20, 21]

is an alternative, Linux-based OS, available for Blue Gene machines. ZeptOS aims to

provide the performance of CNK while providing increased Linux compatibility. Jones

et al. [95] provides a detailed explanation of the modification introduced to IBM AIX

to reduce the execution time of MPI Allreduce. They showed that some of the OS

activities were easy to remove while others required AIX modifications. The authors

prioritize HPC tasks over user and kernel daemons by playing with the process priority

and alternating periods of favored and unfavored priority. hpl[74] reduces OS noise in-

troduced by the scheduler by prioritizing HPC processes over user and kernel daemons

and by avoid unnecessary cpu migrations.

Shmueli et al. [148] provide a comparison between CNK and Linux on BlueGene/L,

showing that one of the main items limiting Linux scalability on BlueGene/L is the

high number of TLB misses. Although the authors do not address scheduling, by using

the HugeTLB library, they achieve scalability comparable to CNK (although not with

the same performance).

Mann and Mittal [54] use the secondary hardware thread of IBM POWER5 and

POWER6 processors to handle OS noise introduced by Linux. They reduce OS noise by

employing Linux features such as the real time scheduler, process priority, and interrupt

redirection. The OS noise reduction comes at the cost of losing the computing power

of the second hardware thread. Mann and Mittal consider SMT interference a source

of OS noise.

3.4 Measuring OS noise

The usual way to measure OS noise on a compute node consists of running micro bench-

marks with a known and highly predictable amount of computation per time interval

(or quantum), and measuring the divergence in each interval from the amount of time

36

(a) OS noise as measured by FTQ

(b) Synthetic OS noise chart

Figure 3.1: Measuring OS noise using FTQ and LTTng-noise. Figures 3.1a and 3.2a
report the direct OS overhead obtained multiplying the execution time of a basic op-
eration by the number of missing operations.

37

3. GENERAL PURPOSE OPERATING SYSTEMS

taken to perform that computation. An example of such as technique is the Finite Time

Quantum (FTQ) benchmark proposed by Sottile and Minnich[154]. FTQ measures the

amount of work done in a fixed time quantum in terms of basic operations. In each

time interval T , the benchmark tracks how many basic operations were performed. Let

Nmax be the maximum number of basic operations that can be performed in a time

interval T . Then we can indirectly estimate the amount of OS noise, in terms of basic

operations, from the difference Nmax −Ni, where Ni is the number of basic operations

performed during the i-th interval.

Figure 3.1a shows the output of FTQ on our test machine. Each spike represents

the amount of time the machine was running kernel code instead of FTQ (obtained

multiplying the number of missing basic operations by the time required to perform a

basic operation). Whether the kernel interrupted FTQ one, two, or more times, and

what the kernel did during each interruption is not reported.1 This imprecision is one

disadvantage of indirect external approaches to measuring OS noise. An advantage of

this approach is that experiments are simple and provide quick relative comparisons

between different versions as developers work on reducing noise.

As we stated earlier, our goal was to provide a more detailed quantitative evaluation

of each OS noise event. In order to obtain this information in Linux, instrumentation

points includes all the kernel entry and exit points (interrupts, system calls, excep-

tions, etc.), and the main OS functions (such as the scheduler, softirqs, or memory

management[36]). To obtain a detailed trace of OS events, we extended the LTTng

with 1) an infrastructure to analyze and covert the LTTng output into formats useful

to analyze OS noise, and 2) extra instrumentation points inside the Linux kernel. We

call this extended LTTng infrastructure LTTng-noise.

The output from LTTng-noise includes a Synthetic OS Noise Chart and an OS

Noise Trace. The former is a graph similar to the one generated by FTQ and provides

a view of the amount of noise introduced by the OS. The latter is an execution trace

of the application that shows all kernel activities.

Figure 3.1b shows the Synthetic OS Noise Chart for FTQ generated by LTTng-

noise (as shown in Section 3.6, we can obtain similar graphs for any application). The

OS Noise Trace can be visualized with standard trace visualizers commonly used for

HPC application performance analysis. The current implementation of LTTng-noise

supports the Paraver[138] trace format, but other formats can be generated relatively

easily by performing a different offline transformation of the original trace file.

1It is possible to guess that the small, frequent spikes are related to the timer interrupt, as was
pointed out by previous work[75, 156, 26].

38

3.4.1 LTTng-noise

A concern about LTTng-noise was the overhead introduced by the instrumentation.

If the overhead is too large, the instrumentation may change the characteristics of the

applications making the analysis invalid. Minimizing introduced noise, or more accu-

rately keeping it below a measureable level, was especially critical for us as we were

specifically trying to measure noise. In addition, HPC applications are susceptible

to this induced noise causing an additive detrimental effect. Fortunately, LTTng was

designed with similar goals [55], and our kernel modifications do not add extra over-

head. In particular, LTTng has been designed with the following properties: 1) low

system overhead, 2) high-scalability for multi-core architectures, and 3) high-precision.

Low system overhead is obtained with a pre-processing approach, i.e., the kernel is in-

strumented statically and data are analyzed offline. High-scalability is ensured by the

use of per-cpu data and by employing lock-less tracing mechanisms[55]. Finally, high-

precision is obtained using the CPU timestamp counter providing a time granularity

on the order of nanoseconds. The results of the low-overhead design of LTTng and our

careful modification is an overhead in the order of 0.28% in average (measured among

all the LLNL Sequoia applications we tested).

Since it is not possible to know in advance which kernel activities affect HPC appli-

cations, we collected all possible information. LTTng already provides a wide coverage

of the Linux kernel. Even with these capability, it is still important to determine which

events are needed for the noise analysis and, eventually add new trace points. To this

end, we located all the entry and exit points and identified the components and section

of code of interest. We then modified LTTng by adding extra information to exist-

ing trace points and new instrumentation points, for those components that were not

already instrumented.

Another important consideration is which kernel activities should be considered

noise (i.e., timer interrupts) and which are, instead, services required by applications

and should be considered part of the normal application’s execution (i.e., a read system

call). We consider OS noise all those activities that are not explicitly requested by

the applications but that are necessary for the correct functioning of the compute

node. Timer interrupts, scheduling, page faults are examples of such activities. Second,

we only account kernel activities as introduced noise when an application’s process is

runnable. During the offline OS noise analysis, we do not consider a kernel interruption

as noise if, when it occurs, a process is blocked waiting for communication.

Even with these modifications the number of kernel activities tracked is consider-

39

3. GENERAL PURPOSE OPERATING SYSTEMS

able. Since it is not possible to show all the tracked activities, we focus on those that

appear more often or have large impact (such as timer interrupts, scheduling, and page

faults). However, developers concerned about specific areas can use our infrastructure

to drill down into any particular area of interest by simply applying different filters.1

The second extension we made to LTTng is an offline trace transformation tool.

We developed an external LTTng module that generates execution traces suitable for

Paraver[138]. Additionally, the module generate a data format that can be used as

input to Matlab. We use this to derive the synthetic OS noise chart and the other

graphs presented in this chapter. We took particular care of nested events, i.e., events

that happen while the OS is already performing other activities. For example, the local

timer may raise an interrupt while the kernel is performing a tasklet. Handling nested

events is particularly important for obtaining correct statistics.

3.4.2 Tracing scalability

The amount of data generated to trace OS events on a single node is not an issue. On

the other hand, the application of any trace methodology to clusters composed by a

large number of nodes (i.e. thousands of nodes), face the challenge of collecting and

storing a very large amount of data at run-time. This problem arises for any approach

willing to capture OS noise events with a fine granularity in HPC systems.

Given that OS noise is inherently redundant across nodes, one of the most effective

solution is to enable tracing only on a statistically significant subset of the cluster’s

nodes. Another option is to apply data-compression techniques at run-time to reduce

the data-size.

3.4.3 Analyzing FTQ with LTTng-noise

A comparison of Figure 3.1a and Figure 3.1b shows that LTTng-noise captures the

OS noise identified by FTQ. The small differences between the two graphs can be

explained by realizing that FTQ computes missing integral number of basic operations

and multiplying this by the cost of each operation thus producing discretized values,

while LTTng-noise calculates the measured OS noise between given points using the

trace events. In general, the result is that FTQ slightly overestimates the OS noise, for

FTQ does not account for partially completed basic operations.

Apart from these small differences, the figures show that the data output from these

1Filters are common features for HPC performance analysis tools and we provide the same capability
for our Matlab module.

40

two methods are very similar. Thus, we have a high degree of confidence in comparing

results from the different techniques, and therefore that our new technique represents an

accurate view of induced OS noise. Unlike FTQ, our new technique allows quantifying

and providing details for what contributed to the noise of each interruption.

The Synthetic OS noise chart in Figure 3.1b shows, for each OS interruption, the

kernel activities performed and their durations. For example, at time x = X1 FTQ

detects 7.70 µsec OS overhead (this point is showed in Figure 3.1a). The correspond-

ing point in Figure 3.1b (also highlighted on the chart) shows an overhead of 6.96

µsec but also shows that the interruption consists of timer interrupt handler (1), a

run timer softirq softirq (2), and a process preemption (eventd daemon) (3).

Figures 3.2a and 3.2b show details of Figures 3.1a and 3.1b, respectively, centered

around point x = X1. Figure 3.2b shows that, indeed, the small frequent spikes are

related to the timer interrupt handler but, also, to the run timer softirq softirq,

which takes about the same amount of time. Figure 3.2b also shows that there are

smaller spikes, to the best of our knowledge not identified in previous work, that are

similar to those generated by the timer interrupt handler, but that are not related to

timers or other periodic activity. These interruptions are caused by page faults, which

are, as we will see in Section 4.6, application-dependent.

The synthetic OS noise chart is useful to analyze the OS noise experienced by

one process. HPC applications, however, consist of processes and threads distributed

across nodes. Execution traces can be used to provide a deeper understanding of

the relationships among the different application’s processes. Moreover, performance

analysis tools, such as Paraver, are able to quickly extract statistics, zoom on interesting

portion of the application, remove or mask states, etc. Figures 3.3a and 3.3b show a

portion of the execution trace of FTQ. The execution traces generated with LTTng-

noise are very dense, even for short applications. Even if performance analysis tools

are able to extract statistics and provide 3D views, the visual representation, especially

for long applications, is often complex and lossy due to the number of pixels on a screen

and the amount of information to be displayed at each time interval. For this reason, we

usually zoom-in to show small, interesting portions of execution traces that highlight

specific information or behavior.

Figure 3.3a shows 75 msec of FTQ execution. In this trace white represents the

application running in user mode, while the other colors represent different kernel

activities. The trace shows the periodic timer interrupts (black lines) and the frequent

page fault (red lines). While, in this case, page faults take approximately the same

time, timer interrupts may trigger other activities (e.g., softirqs, scheduling, or process

41

3. GENERAL PURPOSE OPERATING SYSTEMS

(a) OS noise as measured by FTQ (zoom)

(b) Synthetic OS noise chart (zoom)

Figure 3.2: Zoom on noise peak using FTQ and LTTng-noise. Figures 3.1b and 3.2b
report time as measured by LTTng-noise.

42

(a) FTQ trace

(b) Zoom of the FTQ trace

Figure 3.3: FTQ Execution Trace. Figure 3.3a shows a part (75 ms) of the FTQ trace
that highlights the periodic timer interrupts (black lines), the page faults (red line), and
a process preemption (green line). Figure 3.3b zooms in and shows that the interruption
consists of several kernel events. At this level of detail we can distinguish the timer
interrupt (2.178 µsec, black) followed by the run timer softirq softirq (1.842 µsec,
pink), the first part of the schedule (0.382µsec, orange), the process preemption (2.215
µsec, green), and the second part of the schedule (0.179µsec, orange).

preemption) and, thus, have different sizes. In order to better visualize the activities

that were performed on a giving kernel interruption, Figure 3.3b shows a detail of

the previous picture. In particular, Figure 3.3b depicts one interruption caused by a

timer interrupt. Paraver provides several informations for each event, such as time

duration or internal status, simply by clicking on the desired event. Regarding the

detailed execution trace of FTQ, the tool provides the following time durations for each

interruption: 2.178 µsec (timer interrupt), 1.842 µsec (run timer softirq), 0.382 µsec

(first part of the schedule that leads to a process preemption), 2.215 µsec (process

preemption), and 0.179 µsec (second part of the schedule that resumes the FTQ

process).

3.5 Experimental Results

In this section we present our experimental results based on LTTng-noise and the

Sequoia benchmarks[110] (AMG, IRS, LAMMPS, SPHOT, UMT). We ran experiments

on a dual Quad-Core AMD Opteron(tm) processor workstation (for a total of 8 cores)

with 64 Gigabyte of RAM. We used a standard Linux Kernel version 2.6.33.4 patched

with LTTng-noise. In order to minimize noise activity and to perform representative

experiments, we removed from the test machine all kernel and user daemons that do

not usually run on a HPC compute node. The system is in a private network, isolated

43

3. GENERAL PURPOSE OPERATING SYSTEMS

from the outside world, that consists of the machine itself and an NFS server. Most

of the i/o operations, including the application’s executable files and the input sets,

are performed through the network interface, as it is often the case for HPC compute

nodes. In order to obtain representative results, Sequoia benchmarks were configured

to run with 8 MPI tasks (one task per core), and to last several minutes.

Section 3.5.1 analyzes the OS noise breakdown for each application. Sections 3.5.2,

3.5.3, 3.5.4, and 3.5.5 analyze in detail the OS activities identified by our infrastructure

as the major source of OS noise. In each sub-section we provide synthetic statistical data

and a few examples of more detailed information for chosen interesting applications.

3.5.1 Noise breakdown

Each application experience a different amount of OS noise. Table 3.2 summarizes the

total time, the application time, the OS noise time and the percentage of OS noise.

Table 3.2: Application and Noise time measured in CPU cycles

Total Application Noise % Noise
AMG 900,436,075,066 892,327,859,639 8,108,215,427 0.90%
IRS 706,800,813,275 699,373,261,625 7,427,551,650 1.05%
LAMMPS 1,044,575,042,629 1,036,931,614,406 7,643,428,223 0.73%
SPHOT 693,157,887,616 692,839,730,149 318,157,467 0.05%
UMT 2,340,648,466,685 2,297,049,612,303 43,598,854,382 1.86%

Each OS interruption may consists of several different kernel activities. Our analysis

allows us to break down each OS interruption into kernel activities. For simplicity and

clarity, we focus on the kernel activities with larger contribution to OS noise. To this

extent, we classified kernel activities into 5 categories:

periodic: timer interrupt handler and run timer softirq, the softirq responsible to

execute expired software timers.

page fault: page fault exception handler.

scheduling: the schedule function and the related softirqs (rcu process callbacks

and run rebalance domains).

preemption: kernel and user daemons that preempt the application’s processes.

i/o: network interrupt handler, softirqs and tasklets.

Figure 3.4 shows the OS noise breakdown for the Sequoia applications. Each Sequoia

application experiences OS noise in a different way. For example, page faults represent

a large portion of OS noise for AMG and UMT (82.4% and 86.7%, respectively), while

44

Figure 3.4: OS noise breakdown for Sequoia benchmarks

45

3. GENERAL PURPOSE OPERATING SYSTEMS

SPHOT and LAMMPS are only marginally affected by the same kernel activity (13.5%

and 10.2%). IRS, SPHOT and, especially, LAMMPS are preempted by other processes

during their computation, which represent a considerable component of their total jitter

(27.1%, 24.7%, and 80.2%, respectively). Our analysis shows that the applications were

interrupted particularly by rpciod, a i/o kernel daemon. Periodic activities (timer

interrupt handler and periodic software timers) are, instead, limited (between 5% and

10%) for all applications but SPHOT.

3.5.2 Page faults

Page faults can be one of the largest source of OS noise. Memory management func-

tionalities like page-on-demand and copy on write can significantly reduce the impact

of page faults. Moreover, one of the main advantages of lightweight kernels is to dras-

tically simplify dynamic memory management, thus reducing or even removing (as in

CNK [71]) the noise caused by page faults.

Table 3.3: Page fault statistics

freq(ev/sec) avg(nsec) max(nsec) min(nsec)
AMG 1,693 4,380 69,398,061 250
IRS 1,488 4,202 4,825,103 218
LAMMPS 231 3,221 27,544 248
SPHOT 25 2,467 889,333 221
UMT 3,554 4,545 50,208 229

As Table 3.3 shows, for some applications, like AMG, IRS, and UMT, the fre-

quency of page faults is even higher than that of the timer interrupt (10kHz in our

configuration). Even more important is that the time series is very large and differs

from application to application. From Table 3.3, we can observe that each application

presents a different number of page faults. Moreover, though the minimum duration

of a fault is similar across the benchmarks (about 250 nsec), the maximum duration

varies from application to application (from 25.7 µsec to 69,398 µsec). OS noise activ-

ities that vary so much may limit application scalability on large machines, as shown

in previous work [137, 75].

Figures 3.5a and 3.5b1 show the page fault time series for AMG and LAMMPS,

respectively. We chose these two applications because they present different distribu-

tions. Figure 3.5a (AMG) shows two main picks (around 2.5 µsec and 4.5 µsec), with

1Time distributions may have a very long tail that could make visualization difficult. To improve
the visualization, we cut all the distributions in the histograms at the 99o percentile.

46

(a) AMG

(b) LAMMPS

Figure 3.5: Page fault time series

47

3. GENERAL PURPOSE OPERATING SYSTEMS

(a) AMG

(b) LAMMPS

Figure 3.6: Page Fault Trace. Figures 3.6a and 3.6b show the execution trace of AMG
and LAMMPS, respectively. We filtered out all the events but the page faults (red).
The traces highlight the different distributions of page fault for AMG (throughout all
the execution) adn LAMMPS (mainly located at the beginning and the end). Notice
that in some regions page faults are very dense and appear as one large page fault
when, in fact, there are thousands very close to each other but the pixel resolution does
not allow distinguishing them.

a long tail. LAMMPS, on the other hand, shows a one-sided distribution with a main

pick around 2.5 µsec.

Figure 3.6 shows another important difference between AMG and LAMMPS. While

for LAMMPS page faults, marked in red in the pictures, are mainly located at the be-

ginning (initialization phase), AMG page faults are spread throughout the whole exe-

cution, with several accumulation points. From these execution traces we can conclude

that page faults are not of main concerns for LAMMPS, neither in terms of OS noise

overhead (10.2% of the total OS noise, as reported in Figure 3.4) nor from the time

series, as they mainly appear during the initialization phase. For AMG, instead, page

faults may seriously affect performance. They represent a considerable portion of the

total OS noise (82.4%), and may interrupt application’s computing phases.

3.5.3 Scheduling

Scheduling activities are not only related to the schedule function but also to other

kernel daemons and softirqs that are responsible, among other tasks, to keep the system

balanced.

Our analysis shows that, indeed, the overhead introduced by the schedule function

is negligible and constant, confirming the effectiveness of the new Completely Fair

Scheduler (CFS) [118], which has a O(1) complexity.

48

Domain balancing, instead, may create several problems in terms of execution time

variability and, therefore, scalability[74]. In this section we analyze the effect of the

run rebalance domains softirq. run rebalance domains is triggered when needed

from the scheduler tick and it is in charge of checking whether the system is balanced

and, if not, move tasks from one cpu to another. Domain rebalance is described

in[74, 34, 36]. Here it is worthwhile to notice that rebalancing domains introduces two

kinds of overheads: direct (time required to execute the rebalance code) and indirect

(moving a process to another cpu may require extra time to warm up the local cache

and other processor resources).

Figures 3.7a and 3.7b show the execution time series of the run rebalance domains

softirq for UMT and IRS. While IRS shows a fairly compact distribution with a main

pick around 1.80 µsec, UMT shows a much larger distribution with average of 3.36

µsec. Indeed, UMT is a complex application that involves, besides MPI, Python and

pyMPI scripts. The OS has, thus, a much tougher job to balance UMT than IRS.

3.5.4 Process preemption and i/o

The OS scheduler may decide to suspend one or more running processes during the

execution of a parallel application (process preemption). The suspended process is not

able to progress during that time and the whole parallel application may be delayed.

Typically, the OS suspends a process because there is another higher-priority process

that needs to be executed. Kernel and user daemons are classical examples of such

processes. The interrupted process may, in turn, be migrated by the scheduler on

another cpu. This approach provides advantages if the target cpu is idle but may also

force time sharing with another process of the parallel application. A discussion of the

possible effect of process migration and preemption is provided in[74].

In our experiments the only kernel daemon that is very active is the i/o daemon

(rpciod).1 HPC compute nodes do not usually have disks or other i/o devices except,

of course, the network adapter. Most HPC networks (such as Infiniband[146] or Blue-

Gene Torus[12]) allow user applications to send/receive messages without involving the

OS, through kernel bypass. All i/o operations (e.g., reading input data or writing

final results) are shipped to an i/o node through the network. Once the operation is

completed, the i/o node returns the results to the compute node.

1LTTng-noise also uses a kernel daemon to collect data at run time. This daemon is not supposed
to be running in a normal environment, therefore we are not taking it into account in the rest of the
discussion. However, we noticed that, though it depends on the application, the LTTng-noise kernel
daemon was especially active at the beginning and at the endof the applictions. Moreover, as reported
in section 3.4, the overall overhead of LTTng-noise is quite small.

49

3. GENERAL PURPOSE OPERATING SYSTEMS

(a) UMT

(b) IRS

Figure 3.7: Domain rebalance softirq time series

50

In our test environment, the compute node is connected to an NFS server through

the rpciod i/o daemon. For most of the applications, rpciod is the only kernel daemon

that generate OS noise. UMT is a different case because the application is more com-

plex than the others. In particular, UMT runs several Python processes that may 1)

interrupt the computing tasks, and 2) trigger process migration and domain balancing.

Figure 3.4 shows that the OS noise experienced by LAMMPS is dominated by

process preemption, marked in green. Figure 3.8 shows that, indeed, LAMMPS pro-

cesses are preempted several times throughout the execution. As opposed to the other

benchmarks, LAMMPS performs a considerable amount of i/o operations. Since data

are moved to/from the network, the OS suspends LAMMPS processes that issued i/o

operations until the data tranfer is completed. In Linux, network i/o operations in-

volve the network interrupt handler and the receiver (net rx action) and transmission

(net tx action) tasklets.1 On data transfer completion, the active network tasklet

wakes up the suspended processes in the order i/o operations complete and on the

cpu that receives the network interrupt. Clearly, that cpu may be running another

LAMMPS process (which is preempted) at that time, thus a load balance reschedule

may be triggered to move the preempted process on an idle cpu (migration).

Figure 3.8: Process preemption experienced by LAMMPS. This picture shows the com-
plete execution trace of LAMMPS. We filtered out all events but process preemptions
(green). Though the pixel resolution does not allow distinguishing all the process pre-
emption, it is clear that LAMMPS suffers many frequent preemptions.

Table 3.4: Network interrupt events frequency and duration

freq(ev/sec) avg(nsec) max(nsec) min(nsec)
AMG 116 1,552 347,902 540
IRS 87 1,666 353,294 521
LAMMPS 11 2,520 356,380 594
SPHOT 21 1,372 341,003 535
UMT 77 1,975 349,288 484

1Tasklets are implemented on top of softirqs and differ from the latter in that tasklets of the same
type are always serialized. In other words, two tasklets of the same type cannot run on two different
cpus while two softirqs of the same type are allowed to do so[36].

51

3. GENERAL PURPOSE OPERATING SYSTEMS

Table 3.5: net rx action frequency and duration

freq(ev/sec) avg(nsec) max(nsec) min(nsec)
AMG 53 3,031 98,570 192
IRS 43 4,460 78,236 174
LAMMPS 10 4,707 84,152 199
SPHOT 15 1,987 45,150 207
UMT 22 5,484 75,042 167

Table 3.6: net tx action frequency and duration

freq(ev/sec) avg(nsec) max(nsec) min(nsec)
AMG 15 471 8,227 176
IRS 10 504 4,725 176
LAMMPS 2 559 4,392 175
SPHOT 3 409 2,746 200
UMT 9 545 8,902 173

Tables 3.4, 3.5 and 3.6 report the frequency and time duration of the network

interrupt handler, the net rx action, and the net tx action tasklet, respectively.

As we can see, the transmission tasklet is faster and more constant than the receiver

tasklet. The reason is that while sending data to the NFS server is an asynchronous

operation, receiving data from the NFS server must be done synchronously. In fact, the

transmission tasklet can return right after the network DMA engine has been started,

because the copy of the data from memory to the network adapter’s buffer will be

performed asynchronously by the DMA engine.

3.5.5 Periodic activities

Some activities are periodically started by the timer interrupt. With the introduction

of high resolution timers in Linux 2.6.18, the local timer may raise an interrupt any

time a high resolution timer expires. One of such timer is the periodic timer interrupt,

which is in charge of accounting for the current process elapsed time and, eventually,

call the scheduler if the process time quantum has expired. This interrupt is a well-

known source of OS noise[75, 156]. In our test machine we set the frequency of this

periodic high resolution timer to the lowest possible (100 Hz) so to minimize the effect

of the periodic timer interrupt.

The term timer interrupt is often used to identify both the timer interrupt and

the softirq. With our methodology, instead, we are able to distinguish between the

timer interrupt (or timer interrupt top half) and the sotfirq run timer softirq (called

bottom half in old Linux releases). The run timer softirq, in particular, may vary

52

considerably across applications and between two separate instances of the event. This

softirq, in fact, is in charge of running all the handlers connected to expired software

timers. Each handler may have a different duration and applications may set software

timers accordingly to their needs (for example, to take regular check points). It follows,

that this activity may show a considerable execution time variation.

Figures 3.9a and 3.9b show the time series of the run timer softirq softirq for

AMG and UMT. As we can see from the figures, and as confirmed from previous

studies, the run timer softirq softirq has a long-tail density function.

Table 3.7: Timer interrupt statistics

freq(ev/sec) avg(nsec) max(nsec) min(nsec)
AMG 100 3,334 29,422 795
IRS 100 6,289 35,734 867
LAMMPS 100 3,763 34,555 1,194
SPHOT 100 1,498 10,204 833
UMT 100 6,451 29,662 982

Table 3.8: Softirq run timer softirq statistics

freq(ev/sec) avg(nsec) max(nsec) min(nsec)
AMG 100 1,718 49,030 191
IRS 100 3,897 57,663 193
LAMMPS 100 2,242 58,628 256
SPHOT 100 620 32,926 223
UMT 100 3364 87,472 214

Table 3.7 and 3.8 show statistical data related to the timer interrupt and run timer softirq

softirq. As expected, the frequency of the timer interrupt is at least 100 events/second

(100 Hz) for all the applications. Also, the fact that the frequency is not higher means

that the applications do not set any other software timer.

3.6 Noise disambiguation

Analyzing OS noise indirectly through micro benchmarks may hide the true causes of

a given noise event and lead the developer towards the wrong direction. This section

provides two example of using LTTng-noise to disambiguate similar OS activities.

53

3. GENERAL PURPOSE OPERATING SYSTEMS

(a) AMG

(b) UMT

Figure 3.9: run timer softirq time series

54

Figure 3.10: AMG - Synthetic OS noise graph

3.6.1 Disambiguation of qualitative similar activities

Figure 3.10 shows a portion of the synthetic OS noise chart for AMG. The graphs shows

several page faults (red), and two timer interrupts (blue) which, in turn, trigger the

run timer softirq softirq (green). The picture shows that there are two interruptions,

a page fault and a timer interrupt (both highlighted in the graph) that have similar

duration (2913 nsec and 2902 nsec, respectively). Indirect measurements through micro

benchmarks do not permit to distinguish between these two kernel activities, thus, the

developer may think that they are the same activity.

The synthetic OS noise chart provided by LTTng-noise, instead, allows us to

disambiguate the two OS interruptions and to clearly identify each activity. In this

particular case, the graph shows that the first highlighted interruption is a page fault

that takes 2913 nsec, while the second interruption is composed by a timer interrupt

handler (2648 nsec) and run timer softirq softirq (254 nsec), which sum up to a

total of 2902 nsec.

55

3. GENERAL PURPOSE OPERATING SYSTEMS

3.6.2 OS noise composition

Micro benchmarks, such as FTQ, compute the OS noise as missing operations in a

given iteration[154]. This means that micro benchmarks are not able to distinguish

two unrelated events it they happen in the same iteration.

Figure 3.11a shows three iterations of the FTQ micro benchmark. The three spikes

are equidistant (which suggests a common periodic activity) but the jitter measured

in the first and the third iterations (about 5 µsec) is different from the one measured

in the second iteration (7.5 µsec). This different OS noise suggests that the events

occurred during the first and the third iterations are different from those occurred

during the second iteration. Moreover, the spikes in the first and third iterations are

similar to the very frequent ones caused by the timer interrupt while the spike in the

third iteration is not similar to anything else. A qualitatively analysis would conclude

that FTQ experienced a timer interrupt during the first and the third iteration while

“something else” happened during the second iteration, contradicting the hypothesis

of equidistant events.

Our analysis shows that, indeed, a timer interrupt also occurred during the second

iteration (Figure 3.11b), confirming the first observation of equidistant events. However,

right before that timer interrupt, a page fault occurred. In this case, FTQ was not able

to distinguish the two events that, indeed, appear as one in its graph. LTTng-noise,

instead, precisely shows the two events as separate interruptions, allowing the developer

to derive correct conclusions about the nature of the OS noise. This example shows

how an internal analysis is more effective than an indirect one and provides information

that, otherwise, would be impossible to obtain.

3.6.3 Conclusions

OS noise has been studied extensively and it is a well-known problem in the HPC

community. Though previous studies succeeded to provide important insights on OS

noise, most of those studies are “qualitative” in that they characterize the overall effect

of OS noise on parallel applications but tend not to identify and characterize each

kernel noise event. As HPC applications evolve towards more complex programming

paradigms that require richer support from the OS, we believe that a quantitative

analysis of the kernel noise introduces by such operating systems is most needed.

In this chapter we presented our technique to provide a quantitative descriptive anal-

ysis for each kernel noise event. We extended LTTng, a low-overhead, high-resolution

kernel tracer, with extra trace points and offline modules to analyze the OS noise. In

56

(a) OS noise as measured by FTQ

(b) Synthetic OS noise chart

Figure 3.11: Noise disambiguation

57

3. GENERAL PURPOSE OPERATING SYSTEMS

particular, we developed a module that generates execution traces suitable for Paraver

and a data format that can be used as input for Matlab. We demonstrated that our

new technique and toolkit (LTTng-noise) accurately reflect the noise measured by

other known techniques (such as FTQ). In addition to previous insights, our new tech-

nique allows quantifying and providing details for what contributed to the noise for

each interruption.

Using LTTng-noise, we analyzed the OS noise introduced by the OS on LLNL

Sequoia applications and showed that 1) each application experiences different jitter

(both in terms of overhead and composition), 2) page faults may have even larger impact

than timer interrupts (both in terms of frequency and duration), and 3) some activities

have larger time distributions that may lead to load imbalance at scale for particular

applications. Moreover, we are able to identify and quantify each single source of OS

noise. This capability is very useful to analyze current and future applications and

systems.

Finally, we showed two case studies where we used our technique to disambiguate

kernel noise events. This noise disambiguation would not be possible without the

detailed information provided by LTTng-noise.

We plan to use LTTng-noise do to deeper analysis of current and future parallel

applications and to quantify how our findings affect the scalability of those applications

on large machines with hundreds of thousands of cores.

58

Chapter 4

Light-weight Operating Systems

This part of the thesis addresses the problem of operating system scalability. In the

previous chapter we examined the scalability issues of general purpose operating sys-

tems, while in this chapter we focus on the scalability of lightweight OS. IBM CNK

is a lightweight kernel developed for the BlueGene systems that enables high scala-

bility with low overhead. As explained in the introduction, the main limitation of a

lightweight kernel, with respect to a general purpose OS, is the limitation in terms of

features. CNK for instance, lacks the support for dynamic memory mapping (i.e. ,

virtual to physical memory mapping is determined at loading time and never changes).

In this chapter, we perform a quantitative study of the cost of adding dynamic memory

mapping to CNK in term of application performance and scalability.

4.1 Summary

In order to achieve 1018 FLOPS with a limited power budget (25MW) [24], exascale

computing will induce novel technologies and fundamental changes in the software

stack [58]. Exascale systems are expected to feature O(1000) more cores than current

systems (up to 108 - 109 cores) but the growth in volume of memory is not expected

to match that of processor cores. Exascale systems are, thus, envisioned to have or-

ders of magnitude less memory per core than current petascale systems, in terms of

both total memory per node and cache memory per core. To reduce the complexity

posed by the high concurrency level (order of billions of threads) and limited avail-

able per-core memory, programmers are already exploring novel programming mod-

els and algorithms. Modern parallel applications are becoming more complex: UMT

from the LLNL Sequoia benchmarks [110], Climate code [100], and UQ [23] require

59

4. LIGHT-WEIGHT OPERATING SYSTEMS

dynamic library and script language support, as well as a richer support from the

OS and the system software. Moreover, there is a growing interest in richer shared-

memory programming models, such as OpenMP [134], PGAS (e.g., UPC[60, 161] and

GA[128]), Charm++[96], and Transactional Memory [147, 87, 83], that have the po-

tentiality to simplify parallel programming and to enable users to extract higher level

of parallelism. Finally, dynamic libraries, python scripts, dynamic memory allocation,

checkpoint-restart systems, tracers to collect performance and debugging information,

and virtualization [104], are seeing wider use in HPC systems. Current trends indicate

that large petascale to exascale systems will desire a richer system software ecosystem

with support for all those technologies and more complex programming models. In this

scenario, memory management becomes of predominant importance and, therefore, one

of the operating system components that might undergo a fundamental re-design.

Current petascale systems, however, have taken opposite approaches, especially

for what concerns memory management. Petascale supercomputers run either gen-

eral purpose operating systems (OS), such as Linux, adapted to run high performance

computing (HPC) applications, or lightweight kernels (LWKs), such as CNK [72] or

Catamount [140], specifically designed to run scientific code. Both solutions provide

advantages and disadvantages: general purpose OSes provide high flexibility and a

large variety of runtime services that virtually allow running any kind of application

and make them suitable to run future HPC applications. At the same time, general

purpose OSes also introduce considerable noise, which has been identified as one of the

source of poor scalability on large systems [68, 75, 137]. Lightweight kernels are ex-

plicitly designed to efficiently run parallel applications (more specifically, MPI and/or

OpenMP applications) but often require internal modifications when adding support

for a new service [119]. Constantly adding new services and flexibility might increase

the level of system noise.

We present a study on the impact of the memory management sub-system on mod-

ern and future parallel HPC applications, with particular focus on the effect of the

translation look-aside buffer (TLB) misses at scale, to understand whether a more flex-

ible approach than current LWK’s solution is practical from the performance point

of view. Although adding support for TLB misses necessarily introduces some run-

time overhead, a flexible TLB management would allow the development of the richer

ecosystem required by exascale applications.

The impact of TLB misses on real HPC applications has been studied in the past

but only qualitatively [148], mainly because of the difficulties in comparing different

solutions using the same OS. In this study, we provide an apples-to-apples compari-

60

son and analyze different TLB management approaches — dynamic memory mapping,

static memory mapping with replaceable TLB entries, and static memory mapping

with fixed TLB entries (no TLB misses) — on a real BG/P system with up to 1024

nodes (4096 cores). To this extent we modified CNK, a noiseless OS designed for Blue-

Gene systems, by adding support for TLB misses. CNK was not originally designed

to take TLB misses, thus we implemented the required functionalities, including ex-

ception handler and replacement policy, to resolve virtual-to-physical mappings. We

also implemented a lightweight tracing mechanism to collect per-TLB miss statistics

without introducing excessive overhead.

We, then, perform a sensitivity analysis study varying the number of concurrent

nodes, the size of the pages (from 4KB to 16MB) and the overhead introduced by the

TLB miss handler. Finally, in order to simulate a more complex memory management

sub-system, such as one with dynamic memory mapping, and evaluate the effect of

TLB misses at scale while avoiding the noise of other OS components, we inject delays

with random and constant signatures each time a TLB miss occurs.

We consider that a performance degradation of 2% would be justified by the higher

level of thread level parallelism that a richer system software ecosystem could help

achieve. We analyze the TLB pressure and the overall performance degradation of

several applications from the LLNL Sequoia [110] and ANL benchmark suites. Our ex-

perimental results show that, for several applications (including AMG, IRS, LAMMPS,

and GTC), the impact of TLB misses is below 2% with 1MB-pages even when injecting

a large artificial TLB miss noise signature. For UMT, a more complex application, us-

ing 1MB-pages still introduces considerable overhead, especially when injecting extra

TLB miss overhead, while 16MB-pages do not introduce more than 2% performance

degradation. This conclusion opens the possibility of implementing richer memory

management services at OS level to satisfy the requirements of future applications and

users.

61

4. LIGHT-WEIGHT OPERATING SYSTEMS

4.2 Experimental environment

Table 4.1 show the experimental environment used in this chapter. The table includes

the hardware system, the operating system, the communication library, and the bench-

marks used for the experiments.

CPU PowerPC 450 at 850 MHz (4 cores)
Memory 4 Gigabyte of DDR2 RAM
Network 3D toroidal custom network
System size up to 1024 nodes (4096 cores)
Operating System CNK
Communication Library MPI (IBM)
Benchmarks Sequoia benchmarks from LLNL (AMG, IRS, LAMMPS,

UMT) and GTC from ANL

Table 4.1: Experimental environment - IBM BlueGene P system

4.3 Related Work

The importance of TLB handling for system performance has long been studied in

the past [160, 141]. Anderson et al. [14] showed that the TLB miss handler is one of

the most frequently executed kernel function and that, in corner cases, handling TLB

misses can take up to 40% of the execution time [90]. A following work [98] reports that

data TLB handling can take up to 10% of the runtime of SPECCPU 2000 benchmarks.

A recent study [28] characterized the TLB behaviour of applications running on chip

multiprocessors, confirming that TLB data and instruction misses can hinder system

performance significantly, and that between 30% to 90% of TLB misses are either

predictable or redundant among multiple threads. McCurdy, Cox and Vetter [116]

also studied the TLB profile of floating point portion of SPECCPU benchmarks and

the HPC Challenge suite. The authors found that the TLB miss profiles of these

benchmarks can be significantly different from production applications. Moreover, this

work shows that a wrong page size choice may result in a performance degradation of

up to 50% for production applications.

Several studies in the literature propose techniques to reduce the impact of TLB

misses. Bhattacharjee and Martonosi [29] propose an inter-core cooperative TLB for

chip multiprocessors that uses prefetching to exploit commonalities between TLB miss

patterns among cores. The same authors also propose the use of a shared last-level

TLB for chip multiprocessors [27], exploiting the fact that multiple threads experience

TLB misses on identical address translation entries.

62

While all the mentioned works address the impact of TLB miss on application and

system performance, this work is the first, to the best of our knowledge, that isolates

and characterize the effects of TLB misses on large clusters and real HPC applications.

4.4 Memory management in general purpose OS and light-

weight kernels

Memory management is one of the key points in which general purpose and lightweight

kernels have taken opposite approaches. Linux-like operating systems support memory

protection among different concurrent applications, dynamic memory allocation and

remapping, virtualization, etc. Virtual-to-physical mapping can be dynamically mod-

ified during the application execution: to each process is assigned a set of page tables

that store the current translation from virtual-to-physical mapping of any page. These

features provide high flexibility to the programmers but also introduce overhead and

performance variability: since virtual-to-physical mappings can change at run-time, the

OS may need to retrieve the page table that contains the physical address correspond-

ing to a given virtual address. On the other hand, lightweight kernels often provide

only a reduced set of the previous services and, in particular, may use static virtual-to-

physical mapping, i.e., the virtual-to-physical mapping of an application is determined

at the beginning of the application and does not change throughout its execution.

Translation look-aside buffers are commonly used to reduce virtual address trans-

lation latency: a small set of page table entries (from ten to a few thousands) is cached

into the TLB and can be quickly accessed to retrieve the physical address associated

with the virtual address of the desired page. During a memory access (both for data or

instruction), if the virtual-to-physical mapping of the desired page is not in the TLB

(TLB miss), the system needs to retrieve the page table entry that maps the virtual

address to the corresponding physical one, then allocate the page table entry into the

TLB and finally issue again the same memory operation (that this time will hit in the

TLB). This process can be done by the hardware (hardware-assisted TLB), transpar-

ently to the software, or explicitly by the OS (software-managed TLB). In both cases,

a TLB miss introduces run time overhead that, as well as other system activities, may

limit scalability on large machines [148].

In this work we examine three different approaches to map virtual addresses to

physical ones:

• Fixed TLBs: With this approach virtual-to-physical mappings are statically

63

4. LIGHT-WEIGHT OPERATING SYSTEMS

determined at the beginning of the application and do not change throughout the

execution (static memory mapping). The mappings are stored in the TLB entries

and are never replaced (i.e., there are no TLB misses).

• Replaceable TLBs: As in the previous case, virtual-to-physical mappings are

statically determined at the beginning of the application and do not change.

However, to the contrary of the previous approach, TLB misses may occur, i.e.,

the entries stored in the TLB can be replaced at runtime.

• Dynamic mapping: This approach is the most flexible: virtual-to-physical map-

pings can change at runtime (dynamic memory mapping). TLB entries store a

subset of the current virtual-to-physical mappings and can be replaced at runtime.

With dynamic memory mappings, the virtual-to-physical translations of a process

can be modified at runtime by the OS. This approach allows memory-on-demand (the

virtual-to-physical mapping is determined at the moment a process first addresses a new

page), copy-on-write (the virtual-to-physical mapping of a page is modified when the

first write to a page shared by parent and child process occurs), swapping (the physical

address of a page temporary swapped on disk is determined after the page is loaded

back to memory), virtualization, etc. All these techniques are commonly employed in

general purpose operating systems, such as Linux: they usually provide considerable

advantages for desktop or data centers systems but also introduce time variability and

larger overheads. Several LWKs (e.g., CNK) have, instead, taken the approach of

statically mapping page table entries to TLB entries at the beginning of the execution

of an application and avoid TLB misses altogether (fixed TLBs). Replaceable TLBs

are less restrictive than fixed TLBs in that, even if the virtual-to-physical translation

mapping of an application does not change throughout the execution, the mapping

may contain more entries than provided by the hardware, hence TLB misses occur to

allow more complex mapping layouts than the one offered by fixed TLB mappings.

With static memory mapping (fixed TLBs and replaceable TLBs) pages cannot be re-

mapped at runtime, hence, the dynamic techniques described above are not easy to

implement. On the other hand, the OS design is simpler and there is minimal runtime

overhead.

In order to provide the services required by future parallel applications and satisfy,

at the same time, the hardware/technology/cost constraints, operating systems may

undergo a substantial changes in the exascale era.

For example, according to a common knowledge, TLB misses introduce a consider-

able amount of OS noise and limit scalability on large clusters. Common solutions to

64

this problem are static memory mapping (CNK, Catamount) or the use of large pages

(HugeTLB). TLB misses are introduced because of the “dynamic” behavior of the OS.

This dynamic behavior is caused by OS services (memory protection among different

applications, page swapping, dynamic memory, virtualization, etc.) or optimization

(COW, memory on demand, etc.). However, allowing TLB misses does not necessarily

imply that all those services/optimization have to be implemented. We can allow TLB

misses but not memory on demand or COW, for example. We cannot do the other

way around, though (or it would be difficult). Which service/optimization we should

implement requires a different study.

The new generation of Exascale Supercomputers poses several challenges for the

OS design. Effective design of a reliable, performing, memory management is one of

the biggest challenges, and the use of a static or dynamic virtual address translation

mechanism is a key decision. On one hand, a static translation mechanism is safest

choice in term of performance, on the other hand it considerably worsen the memory

defragmentation. In order to choose between this two designs, we need to fully under-

stand the impact of a dynamic translation mechanism with respect to the static one.

Our goal is to provide enough evidences to support or reject the hypothesis the TLB

misses performance impact is relevant for a realistic HPC workload.

4.5 Methodology

In order to understand the effect of TLB misses on scientific applications previous

work compared [148] an OS with fixed TLB entries (e.g., CNK) with one that uses

dynamic TLB mapping (e.g., Linux). Indeed the performance difference between a

general purpose OS and a LWK specifically designed to run HPC applications may be

considerable.

Figure 4.1 shows the execution time of AMG solving phase when running with CNK

and with a non-optimized version of Linux on BG/P and varying the number of MPI

processes (cores) from 128 to 2048. The Figure shows that 1) the overhead of Linux over

CNK for 128 node is already large (3.62x), and that 2) the overhead increases with the

number of cores (up to 6.86x), which indicates limited scalability. The problem with

this approach is that Linux introduces OS noise that is not necessarily caused by TLB

misses (such as process preemption, CPU migration, or interrupts), hence it is difficult

to isolate the TLB noise or even understand if the overhead introduced by TLB misses

is a major problem.

Our approach, instead, consists of modifying CNK, a noiseless OS designed for

65

4. LIGHT-WEIGHT OPERATING SYSTEMS

0

10

20

30

40

50

60

70

80

128 256 512 1024 2048

So
lv

in
g

p
h

as
e

 (
se

co
n

d
s)

cores

Linux CNK

Figure 4.1: Performance of AMG in weak scaling mode with a non-optimized version of Linux and
with CNK on BG/P. This figure shows the effects of Linux system noise on AMG at scale: compared
to CNK, Linux shows lower performance (3.62x with 128 cores) and limited scalability.

BlueGene/P systems, by introducing support for TLB misses and then comparing the

original CNK with our modified version (CNK-TLB). With this approach the effect of

TLB misses is isolated from the rest of the OS noise introduced by a full-fledged OS such

as Linux. For this study, we used a BG/P cluster: The value of using a BG/P over other

architectures and/or simulators is two-fold. First, we can perform experiments at a

much larger scale than in a simulated environment, which provides more representative

results for the supercomputing environment. Second, BG/P cores (PowerPC 450) do

not feature an hardware page-lookup circuit: TLB misses are handled by software, thus

we can explore different TLB miss strategies by specifically designing the proper TLB

miss handler.

4.5.1 Adding support for TLB misses to CNK

The overhead of translating a virtual address into the corresponding physical one in

our system depends on several components difficult to isolate, such as the TLB miss ex-

ception handler latency (including kernel/user context switches), the virtual-to-physical

translation algorithm, and the TLB replacement policy. To isolate the overhead of TLB

miss exceptions from the other components (virtual-to-physical translation algorithm

and TLB replacement policy), we implement a low-overhead, range-checking, round-

66

robin TLB miss handler. PowerPC 450 has 64 TLB entries per core, out of which 11

are statically fixed and reserved to map the CNK address space; all the other entries

store application virtual-to-physical mappings.

CNK was not designed to support TLB misses, hence virtual-to-physical mappings

are determined at loading time, assigning fixed segments to the application. A TLB

miss normally would raise an exception reporting an error and aborting the running

application. CNK uses four memory segments per process, namely text, data, heap/s-

tack and shared. The position of each memory segment in the physical address space is

determined and saved into special registers when the binary is loaded. There is one pri-

vate data and heap/stack segment for each process, while the text and the shared data

segments are common to all processes in a node. A schema of virtual-to-physical mem-

ory mapping for two running processes (SMP running mode) is depicted in Figure 4.2.

In order to translate virtual addresses we implemented an exception handler that uses

special registers to memorize the beginning of each memory segment and perform a

translation based on the range of the virtual address. Furthermore, the standard CNK

segments are aligned to 1MB, and using larger pages would cause the segments not to

be aligned with the pages. To solve this issue, when handling 16MB-pages, our TLB

handler uses a minimum (< 16) number of 1MB-pages to fill the gap and then uses

16MB-pages for the rest of the segment.

Every time a TLB miss occurs, the TLB miss handler translates the virtual address

as an offset from the proper segment in the physical address space. Since segments

positions are memorized into special registers, this approach does not require access to

memory to retrieve the virtual-to-physical mapping, thus the effect of data cache misses

is reduced. Nonetheless, memory accesses are still required for the TLB exception

handler context switch.

4.5.2 Tracing TLB misses

Efficient and precise measurement of TLB misses requires considerable memory space,

which may introduce additional data cache misses and, therefore, invalidate our re-

sults. To guarantee low overhead, we record the start and end time of the TLB miss

handler in memory and then dump the information to disk at the end of the appli-

cation.1 Considering the size of PowerPC 450 timestamp (8 bytes) and the number

of TLB misses per second (up to 106 per second with 4KB pages), the size of data

memorized in the buffer can reach more than 10MB per second. This amount of data

1Note that the measured interval does not include the time to save and restore the first five registers
used in the TLB handler (context switch).

67

4. LIGHT-WEIGHT OPERATING SYSTEMS

Figure 4.2: Example of virtual-to-physical memory mapping for two MPI processes
(SMP mode) in CNK.

would definitely affect the application memory footprint, providing biased results. We,

thus, implemented sampling techniques, at process and TLB event levels, to reduce the

amount of data while maintaining representativeness. A set of MPI process is selected

at the beginning of the applications as the ones that will record TLB miss events. With

64KB pages the sampling select 1 TLB miss every 64 to be recorded, while with 4K

pages 1 every 256. To validate the sampling frequency we compare the data obtained

with and without the sampling mechanism. We compare the two measured TLB miss

samples performing a two-sample Kolmogorov-Smirnov test with a 95% confidence in-

terval. Table 4.2 shows the validation for the sampling with 64KB pages, reporting the

arithmetic mean, the standard deviation and the result of the statistical test for the

TLB duration distributions.

Notice that this approach does not reduce accuracy because scientific applications

are single process/multiple data (SPMD), i.e., each process performs the same operation

on a different input set, and because HPC applications are usually iterative, i.e., it is

possible to extract applications’ characteristics, such as the TLB miss pattern, from a

few iterations.

Figure 4.3 shows a partial execution trace of AMG in which we recorded all TLB

68

Table 4.2: TLB duration distribution: sampling with 64KB pages

mean std dev test

Apps Cores full sampled full sampled

amg 128 72.63 72.53 16.77 16.37 passed

irs 125 76.43 75.91 20.59 18.09 passed

lammps 128 69.46 69.50 5.36 5.89 passed

umt 128 68.88 68.86 2.48 2.40 passed

gtc 128 71.52 71.55 13.11 12.87 passed

1.5 2 2.5 3 3.5 4 4.5

x 10
9

0

50

100

150

200

d
u
ra

ti
o
n
 (

c
y
c
le

s
)

time (cycles)

Figure 4.3: TLB miss trace of 3.52 seconds of AMG execution.

misses: y-axis is the duration of the TLB miss and x-axes represent the timeline (3.52

seconds in total). As we can see from the trace, AMG presents a iterative structure,

thus sampling either one complete iteration or enough events throughout the execution

does not lead to measurable inaccuracy.

We measure the overhead of our tracing system by comparing the instrumented

version of CNK-TLB with the non-instrumented version and found it negligible (about

1%, depending on the application and in the same order of the performance variation

across iterations) but, to provide more accurate results when measuring the execution

time overhead, we compare the original CNK kernel to the non-instrumented version of

CNK-TLB and we use the tracing version only when reporting per-TLB miss statistics.

4.5.3 TLB noise injection

CNK-TLB uses a simple range-checking TLB handler (described in Section 4.5.1) that

introduces minimal overhead: The range-checking TLB handler implemented in CNK-

TLB shows a very tight time distribution centered around 70 cycles. In reality, however,

operating systems use different techniques to resolve virtual-to-physical mappings, such

as paging or segmentation [36]. These techniques require looking up for the page table

or the segment that contains the virtual-to-physical mapping when a TLB miss occurs.

Besides the overhead of computing the address of the correct page table, paging may

require several accesses to memory and, eventually, the allocation of new page tables

69

4. LIGHT-WEIGHT OPERATING SYSTEMS

(in case of the first access to a page) before translating the virtual address.

This results in a duration distribution of the TLB miss handler that is not as tight

as the one obtained with CNK-TLB. CNK-TLB uses a low-overhead, range-checking

TLB miss handler while Linux TLB miss handler is affected by several components

(page table lookup, cache misses, page table allocation, etc.) that produce a wider

time distribution. Figure 4.4 shows the TLB miss handler execution time distribution

for CNK-TLB (Figure 4.4a) and for Linux (Figure 4.4b) when running UMT with 1024

MPI processes. As we can see from the figures, the Linux distribution is not as tight

as the CNK one and presents several peaks, each of which indicates a different event.

While the implementation of paging in CNK is out of the scope of this work, we want

to more accurately evaluate the overhead introduced by TLB misses on an HPC appli-

cation running on a system with paging. To this extent we use noise injection [68], a

technique that consists of injecting artificial delays with different signatures to simulate

the noise introduced by a real OS component (in this case, the memory sub-system).

We inject two different signatures in CNK-TLB: a constant signature and a uniformly

distributed random signature. In both cases we vary the maximum delay injected on

each TLB miss to understand what is the maximum per-TLB miss overhead that guar-

antees overall performance slowdown below 2%. At each TLB miss, the TLB handler

selects the delay to add, either the constant delay (constant signature) or one random

value from the uniform distribution (random signature), and executes a loop to delay

the TLB miss handler. To minimize the overhead of selecting the random delay, we

load the uniform random distribution at application start time in kernel memory.

4.6 Experimental results

In this section we analyze the performance impact of TLB misses overhead from the

LLNL Sequoia (AMG, IRS, LAMMPS, and UMT) and from ANL (GTC) benchmark

suites. In order to isolate the effects of TLB miss overhead, we compare the solving

phase execution time of the applications running on CNK, a noiseless OS that does

not take TLB misses, to our modified version of the same OS (CNK-TLB), which is

capable of handling TLB misses. As described in the previous section, our TLB miss

handler uses a low-overhead range-checking approach that does not need to look for

page tables in memory to resolve virtual-to-physical mappings. Although this approach

is a simplified version of a normal system with memory paging, it provides the minimum

overhead caused by a TLB miss, i.e, the overhead of going to kernel mode and back,

the execution of the TLB miss handler, the L1 and L2 instruction cache misses and the

70

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3
x 10

7

duration (cycles)

s
a
m

p
le

s

avg = 69.2532 cyc
stddev = 1.881 cyc
max = 693 cyc
min = 68 cyc

(a) CNK-TLB

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5

3
x 10

7

duration (cycles)

s
a
m

p
le

s

avg = 111.3199 cyc
stddev = 49.5656 cyc
max = 1524 cyc
min = 41 cyc

(b) Linux

Figure 4.4: TLB miss handler execution time distribution for CNK-TLB and Linux.

71

4. LIGHT-WEIGHT OPERATING SYSTEMS

overhead of flushing the core pipeline before entering kernel mode and upon resuming

the execution of the application. Section 4.6.3 analyzes the effect of page table lookup

through TLB noise injection.

4.6.1 TLB pressure

Table 4.3 shows the TLB pressure that each application poses on the TLB cache, i.e., the

average number of TLB misses/second per core in the system when varying the number

of concurrent MPI processes (cores) and the page sizes. Each value in Table 4.3 is the

average of 4 runs)1

We report the TLB miss frequency rather than the absolute number because each

application runs for a different amount of time, thus the absolute number of TLB misses

alone is not a valid indicator of application’s TLB pressure. Finally, here, and in the

rest of the chapter, we focus on the solving phase of each application, i.e., we do not

report TLB misses for the initialization and finalization phases.

The applications tested in our experiments present different characteristics, such

as data locality and memory and communication patterns, that have an impact on

the TLB pressure. The results is that each application poses a different pressure on

the TLB and the memory sub-system. For example, with 1MB pages and 1024 cores,

LAMMPS shows 0.64 TLB misses/second while AMG and UMT show 658.69 and

42,957.35 TLB misses/second, respectively, which indicates that UMT poses higher

TLB pressure than the other applications. Also, please not that results for UMT are

up to 2048 cores, because UMT uses only half of the cores in each node. We expect

UMT to suffer higher slowdown on CNK-TLB than the other benchmarks, especially

with small pages, On the other hand, the TLB pressure reduces with the page size (the

larger the page, the lower the number of TLB misses/second) across all the applications.

Table 4.3 shows that the impact of the page size on the number of TLB misses/sec-

ond per core is very large. When the page size increase from 64KB to 1MB (16x),

the number of TLB misses/second may decrease by up to five orders of magnitude

(LAMMPS).

Finally, Table 4.3 reports that the number of TLB misses/second is roughly constant

at scale (except for IRS). This is somehow expected because we run our experiments in

1In our experiments with CNK-TLB using 4KB-pages cause several applications not to complete
(GTC, UMT) or to generate MPI errors (IRS). We omit these results since, as we will see in the next
sections, 4KB-pages do not play a determinant role in our conclusions. Also note that for IRS the data
set distribution requires a number of processes that is not a power of 2.

1Many application did not complete with 4K pages due to the high overhead introduced by TLB
misses

72

Table 4.3: Number of TLB misses/second per core during the solving phase for LLNL
and ANL applications using CNK-TLB. The different number of cores for IRS is due to
the design constraint of having a number of parallel processes that is a power of three.

Page size
Apps Cores 4K 64K 1M 16M

amg 128 202,718.24 16,580.67 565.95 0.00
amg 256 217,190.96 18,089.83 685.78 0.00
amg 512 229,597.23 17,732.09 622.96 0.00
amg 1024 232,221.82 18,433.50 658.69 0.00
amg 2048 243,566.54 18,460.25 681.54 0.00
amg 4096 NA 18,834.16 724.70 0.00
irs 125 NA1 23,104.27 0.88 0.11
irs 216 NA 24,273.60 0.75 0.09
irs 512 NA 25,035.51 0.59 0.00
irs 1000 NA 25,133.25 0.44 0.05
irs 1728 NA 29,959.76 0.79 0.04
irs 4096 NA 38,506.07 0.00 0.03
lammps 128 1,017,630.05 34,888.56 0.66 0.15
lammps 256 1,061,163.23 37,492.60 0.67 0.15
lammps 512 1,021,721.25 33,275.87 0.66 0.15
lammps 1024 1,085,015.14 33,788.92 0.64 0.15
lammps 2048 1,040,772.45 32,341.94 0.66 0.15
lammps 4096 NA 37,699.52 0.63 0.17
umt 128 NA 260,916.79 50,463.81 1.26
umt 256 NA 265,431.37 45,548.68 1.37
umt 512 NA 269,942.34 44,975.80 1.46
umt 1024 NA 275,927.00 42,957.35 1.44
umt 2048 NA 274,559.97 39,277.12 1.77
gtc 128 NA 5,812.62 108.51 0.00
gtc 256 NA 6,413.69 251.87 0.00
gtc 512 NA 6,386.41 251.27 0.00
gtc 1024 NA 6,537.21 250.00 0.00
gtc 2048 NA 6,501.46 248.61 0.00
gtc 4096 NA 6,462.73 253.83 0.00

weak scaling mode, thus the amount of work (and the memory footprint) per process is

supposed to be constant. There is a small percentual variation caused by the not-perfect

weak scalability of the applications.

73

4. LIGHT-WEIGHT OPERATING SYSTEMS

4.6.2 Analysis of TLB overhead at scale

Figure 4.5 depicts the performance overhead experienced by the tested applications

when varying the number of MPI processes (cores) and the page size.

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

am
g

1
2

8

am
g

2
5

6

am
g

5
1

2

am
g

1
0

2
4

am
g

2
0

4
8

am
g

4
0

9
6

ir
s

1
2

5

ir
s

2
1

6

ir
s

5
1

2

ir
s

1
0

0
0

ir
s

1
7

2
8

ir
s

4
0

9
6

la
m

m
p

s
1

2
8

la
m

m
p

s
2

5
6

la
m

m
p

s
5

1
2

la
m

m
p

s
1

0
2

4

la
m

m
p

s
2

0
4

8

la
m

m
p

s
4

0
9

6

u
m

t1
2

8

u
m

t
2

5
6

u
m

t
5

1
2

u
m

t
1

0
2

4

u
m

t
2

0
4

8

gt
c

1
2

8

gt
c

2
5

6

gt
c

5
1

2

gt
c

1
0

2
4

gt
c

2
0

4
8

gt
c

4
0

9
6

O
ve

rh
e

ad
 w

.r
.t

. s
ta

n
d

ar
d

 C
N

K

4KB 64KB 1MB 16MB
17% 27% 37% 59% 27% 28% 27% 28% 28% 27%

Figure 4.5: TLB misses overhead with varying page sizes and concurrent cores. This
graph shows that the overall overhead is below 2% for 16MB-pages for all the applica-
tions while 1MB-pages only guarantee overhead below 2% for some application.

We compute this execution time overhead as the ratio between the execution time of

the original CNK (fixed TLBs) and our modified version CNK-TLB (replaceable TLBs)

without instrumentation. The execution time does not include the data initialization

phase, i.e., we only instrument the so-called solving phase. The graph shows that with

4KB-pages the overhead introduced by TLB misses is excessively high for both AMG

and LAMMPS in all tested configurations (128-4096 cores), similarly to what reported

by Shmueli et al. [148] (although with different applications). With 64KB-pages, the

overall slowdown considerably reduces for most of the applications: only UMT and

AMG show overhead larger than 2% (8.2% and 5.2%, respectively). We consider 2%

as a threshold above which the overhead is too high to take the replaceable TLBs

design into consideration for future HPC systems. This threshold may seem too strict

but we should remark that, in the experiments in Figure 4.5, CNK-TLB uses a range-

checking TLB handler and that the actual overhead of page table lookup is larger (see

Section 4.6.3). With 1MB and 16MB pages, the TLB noise reduces below 2% also for

UMT and AMG (except UMT with 128 cores), with 16MB pages introducing less than

1% slowdown for most of the applications. This results confirms that the performance

degradation induced by TLB misses is contained and sustainable for HPC applications

if the TLB pressure is not excessively high (1MB and 16MB cases).

Figure 4.5 also shows that the performance degradation suffered by each application

varies according to the application’s characteristics. For example, although LAMMPS

74

shows a higher number of TLB misses/second (32K-37.5K) than IRS (23K-38K) with

64KB pages, the overall performance degradation is slightly higher for IRS, which means

that each TLB miss introduces larger delays on IRS than on LAMMPS. This happens

because the impact of TLB misses on the overall application performance depends

on several factors: 1) the TLB pressure (reported in Table 4.3), 2) the TLB handler

execution time, and 3) the criticality of the TLB miss. The number of TLB miss and

the duration of the TLB miss handler determine the direct overhead each process suffers

because of TLB misses. This overhead, however, may not directly impact the overall

application performance.

As we mentioned in the previous section, each application presents different intrinsic

characteristics, such as the communication pattern or the synchronization structure.

The overhead of a TLB miss may impact differently each application, depending on

the current activity of the process experiencing the TLB miss or whether the process

was on the application critical path (critical miss) or not (non-critical miss). For

example, if the process that experiences a TLB miss is the last one to reach a barrier,

the TLB miss overhead will directly impact on the overall application performance.

Vice versa, if the process is not the last one to reach the barrier, the overhead of the

TLB miss will be completely absorbed and will not slowdown the application. This

phenomenon is not just related to TLB misses but applies to system software noise in

general [137, 75, 68]. For example, a timer interrupt issued while the current process is

waiting for an incoming packet does not introduce any delay on the overall applications.

Timer interrupts that delay computing phases of processes in the critical path, instead,

directly impact on overall performance.

Applications’ characteristics and size of the page also influence the duration of each

TLB miss handler. In fact, even our range-checking TLB miss handler may suffer

different instruction and data cache misses, depending on how frequently TLB misses

occur.

Figure 4.6 shows that the execution time of a TLB handler varies from application

to application and that, in general, increases with the size of the page. For example,

the average TLB miss handler execution time for IRS running with 216 cores is 75

cycles with 64KB pages, 180 cycles with 1MB pages and 325 cycles with 16MB pages.

As shown in Table 4.3, the TLB pressure reduces with the size of the page, thus large

pages induce fewer TLB misses/second. This means that there is a higher probability

of instruction/data cache misses with larger pages than with small ones.

Figure 4.7 shows that, indeed, there is an empirical relationship between the average

TLB handler duration and the number of TLB misses/second: the higher the number

75

4. LIGHT-WEIGHT OPERATING SYSTEMS

a
m

g
 1

2
8

a
m

g
 2

5
6

a
m

g
 5

1
2

a
m

g
 1

0
2
4

a
m

g
 2

0
4
8

a
m

g
 4

0
9
6

ir
s

1
2
5

ir
s

2
1
6

ir
s

5
1
2

ir
s

1
0
0
0

ir
s

1
7
2
8

ir
s

4
0
9
6

la
m

m
p
s

1
2
8

la
m

m
p
s

2
5
6

la
m

m
p
s

5
1
2

la
m

m
p
s

1
0
2
4

la
m

m
p
s

2
0
4
8

la
m

m
p
s

4
0
9
6

u
m

t1
2
8

u
m

t
2
5
6

u
m

t
5
1
2

u
m

t
1
0
2
4

u
m

t
2
0
4
8

g
tc

 1
2
8

g
tc

 2
5
6

g
tc

 5
1
2

g
tc

 1
0
2
4

g
tc

 2
0
4
8

g
tc

 4
0
9
6

0

50

100

150

200

250

300

350

4K 64K 1M 16M

A
v
e
ra

g
e
 T

L
B

 m
is

s
 d

u
ra

ti
o
n
 (

c
y
c
le

s
)

Figure 4.6: TLB miss handler execution time with varying page sizes and concurrent
cores. The graph shows that the time required to perform a virtual-to-physical transla-
tion in CNK-TLB changes depending on the page size (the larger the page, the longer
the execution time), especially with pages larger than 64KB. The TLB miss handler
execution time influences the applications’ overall overhead.Missing 4K page bars refer
to experiments that could not complete due to the high overhead with small pages (see
Table 4.3). Also, the 1M page experiment with IRS is missing due to the very low
number of TLB misses to sample (less than 1 TLB miss on average).

0

50

100

150

200

250

300

350

TLB miss per second

A
v
e
ra

g
e
 T

L
B

 m
is

s
 d

u
ra

ti
o
n
 (

c
y
c
le

s
)

Figure 4.7: Empirical relationship between TLB misses/second and TLB handler execu-
tion time: when the TLB pressure is low (less than 1 TLB miss/second) the probability
of cache misses increases with the result that the TLB handler takes longer to complete.

76

of TLB misses/second, the lower the average TLB miss handler execution time. When

the number of TLB misses/second is high (i.e., more than 10K TLB misses/second),

performing the TLB miss handler takes approximately 70 cycles on average. When the

TLB miss frequency is low (less than 1 TLB miss/second) the overhead of determining

the physical address requires more time (up to 325 cycles). Given the tlb miss handler

is a software routine, it is subject to cache misses. With a low TLB miss frequency, the

probability of data and instruction cache misses is higher, hence, on average, the TLB

miss handler takes longer to resolve a virtual-to-physical translation.

Figure 4.6 also explains why the performance slowdown experienced by IRS is higher

than that of LAMMPS (Figure 4.5) even though LAMMPS poses an higher TLB pres-

sure than IRS (Table 4.3): the average TLB miss handler execution time of IRS is higher

than LAMMPS. An interesting observation is that, although the number of TLB miss-

es/second is roughly constant at scale for most of the applications (e.g., AMG, IRS,

LAMMPS, UMT, and GTC), the overhead introduced by TLB misses on a given ap-

plication may vary. For example, the overhead experienced by AMG varies with the

number of concurrent processes (Figure 4.5). For AMG with 64KB-pages both the

number of TLB misses/second (16K-18.5K, see Table 4.3) and the TLB miss handler

execution time (75 cycles, see Figure 4.6) are roughly constant at scale, however, the

overall overhead increases from 1%, with 128 processes, to 5%, with 4096 concurrent

processes. This is caused by system noise resonance [68], i.e., the effect of system noise

for some applications is amplified at scale, depending on the criticality of TLB misses.

In fact previous studies have shown that the effect of system noise at scale is much

larger than the one measured on a single node [137, 75, 68, 148].

4.6.3 TLB noise injection

In the previous sections we analyzed the TLB pressure and the runtime overhead expe-

rienced by HPC applications when running on CNK-TLB, a modified version of CNK

with replaceable TLBs that implements a range-checking TLB handler. In this Section

we evaluate the effect of injecting TLB noise while running HPC applications. As de-

scribed in Section 4.5.3, we introduce two different noise signature: a constant noise

signature and a random signature uniformly distributed.

Constant signature The worst case scenario from the TLB noise point of view is

one in which, at each TLB miss, each process of an application experiences the largest

delay. We simulate this case by injecting a constant large delay of K cycles at every

77

4. LIGHT-WEIGHT OPERATING SYSTEMS

TLB miss, with K = 128, 256, 512, 1024. Note that this delay sums to the average

duration of the TLB handler of approximately 70 cycles.

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

am
g

1
2

8

am
g

2
5

6

am
g

5
1

2

am
g

1
0

2
4

am
g

2
0

4
8

am
g

4
0

9
6

ir
s

1
2

5

ir
s

2
1

6

ir
s

5
1

2

ir
s

1
0

0
0

ir
s

1
7

2
8

ir
s

4
0

9
6

la
m

m
p

s
1

2
8

la
m

m
p

s
2

5
6

la
m

m
p

s
5

1
2

la
m

m
p

s
1

0
2

4

la
m

m
p

s
2

0
4

8

la
m

m
p

s
4

0
9

6

u
m

t1
2

8

u
m

t
2

5
6

u
m

t
5

1
2

u
m

t
1

0
2

4

u
m

t
2

0
4

8

gt
c

1
2

8

gt
c

2
5

6

gt
c

5
1

2

gt
c

1
0

2
4

gt
c

2
0

4
8

gt
c

4
0

9
6

O
ve

rh
e

ad
 w

.r
.t

. s
ta

n
d

ar
d

 C
N

K

128 256 512 1024

(a) 1MB-pages

0%

1%

2%

3%

4%

5%

6%

am
g

1
2

8

am
g

2
5

6

am
g

5
1

2

am
g

1
0

2
4

am
g

2
0

4
8

am
g

4
0

9
6

ir
s

1
2

5

ir
s

2
1

6

ir
s

5
1

2

ir
s

1
0

0
0

ir
s

1
7

2
8

ir
s

4
0

9
6

la
m

m
p

s
1

2
8

la
m

m
p

s
2

5
6

la
m

m
p

s
5

1
2

la
m

m
p

s
1

0
2

4

la
m

m
p

s
2

0
4

8

la
m

m
p

s
4

0
9

6

u
m

t1
2

8

u
m

t
2

5
6

u
m

t
5

1
2

u
m

t
1

0
2

4

u
m

t
2

0
4

8

gt
c

1
2

8

gt
c

2
5

6

gt
c

5
1

2

gt
c

1
0

2
4

gt
c

2
0

4
8

gt
c

4
0

9
6

O
ve

rh
e

ad
 w

.r
.t

. s
ta

n
d

ar
d

 C
N

K

128 256 512 1024

(b) 16MB-pages

Figure 4.8: Noise injection with constant noise signature. This graphs shows that
the overall overhead of injecting TLB miss with a constant signature is below 2%
with 16MB-pages for all the applications. With 1MB-pages, instead, UMT shows
considerable overhead.

Figures 4.8a and 4.8b show the overall performance degradation experienced by the

tested HPC applications when running on CNK-TLB with a constant delay injected

at each TLB miss with respect to the standard CNK for 1MB and 16Mb pages, re-

spectively. We do not report values for pages smaller than 1MB because, as Figure 4.5

shows, the overall overhead of TLB misses with 64KB-pages is already above our 2%

threshold for some applications (e.g., UMT) even with the simple range-checking TLB

miss handler. In these experiments, we vary the constant delay K from 128 cycles to

1024 cycles and the number of MPI processes. Figure 4.8a shows that most of the appli-

cations (AMG, IRS, LAMMPS and GTC) present an overall performance degradation

78

below 2%, even with K = 1024 cycles. For these applications, and with 1MB pages,

the TLB pressure is contained (see Table 4.3), thus, the applications can sustain large

per-TLB miss overhead. UMT, on the other hand, poses a much higher TLB pressure:

Even though the range-checking TLB handler evaluated in Section 4.6.2 introduces

performance degradation below 2% for 1MB-pages, injecting a delay quickly degrades

performance above 2%. With K = 128, UMT already experiences performance degra-

dation up to 5%; with K = 512 the overhead quickly climbs up to 11.4%. The higher

overhead for UMT seems to be a consequence of the number of TLB misses per second.

Interestingly, the percentual overhead of UMT shows a decreasing trend as the number

of cores increases.

Table 4.4 reports the execution times of the solving phase in CNK (no TLB misses),

that is the baseline of this experiment. Although we run our experiments in weak scale

mode, the total execution time for UMT increases from 19.51 seconds with 128 cores

to 25.61 seconds with 2048. On the other hand, the direct overhead of TLB misses is

constant (see Table 4.3 and Figure 4.6), thus we conclude that that overhead of TLB

misses overlaps with other sources of performance degradation, causing the relative

percentual overhead to decrease at scale.

Table 4.4: Execution time of the solving phase in seconds.

Cores

Apps 128 256 512 1024 2048 4096

amg 9.59 9.44 10.43 10.66 10.97 12.35
irs 27.37 33.46 42.36 58.48 72.13 114.45
lammps 66.05 64.96 65.48 66.44 65.94 67.02
umt 19.51 21.92 22.19 23.09 25.61 NA1

gtc 28.14 28.26 28.97 28.51 28.99 30.29

Although only one among the tested applications reports unsatisfactory results for

1MB pages, UMT is one of the applications that most closely represents future exascale

applications, both in terms of complexity and implementation. The application is

programmed with a mix of Fortran and C++ code, shared memory (OpenMP) and

message passing (MPI) programming models and uses Python scripts to dynamically

load computing modules. This experiment, thus, shows that 1MB pages may not

be sustainable by future exascale systems, unless the per-TLB miss overhead is very

contained, which may require hardware assistance. With 16MB pages, instead, the

overall performance degradation is consistently below 2% for all applications, even with

1UMT uses half of the cores in each node. Hence using 1024 BG/P nodes we only have 2048 cores.

79

4. LIGHT-WEIGHT OPERATING SYSTEMS

K = 1024 cycles. In fact, the performance measured are so close to the original CNK

that the differences between two experiments are in the same order of the measurement

error.

Random signature Although on a single node system noise is usually quantified 1-

2%, performance degradation at scale can be much higher, especially if the system noise

enters in resonance with the application [137, 75, 68]. If that happens, the application’s

performance is determined by the MPI process that experienced the largest delay, even

though other processes experience smaller delays or no delay at all.

General purpose operating systems may introduce considerable system noise, some

of which is related to the memory sub-system and to TLB miss handling. To simulate

the random system noise generated by TLB miss handling we artificially introduce a

random delay at every TLB miss. The random delay is uniformly distributed between

0 and T , with T = 128, 256, 512, and 1024 cycles. We use the core timebase register as

source of random events and delay the TLB handler accordingly. The artificial delay

sums to the duration of the range-checking TLB handler reproducing an handler with

a minimum duration of approximately 70 cycles and a maximum duration of 70+T .

Figures 4.9a and 4.9b show the execution time overhead with respect to the standard

CNK with no TLB misses. Note that, in Figure 4.9b, some benchmarks show 0%

overhead because they do not present TLB misses in the solving phase with 16MB-

pages (see Table 4.3).

Random delays up to 1024 cycles using 1M pages do not impact applications’ per-

formance significantly, except for UMT, as shown in Figure 4.9a. As for the case of

constant noise signature injection, the overhead experienced by UMT with random

noise signature is significant: with T = 256 cycles and 128 cores UMT shows 3.85%

performance degradation, 9.70% with 2048 cores. The other applications all suffer a

negligible overhead, as we consider overhead below 1% in the same order of the mea-

surement error. Moreover, we observe that UMT performance degradation with respect

to CNK decreases at scale, as reported for the constant signature noise injection.

These results confirm that 1M pages may affect applications performance, partic-

ularly for applications with a complex memory access patterns, such as UMT. On the

other hand, 16MB-pages may introduce excessive memory fragmentation which, as fu-

ture system will have less memory per core, may result in an unsustainable waste of

resources. In these experiments we use pessimistic values of K and T (up to 1024

cycles), thus, it might not be necessary to move to 16MB pages. If that is necessary,

however, reducing the number of TLB misses/second [29] or accelerating the TLB miss

80

0%

2%

4%

6%

8%

10%

12%

am
g

1
2

8

am
g

2
5

6

am
g

5
1

2

am
g

1
0

2
4

am
g

2
0

4
8

am
g

4
0

9
6

ir
s

1
2

5

ir
s

2
1

6

ir
s

5
1

2

ir
s

1
0

0
0

ir
s

1
7

2
8

ir
s

4
0

9
6

la
m

m
p

s
1

2
8

la
m

m
p

s
2

5
6

la
m

m
p

s
5

1
2

la
m

m
p

s
1

0
2

4

la
m

m
p

s
2

0
4

8

la
m

m
p

s
4

0
9

6

u
m

t1
2

8

u
m

t
2

5
6

u
m

t
5

1
2

u
m

t
1

0
2

4

u
m

t
2

0
4

8

gt
c

1
2

8

gt
c

2
5

6

gt
c

5
1

2

gt
c

1
0

2
4

gt
c

2
0

4
8

gt
c

4
0

9
6

O
ve

rh
e

ad
 w

.r
.t

 s
ta

n
d

ar
d

 C
N

K

128 cyc 256 cyc 512 cyc 1024 cyc

(a) 1MB-pages

0%

1%

2%

3%

4%

5%

6%

am
g

1
2

8

am
g

2
5

6

am
g

5
1

2

am
g

1
0

2
4

am
g

2
0

4
8

am
g

4
0

9
6

ir
s

1
2

5

ir
s

2
1

6

ir
s

5
1

2

ir
s

1
0

0
0

ir
s

1
7

2
8

ir
s

4
0

9
6

la
m

m
p

s
1

2
8

la
m

m
p

s
2

5
6

la
m

m
p

s
5

1
2

la
m

m
p

s
1

0
2

4

la
m

m
p

s
2

0
4

8

la
m

m
p

s
4

0
9

6

u
m

t1
2

8

u
m

t
2

5
6

u
m

t
5

1
2

u
m

t
1

0
2

4

u
m

t
2

0
4

8

gt
c

1
2

8

gt
c

2
5

6

gt
c

5
1

2

gt
c

1
0

2
4

gt
c

2
0

4
8

gt
c

4
0

9
6

O
ve

rh
e

ad
 w

.r
.t

. s
ta

n
d

ar
d

 C
N

K

128 cyc 256 cyc 512 cyc 1024 cyc

(b) 16MB-pages

Figure 4.9: Noise injection with random uniform noise signature. This graphs shows
that the overall overhead of injecting TLB miss with a random uniform signature is
below 2% with 16MB-pages for all the applications. With 1MB-pages, instead, UMT
shows considerable overhead.

81

4. LIGHT-WEIGHT OPERATING SYSTEMS

handler may reduce the overall overhead even with 1MB-pages.

4.7 Conclusions

Exposing the level of parallelism demanded by exascale supercomputers requires a

richer system software ecosystem capable of supporting the novel programming mod-

els, technologies, and runtime systems that are emerging in the HPC community. To

this extent, current petascale operating systems might need a fundamental re-design,

especially for the memory sub-system part.

In this chapter we analyze the effects of TLB cache misses on current and future

HPC applications. In order to isolate the effects of TLB misses from the other OS com-

ponents and to provide an apples-to-apples comparison, we modified CNK, a noiseless

OS for Blue Gene systems that implement a fixed TLBs design, by adding support

for replaceable TLBs. We implemented several TLB miss handlers: First we designed

a low-overhead, range-checking algorithm that resolves virtual-to-physical mappings

with minimum overhead. This algorithm causes the minimum overhead to translate a

virtual-address into a physical-address. Second, to evaluate the effects of a more com-

plex memory sub-system (e.g., paging), we varied the duration of the TLB miss handler

by injecting artificial delays with random and constant signatures. Then, we studied

the effects of varying the page size from 4KB to 16MB and the scalability implications

of taking TLB misses.

We consider 2% as the maximum performance degradation that a programmer

would be willing to pay in order to have richer system software ecosystem. Our exper-

iments, performed with representative applications from the LLNL Sequoia and ANL

benchmarks on a BG/P system with up to 1024 nodes (4096 cores), show that, for most

of the applications, the overhead of TLB misses is below 2% even with 1MB-pages and

with extremely pessimistic delays (1024 cycles). For more complex applications, such

as UMT, that poses very high pressure on the TLB, 1MB-pages may not satisfy our

performance requirements, especially if the TLB miss handler execution time is large.

Such complex applications show overall overhead below 2% with 16MB-pages even with

large artificial delays.

However, 16MB-pages may introduce higher memory fragmentation, and in a sce-

nario with less memory per core, this could be a major issue. In this case, hardware

and software techniques should be used to reduce the TLB miss overhead and min-

imize performance degradation even with smaller page sizes. In the specific case of

BlueGene systems, the most recent version (BG/Q) provides an MMU to speed up

82

virtual-to-physical mapping.

83

4. LIGHT-WEIGHT OPERATING SYSTEMS

84

Part III

Runtime System Scalability

85

Chapter 5

Scalable Runtimes for

Distributed Memory Systems

The previous part of the thesis focused on the scalability of operating systems. In this

part we focus on the scalability of the upper layer of system software: the runtime

system. Traditional high performance applications used a fairly simple runtime system

based on a message passing programming models. As mentioned in the introduction,

the advent of more complex hardware fostered the design of new programming model

and intelligent/adaptive runtime systems. Applications are changing too, moving from

regular to irregular computation and data access patterns (e.g. graph-based applica-

tions). Performance of large scale high performance systems is becoming more and

more a function of data movement rather than floating point computation. A new

class of applications (so-called irregular applications) are gaining increasing interest,

because of the important nature of the problems that they address (data intensive ap-

plications). In this chapter, we describe the design and implementation of a specialized

runtime system and programming model to efficiently execute irregular applications on

commodity clusters.

5.1 Summary

Bioinformatics, big data science applications, complex network analysis, community de-

tection, data analytics, language understanding, pattern recognition, semantic databases

and, in general, knowledge discovery constitute a new generation of irregular high per-

formance computing applications [48]. The size of the datasets in these applications

has already surpassed a petabyte, and is exponentially growing. Only by exploiting

87

5. SCALABLE RUNTIMES FOR DISTRIBUTED MEMORY SYSTEMS

large clusters which enable in-memory processing of the entire datasets, there may be

a chance to scale both the size and performance of these applications.

These applications exploit pointer-based data structures such as graphs, unbalanced

trees or unstructured grids, which exhibit poor spatial and temporal locality, and have

fine-grained, unpredictable data accesses, which lead to ineffective utilization of the

available memory and network bandwidth [169]. These applications are also inherently

parallel, because they can potentially spawn a concurrent activity for each element of

the datasets (e.g., each vertex or each edge in a graph). However, their datasets are

difficult to partition without generating load imbalance across the nodes of a cluster,

because the elements often are highly interconnected (e.g., power law graphs). Fur-

thermore, they often present high synchronization intensity, because multiple threads

often need to access and/or update the same elements.

Modern clusters employ processors with advanced cache architectures and rely on

data locality, regular computations and bulk communication to achieve high perfor-

mance. Implementing irregular applications on these machines requires a significant

and highly application-specific optimization effort. However, as high as the effort might

be, it often results in poor system resource utilization. The distributed memory archi-

tecture of modern clusters further complicates their design, forcing the developers to

search for efficient ways to partition datasets and minimize communication overheads.

Different approaches have been proposed for efficiently executing large scale irregular

applications. They include custom supercomputers, such as the Cray XMT [66], which

implements a multithreaded processor to tolerate memory and network access laten-

cies, a scrambled global address space across nodes and full/empty bits associated with

each memory word for fine-grain synchronization. However, the reduced market for

custom architectures makes them expensive to produce and maintain. On the other

hand, distributed graph libraries based on extensions to the MapReduce paradigm are

now widely used [80, 111]. Nevertheless, they are not general enough for supporting

other irregular applications beside graphs, and do not scale when graphs have complex

structures.

The Partitioned Global Address Space (PGAS) programming model seems to be a

promising alternative to develop applications with a shared memory abstraction using

distributed memory clusters, without neglecting the concept of locality. However, cur-

rent PGAS languages and libraries target regular applications, where communication

across nodes happens using large block transfers. Furthermore, they normally use the

Single Program Multiple Data (SPMD) control paradigm, where the program starts

at the beginning with multiple, identical parallel processes. The SPMD model does

88

not cope well with the dynamic and fine-grained nature of the parallelism in irregular

applications. Parallelism in irregular applications is highly dynamic and unbalanced,

in many cases requiring dynamic spawning of new concurrent activities as new data is

“discovered”.

In this work we introduce GMT (Global Memory and Threading library), a custom

runtime library that enables efficient execution of irregular applications on commod-

ity clusters. GMT integrates the PGAS locality-aware global data model with loop

parallelism, commonly used in single node multithreaded environments. GMT enables

the development of applications with large datasets that span multiple nodes without

requiring domain decomposition or data partitioning. GMT exposes to application

developers a very simple application programming interface (API) that provides opera-

tions such as: allocating and deallocating memory in the global, logically shared address

space; reading and writing data into the global memory; performing synchronization

operations on any global memory location. The parallelism is identified through paral-

lel loop constructs, and multiple nested loops are efficiently executed. These constructs

enable the expression of the large amount of fine grained parallelism typically found in

irregular applications. Lightweight threading is the main mechanism used to tolerate

remote data access latencies, by context switching tasks that are waiting for remote

operations. GMT supports millions of lightweight, user-level tasks. Thousands of these

tasks are multiplexed on each available core of the cluster.

In GMT each CPU core executes a specialized thread. There are three classes

of specialized threads: workers, which execute the tasks composing the application;

helpers, which manage PGAS operations and synchronization; and communication

server threads, which perform the actual remote data transfers. At the core of GMT

resides the key concept of remote request aggregation (also known as network message

coalescing): composing multiple application-level fine-grained requests to improve net-

work bandwidth utilization. GMT features multiple levels of aggregation: requests are

first aggregated in the local core and subsequently aggregated at node level. Finally,

GMT runs on any homogeneous cluster based on x86 processors, which supports MPI.

We compare GMT to other PGAS models (UPC on GASNet), to hand-optimized

MPI code, and to custom machines (Cray XMT) on a set of typical kernels of large scale

irregular applications: Breadth First Search (BFS), Random Graph Walk (RGW) and

Concurrent Hash-Map Access (CHMA). We demonstrate performance orders of magni-

tude higher than other solutions for commodity clusters, and competitive performance

compared to custom systems. We show that GMT enables high scalability in perfor-

mance and dataset size, as additional nodes are added to the system.

89

5. SCALABLE RUNTIMES FOR DISTRIBUTED MEMORY SYSTEMS

The chapter is organized as follows. Section 5.3 discusses relevant related work.

Section 5.4 describes the programming model and GMT’s API. Section 5.5 illustrates

the architecture of the runtime system, detailing the design choices behind the most

relevant software components. Section 5.6 discusses our experimental evaluation. It

initially characterizes the communication performance of the library, and then compares

the performance obtained on the three irregular kernels with the other implementations.

90

5.2 Experimental environment

Tables 6.1,6.2 and 5.3 show the experimental environment used in this chapter. The

tables include the hardware systems, the communication libraries, and the benchmarks

used for the experiments.

CPU AMD Opteron 6272 processors (codename “Interlagos”) at
2.1 Ghz (2 sockets - 8 cores per socket)

Memory 64 Gigabyte of DDR3 RAM
Network Infiniband QDR (40 Gb/s)
System size up to 128 nodes (4096 cores)
Operating System Linux 2.6.32
Communication Library GMT and OpenMPI 1.5.4
Benchmarks GMT microbenchmarks, Breadth First Search, Graph Ran-

dom Walk and Concurrent Hash Map Access

Table 5.1: Experimental environment - PNNL Institutional Computing (PIC) cluster
system

CPU 500 MHz Single 64-bit Cray Threadstorm Processor (128
threads per processor)

Memory 1 TB of total RAM (shared memory)
Network Seastar-2
System size up to 128 processors
Operating System Linux and MTK
Communication Library custom pragmas
Benchmarks Breadth First Search

Table 5.2: Experimental environment - PNNL Cray XMT system

CPU 4 AMD Opteron processors “Magny-Cours” at 2.3 GHz (4
sockets - 12 cores per socket)

Memory 256 GB of DDR3 RAM
Network -
System size single node
Operating System Linux
Communication Library OpenMP
Benchmarks Breadth First Search

Table 5.3: Experimental environment - PNNL AMD Many-core workstation

91

5. SCALABLE RUNTIMES FOR DISTRIBUTED MEMORY SYSTEMS

5.3 Related Work

Efficiently executing large-scale irregular applications has been a significant research

topic for a while. Due to the complexity in managing (and partitioning) the datasets,

irregular applications are better suited to shared memory systems. However, even if

modern shared memory multiprocessors reach memory sizes in the order of terabytes,

the datasets of relevant real world scientific and knowledge discovery problems may

easily surpass these sizes. Executing irregular applications on clustered systems may

allow scaling both the dataset size and the performance. Nevertheless, current high per-

formance clusters are optimized for regular applications, and based around distributed

memory hardware. Several approaches have been proposed to execute irregular appli-

cations on distributed memory systems, ranging from custom hardware systems to full

software infrastructures.

The Tera MTA [150] and its successors, Cray MTA-2 [15], XMT [66] and uRiKa [51]

are the most relevant examples of custom multi-node supercomputers for irregular ap-

plications. They use simple, highly multithreaded (up to 128 hardware threads), cache-

less VLIW processors that support a global address space in hardware, interconnected

with the high-performance Cray Seastar-2 network. The large number of threads al-

lows tolerating both local and remote memory access latencies. The address space

is scrambled across nodes at a fine granularity (64 bytes on the XMT), reducing the

hot-spot occurrence and obtaining more uniform data access times. Every memory

word is associated with full/empty bits that provide fine grain synchronization. Ap-

plications for this category of machines are written in a shared memory paradigm. A

custom C/C++ compiler semi-automatically parallelizes the code exploiting pragmas

and analyzing parallel loop nests, thus enabling the data-parallel mapping of the loops’

iterations to threads.

Another approach to execute irregular applications with large datasets uses modern

shared memory nodes with Solid State Disks (SSDs). SSD enables the management

of datasets larger than the available Random Access Memory, significantly reducing

penalties for swapping. However, this approach only allows to scale the dataset size,

but not the performance. Our approach, instead, aims at scaling both performance and

size as more nodes are added to a clustered system. Furthermore, by supporting latency

tolerance and data aggregation, our runtime could also enable better exploitation of

the mass storage.

There are several types of software approaches that have been proposed to enhance

the performance and ease the development of irregular applications on distributed mem-

92

ory machines. Multipol [45] is a library of distributed data structures for irregular prob-

lems. It includes stateful structures (hash tables, sets, trees), which exploit replication,

partitioning and software-controlled caching for obtaining locality, and scheduling struc-

tures (various kinds of queues) for load balancing. The CHAOS/PARTI [52] runtime

support library is a set of software primitives that couple partitioners to the application

programs, remap data and partition work among processors, and optimize interproces-

sor communications. These libraries are mainly targeted at optimizing the data par-

titioning and at reducing communication overheads across processors/nodes through

caching mechanisms. The work-to-processors mapping is mostly hand-managed. Like

these libraries, our runtime system provides a global address space and optimizes the

communication. However, rather than exploiting caching, GMT improves effective

bandwidth using data aggregation, and also integrates latency tolerance mechanisms

via software multithreading. Finally, exploiting more modern multicore architectures,

our library delegates different operations to different threads.

The Partitioned Global Address Space programming model (PGAS) provides a

more general framework for irregular applications, by realizing an abstracted shared

address space across distributed memory systems, without neglecting data or thread

locality. The PGAS programming model is implemented in languages and libraries

such as: Unified Parallel C (UPC) [60, 49, 167], Co-Array Fortran (CAF) [132, 93],

the Global Arrays (GA) Toolkit [130] and others. These programming models rely on

communication runtime libraries that manage the data exchanges between distributed

address spaces, amongst them GASNet [32] and ARMCI [128]. GASNet serves as a

communication runtime to several PGAS languages including UPC, Titanium [168],

and Co-Array Fortran [93]. X10 [47] is an object oriented parallel language based on

the Asynchronous PGAS (APGAS) model, which extends the PGAS model with the

concepts of places and asynchrony via tasks. Chapel [46] is a parallel programming

language for distributed memory supercomputers based on ideas from HPF, ZPL and

the extensions introduced in the MTA/XMT compiler. Similarly to X10, it supports

asynchronous task execution and reasoning about locality via the locale abstraction.

Our runtime is also based around the Partitioned Global Address Space concept,

however current PGAS models mainly target regular applications, and except for X10

and Chapel, employ SPMD control models. Instead, we specifically target irregular

applications, and a simple task-based, parallel loop control model. Our runtime imple-

ments techniques such as latency tolerance through lightweight multithreading, data

aggregation and (currently intra-node) load balancing, to cope with the behavior of

irregular applications, and hides locality to the application developers. We do not aim

93

5. SCALABLE RUNTIMES FOR DISTRIBUTED MEMORY SYSTEMS

at providing a full parallel language, but rather a set of simple primitives to implement

irregular applications on distributed memory systems by adopting a shared memory

abstraction. Code translators and parallel extensions to other languages such as C

could use GMT as their target runtime layer.

Grappa [126] is a runtime which integrates a PGAS programming model and mul-

tithreading for latency tolerance, targeted at increasing performance of graph crawling

on commodity x86 clusters. Compared to our approach, it employs a substantially dif-

ferent architecture: it is based on GASNet, it has limited support for data aggregation,

and it does not exploit thread specialization.

Active Pebbles [166] includes both a programming model for fine-grained data-driven

computations and an execution model which maps the fine-grained expression to an

efficient implementation. The programming model exploits the concepts of pebbles

and targets. Pebbles are light-weight active messages that operate on targets. Targets

are the binding of a data object with a message handler, through a distribution object,

and form a global address space. The execution model includes message aggregation,

active routing, message reduction and termination detection (because each pebble can

trigger new communications). Our objective is not to define a new programming model,

but rather to provide a simple API to implement irregular applications, supporting loop

parallelism. Our runtime, besides aggregation, also exploits thread specialization.

Charm++ [96] is a parallel programming system based on a programming model

that exploits message-driven objects (chares). When a programmer invokes a method

on an object, the runtime sends a message to the object, which may be local or remote,

starting asynchronous operations. The runtime can adaptively assign chares to pro-

cessors during program execution, and supports latency tolerance by switching from

blocked processes to others. With respect to Charm++, our runtime explicitly tar-

gets irregular applications, and for this reason supports much finer task granularity for

latency tolerance and data aggregation.

ParalleX (PX) [70] is an experimental execution model that exploits a split-phase

multithreaded transaction distributed computing methodology, decoupling computa-

tion and communication. ParalleX supports fine-grain multithreading, global address

space, overlapping of communication and computation and is able to move work to

the data. High Performance PX (HPX) is a runtime system based on the ParalleX

execution model. Although ParalleX also targets irregular workloads, it is significantly

more complex in scope than GMT. As such, it is also more complex to use and the

current HPX runtime is still incomplete, missing elements such as data aggregation,

and developed with an approach focused to provide features, rather than performance,

94

first.

OCR [44] is a framework to explore new methods of high-core-count programming.

The initial focus is on HPC applications and its goal is to improve power efficiency,

programmability, and reliability while maintaining performance. OCR provides event-

driven tasks, events, memory data blocks , machine description facilities, and more.

There are several libraries for graph processing on distributed systems. Among

them, the most widely used are Pregel [115], Giraph [3] and GraphLab [111]. They all

exploit bulk synchronous parallel models (usually map-reduce) through vertex programs

that run on each vertex and interact along edges. Interactions either use messages

(Pregel and Giraph) or shared states (GraphLab). However, they only aim at solving

graph traversal through a specific API. Our library, instead, targets a wider class of

irregular applications.

Although map-reduce frameworks have been applied to several irregular problems [107],

they cannot deal with the more general cases where computation of values depends on

previously computed values [114]. Examples are, for example, queries executed on

semantic graph databases through graph pattern matching operations, which may dy-

namically generate new (parallel) searches or stop the execution depending on the

outcome of part of the query.

5.4 Programming model and API

GMT aims at providing an effective way to program large-scale irregular applications

on commodity clusters. Considering the three dimensions of productivity, performance

and generality, we designed GMT to favor productivity and performance over generality.

We designed a productive programming model for irregular applications, and rely on

the runtime system to enable high performance and scalability.

In our view, the programmer should not think about the details of the underlying

distributed memory machine, but rather in terms of an abstract distributed memory

system. To this aim, we borrow well-know programming model concepts commonly

used in shared memory systems.

Table 5.4 summarizes the primitives currently provided by GMT. In the following

sections we describe the characteristics of GMT programming model and then we show

an example of an irregular kernel implemented with GMT’s API.

95

5. SCALABLE RUNTIMES FOR DISTRIBUTED MEMORY SYSTEMS

Primitive Functionality
gmt array gmt alloc(size, locality) Allocates a gmt array with the specified data

distribution (partitioned, remote, local)
gmt free(gmt array) Deallocates a previously allocated gmt array
gmt putNB(gmt array, offset, *data, size) Puts a local buffer into the indicated gmt array

starting at the specified offset (non blocking)
gmt putValueNB(gmt array, offset, value, size) Puts a value into the gmt array at the specified

offset (non blocking)
gmt getNB(gmt array, offset, *data, size) Gets a portion of a gmt array starting from off-

set into a local buffer (non blocking)
gmt waitCommands() Waits for completion of previously issued non-

blocking operations
gmt put(gmt array, offset, *data, size) Blocking put
gmt putValue(gmt array, offset, value, size) Blocking putValue operation
gmt get(gmt array, offset, *data, size) Blocking get
gmt atomicAdd(gmt array, offset, value, size) Atomically adds a value to the value contained

in a gmt array at the specified offset
gmt atomicCAS(gmt array, offset, oldValue,
newValue, size)

Exchanges a value with the value contained in
a gmt array at the specified offset. Returns the
old value

gmt parFor(tot iters, chunk size, *tasks, *args,
locality)

Spawn tasks that execute the iterations, up to
the total number of iterations, and takes as in-
put the specified argument buffer. Tasks are
spawned on all the allocated nodes of the sys-
tem, locally or remotely, and execute chunk size
iterations per task.

Table 5.4: GMT API summary

96

5.4.1 PGAS communication model

The PGAS communication model simplifies the application developers’ task of par-

titioning data structures across nodes. Data is partitioned between global data and

local data. The programmer allocates the data structures, mostly arrays, in a virtual

global address space, and accesses them through get and put operations (see Table 5.4).

Global data structures are identified by handlers that are passed to the various GMT

primitives. Global data is moved into the local space to be manipulated and then writ-

ten back into the global space. This approach enables the programmer to ignore the

actual memory address and cluster node where the data is allocated.

5.4.2 Loop parallelism program structure model

In GMT, the programmer express parallelism through a parallel loop construct (gmt parFor()

in Table 5.4), a parallel control model typical of shared memory paradigms. In contrast

with the SPMD model, this model allows efficiently creating tasks. In GMT a task is a

user-defined function executed for several iterations using the gmt parFor() construct.

The parallel loop construct enables creation of new tasks from iterations of loops

over independent individual structure elements (e.g., parallel loops over all vertices or

edges of a graph).The application developer can specify how many iterations of the

original loop to assign to each task (chunk size), but the runtime is also capable of dy-

namically detecting if the same processing entity should execute more iterations for load

balancing purposes. In the current implementation, the calling task is suspended until

all the iterations of the parallel loop are completed. Finally, GMT also supports nested

parallel loops, enabling programming patterns such as recursive parallel constructs.

5.4.3 Explicit data and code locality management

The GMT allocation primitive offers the ability to control the data distribution through

distribution strategies. The GMT ALLOC PARTITION strategy allocates data in a

block distributed manner, so that it is uniformly distributed across all the nodes. The

GMT ALLOC LOCAL strategy allocates data only on the memory of the local node.

Finally, the GMT ALLOC REMOTE strategy allocates data on all other nodes except

the one that executes the primitive. GMT does not expose the physical location of data

to the programmer, to avoid explicit management of data pointers and node ranks.

Analogously, GMT task creation policies (GMT SPAWN PARTITION, GMT SPAWN LOCAL

and GMT SPAWN REMOTE) control the locality of the tasks created by a parallel

loop. The programmer only controls the locality policy, while the runtime takes care

97

5. SCALABLE RUNTIMES FOR DISTRIBUTED MEMORY SYSTEMS

of transparently mapping the tasks to the available cluster resources (i.e., processor

cores).

5.4.4 Blocking and Non-blocking semantics

GMT communication primitives feature both blocking and non-blocking semantics.

When using the blocking flavor of the primitives, the task suspends until the operation

effectively completes. When the function of a blocking operation returns, the termina-

tion of the operation is guaranteed, for both remote and local operations. When using

the non-blocking flavor of the primitives, the task continues, and the order of operations

is not guaranteed. When the code calls gmt waitCommands(), the task is suspended,

until the runtime completes all the pending non-blocking operations. For performance

reasons, given the fine-grain nature of communication operations, gmt waitCommands()

does not allow waiting for a specific non-blocking operation.

5.4.5 Explicit synchronization

The programmer explicitly specifies synchronized access to global data structures.

GMT provides atomic operations such as gmt atomicCAS() or gmt atomicAdd() (see

Table 5.4) to enable the implementation of global synchronization constructs.

5.4.6 Example

Figure 5.1 shows the code of a simple sequential Breadth First Search (BFS). The code

shows the allocation of the graph data structure in Compressed Sparse Row (CSR) form

(represented as 1D arrays of offsets and edges), of the current and next iteration queues,

and of the map for visited vertices. The queues use the first location to store the total

number of elements in the queue. The initialization procedure initializes the graph data

structures and puts the root vertex in the exploration queue. The main loop analyses

the vertices in the exploration queue, and goes through all the neighbors of each one. If

the algorithm did not previously visit a neighbor, it is marked as visited and added to

the queue for the next iteration. After visiting all the vertices in the current iteration

queue, the algorithm exchange pointers and swaps the queue of vertices to explore for

the next iteration as the current one. The code also shows the memory deallocation

operations.

Figure 5.2 shows the parallel code of this implementation under GMT. The data

structures are now allocated in the GMT PGAS memory space, using the gmt alloc

construct. All the data structures are allocated with the GMT ALLOC PARTITION

98

1 int main () {
2 // n = number o f t o t a l v e r t i c e s
3 // e = number o f t o t a l edges
4 u i n t 6 4 t ∗ o f f s e t s = mal loc ((n+1)∗ s izeof (u i n t 6 4 t)) ;
5 u i n t 6 4 t ∗ edges = mal loc (e∗ s izeof (u i n t 6 4 t)) ;
6 u i n t 6 4 t ∗q = mal loc ((1+n) ∗ s izeof (u i n t 6 4 t)) ;
7 u i n t 6 4 t ∗qnext = mal loc ((1+n) ∗ s izeof (u i n t 6 4 t)) ;
8 u i n t 8 t ∗map = mal loc (n∗ s izeof (u i n t 8 t)) ;
9

10 i n i t (o f f s e t , edges , q , qnext , map) ;
11 u i n t 6 4 t q s i z e=q [0] ;
12 while (q s i z e !=0) {
13 int vid ;
14 for (i t e r I d = 1 ; i t e r I d<q s i z e ; i t e r I d++) {
15 u i n t 6 4 t v=q [i t e r I d] ;
16 int i ;
17 for (i=o f f s e t s [v] ; i<o f f s e t [v +1] ; i++) {
18 u i n t 6 4 t ne ighbor=edges [i] ;
19 i f (map [ne ighbor]==0) {
20 map [ne ighbor]=1;
21 qnext[++qnext [0]] = neighbor ;
22 }
23 }
24 }
25 u i n t 6 4 t ∗qtmp = q ;
26 q=qnext ;
27 qnext=qtmp ;
28 q s i z e=q [0] ;
29 qnext [0] = 0 ;
30 }
31 f r e e (o f f s e t s) ; f r e e (edges) ; f r e e (q) ; f r e e (q next) ; f r e e (map) ;
32 }

Figure 5.1: Sequential queue-based BFS implementation

99

5. SCALABLE RUNTIMES FOR DISTRIBUTED MEMORY SYSTEMS

1 typedef struct a r g s b f s t a g {
2 gmt data t g o f f s e t ;

3 gmt data t g edges ;

4 gmt data t g map ;

5 gmt data t g q ;

6 gmt data t g qnext ;

7 } a r g s b f s t ;

8
9 int main () {

10 // n = number o f t o t a l v e r t i c e s

11 // e = number o f t o t a l edge s

12 gmt data t g o f f s e t s = gmt a l l oc ((n+1)∗ s izeof (u in t 64 t) ,GMT PARTITION) ;

13 gmt data t g edges = gmt a l l oc (e∗ s izeof (u in t64 t) ,GMT PARTITION) ;

14 gmt data t g q = gmt a l l oc ((1+n)∗ s izeof (u in t 64 t) ,GMT PARTITION) ;

15 gmt data t g qnext = gmt a l l oc ((1+n)∗ s izeof (u in t 64 t) ,GMT PARTITION) ;

16 gmt data t g map = gmt a l l oc (n∗ s izeof (u i n t 8 t) ,GMT PARTITION) ;

17
18 i n i t (g o f f s e t , g edges , g q , g qnext , g map) ;

19 u in t64 t g q s i z e ;

20 gmt get (g q ,0∗ s izeof (u in t64 t) ,& g q s i z e , s izeof (u in t64 t)) ;

21
22 while (g q s i z e !=0) {
23 a r g s b f s t args ;

24 args . g edges = g edges ;

25 args . g map = g map ;

26 args . g o f f s e t = g o f f s e t ;

27 args . g qnext = g qnext ;

28 args . g q = g q ;

29
30 gmt parFor (g q s i z e , 1 , body bfs ,&args , s izeof (a r g s b f s t) ,GMT PARTITION) ;

31
32 gmt data t g qtmp = g q ;

33 g q = g qnext ;

34 g qnext = g qtmp ;

35
36 gmt get (g q ,0∗ s izeof (u in t 64 t) ,& g q s i z e , s izeof (u in t 64 t)) ;

37 gmt putValue (g qnext ,0∗ s izeof (u in t 64 t) ,0 , s izeof (u in t 64 t)) ;

38 }
39
40 gmt f ree (g o f f s e t s) ; gmt f ree (g edges) ; gmt f ree (g q) ;

41 gmt f ree (g qnext) ; gmt f ree (g map) :

42 }
43
44 void body bfs (u in t 64 t i t e r I d , void ∗ args) {
45 a r g s b f s t ∗ l a r g s = (a r g s b f s t ∗) args ;

46 gmt data t g o f f s e t = la rg s−>g o f f e s e t ;

47 gmt data t g edges = la rg s−>g edges ;

48 gmt data t g map = larg s−>g map ;

49 gmt data t g q = larg s−>g q ;

50 gmt data t g qnext = la rg s−>g qnext ;

51
52 u in t64 t v = 0 , o f f s e t s [2] ;

53
54 gmt get (g q , (i t e r I d +1)∗ s izeof (u in t 64 t) ,&v , s izeof (u in t 64 t)) ;

55 gmt get (g o f f s e t , v∗ s izeof (u in t 64 t) ,& o f f s e t s ,2∗ s izeof (u in t 64 t)) ;

56
57 u in t32 t i ;

58 u in t64 t neighbor ;

59 for (i =0; i<o f f s e t s [1]− o f f s e t s [0] ; i++) {
60 gmt get (g edges , (o f f s e t s [0]+ i)∗ s izeof (u in t 64 t) ,&neighbor , s izeof (u in t 64 t)) ;

61 i f (gmt atomicCAS (g map , neighbor∗ s izeof (u i n t 8 t) ,0 ,1 , s izeof (u i n t 8 t))== 0) {
62 u in t64 t Qnext N=gmt atomicAdd (g qnext ,0∗ s izeof (u in t 64 t) ,1 , s izeof (u in t 64 t)) ;

63 gmt putValue (g qnext , (Qnext N+1)∗ s izeof (u in t 64 t) , neighbor , s izeof (u in t 64 t)) ;

64 }
65 }
66 }

Figure 5.2: Parallel BFS implementation with GMT

100

strategy, which distributes them in contiguous blocks of the same size on all the allo-

cated nodes. The graph data structure and the queues are stored in the global memory

space. For this reason, the algorithm needs to retrieve the number of elements in the

queue using a get operation. Control flow is sequential from the main task until the

parallel loop construct is encountered, immediately after its completion control goes

back to the main task again. The main loop, which goes through all the elements in

the current iteration queue, is substituted with a parallel for (gmt parFor) construct.

The parallel for construct launches as many tasks as the number of vertices in the

queue, corresponding to the iterations of the for loop. The gmt parFor construct uses

the PARTITION iteration distribution strategy, which allows spawning tasks on all the

executing nodes. A struct, containing the references to the global data structures is

used to communicate their location to the tasks. The task itself is a function, which

takes as input the structure of parameters, as well as an iteration identifier (iterId). The

iterId allows addressing the global data structures in a data-parallel manner through

offsets and works as a task identifier. Data in the global data structures is accessed

through get and put operations, by using offsets derived from the iterIds. The parallel

implementation uses atomic compare and swap to mark vertices not previously explored

and atomic addition to reserve slots and add them to the queue for the next iteration.

References to the queues allocated in global memory are exchanged like pointers. The

example demonstrates the simplicity in implementing applications with GMT. Porting

from sequential or shared memory implementations is straightforward, and the devel-

oper does not need to worry about data partitioning or domain decomposition.

5.5 Runtime architecture

We built GMT around three main “pillars”: global address space, latency tolerance

through fine-grained software multithreading, and remote data access aggregation (also

known as coalescing). As previously discussed, global address space support relieves ap-

plication developers from having to partition data sets as well as having to orchestrate

communication. Message aggregation (coalescing) maximizes network bandwidth uti-

lization, despite the small data accesses typical of irregular applications. Fine-grained

multithreading enables applications to perform useful work while communication is in

progress, hence hiding latencies for remote data transfers as well as the added latency

for aggregation. We followed a bottom-up approach in the design and implementation

of GMT. We identified the basic building blocks and, for each one, we evaluated the

performance of the alternative design points, selecting the best solutions. The follow-

101

5. SCALABLE RUNTIMES FOR DISTRIBUTED MEMORY SYSTEMS

Figure 5.3: Architecture overview of GMT

ing sections describe the most significant components of the runtime and explain the

rationale behind them.

For exploring the design choices of GMT’s building blocks, and for the overall ex-

perimental evaluation, we employed Pacific Northwest National Laboratory’s Olympus

supercomputer, listed in the TOP500 [1]. Olympus is a cluster of 604 nodes intercon-

nected through a QDR Infiniband switch with 648 ports (theoretical peak of 4GB/s).

Each Olympus’ node features two AMD Opteron 6272 processors (codename “Inter-

lagos”) at 2.1 Ghz and 64 GB of DDR3 memory clocked at 1600 Mhz. Each socket

hosts 8 processor modules (two integer cores, one floating point core per module) on

two different dies, for a total of 32 integer cores per node. A module includes a L1

instruction cache of 64 KB, two L1 data caches of 64 KB, and a 2 MB L2 cache. Each

4-module die hosts a shared L3 cache of 8 MB. Dies and processors communicates

through HyperTransport.

102

5.5.1 Overview

GMT targets commodity clusters, composed of nodes with multicore processors (such

as the latest AMD Opteron or Intel Xeon), interconnected with modern, fast networks

such as Infiniband or the Cray high performance interconnects (Gemini, Aries). Fig-

ure 5.3 illustrates the high level design of GMT. GMT realizes a virtual global address

space across the nodes of the cluster. Each node executes an instance of GMT and the

various instances communicate through commands. Different types of commands exist

for GMT operations such as global data read/write, synchronization and thread man-

agement. Commands may also include data movement (e.g., gmt put() and gmt get()).

An instance of GMT, executing in one cluster node, includes three different types of

specialized threads:

• Worker : executes the application code, partitioned in task, and generates re-

quests, in form of commands, directed towards both the local node and the remote

nodes.

• Helper : manages global address space and synchronization, handles incoming

requests and generates the related outgoing replies, in form of commands.

• Communication server : communication endpoint on the network, manages in-

coming and outgoing communication at the node level. Workers and Helpers

send commands to the Communication Server, which forwards them to the re-

mote nodes.

A GMT node includes multiple workers and helpers, but only a single communica-

tion server. We implemented the specialized threads as POSIX threads. Each thread

is pinned on a core.

5.5.2 Communication

A fundamental design point for GMT is the choice for the underlying communica-

tion library. GMT does not use communication libraries that already provides PGAS

primitives, such as GASNet [32], because their implicit communication management

mechanisms do not provide message aggregation. Hence, we decided to implement our

own PGAS primitives, designing them with message aggregation from the ground-up.

For this reason, the only requirement is a message passing interface, optimized for high

103

5. SCALABLE RUNTIMES FOR DISTRIBUTED MEMORY SYSTEMS

32 proc. 1 proc. 1 proc. 1 proc.
message size no threads 1 thread 2 threads 4 threads

16B 9.63 4.22 2.73 0.77
32B 19.54 9.63 5.70 1.58
64B 39.05 19.54 10.99 3.12
128B 72.26 39.05 19.73 6.22

16KB 2806.94 1924.98 646.52 269.63
32KB 2806.95 2250.15 892.80 469.40
64KB 2815.01 2559.50 794.60 566.09
128KB 2835.98 2709.07 1042.01 564.87

Table 5.5: Transfer rates in MB/s between two nodes with varying thread and process
number.

bandwidth. We selected MPI, because it is the de-facto standard for message passing

interfaces, and supports the broadest variety of architectures.

We then determined the number of Communication Servers required to maximize

node-to-node bandwidth with MPI. We analyzed several combinations of MPI processes

and threads per node to determine the highest bandwidth. Table 5.5 presents a com-

parison of the transfer rates between two Olympus’ nodes, when transferring a large

number of messages from one node to the other and waiting the acknowledge from the

receiver for every 4 messages.

We used a slightly modified version of OSU Micro-Benchmarks 3.9 [6] (in order to

support multithreading) to compare MPI (OpenMPI 1.5.4) with multiple processes (32

on the same node) and MPI (MVAPICH 1.9b) with one, two and four threads.1 MPI

with multiple threads per process exhibits low transfer-rates.

The best performance is obtained using large messages with 32 processes per node.

Nonetheless, because of the complexity and the high memory foot-print of managing

different address spaces we consider the latter an unfeasible solution for GMT. As

shown in Table 5.5 transfer rates are particularly sensitive to the message size. Even

if we are showing results for Olympus, we observed similar MPI behaviour with other

processor architectures and network interconnects. These results drove our decision to

design GMT with a single communication server, and to rely on message aggregation

to maximize the network bandwidth.

In our design, each worker (or helper) aggregates commands in large messages

(buffers) and forwards them to a single communication server that in turn performs

1On Olympus we found multi-threading to have better performance with MVAPICH than with
OpenMPI.

104

the MPI call. We consider this design effective if it maximizes the network bandwidth

between two nodes. The optimal size of the aggregation buffers is a tradeoff between

the bandwidth and the memory foot-print of using large buffers. We found a buffer

size of 64KB to be a good compromise in our experiments with Olympus.

Figure 5.4: Bandwidth between two nodes using a single Communication Server and a
single worker with varying message size.

Figure 5.4 shows the bandwidth reached between two nodes when using one worker

and one communication server while varying the message size. The maximum band-

width with this configuration is reached with 64KB messages, and is equal to 2630

MB/s slightly below the measured MPI network bandwidth of 2815.01 MB/s with the

same message size. In the next section we describe how we implemented aggregation

to coalesce commands into large buffers.

5.5.3 Aggregation

Data aggregation allows efficient exploitation of the available network bandwidth in

presence of the fine grained data accesses typical of irregular applications. GMT ac-

cumulates commands directed towards the same destination nodes and sends them in

bulk. These commands are then unpacked and executed at the destination node.

To increase the opportunity of aggregating network transfers, GMT uses aggregation

queues to collect request or reply commands with the same destination from all the

workers and helpers of a node. To this aim, GMT employs high-throughput, non-

blocking concurrent aggregation queues. Nevertheless, the cost of concurrent accesses

is too high if performed for every generated command. Hence, GMT implements a pre-

105

5. SCALABLE RUNTIMES FOR DISTRIBUTED MEMORY SYSTEMS

aggregation phase. This phase initially collects commands in command blocks, local to

each worker or helper, before inserting them into the shared aggregation queues.

Figure 5.5: Aggregation mechanism

Figure 5.5 describes the aggregation mechanism in GMT. When a worker or a

helper thread starts generating commands, it requests one of the pre-allocated com-

mand blocks from the command block pool (1). Command blocks are re-usable arrays

containing several commands. They are pre-allocated and recycled for performance

reasons. While a worker executes the application code, it generates commands of var-

ious types that are collected into the local command block (2). Helpers also generate

commands when creating replies for incoming operations. In the example, a worker

generates commands A,C,D and a helper generates commands K,L,N and O. Com-

mands can be any type of remote request (get, put, atomic etc.). Waiting until the

command block is full may increase too much the latency, for this reason workers or

helpers push command blocks into the aggregation queue (3) when one of the following

conditions is verified: i) the command block is full; ii) the command block has been

waiting longer than a predetermined time interval (clock cycles). A command block is

considered full when all the available entries are occupied with commands, or when the

size in bytes of the commands, with the attached data, reaches the maximum size of

the aggregation buffer to be sent.

Aggregation queues are shared among all the workers and helpers in the node, and

there is one of them for each destination node. The aggregation consists in copying

106

commands into an aggregation buffer that is sent over the network to the destination

node. When a worker (or a helper) finds that the aggregation queue for a destination

node has enough command blocks to fill an aggregation buffer (in terms of number

of commands or in equivalent byte size), the actual aggregation starts. Aggregation

can also start because the aggregation queue has been waiting longer than a predeter-

mined time interval. When aggregation starts, the worker (or helper) pops command

blocks from the aggregation queue to fill the aggregation buffer. GMT uses a fixed

pool of aggregation buffers that are recycled to save memory space and eliminate al-

location overhead. Multiple commands are copied from their command block into the

aggregation buffer at once (5). For commands that require data movement (such as

gmt put() or the reply to a gmt get), the data is also copied from the memory into

the aggregation buffer. In the example in Figure 5.5, the data for the commands A,

C, D is represented as dA, dC and dD respectively. After the copy, commands blocks

are returned to the command block pool (7). The aggregation algorithm continues

to push command blocks until an aggregation buffer is full. When this happens, the

worker (or helper) pushes the aggregation buffer into a channel queue (8). Channel

queues are high-throughput single-producer single-consumer queues that enable the

communication between a worker (or helper) and the communication server.

The communication server continuously polls the channel queues, checking if new

filled aggregation buffers are available. If so, the communication server pops a filled

aggregation buffer and performs a non-blocking MPI send. It then returns the ag-

gregation buffer into the pool of available aggregation buffers (not represented in the

figure).

It is worth mentioning that GMT enables further tuning of design parameters such

as local command block, queue and pool sizes, or time intervals, to optimize aggregation

for different processor and network interconnect architectures.

5.5.4 Multithreading

Concurrency, through fine-grained software multithreading, allows tolerating the added

latency for aggregating communication operations. We use the term task to identify

a function pointer and an hardware execution context (stack, heap, hardware registers

etc.) inside GMT, while we use the term specialized thread (or, simply, thread) to

identify either a worker, a helper or the communication server. Each worker executes a

set of GMT tasks. The worker switches among tasks’ contexts every time it generates a

blocking command that requires a remote memory operation. The task that generated

107

5. SCALABLE RUNTIMES FOR DISTRIBUTED MEMORY SYSTEMS

ctxt switches 1 task 8 tasks 64 tasks 1024 tasks

1 1816.00 1500.25 1536.81 1799.10
100 497.31 496.71 554.25 590.91
1000 517.14 494.56 545.00 579.13

Table 5.6: Latency (clock cycles) of a context switch when increasing the number of
tasks and the number of context switches per task.

the command executes again only when the command itself completes (i.e., it gets

a reply back from the remote node). In case of non-blocking commands, the task

continues executing until it encounters a gmt wait commands() primitive.

GMT implements custom context switching primitives that avoids some of the

lengthy operations (e.g., saving and restoring signal mask) performed by the stan-

dard libc context switching routines [78]. To evaluate the maximum network latency

that is potentially tolerable, we measured the cost of context switching among two

or more tasks. We performed an experiment that executes an increasing number of

context switches among an increasing number of tasks. Each of the T tasks performs

N context switches in a for loop. We run experiments where N is 1, 100 or 1000

context switches and T is 1, 8 64 or 1024 tasks. The latency of a single context switch

is measured as the latency to perform N context switches in one of the tasks divided

by N .

Table 5.6 shows the latency, in clock cycles, to execute a context switch with this

experiment. When increasing the total number of context switches executed from 1 to

1000, we observe the effect of the caches that avoids retrieving the task context from

memory. We also observe that the latency only slightly increases when increasing the

number of tasks.

The optimal number of concurrent tasks per worker actually depends on the archi-

tecture (cache size) and on the workload (amount of work per task).

In GMT, the programmer typically generate tasks (except the task zero) by calling

the gmt parFor() construct. Figure 5.6 schematically shows how GMT executes a task.

A node receives a message containing a spawn command (1) that a worker in a remote

node generated when encountering a gmt parFor() construct. The Communication

Server passes the buffer containing the command to an helper, which parses it and

executes the command (2). The helper then creates an iteration block (itb). The itb is

a data structure that contains the function to execute, the arguments of the function

itself, and the number of tasks that executes the same function. Each task represents

a single iteration of the original parFor. This way of representing a set of tasks avoids

108

Figure 5.6: Fine grain multithreading in GMT.

the cost of creating a large number of function arguments and sending them over the

network. In the following step, the helper pushes the iteration block is into the itb queue

(3). Then, an idle worker pops the iteration block from the itb queue (5), decreases the

counter of the iterations of t and pushes it back into the itb queue (6). The worker then

creates t tasks (6) and pushes them into its private task queue (7). Then an idle worker

pops a task from its task queue (8). If the worker can execute the task (i.e., all remote

requests are completed), it restores the task’s context and executes it (9) otherwise

it pushes the task back into the task queue. The task contains user-level application

code, which eventually calls one of the GMT primitives. In case the GMT primitive is

a blocking remote request (e.g., gmt get()), or an explicit wait (gmt waitCommands()),

and they are not completed, the task enters into a waiting state (10) and is reinserted

into the task queue for future execution (11).

5.6 Experimental Evaluation

As introduced in section 5.5, we evaluated GMT on PNNL’s Olympus supercomputer.

GMT can adapt to other systems by tuning configuration parameters defined at in-

stallation time. For this work, we empirically optimized the parameters GMT for the

109

5. SCALABLE RUNTIMES FOR DISTRIBUTED MEMORY SYSTEMS

Olympus system. Table 5.7 presents the configuration used in our benchmarks.

Parameter Configuration

NUM WORKERS 15
NUM HELPERS 15
NUM BUF PER CHANNEL 64
SIZE BUFFERS 65536
MAX NUM TASKS PER WORKER 1024

Table 5.7: GMT configuration parameters for Olympus.

Follows a brief explanation of the selection procedure for each parameter:

• NUM WORKERS determines the number of worker threads per node . Be-

cause we assume that each thread is mapped to a core, and one core is taken

by the communication server, they depend on the number of cores per node

(NUM WORKERS = (CORES − 1)/2).

• NUM HELPERS determines the number of helper threads. Same as NUM WORKERS.

• NUM BUF PER CHANNEL determines how many buffers are allocated to each

communication channel. The number of buffers per channel allows the local

worker (or helper) to continue sending network buffers even when the remote

node is not consuming them. A safe value for this parameter is equal to the total

number of nodes, but in case of network congestion a larger value can be used.

• SIZE BUFFERS determines the size of the aggregation buffer. This depends

on the network characteristics. Using Olympus we set this parameter to 64KB

because there is the smaller message size that maximizes the throughput (see

Figure 5.4).

• MAX NUM TASKS PER WORKER determines the maximum number of tasks

concurrently executed by each worker. The optimal number of concurrent tasks

should be large enough to overlap the latency of the network communication, but

not too large to incur in too many cache misses during the context switch. We

found the value of 1024 for our architecture trough empirical experimentation

with GMT micro-benchmarks (see Table 5.6).

Initially, we analyze the peak communication performance of the full GMT infras-

tructure, focusing on the combined effects of aggregation, for optimizing bandwidth

utilization, and of fine-grained software multithreading, for latency tolerance. We then

110

discuss the performance of three irregular application kernels running on GMT: Breadth

First Search (BFS), Graph Random Walk (GRW) and Concurrent Hash Map (CHM).

We compare the GMT implementations of these kernels to corresponding implementa-

tions using MPI, UPC, the Cray XMT and OpenMP. We execute the GMT and UPC

versions on the same cluster, while for the OpenMP version we use a 48-core system

with 4 AMD Opteron 6176SE processors (“Magny-Cours” at 2.3 GHz) and 256 GB of

DDR3 RAM at 1333 MHz. We compare these substantially different platforms by em-

ploying throughput metrics. We maintain consistent input sizes for each comparison.

We select the experiments to describe specific aspects and behaviors of GMT, rather

than providing an exhaustive comparison of all the implementations and the platforms.

5.6.1 Micro-benchmarks

In this section we characterize the peak communication performance of GMT. The aim

of this characterization is to quantify the effects of the aggregation when performing a

large number of basic GMT remote operations. When GMT executes a series of fine-

grain put operations, we expect to observe a considerable performance improvement in

bandwidth utilization with respect to sending MPI messages of the same size, because

of aggregation. Furthermore, increasing the number of concurrent tasks increases the

likelihood of generating communication operations. Thus, we expect that aggregate

bandwidth increases with the number of concurrent tasks in the node.

Figure 5.7 shows how transfer rates between two nodes behave when increasing the

number of tasks per node in GMT. Every task executes 4096 blocking put operations.

All the experiments use 15 workers, but we increase the number of tasks for the node.

The graph plots message sizes from 8B to 128 bytes. We verify that increasing the

concurrency in the node increases the transfer rates, because there is a higher number of

messages that GMT can aggregate. With 1024 tasks, puts of 8 bytes reach a bandwidth

of 8.55 MB/s. With 15360 tasks, the bandwidth increases to 72.48 MB/s, a factor

of 8.4. Larger messages provide higher bandwidth, because they reduce the network

overhead. With messages of 128 bytes and 15360 tasks, GMT reaches almost 1 GB/s,

while the best MPI implementation reaches 72.26 MB/s (using 32 processes). At these

message sizes, with blocking operations, the task switching time also becomes a factor.

In fact, a node should be able to generate as many network references as possible to

saturate the effective network bandwidth for small messages. When concurrent tasks

emit communication operations in parallel, they increase the injection rate. However,

if the task switching time is too high, there is an added latency between an injected

111

5. SCALABLE RUNTIMES FOR DISTRIBUTED MEMORY SYSTEMS

Figure 5.7: Transfer rates of put operations between 2 nodes while increasing concur-
rency. Multiple lines show the transfer rate with message sizes from 8 bytes to 128
bytes.

network operation and another which does not allow maximizing network utilization,

even considering the overheads for packet headers.

With more destination nodes, the probability of aggregating enough data to fill a

buffer for a specific remote node decreases. To verify the behavior of aggregation when

communicating with a higher number of nodes, we executed the same experiment on

128 nodes.

Figure 5.8 shows the results. If we compare it to the previous figure, we observe

a slight degradation in performance. However, aggregation is still very effective with

respect to MPI send operations of the same size. For instance, GMT with messages of

16 bytes over 128 nodes reaches a bandwidth of 139.78 MB/s, versus the 9.63 MB/s of

the MPI send operation (using 32 processes).

5.6.2 BFS

BFS is one of the most common graph search kernels, and a building block for many

graph analysis applications. As a matter of fact, the BFS is part of the Graph500 [81]

benchmark suite and a de-facto benchmark for irregular applications. All the implemen-

tations exploit parallelism on the vertex queue while progressing through the various

112

Figure 5.8: Transfer rates of put operations among 128 nodes (one to all) while increas-
ing concurrency. This is the transfer rate of the outgoing messages from the source node.
Multiple lines show the transfer rate with message sizes from 8 bytes to 128 bytes.

levels of exploration. The code for GMT, Cray XMT and OpenMP is essentially identi-

cal, except that GMT primitives are substituted with Cray XMT proprietary primitives

and OpenMP compiler pragmas. The code for UPC instead, uses several optimizations

such as caching the exploration map, aggregating communication at the application

code level and using asynchronous gets for the aggregated transfers. Table 5.8 shows

the number of lines of code for GMT, UPC and MPI implementations of the BFS.

implementation Lines of code

GMT 88
UPC 715
MPI 103

Table 5.8: Lines of code - Breadth First Search implementations

Figure 5.9 shows the weak scaling of the GMT implementation, measured in million

of traversed edges per second. The implementation is the one presented in Figure 5.2,

which performs single-word memory accesses on the global graph structure. For this

experiment we used randomly generated graphs, increasing the size of the graph of 1

million vertices for each node added. Each vertex has at most 4000 edges connecting

113

5. SCALABLE RUNTIMES FOR DISTRIBUTED MEMORY SYSTEMS

Figure 5.9: Million traversed edges per second for the GMT implementation of the BFS
(weak scaling)

to random vertices in the graph. Therefore, the largest graph on the 128 nodes config-

uration has 128 million vertices and 258 billion edges, for a total memory footprint of

≈ 2 TB.

Figure 5.10: Million traversed edges per second for the BFS implementation on GMT,
UPC, Cray XMT, OpenMP (strong scaling). The horizontal scale for GMT, XMT and
UPC represents cluster-nodes while for OpenMP represents cores

Figure 5.10 shows the strong scaling of the GMT implementation, comparing it to

the equivalent queue-based implementations for UPC, the Cray XMT and OpenMP.

114

For these experiments, we used a random graph of 10 million vertices and 2.5 billion

edges, due to the maximum memory capacities of the platforms (256 GB on the AMD

shared memory system and 1 TB on the Cray XMT). An interesting consideration is the

amount of parallelism necessary to fully utilize the various platforms. While OpenMP

needs a thread per core and the Cray XMT needs 128 threads per processor, GMT

requires 1024 user tasks per worker. With 128 nodes and 15 workers per node, GMT

needs 2 million tasks to fully utilize the system. Indeed, GMT’s performance starts

to decrease above 64 nodes, because the available parallelism in the application is not

enough. As the graph in Figure 5.10 shows, the BFS implementation for GMT out-

performs the other implementations. Even for a relatively small graph, GMT running

on a cluster outperforms OpenMP running on a single, large shared memory node.

This result is of particular interest, although not obvious, because each node of the

cluster running GMT is a SMP node. In fact, the performance of irregular algorithms

is mainly limited by the bandwidth for accessing data in unpredictable locations. For

a SMP workstation, the bottleneck is thus the memory bandwidth. For a distributed

memory system, instead, the main bottleneck is the network interconnection, which

usually is significantly slower than the memory subsystems, especially with fine-grain

data transfers. Thus, GMT effectively optimizes the network bandwidth utilization,

meeting its objective of increasing not only the size of the tractable problems, but also

the processing performance as more nodes are added. Finally, we underline that the

programming effort for GMT is essentially identical to OpenMP and the Cray XMT,

while the UPC version was significantly more challenging to implement and optimize.

5.6.3 Graph Random Walk

Graph Random Walk (GRW) randomly traverses a graph with the purpose of collecting

vertex/edge information or of understanding graph properties. Many application areas,

such as artificial intelligence, brain research and game theory, exploit the GRW kernel

in many algorithms. In a GRW, each task starts from a source node, chooses randomly

a neighbor to visit, and continues the walk until it has visited L connected nodes. Our

code, given a connected graph of V vertices and E edges, assigns V/2 vertices as source

nodes to V/2 parallel tasks. Each task performs a walk of length L. Implementing

the GRW in GMT is fairly simple: (i) gmt parfor() spawns V/2 tasks; (ii) each task

performs a random walk of length L, accessing the graph with GMT primitives. We

compare the GMT implementation to a state-of-the-art MPI implementation employed

in fast matching algorithms [40]. This approach, rather than making a process retrieve

115

5. SCALABLE RUNTIMES FOR DISTRIBUTED MEMORY SYSTEMS

non-local data, delegates the completion of a walk to the process that locally owns the

data. The algorithm employs P processes, divided as one master process and P − 1

slave processes. Given a graph with V vertices and E edges, the algorithm performs the

following steps: (1) the master process initializes and distributes V/P vertices to all P

processes (including itself); (2) each process starts V/(P ∗ 2) walks (V/2 walks in total

for the whole system) of length L from each one of its assigned vertices; (3) if a vertex

v is not owned by the current process, it delegates the process owning v to continue the

walk; (4) when a process completes all its local walks, it communicates to the master

the number of completed walks (i.e., walks that traversed L nodes) and waits for walks

to continue from other processes (in case there are new walks, it restarts from step

3); (5) when all the V/2 walks are completed, the master sends the quit command to

the slave processes; Furthermore, the MPI algorithm exploits message aggregation to

reduce fine-grain communication. Whenever a process requires the delegation of walks

to other processes, it buffers all the requests for each process and sends them out at

once only after completing the local walks (i.e., end of step 4). To empirically quantify

the complexity of the two implementations, we measured the source lines of code for

the GMT and MPI implementations. Table 5.9 shows the number of lines of code of

the MPI and GMT implementations of the graph random walks.

implementation Lines of code

GMT 164
MPI 503

Table 5.9: Lines of code - Graph Random Walks implementations

Figure 5.11 shows (in logarithmic scale) the performance of the GRW, measured

in million of traversed edges per second (MTEPS). The experiments use a randomly

generated graph of one million vertices per-node (weak scaling) with an average of 4000

edges per vertex. The figure shows that GMT is one or more orders of magnitude faster

than the MPI implementation.

5.6.4 Concurrent Hash Map Access

Concurrent Hash Map Access (CHMA) is a synthetic benchmark where multiple con-

current activities access a hash map to check the presence of a hashed element (e.g.,

a string or a signature). If the element is found, it is modified according to a pre-

determined rule and stored back into the hash map. The behavior of this kernel is

typical of streaming applications such as virus scanning, spam filters, natural language

116

Figure 5.11: Millions of steps per second for the random walk implementation on GMT
and MPI (weak scaling)

processing, and of information retrieval applications that need to store, filter and ma-

nipulate large amounts of streaming data. In our experiments, we used a pool of 100

million strings with at most 20 characters each to populate a hash map of 10 million

entries. After the initialization, W concurrent tasks perform the following operations

for ‘L’ steps: (1) start from a given input string; (2) find if it is present in the hash

map; (3) if it is present, perform a string reverse operation; (4) hash the new string

and store it back in the hash map; (3) if it is not present, get a new input string. We

compare both an MPI and a GMT implementation. In the MPI implementation, each

MPI rank is responsible for a portion of the hash map. Only the process that owns the

related portion of the hash map checks and inserts the strings. However, if the current

process does not own the hashed string, it sends the string to its owner. Small MPI

messages are very frequent, because a process cannot proceed with a new string until it

has finished manipulating the previous one. It is possible to implement partial caching

with remote bulk updates, but it requires employing expensive checks and invalidation

mechanisms. On the other hand, the GMT implementation is straight forward: the

gmt parfor() construct spawns W tasks, each task independently performs get/put and

atomic compare and swap operations on the hash map for L steps. As for the other

two kernels, the MPI solution for CHMA was significantly more complex and difficult

to implement than the GMT code. Table 5.10 shows the number of lines of code of the

MPI and GMT implementations of the concurrent hash map access.

Figures 5.12 and 5.13 respectively show the throughput, in million of strings hashed

117

5. SCALABLE RUNTIMES FOR DISTRIBUTED MEMORY SYSTEMS

implementation Lines of code

GMT 177
MPI 698

Table 5.10: Lines of code - Concurrent Hash Map Access implementations

Figure 5.12: Number of strings hashed and inserted per second (Millions of accesses/s)
for the GMT implementation of the Concurrent Hash Map Access benchmark. In the
legend, W refers to the number of tasks and L to the number of accesses performed by
each task.

118

Figure 5.13: Number of strings hashed and inserted per second (Millions of accesses/s)
for the MPI implementation of the Concurrent Hash Map Access benchmark. In the
legend, W refers to the number of processes and L to the number of accesses performed
by each process.

and inserted per second (Millions of accesses/s) of the GMT and the MPI implemen-

tations, while increasing the number of cluster nodes and varying the number of tasks

(or processes) that concurrently accesses the hash map (W) and the number of steps

(L) performed by each tasks (or process). The performance between the GMT and the

MPI implementations differs by two or more orders of magnitude, because of the fine

grained communication involved in the kernel.

5.7 Conclusions

In this chapter we presented GMT, a Global Memory and Threading library that

enables efficient execution of irregular applications on commodity clusters. GMT in-

tegrates a PGAS data substrate with simple loop parallelism. It provides a simple

interface for designing applications with large, irregular data structures, without re-

quiring data partitioning. It allows expressing and extracting the large amounts of

fine grained, dynamic parallelism present in irregular applications through simple par-

allel loop constructs. GMT’s architecture employs specialized threads to realize its

functionality: workers, for executing the applications, helpers, to support data commu-

nication, and a communication server, to perform data transfers. GMT is built around

the concepts of lightweight user level multithreading and data aggregation to reduce

119

5. SCALABLE RUNTIMES FOR DISTRIBUTED MEMORY SYSTEMS

the impact of fine grained, unpredictable data accesses typical of irregular applications.

GMT tolerates network communication latencies by switching thousands of tasks on

each available worker thread. GMT implements multi-level aggregation to maximize

network bandwidth utilization with small messages. This is in contrast with current

PGAS infrastructures, which exploit a SPMD control model and are optimized for reg-

ular data access and block transfers. GMT is easily portable across different systems:

the only pre-requisites are MPI support and, currently, x86 processors for the task

switching routines. GMT aims at providing a solution to scale irregular applications in

performance and size by adding more nodes to a cluster. We characterized the commu-

nication performance of GMT, and compared it to UPC and MPI hand-optimized code,

as well as custom machines designed for irregular applications, on a set of typical large

scale, irregular application kernels. We demonstrated speed ups of orders of magnitude

compared to other solutions for commodity clusters, and performance comparable to

custom machines.

120

Part IV

User-level Scalability Exploiting

Hardware Features

121

Chapter 6

Exploiting Hardware Thread

Priorities on Multi-threaded

Architectures

The previous part of the thesis described the design and implementation of a specialized

runtime system for large-scale high performance applications. This part of the thesis

focuses on user-level hardware features that can be exploited into a runtime system to

improve applications performance. This chapter describes the performance benefits of

exploiting SMT hardware-thread priorities of IBM POWER5 and POWER6 processors.

This work is a study to evaluate hardware optimizations that could be integrated into

an adaptive runtime system for a specialized class of applications.

6.1 Summary

The limitations in exploiting instruction-level parallelism (ILP) has motivated thread-

level parallelism (TLP) as a common strategy to improve processor performance. There

are several TLP paradigms which offer different benefits as they exploit TLP in different

ways. For example, Simultaneous multi-threading (SMT) reduces fragmentation in on-

chip resources. In addition to SMT, Chip-Multiprocessing (CMP) is also effective in

exploiting TLP with limited transistor and power budget. This motivates processors

vendors to combine both TLP paradigms in their processors. For instance Intel i7 as

well as IBM POWER5 and POWER6 combine SMT and CMP.

Because SMT processors share most of the core resources among threads, some of

them implement mechanisms to better partition the shared resources. For instance, the

123

6. EXPLOITING HARDWARE THREAD PRIORITIES ON
MULTI-THREADED ARCHITECTURES

2-way SMT processors POWER5 and POWER6 improve the usage of resources across

threads with mechanisms in hardware [97][105] that suspend a thread from consuming

more resources when it stalls for a long-latency operation. One of the interesting new

features which enables better resource balancing is that POWER5 and POWER6 allow

software to control the instruction decode rate of each thread in a core by eight priority

levels, from 0 to 7. The higher the priority difference between the two threads in each

core, the higher the difference of decode cycles, and hence, the difference of hardware

resources received by the two threads.1

The Operating System (OS) can provide a user interface to change thread priori-

ties such that software can control the speed at which each hardware thread run with

respect to the other hardware thread in a core. The default priority configuration

(i.e., both hardware threads having priority 4) is designed to guarantee fair hardware

resource allocation between hardware threads. From a software point of view, the

main motivation to override the default configuration is to address instances where

non uniform hardware resource allocation is desirable. Several examples can be enu-

merated such as virtualization in SMT, OS idle thread, thread waiting on a spin-lock,

latency-sensitive threads, software determined non-uniform balance and power manage-

ment [57][97][149]. In some cases, software-controlled thread priorities can also improve

instruction throughput or parallel applications execution time [33][34], by optimizing

hardware resource allocation. Although software-controlled thread priorities have a

considerable potential, lack of quantitative studies limits their use in real world appli-

cations. In this work, we provide a quantitative study of the POWER5 and POWER6

prioritization mechanism. We show that the effect of thread prioritization depends on

the characteristics of the two threads running simultaneously in a core. We also show

that thread priorities have different effects on applications in POWER5 and POWER6.

We analyze the major processor characteristics that lead to this different behavior. In

particular, although both processors are dual-core and each core is two-way SMT, their

internal architectures are different. While POWER5 has out-of-order cores with many

hardware shared resources, POWER6 follows a high-frequency design optimized for

performance, leading to a mostly in-order design in which fewer resources are shared

between threads. Finally, we show the benefits of software-controlled thread priori-

ties in real-world applications including parallel applications and multi-programmed

environments.

1Note that software-controlled hardware priorities are independent of the operating systems concept
of process or task prioritization. In fact, task priorities are used to prioritize scheduling of running
tasks among CPU’s and, therefore, are a pure software concept.

124

We define SMT thread malleability (or simply malleability) as the ratio between

the performance of a thread with a given priority configuration and its performance

with default priority configuration. To characterize POWER5 and POWER6 thread

prioritization mechanism we developed a set of micro-benchmarks that stress specific

hardware resources such as data cache, issue queues, and memory bus. Moreover, we

measure the malleability of real workloads, represented by some of the SPEC CPU2006

benchmarks [86]. Also, we develop a Linux kernel patch that provides an interface to

the user to set all possible priorities available in kernel mode. Without a kernel patch,

only three of the eight priorities are available to the user.

6.2 Experimental environment

Tables 6.1 and 6.2 show the experimental environment used in this chapter. The tables

include the hardware systems, the communication libraries, and the benchmarks used

for the experiments.

CPU IBM POWER5 processor at 1.65 Ghz (1 socket - 2 cores
per socket - 2 SMT threads per core)

Memory 8 Gigabyte of DDR RAM
Network Ethernet (not used)
System size single node
Operating System Linux
Communication Library MPI
Benchmarks SPEC CPU2006, NAS Parallel Benchmarks

Table 6.1: Experimental environment - IBM Open Power 710 system

CPU IBM POWER6 processor at 4.0 Ghz (2 sockets - 2 cores
per socket - 2 SMT threads per core - no L3 cache)

Memory 16 Gigabyte of DDR2 RAM
Network Ethernet (not used)
System size single node
Operating System Linux 2.6.23
Communication Library MPI
Benchmarks SPEC CPU2006, NAS Parallel Benchmarks

Table 6.2: Experimental environment - IBM JS22 system

125

6. EXPLOITING HARDWARE THREAD PRIORITIES ON
MULTI-THREADED ARCHITECTURES

6.3 Related Work

Some previous studies focus on ensuring QoS in SMT architectures. Cazorla et al.

introduce a mechanism to force predictable performance in SMT architectures [42].

They manage to run time-critical jobs at a given percentage of their maximum IPC.

To attain this goal, they need to control all shared resources of the SMT architecture.

Regarding CMP architectures, Rafique et al. propose to manage shared caches with

a hardware cache quota enforcement mechanism and an interface between the archi-

tecture and the OS to let the latter decide quotas[139]. Nesbit et al. introduce Virtual

Private Caches (VPC) [127], which consists of an arbiter to control cache bandwidth

and a capacity manager to control cache storage. They show how the arbiter allows

meeting QoS performance objectives or fairness. A similar framework is presented by

Iyer et al. [92], where resource management policies are guided by thread priorities.

Individual applications can specify their own QoS target (e.g. IPC, miss rate, cache

space) and the hardware dynamically adjusts cache partition sizes to meet their QoS

targets. An extension of this work with an admission mechanism to accept jobs is

presented in [82].

Also, previous works show that SMT performance heavily depends on the nature of

the concurrently running applications [57][151]. Tuck et al. analyze the performance

of a real SMT processor [157], concluding that SMT architectures provide an average

speedup over single-thread architectures of about 20% and that, even if the processor

is designed to isolate threads, performance is still affected by resource conflicts.

Other works propose the use of hardware thread priorities to control thread execu-

tion in SMT processors. Many of these proposals implement fetch policies to maximize

throughput and fairness by reducing the priority, stalling, or flushing threads that ex-

perience long latency [43, 158]. Boneti et al. analyze the effect of hardware priorities on

POWER5 [33], and use hardware priorities to balance resources in SMT processors [35]

and to implement dynamic scheduling for HPC [34].

In this context, the concept of Fair CPU utilization accounting for CMP and SMT

processors, introduced by Luque et al. [112][113] and by Eyerman and Eeckhout [65],

can be used to improve the efficiency of thread prioritization mechanisms.

Let us assume a workload composed by several tasks (Ta, Tb, ... , Tn) running in

an n-core multicore or n-way SMT processor. The mechanisms proposed [65][112][113]

provide an estimation of the execution time that each of these tasks would have if it runs

in isolation (Ti isolation). By measuring the difference in execution time between the

execution time in CMP/SMT and the execution time in isolation (Ti cmp/Ti isolation

126

or Ti smt/Ti isolation), we can determine the slowdown each task is suffering in CM-

P/SMT. The slowdown (or the relative speed) could be used to guide the SMT prioriti-

zation mechanism (or any other prioritization mechanism for multicores such as the one

described by Moreto et al. [120]) to ensure Quality of Service, that is, to ensure that

tasks do not suffer a performance degradation greater than a pre-established threshold.

To our knowledge, this part of a first extensive study that quantify the effect of

hardware-thread priorities on two SMT processors with substantially different microar-

chitecture, such as POWER5 and POWER6.

6.4 POWER5 and POWER6 Microarchitecture

This section provides a brief description of POWER5 and POWER6 microarchitecture

and of the features that are relevant to SMT and thread priorities. A detailed descrip-

tion of the processors can be found in the works of Sinharoy et al. [105] and Le et

al. [149].

6.4.1 POWER5 and POWER6 Core Microarchitecture

Figure 6.1 shows a high-level diagram of POWER5 and POWER6 processors. Both

processors have two cores and each core supports 2-thread SMT. In both processors,

each core has its own L1 data and instruction cache. In POWER5, L2 cache is shared

among cores whereas in POWER6 each core has its own L2 cache. In both processors,

the off-chip L3 cache is shared. POWER6 microprocessor has a ultra-high frequency

core and represents a significant change from POWER5 design. Register renaming

and massive out-of-order execution as implemented in POWER5 are not employed in

POWER6. However, POWER6 implements limited out-of-order execution for floating

point instructions [105].

6.4.2 Simultaneous Multi-Threading

POWER5 has separate instruction buffers for each thread. Based on thread prioritiza-

tion, up to five instructions are selected from one of the instruction buffers and a group

is formed. Instructions in a group are all from the same thread. POWER6 core im-

plements an independent dispatch pipe with a dedicated instruction buffer and decode

logic for each thread. At the dispatch stage, each group of up to five instructions per

thread is formed independently. Later, these groups are merged into a dispatch group

of up to seven instructions to be sent to the execution units. Several other features

127

6. EXPLOITING HARDWARE THREAD PRIORITIES ON
MULTI-THREADED ARCHITECTURES

Figure 6.1: POWER5 and POWER6 architecture

have been implemented in POWER6 to improve SMT performance. For instance, the

L1 I-cache and D-cache size and associativity have been increased from the POWER5

design. POWER6 core has dedicated completion tables (GCT) per thread to allow

more outstanding instructions [105].

Both processors deploy two levels of resource control among threads through dy-

namic resource balancing in hardware and through thread prioritization in software.

POWER5 and POWER6 dynamic hardware resource-balancing mechanisms monitor

processor resources to determine whether one thread is potentially blocking the other

thread execution. Under that condition, the progress of the offending thread is throt-

tled back allowing the sibling thread to progress (automatic throttling mechanism).

For example, POWER5 considers that there is an unbalanced use of resources when a

thread reaches a threshold of L2 cache misses or TLB misses, or when a thread uses

too many GCT (reorder buffer) entries [149].

128

6.4.3 Software-controlled Hardware Thread Priorities

In POWER5 and POWER6, software-controlled priorities range from 0 to 7, where 0

means the thread is switched off and 7 means the thread is running in Single Thread

(ST) mode (i.e., the other thread is off).

Using priority 1 for both threads has the effect of executing the threads in low-power

mode. In addition, the execution of one thread with priority 1 while the other has a

priority > 1 causes the former to use only hardware resources leftover by the latter.

The enforcement of software-controlled priorities is carried in the decode stage. In

general, a higher priority translates into a higher number of decode cycles. In POWER5,

assuming a primary thread and a secondary thread1 with priorities P and Q (where

P > 1 and Q > 1) , decode cycles are allocated as follows:

1. compute R:

R = 2|P−Q|+1

2. decode cycle rates:

rhigh = (R− 1)/R

rlow = 1/R

Where rhigh is the decode cycle rate of the thread with higher priority and rlow is

the decode cycle rate of the thread with lower priority. The thread with higher priority

receives R − 1 every R decode cycles, while the thread with lower priority receives 1

every R decode cycles. For instance, assuming that the primary thread has priority

6 and the secondary thread has priority 2, R would be 32, so the core decodes 31

times from the primary thread (rhigh = 31/32) and once from the secondary thread

(rlow = 1/32). Hence, the performance of the process running as primary thread

increases to the detriment of the one running as secondary thread.

In the special case when threads have the same priority, R would be 2, and each

thread alternately receives one slot (rhigh = rlow = 1/2).

The previous formula is available for POWER5, while for POWER6 we assume that

1 Primary thread and secondary thread are just naming conventions because the two hardware-
threads are perfectly symmetrical.

129

6. EXPLOITING HARDWARE THREAD PRIORITIES ON
MULTI-THREADED ARCHITECTURES

the decode cycle rate is a monotonic function of the priority difference:

rhigh = fhigh(|P −Q|)

rlow = flow(|P −Q|)

Table 6.3 shows priority values and levels, required privilege levels, and instructions

used to set priorities. Supervisor or OS can set six of the eight priorities ranging from

1 to 6, while user software can only set priority 2, 3, and 4. The hypervisor can use

the whole range of priorities.

Table 6.3: Thread priorities in POWER5 and POWER6

priority priority level privilege level instruction

0 Thread off Hypervisor -
1 Very low Supervisor or 31,31,31

2 Low User/Supervisor or 1,1,1

3 Medium-Low User/Supervisor or 6,6,6

4 Medium User/Supervisor or 2,2,2

5 Medium-high Supervisor or 5,5,5

6 High Supervisor or 3,3,3

7 Very high Hypervisor or 7,7,7

Priorities can be set by issuing a pseudo or instruction in the form of or X,X,X,

where X is a specific register number [73][91]. This operation only changes the thread

priority and performs no other operation. In case it is not supported (i.e., running

on previous POWER processors), or in case of insufficient privileges, the instruction is

simply treated as a nop.

6.5 Experimental Setup

In order to explore the capabilities of the software-controlled priority mechanism in the

POWER5 and POWER6 processors, we perform a detailed set of experiments. Our

approach consists in measuring the performance of micro-benchmarks running in SMT

mode as the priority of each thread is increased or reduced.

The performance of a process in an SMT processor are conditioned by the programs

running simultaneously on the other hardware-thread, and by their phase. Evaluating

all the possible programs and all their phase combinations is infeasible. Moreover, the

evaluation of a real system, with several layers of running software, OS interferences

and all the asynchronous services, becomes even more difficult.

130

For this reason, we use a set of micro-benchmarks that stress particular processor

characteristics. While this scenario is not typical with real applications, it is a system-

atical way to understand the hardware priority mechanism. This methodology in fact,

provides a uniform characterization based on specific program characteristics that can

be mapped into real applications.

To verify the effects of hardware priorities on real applications, we measure the

malleability of a subset of SPEC CPU2006 benchmarks with different priority configu-

ration. To ensure that all the benchmarks are fairly represented in the final results, we

use the FAME (FAirly MEasuring Multithreaded Architectures) methodology [162][163]

which requires running in SMT mode the same benchmark pair for multiple times until

both benchmarks are equally represented in the total execution time.

Running all pair-wise combinations of SPEC CPU2006 benchmarks and all priority

combinations with FAME methodology would take too much time to complete.1 In

order to reduce experimentation time, we choose a subset of SPEC CPU2006 as fol-

lows: 1) we choose benchmarks such that the spectrum of performance, memory and

execution unit characteristics are fairly represented in the subset, 2) following Snavely

et al. [151] recommendation on symbiotic OS scheduling, we pair high-IPC (CPU in-

tensive) benchmarks with low-IPC (memory-bound) benchmarks, in order to provide

efficient utilization of the SMT core.

High-IPC benchmarks are bzip, calculix, cactusADM and h264ref. Low-IPC bench-

marks are mcf, omnetpp and milc . The resulting combination represents mixes of

high-IPC and low-IPC benchmarks as well as integer and floating point benchmarks.

6.5.1 Experimental environment

The results presented are obtained by compiling the benchmarks with gcc version 4.1.2

20070115 (SUSE Linux), Linux kernel version 2.6.23, libpfm-3.8, and mpich2-1.0.8. We

executed the experiments on an Open Power 710 (Op710) and on a JS22 IBM server,

with the same executable. It is worth noting that the Op710 POWER5 processor is

equipped with a third-level (L3) cache while the JS22 POWER6 processor we use does

not have the third-level cache.

1Running all pair-wise combinations of the 26 SPEC CPU2006 benchmarks with all combinations
of the six priorities amounts to 19,500 possibilities; With an estimated average running time of two-
hour-per-possibility using FAME methodology, a non-subset experiment would take a humbling four
and a half years to complete on a single machine.

131

6. EXPLOITING HARDWARE THREAD PRIORITIES ON
MULTI-THREADED ARCHITECTURES

6.5.2 The Linux kernel modification

Some of the priority levels are not available in user mode (Section 6.4.3). In fact, only

three levels out of eight can be used by user mode applications, the others are only

available to the OS or the hypervisor. Modern Linux kernels running on POWER5 and

POWER6 processors exploit software-controlled priorities in few cases such as reducing

the priority of a process when it is not performing useful computation. Basically, the

kernel uses thread priorities in three cases:

• The processor is spinning for a lock in kernel mode. In this case the priority of

the spinning process is reduced.

• A CPU is waiting for operations to complete. For example, when the kernel

requests a specific CPU to perform an operation by means of a smp call function()

and it can not proceed until the operation completes. Under this condition, the

priority of the thread is reduced.

• The kernel is running the idle process because there is no other process ready to

run. In this case the kernel reduces the priority of the idle thread and eventually

puts the core in Single Thread (ST) mode.

In all these cases the kernel reduces the priority of a hardware-thread and restores it

to medium (4) as soon as there is some work to perform. Furthermore, since the kernel

does not keep track of the actual priority, to ensure responsiveness it also resets the

thread priority to medium every time it enters a kernel service routine (e.g., interrupt,

exception handler or system call). This is a conservative choice induced by the fact

that it is not clear how and when to prioritize a hardware-thread and what the effect

of that prioritization is.

In order to explore the entire priority range, we develop a kernel patch that provides

an interface to the user to set all the possible priorities available in kernel mode:

• We make priority 0 to 7 available to the user. As mentioned in Section 6.4.3, only

three priorities (4, 3, 2) are directly available to the user. Without this kernel

patch, any attempt to use other priorities result in a nop operation. Priority 0

and 7 (thread off and single thread mode, respectively) are available to the user

through a hypervisor call.

• We avoid the use of software-controlled priorities inside the kernel, otherwise

experiments would be effected by unpredictable priority changes.

132

• Finally, we provide an interface through the /proc pseudo file system which allows

user applications to change their priority.

6.5.3 Running the experiments

To execute the experiments we use the FAME (FAirly MEasuring Multithreaded Ar-

chitectures) methodology [163][162]. In [163] the authors state that the average accu-

mulated IPC of a program is representative if it is similar to the IPC of that program

when it reaches a steady state. The problem is that a benchmark has to run for a long

time to reach this steady state. FAME determines how many times each benchmark

in a multi-threaded workload has to be executed so that the difference between the

obtained average IPC and the steady state IPC is below a particular threshold. This

threshold is called MAIV (Maximum Allowable IPC Variation). The execution of the

entire workload stops when all benchmarks have executed as many times as needed to

accomplish a given MAIV value. For the experimental setup and micro-benchmarks

used in this work, in order to accomplish a MAIV of 1%, each micro-benchmark must

be repeated at least 10 times. In our experiments we run two micro-benchmarks, hence

each experiment ends when both threads re-execute at least 10 times. Note that, at

this point the fastest thread might already execute more than 10 times.

6.5.4 Micro-benchmarks description

In order to build a basic knowledge of the effect of software-controlled priorities, we

used METbench (Minimum Execution Time Benchmark [34]), a micro-benchmark suite

designed to stress specific processor characteristics.

Micro benchmark Class

cpu int, cpu int add Integer
cpu int mul, lng chain

cpu fp asm Floating Point

ldint l1, ldint l2 ldint mem Memory

Table 6.4: Micro-benchmarks in METbench

We classify micro-benchmarks into three classes: Integer, Floating Point and Mem-

ory as shown in Table 6.4. In the Integer class there are cpu int, which contains

mixed integer instructions (one multiplication every two additions), cpu int add, which

contains integer additions, cpu int mul which contains integer multiplications, and

lng chain, which is composed of mixed integer instructions with high inter-instruction

133

6. EXPLOITING HARDWARE THREAD PRIORITIES ON
MULTI-THREADED ARCHITECTURES

dependency. The latter is designed to limit ILP exploitation for out-of-order proces-

sors (i.e. POWER5). In the Floating Point class, cpu fp asm is a benchmark that

has a high percentage of mixed type floating point instructions. In the memory class,

there are three micro-benchmarks: ldint l1, ldint l2 and ldint mem. Micro-benchmarks

ldint l1 and ldint l2 are designed to always hit in the L1 and L2 cache, respectively,

while ldint mem is designed to always miss in cache.

All the micro-benchmarks share the same structure: they implement a for loop

with enough iterations to run for at least one second. Hence, the micro-benchmarks

differs mainly in the loop body, which shows a different instruction-mix according to

the desired behavior.

We validated the behavior of each micro-benchmark through analyzing performance

counters.

6.5.4.1 Integer micro-benchmarks

The four integer micro-benchmarks share a common loop structure. Listing 6.1 shows

the main loop code for cpu int. The code for cpu int add is the same except that in

the loop there are only additions (for instance instead of c=c*c*it we used c=c+c+it).

Analogously the loop for cpu int mul contains only multiplications. Note the macro

LOOP UNROL 100, used to repeat the same code 100 times, reducing control-flow

instructions in the loop.

1
2 for (i t =0; i t<m i c r o i t ; i t ++) {
3 LOOP UNROL 100(
4 a=a+a+i t ; b=b+b+i t ; c=c∗c∗ i t ;
5 d=d+d+i t ; e=e+e+i t ; f=f ∗ f ∗ i t ;
6 g=g+g+i t ; h=h+h+i t ; i=i ∗ i ∗ i t ;)
7 }

Listing 6.1: cpu int main loop

6.5.4.2 Floating point micro-benchmarks

In the Floating Point class, we implement the cpu fp asm micro-benchmark in POWER

assembly in order to have a better control on its behavior, and hence maximize the use

of the floating point unit.

134

6.5.4.3 Memory micro-benchmarks

The three memory micro-benchmarks share a common loop structure. In the loop,

loads are executed using a pointer chasing technique. In this technique an array is

initialized with pointers, so that each element contains the address of the next element

to access. In order to execute several times, the last element of the array contains the

address of the element at the beginning.

1
2 for (i=m i c r o i t ; i >0; i=i −1) {
3 LOOP UNROL 100(p = ∗p ;)
4 }

Listing 6.2: ldint l1 main loop

Listing 6.2 shows the main loop code for ldint l1. The code for ldint l2 and

ldint mem is exactly the same except that the array size varies in order to obtain

the desired use of the cache hierarchy. Specifically, ldint l1 uses approximately 25%

of the first level cache and makes all loads hit in L1. The micro-benchmark ldint l2

fills the first level cache, uses approximately 25% of the second level cache and makes

all loads hit in L2. Finally, ldint mem fills all the cache levels and makes all loads to

access main memory.

6.6 Analysis of results

In this section we analyze the performance variation obtained with the software-controlled

priority mechanism. First we analyze the performance of micro-benchmarks running

in SMT mode with default priorities (priorities 4/4), then we analyze the malleability

for threads running with higher and lower priorities. Subsequently, we show the effect

of using the maximum priority difference in SMT (priorities 6 and 1). Finally, we show

the malleability of benchmarks from SPEC CPU2006 suite.

6.6.1 Default Priorities

When running with default priorities (priorities 4/4) core resources are equally shared

between threads. The default priority configuration is used to optimize throughput

when knowledge about workload characteristics is not available. Threads running in

SMT mode have lower performance compared to running in ST mode. Table 6.5 shows

the average instructions per cycle (IPC) decrement of each micro-benchmark running

135

6. EXPLOITING HARDWARE THREAD PRIORITIES ON
MULTI-THREADED ARCHITECTURES

in SMT mode with default priorities against all other micro-benchmarks, with respect

to running in ST mode.

Table 6.5: Average IPC decrement of each micro-benchmark running in SMT mode against
all the others, compared to ST mode.

micro-bench. POWER5 POWER6

cpu int 39.4% 28.0%
cpu int add 69.1% 23.8%
cpu int mul 18.7% 37.6%
lng chain 23.8% 20.2%
cpu fp asm 27.1% 0.8%
ldint l1 11.9% 9.3%
ldint l2 14.2% 8.1%
ldint mem 2.1% 0.01%

For example, the first row shows the average IPC decrement of cpu int running

in pairs {[cpu int, cpu int], [cpu int, cpu fp asm], [cpu int, cpu int add], ... [cpu int,

ldint mem]} with respect to the IPC when running in isolation. We observe that:

• CPU intensive micro-benchmarks (cpu fp asm, cpu int, cpu int add and lng chain)

show more IPC decrement when they run in POWER5 than when they run in

POWER6.

• Micro-benchmarks with instruction dependencies or memory bounded microbench-

marks (ldint l1, ldint l2, ldint mem) show less significant IPC decrement and are

quite similar in POWER5 and in POWER6.

Based on the results, our main conclusion are:

• CPU intensive micro-benchmarks that exploit out-of-order execution are more

affected by SMT execution in POWER5 than in POWER6.

• micro-benchmarks with instruction dependencies and memory-bounded micro-

benchmarks cannot fully exploit execution resources when in ST mode due to

their intrinsic dependencies. Therefore, the two threads of the latter types can

overlap and efficiently use the execution units in SMT mode.

6.6.2 Malleability

Let IPCST be the IPC that a given thread has when it runs in ST mode (single-thread

mode [149]). In ST mode all core resources are allocated to the only running thread.

136

Let IPC
P/Q
SMT be the IPC of the same thread when it runs in SMT mode with another

thread, the first thread having priority P and the second thread having priority Q. For

instance, IPC
4/4
SMT is the IPC of that thread when it runs with another thread, both

having priority 4 (default priority configuration).

We define SMT thread malleability (or simply malleability) as the ratio between the

IPC in SMT mode with a given priority configuration and the IPC in SMT mode with

default priority configuration:

IPC
P/Q
SMT

IPC
4/4
SMT

The highest IPC achievable by a thread is still IPCST , that is, for any priority config-

uration P/Q we have that: IPC
P/Q
SMT ≤ IPCST . Hence, the malleability for a thread is

upper-bounded by the IPC in ST mode normalized to the default priority configuration:

IPC
P/Q
SMT

IPC
4/4
SMT

≤ IPCST

IPC
4/4
SMT

We consider that the maximum malleability is obtained using priorities 6/2, as we

exclude priority 1 because it is designed for low-power executions. Figure 6.2 shows the

correlation between the maximum malleability and the IPC in ST mode normalized to

the IPC in SMT mode. Namely, x-axis reports
IPC

6/2
SMT

IPC
4/4
SMT

, y-axis reports IPCST

IPC
4/4
SMT

, and

each dot in the graph represents the actual pair of micro-benchmarks.

As Figure 6.2 shows, there is a clear positive correlation between these two variables

(coefficient estimates: b = 1.19 and R2 = 0.97). In fact, as explained before, the

maximum performance that a task can obtain with priorities is upper-bounded by the

ST performance.

6.6.3 Higher Priority

In this section, we analyze the malleability of a thread when it runs in SMT mode

with higher priority than the other thread. We use priorities in the range 6-2 because

priority 1 is used for low-power-mode, and it will be examined in detail in section 6.6.5.

Graphs in Figure 6.3 show a higher malleability on POWER5 compared to POWER6,

when running CPU intensive micro-benchmarks. In POWER5 the thread speedup with

higher priorities is up to 6 times, while in POWER6 it is less than 2 times. We can

derive the following conclusions:

137

6. EXPLOITING HARDWARE THREAD PRIORITIES ON
MULTI-THREADED ARCHITECTURES

Figure 6.2: Correlation between the IPC in ST mode normalized to the IPC in SMT mode on

y-axis (IPCST

IPC
4/4
SMT

), and the malleability with priorities 6/2 on x-axis (
IPC

6/2
SMT

IPC
4/4
SMT

).

138

(a) cpu int (b) cpu int add

(c) cpu int mul (d) lng chain

(e) cpu fp asm (f) ldint l1

(g) ldint l2 (h) ldint mem

Figure 6.3: Malleability of the primary thread when its priority is higher than the

priority of the secondary thread. Y-axis reports
IPC

P/Q
SMT

IPC
4/4
SMT

and X-axis is the hardware

priority for the primary and secondary threads (primary-priority/secondary-priority).
Please note the different scale for cpu int add and ldint l2

139

6. EXPLOITING HARDWARE THREAD PRIORITIES ON
MULTI-THREADED ARCHITECTURES

(a) cpu int (b) cpu int add

(c) cpu int mul (d) lng chain

(e) cpu fp asm (f) ldint l1

(g) ldint l2 (h) ldint mem

Figure 6.4: Malleability of the primary thread when its priority is lower than the

priority of the secondary thread. Y-axis reports
IPC

P/Q
SMT

IPC
4/4
SMT

and X-axis is the hardware

priority for the primary and secondary threads (primary-priority/secondary-priority).

140

• The main reason for the lower impact of priorities on POWER6 is that the per-

formance in SMT with priorities 4/4 are close to the upper-bound.

• In POWER5 we observe a high speedup in cpu int (Figure 6.3a) and in cpu int add

(Figure 6.3b) when their priorities are increased and they run with cpu int mul.

The reason is that cpu int mul executes integer multiplications that take several

cycles. Because the rate at which cpu int mul instructions complete is lower than

the rate at which they are fetched into the processor, it clogs the issue queue.

As a result, cpu int mul stalls the execution of CPU intensive micro-benchmarks

like cpu int or cpu int add. When we increase the priority of CPU intensive

micro-benchmarks, their decode rate is higher, and hence they are less affected

by cpu int mul.

• In POWER5 we can observe a high speedup when CPU intensive micro-benchmarks

run with ldint l2 and when we increase CPU intensive micro-benchmarks prior-

ity (Figures 6.3a and 6.3b). The reason is that, with priorities 4/4, ldint l2

fills the load/store queue with high-latency loads, and prevents any other in-

struction from being dispatched. Consequently, using higher priorities for the

CPU intensive micro-benchmarks when they run with ldint l2 results into a high

speedup. However, the same behavior cannot be observed when CPU inten-

sive micro-benchmarks run with ldint l1, because load operations in ldint l1 have

a lower latency and hence do not clog the load/store queue. This behavior is

not observed when running with ldint mem because of the automatic throttling

mechanism [97] trigged by in-flight L2 misses. The same phenomenon happens

when ldint l1 runs together with ldint l2 (Figure 6.3f). Finally, in POWER6 this

phenomenon cannot be observed, because it is an in-order design. In fact, in-

structions in POWER6 can execute in the fixed point units even if the load/store

queue is clogged. As a result, in POWER6 ldint l2 does not affect CPU intensive

micro-benchmarks as it happens in POWER5.

• For the POWER6 we observe that the maximum speedup with priorities is ob-

tained when executing two copies of micro-benchmarks using mainly a single

functional unit (cpu int add in Figure 6.3b and cpu int mul in Figure 6.3c).

For cpu fp asm, ldint l1, ldint l2, ldint mem in Figure 6.3 we observe that:

• In POWER6 for most of the micro-benchmarks the speedup is zero, because they

reach the upper-bound performance (performance in ST mode) with priorities

4/4 (Figures 6.3e, 6.3g, and 6.3h).

141

6. EXPLOITING HARDWARE THREAD PRIORITIES ON
MULTI-THREADED ARCHITECTURES

• In POWER6 there is a speedup as we increase the priority of ldint l1 when it

runs with cpu int mul (Figure 6.3f), because ldint l1 uses the fixed point unit to

compute the effective address [105]. Since cpu int mul uses the fixed point unit

with long latency operations, it competes with ldint l1 for this resource. As we

increase the priority of ldint l1 it gets access to this resource more frequently,

hence improving its performance. This is not observed in POWER5 (Figure 6.3f)

because the effective address is computed through a dedicated adder inside the

load/store unit.

• In POWER5, as we increase the priority of ldint l1 when it runs with ldint l2

we observe a high speedup (Figure 6.3f). This is because ldint l2 completely fills

the L1 cache evicting the data of ldint l1. By increasing the priority of ldint l1

we increase its cache access frequency, hence reducing the effect of ldint l2. This

speedup cannot be seen when ldint l1 runs with ldint mem. The main reason is

that ldint mem has lower cache access frequency per cycle, as every load has to

go to main memory. As a result, the cache lines belonging to ldint l1 are more

frequently accessed and thus are not evicted by the least-recently-used (LRU)

replacement policy.

• In POWER6 there is a small ldint l2 speedup because in most of the cases with

priorities 4/4 we already reach the upper bound (ST mode).

• In POWER5 the speedup of ldint l2 running with ldint mem is due to the fact

that the ldint mem fills completely the L2 cache, thus increasing the number of

L2 misses of the former and hence reducing its performance.

• In POWER5 the speedup of ldint l2 running with itself is lower than when run-

ning with ldint mem. Since ldint l2 uses only 25% of the L2 cache, two running

ldint l2 can fit in the L2 cache. On the other hand, because ldint mem completely

fills the L2 cache, it considerably affects ldint l2 ’s performance.

• In POWER5 and POWER6, ldint mem (Figure 6.3h) is almost insensitive to a

higher priority. This confirms the observation that micro-benchmarks with very

low IPC cannot be improved using priorities, since with priorities 4/4 the upper

bound (IPC in single-thread mode) is already reached.

142

6.6.4 Lower Priority

In this section, we present the malleability of a thread running with lower priority than

the other thread. We consider the range of priorities 6-2, while priority 1, because of its

special behavior (low-power mode), will be examined in section 6.6.5. Figure 6.4 shows

that lower priorities significantly affects the performance of all micro-benchmarks.

Micro-benchmarks cpu int, cpu int add, cpu int mul, cpu fp asm, lng chain and

ldint l1 in Figure 6.4 show that thread slowdowns are in the same order of magni-

tude in POWER5 and POWER6.

Micro-benchmarks ldint l2 and ldint mem in Figure 6.4 show that in POWER6

lower priorities have a smaller impact than in POWER5. Note also the higher impact

observed in POWER5 with priorities 3/6 and 2/6 (priority difference ≥ 3) when running

with a memory bounded micro-benchmark. Furthermore, this behavior is not reported

in POWER6.

Based on the results we can conclude the following:

• Low-IPC micro-benchmarks are less affected by changing thread priority. For

instance ldint l2 is less affected than ldint l1 and ldint mem is less affected than

ldint l2.

• The use of lower priorities with memory-bound benchmarks leads to a smaller

impact in POWER6 with respect to POWER5, this confirms the lower thread

resource sharing in POWER6 microarchitecture compared to POWER5.

• In POWER5, a micro-benchmark running against ldint l2 or ldint mem with

priorities 3/6 and 2/6 (priority difference ≥ 3) shows a significative slowdown,

while this cannot be observed in POWER6.

6.6.5 Maximum priority difference

The maximum priority difference in SMT is obtained when one thread has priority 6

and the other priority 1. The use of priorities 6/1 has an interesting effect: the thread

with priority 6 shows a performance close to its single-thread mode. This result means

that the priority mechanism can be used to provide an SMT configuration where we

can run a background thread with minimum effect on the foreground thread.

Graphs in Figure 6.5 show the execution time (y-axis) of the primary thread when

running with different secondary threads (x-axis) using priorities 6/1, for POWER5

and POWER6. Values are normalized to the primary thread ST execution time. In

143

6. EXPLOITING HARDWARE THREAD PRIORITIES ON
MULTI-THREADED ARCHITECTURES

(a) POWER5 (b) POWER6

Figure 6.5: Execution time of the primary thread running with priority 6 against a
secondary thread with priority 1, normalized to the execution time in single-thread
mode. X-axis is the actual secondary thread micro-benchmark.

POWER6 the performance impact on the primary thread is almost zero except when

ldint l2 or ldint mem runs with another memory-intensive micro-benchmark, mostly

due to interactions at cache and memory levels. This shows that a thread can run in

background without significantly affecting the primary thread.

Table 6.6 shows the performance of the secondary thread when running with priority

1 as percentage of its single-thread performance. On POWER5, ldint l2 and ldint mem

achieve 19.09% and 86.57% of their single-thread performance while on POWER6,

ldint l2 and ldint mem achieve respectively 3.64% and 53.79% of their single-thread

performance. For both machines, while CPU intensive micro-benchmarks report low

performance with priority 1, ldint mem maintains significant performance even when

running with priority 1.

6.6.6 Malleability of SPEC CPU2006

The two primary uses of software-controlled priorities are: providing imbalanced thread

execution, as needed by the applications, and improving instruction throughput. In an

imbalanced thread execution, software can control core resource allocation to improve

a given target metric. For instance, enabling faster execution of higher priority jobs or

implementing load balancing [34]. To achieve higher throughput, software can inten-

tionally imbalance SMT resource sharing to improve the performance of the primary

thread, without significantly reducing the performance of the secondary thread. For in-

144

Table 6.6: Performance of the background thread with respect to single-thread mode

micro-bench. POWER5 POWER6

cpu int 6.35% 1.63%
cpu int add 5.92% 0.89%
cpu int mul 2.59% 0.56%
lng chain 9.71% 1.02%
cpu fp asm 7.09% 1.32%
ldint l1 9.58% 1.07%
ldint l2 19.09% 3.64%
ldint mem 86.57% 53.79%

(a) POWER5

(b) POWER6

Figure 6.6: Malleability of selected SPEC CPU2006 using higher priorities for the

primary thread.Y-axis reports
IPC

P/Q
SMT

IPC
4/4
SMT

and x-axis is the actual pair of benchmarks

running in SMT mode.
.

145

6. EXPLOITING HARDWARE THREAD PRIORITIES ON
MULTI-THREADED ARCHITECTURES

stance, when a CPU intensive thread is running together with a memory-bound thread,

throughput can be improved by providing more resources to the CPU intensive thread.

In order to reduce hardware resource contention, high-IPC loads can be paired with

low-IPC loads on the same core. As shown in previous sections, the effect of hardware

priorities on memory-bound micro-benchmarks is smaller than the effect on CPU inten-

sive micro-benchmarks. In this experiment, we run pairs in which the primary thread

is high-IPC and the secondary thread is low-IPC. Based on the benchmark profile, we

used bzip, cactusADM, calculix and h264ref as high-IPC benchmarks and mcf, milc

and omnetpp as low-IPC benchmarks.

In this experiments we focus on the effects of higher priorities on the primary thread,

assuming that the performance requirements of the secondary threads are subordinate

to the performance requirements of the primary thread.

Figure 6.6 shows the speedup of the primary thread as we increase its priority with

respect to the secondary thread. Using priorities 6/2 (primary thread priority is 6 and

secondary thread priority is 2), the primary thread in POWER5 obtains a speedup up

to 1.70 times the performance with default priorities, while in POWER6 up to 1.18

times the performance with default priorities.

Overall, hardware-thread priorities can be used when threads in a core present dif-

ferent hardware resource use. In particular, when the primary thread is CPU intensive

and the secondary thread is memory-bound. In this situation, we increase the primary

thread malleability without affecting the overall throughput.

6.7 Use cases

In this section we present two use cases of hardware thread priorities. Our objective is

to show that, even if not for all kind of workloads, this feature can be effectively used

to improve load balancing (use case A) and to implement transparent threads (use

case B). The applications we use are taken from two different domains: a benchmark

from the NAS Parallel Benchmarks [18] and six benchmarks from the CPU SPEC 2006

suite [86].

6.7.1 Use case A - Load Balancing

This use case shows how to use hardware thread priorities to reduce parallel applica-

tions’ execution time.

Block Tri-diagonal (also called BT) is a benchmark from the NAS Parallel Bench-

marks. BT is designed to solve discretized versions of the Navier-Stokes equation in

146

three dimensions and uses a structured discretization mesh. BT Multi-Zone (BT-MZ)

[94] is a version of the same benchmark that uses several meshes (also called zones)

because often a single mesh is not enough to describe realistic complex domain. When

BT-MZ runs both on POWER5 and POWER6 its MPI (Message Passing Interface)

processes are imbalanced: during each iteration MPI processes have to wait for the

last process to complete thus spending a significative fraction of time in waiting state,

without performing any useful work.

To balance the application, tasks having high waiting time can be paired with tasks

having low waiting time (bottlenecks), then scheduled on the same SMT core. Then,

hardware thread priorities of tasks with low waiting time can be increased, to reduce

the overall waiting time.

To balance BT-MZ, we run processes 1 and 4 on the first core and processes 2 and

3 on the second core. We found that the best combination of priorities is 4/5 for the

first core and 4/6 for the second core. This configuration allows BT-MZ to be better

balanced on both architectures.

Table 6.7: BT-MZ running on POWER5 with original and balanced configuration.

original configuration

process core priority running waiting others

1 1 4 24.61% 74.31% 1.08%

2 1 4 31.54% 67.23% 1.22%

3 2 4 58.54% 40.81% 0.64%

4 2 4 99.71% 0.13% 0.16%

execution. time: 66.80 sec

balanced configuration

process core priority running waiting others

1 1 4 78.63% 20.91% 0.45%

2 2 4 65.88% 33.46% 0.65%

3 2 5 63.71% 35.72% 0.57%

4 1 6 99.78% 0.08% 0.15%

execution time: 59.97 sec

Tables 6.7 and 6.8 show the breakdown of MPI states when BT-MZ runs with the

original configuration and with the balanced configuration, on POWER5 and POWER6

respectively. The column running refers to the percentage of time the process is effec-

tively running on the core, waiting refers to the percentage of time spent waiting for a

synchronization and others refers to other MPI states with negligible contribution to

147

6. EXPLOITING HARDWARE THREAD PRIORITIES ON
MULTI-THREADED ARCHITECTURES

Table 6.8: BT-MZ running on POWER6 with original and balanced configuration.

original configuration

process core priority running waiting others

1 1 4 15.10% 83.84% 1.06%

2 1 4 25.25% 73.52% 1.23%

3 2 4 69.98% 29.44% 0.57%

4 2 4 99.56% 0.15% 0.29%

execution time: 40.05 sec

balanced configuration

process core priority running waiting others

1 1 4 69.73% 29.51% 0.76%

2 2 4 63.24% 35.83% 0.94%

3 2 5 63.64% 35.69% 0.68%

4 1 6 99.57% 0.14% 0.29%

execution time: 34.32 sec

the total time. The percentage of time a process is in waiting state decreases when

BT-MZ is executed with the balanced configuration. Consequently, the execution time

is reduced by 11.4% on POWER5 and by 16% on POWER6.

6.7.2 Use case B - Transparent threads

Dorai and Yeung [59] propose transparent threads: an SMT resource allocation policy

that allows the background thread to use resources not required by the foreground

thread. The objective is to obtain minimum performance degradation of the foreground

thread compared to when it runs in single-thread mode.

In POWER5 and POWER6 this can be achieved using priority 6 for the foreground

thread and 1 for the background thread. Potential uses are for instance in garbage

collection, prefetching, virus scanning, file indexing, defragmentation or other low-

priority kernel tasks.

The characterization with micro-benchmarks described in section 6.6.5 shows that

transparent threading is more effective when the background thread is a memory

bounded thread. To this extent we select six benchmarks from the SPEC CPU2006

benchmark suite: three CPU intensive to be used as foreground threads (bzip, cac-

tusADM and calculix) and three memory bounded to be used as background threads

(mcf, milc and omnetpp).

148

(a) foreground thread (priority 6)

(b) background thread (priority 1)

Figure 6.7: Transparent execution: percentage of the performance in single-thread

mode for the foreground and the background threads. Y-axis reports
IPC

P/Q
SMT

IPCST
× 100

and x-axis is the actual pair of benchmarks running in SMT mode with priorities 6 and
1.

.

Figure 6.7a reports the performance of the foreground thread using transparent

thread execution with respect to its performance when running in isolation on POWER5

and POWER6. As shown in Figure 6.7a, the use of transparent threads is particularly

effective on POWER6, with a performance degradation up to 5.5% for the selected

benchmarks. On the other hand, due to the higher level of thread resource shar-

ing, using transparent thread on POWER5 leads to a performance degradation of up

to 20.86%. This result confirms the different effect of hardware thread priorities in

POWER5 and POWER6 and lead to conclude that POWER6 architecture design is

more adapt to exploit transparent execution.

149

6. EXPLOITING HARDWARE THREAD PRIORITIES ON
MULTI-THREADED ARCHITECTURES

Figure 6.7b reports the performance of the background thread using transparent

thread execution with respect to its performance when running in isolation. As Fig-

ure 6.7b shows, the degradation of the background thread is considerable, especially

on POWER6. This nonetheless should not be considered a drawback, given that the

purpose of transparent execution is to run a thread in background that does not have

performance requirements.

6.8 Conclusions

In this chapter, we characterize the software-controlled hardware-priority mechanism

for IBM POWER5 and POWER6, based on the use of micro-benchmarks. We use

a systematic approach in which we execute experiments with all the priorities com-

binations and with different running modes (ST and SMT). With this methodology

we obtain several architectural insights that explain different behaviors of the thread

prioritization mechanism on POWER5 and POWER6. The main conclusions are the

following:

• The use of priorities generally leads to a smaller performance difference between

ST and SMT modes in POWER6 than in POWER5, mostly due to the absence

of the out-of-order execution on POWER6. Since in POWER6 the per-thread

SMT malleability is smaller than in POWER5, increasing the priority of a thread

generally leads to a smaller speedup than in POWER5.

• On both processors we have confirmed the correlation between high IPC and high

sensitivity to priorities.

• In POWER5 with a priority difference greater or equal to 3 there is a significant

malleability of the memory bounded threads. Therefore, performance tuning

using priority differences greater or equal to 3 should be performed with a good

understanding of the workload’s memory behavior.

• We empirically measure the correlation of the malleability with the performance

variation between SMT and single-thread execution.

• We show that hardware priorities can be used to improve load balancing for

parallel applications: the execution of BT-MZ (NAS benchmarks) with a balanced

configuration obtains an execution time reduction of 11.4% on POWER5 and of

16% on POWER6.

150

• We evaluate transparent execution, a mechanism that allows the foreground

thread to run in SMT mode with performance close to single-thread mode. With

applications from SPEC CPU2006 benchmark suites, the foreground thread reach

up to 94% of its performance in single-thread mode running on POWER5, and

up to 99% running on POWER6.

Overall, software controlled SMT priorities could be integrated into an adaptive

runtime system to improve several metrics for a specialized class of applications.

151

6. EXPLOITING HARDWARE THREAD PRIORITIES ON
MULTI-THREADED ARCHITECTURES

152

Chapter 7

Exploiting cache locality and

network-on-chip to optimize

sorting on a Many-core

architecture

This part of the thesis describes how to exploit user-level hardware features to be

integrated into a specialized runtime system. In the previous chapter we examined

the use of hardware thread priorities of IBM POWER5 and POWER 6 processors for

regular and computation intensive applications. In this chapter we study a modern

many-core processor and how its hardware characteristics could be effectively exploited

to improve irregular and data-intensive applications. We choose the radix sort as a basic

kernel of irregular and data intensive application. In the following sections we describe

how the Tilera TILEPro network on chip and cache locality can be used to improve

performance. As mentioned before, the hardware features studied in the following

section can be effectively exploited by a specialized runtime system to speedup this

class of applications.

7.1 Summary

The current trend in computer architectures indicates that Graphic Processing Units

(GPUs) and manycore processors, integrating hundreds of simple cores, will be primary

design points for power efficient High Performance Computing (HPC) systems. One of

the challenges to efficiently implement programs such as radix sort on such architectures

153

7. EXPLOITING CACHE LOCALITY AND NETWORK-ON-CHIP TO
OPTIMIZE SORTING ON A MANY-CORE ARCHITECTURE

is how to extract parallelism from the algorithm. Radix sort passes are designed to be

executed sequentially. During each pass, radix sort builds a global histogram using

digits from all keys, thus synchronization on this structure is required for parallel

execution. Moreover, as any sorting algorithm, it performs many memory operations

with low data locality to move keys to their new positions.

Each architecture features specific characteristics that lead to different implemen-

tations and optimizations of the radix sort algorithm. On a shared-memory multicore

processor, for instance, an efficient implementation should exploit data locality and use

caches as a buffer to improve the irregular memory writes throughput [144]. GPUs

and architectures featuring large SIMD units can leverage split operations [30] to lo-

cally reorder keys and improve overall performance. Manycore architectures featuring

fast and dedicated Network-on-Chip (NoC) interconnects, can exploit more scalable

core-to-core communications.

The Tilera architecture represents one of the first commercial examples of NoC-

based manycore architectures. In particular, the TILEPro [9] family features from 36

to 64 tiles (simple RISC cores) on a chip. Tiles are interconnected through six NoCs,

and feature a Dynamic Distributed Cache that improves coherent cache performance

for large core counts. While the TILEPro processors lack floating point units and do

not appear a good fit for classic scientific HPC applications, several vendors are propos-

ing systems integrating them for many integer-based applications such as databases,

networking, multimedia and cloud computing, claiming superior performance-per-watt

than traditional multicore-based servers [11].

In this chapter we present an optimized implementation of radix sort for the Tilera

TILEPro64 processor. We detail how we exploited the architectural features of the

processor to increase the performance of the algorithm. We provide an in-depth analysis

of the optimizations implemented for each phase of the algorithm, and discuss them

in relation to the processor’s sustained performance and bandwidth. We show the

throughputs reached by the whole algorithm on several representative datasets (up to

132 million sorted keys per second on 240 million random 32-bit uniformly distributed

keys). Finally, we show how our solution provides performance-per-watt comparable

to current high performance architectures such as Intel x86 multicores and NVIDIA

GPUs.

The work proceeds as follows. Section 7.2 describes the experimental environment.

Section 7.3 describes the Tilera TILEPro64 processor architecture and provides its

performance characterization. Section 7.4 explains the parallel radix sort and related

work. Section 7.5 presents the implementation details of the radix sort algorithm

154

on the Tilera architecture. Section 7.6 presents the algorithm optimizations for the

TILEPro64 processor. Section 7.7 is about the experimental evaluation.

7.2 Experimental environment

Table 7.1 shows the experimental environment used in this chapter. The table in-

cludes the hardware system, the operating system, the communication library and the

benchmarks used for the experiments.

CPU Tilera TILEPro64 (1 socket - 64 tiles) at 866 MHz
Memory 64 Gigabyte of DDR RAM
Network Ethernet (not used) - Network-on-chip
System size single node
Operating System Linux
Communication Library Tilera Multicore Components API
Benchmarks Microbenchmarks and Radix Sort

Table 7.1: Experimental environment - Tilera TILEPro64 system.

7.3 Tilera many-core processor

In this section we introduce the Tilera TILEPro64. Section 7.3.1 describes the processor

architecture, and Section 7.3.2 provides an architectural characterization of its memory

subsystem through the use of micro-benchmarks.

7.3.1 Processor architecture

The TILEPro64 is a manycore processor composed of 64 processing elements (called

Tiles), interconnected through six independent NoCs. The topology of the NoCs is

a two-dimensional mesh. The processor features four on-chip memory controllers and

several I/O interfaces (PCIe, GbE, 10 GbE, Flex I/O). Each tile includes: a low-power

3-way VLIW 32-bit processor engine running at 866 MHz; a cache engine containing a

direct-mapped 16KB instruction L1 cache, a 2-way associative 8KB data L1 cache and

a 4-way associative 64 KB L2 cache; a NoC switch engine for 6 functional independent

networks. Each tile also contains a 2D DMA engine that orchestrates memory data

streaming between tiles and external memory, and among tiles. The six NoCs include

the I/O Dynamic Network (IDN), which directly connects all the tiles with the I/O

interfaces, the Static Network (STN), which can be programmed to perform static rout-

ing with predefined end-points, the User Dynamic Network (UDN), which implements a

155

7. EXPLOITING CACHE LOCALITY AND NETWORK-ON-CHIP TO
OPTIMIZE SORTING ON A MANY-CORE ARCHITECTURE

pipelined distributed dimensional (X-Y) routing and can be used to perform tile-to-tile

message passing at the user level, and three memory networks that communicate with

the memory controllers and manage cache coherency.

The Tilera Multicore Components API (TMC) provides primitives that allow fine-

grained control on many architectural features of the processor. The cache subsystem of

the TILEPro architecture is very flexible and fully configurable. It is named Dynamic

Distributed Cache (DDC). The L1 caches are private for each tile. Instead, the L2

cache is managed as a hybrid cache. A cache line is said to be “locally homed” in a

tile if when there is a miss in the local L2 cache, the request is directly sent to the

DDR memory. On the other hand, a cache line is said to be “remotely homed” if on a

L2 miss, a request is sent to the “home tile”. In the latter case the home tile’s cache

acts like a L3 cache (with an increased access latency) for tiles that miss on their own

L2. Lines are then copied in the remote tile’s cache. The L2 caches are coherent,

but coherency can be disabled through a software switch. The TILEPro also supports

a hash-for-home policy, where pages are homed on different tiles’ L2s at cache line

granularity (64 bytes). The developer can select which tiles participate in this strategy.

Finally, the programmer can allocate memory pages either on memory banks managed

by a specific memory controller or in striping mode, where each page is striped across

the various memory controllers in chunks of 8 KB.

7.3.2 Architectural characterization

In this section we characterize the memory bandwidth of the TILEPro64 through a set

of micro-benchmarks. This allows understanding how far from the maximum bandwidth

the various phases of the radix sort are and how effective the optimizations are. We

look at four parallel memory access patterns: sequential read and write (benchmarks

read-seq and write-seq), and random read and write (benchmarks read-rand and write-

rand). The benchmark read-seq-pref exploits prefetching and loop-unrolling to increase

the performance of sequential reads. We also evaluate the effects of employing the hash-

for-home (Hash) and Local homing (Local) policies. The benchmarks use from 1 to 62

threads. Each thread is pinned to a specific tile. Two tiles handle I/O operations and

are not available to applications. Each thread allocates a chunk of memory and reads

it or writes 32 bit integers into it.

Figure 7.1 shows the bandwidth for read-seq, read-rand, and read-seq-pref with

the two different memory homing policies. As the figure reports, the bandwidth with

the local homing policy is significantly higher than with the hash-for-home (except

156

0

5

10

15

20

2 4 8 16 32 62

G
B

/s
e

c

thread number

read-seq hash
read-seq local

read-rand hash
read-rand local

read-seq-pref hash
read-seq-pref local

Figure 7.1: Read bandwidth.

0

1

2

3

4

5

6

7

2 4 8 16 32 62

G
B

/s
e
c

thread number

write-seq hash
write-seq local

write-rand hash
write-rand local

Figure 7.2: Write bandwidth.

157

7. EXPLOITING CACHE LOCALITY AND NETWORK-ON-CHIP TO
OPTIMIZE SORTING ON A MANY-CORE ARCHITECTURE

for read-rand), due to the improved data locality on the allocating tile. Also, results

indicate that loop-unrolling and prefetching are essential, leading to a higher bandwidth

utilization.

Figure 7.3 shows the bandwidth for write-seq and write-rand with the two different

memory homing policies. For sequential writes, the behavior is easily understandable.

Since with local homing each tile owns the memory pages it is writing to, other remote

caches are not queried. With hash-for-home, instead, each line is homed on a different

cache, thus, whenever a new line is written, a different tile’s L2 cache is accessed. For

random writes the behavior is more complex. For low numbers of tiles the the hash-

for-home policy is better. The reasons are two. First, since the memory accesses are

completely random, the hashing allows for a better balance of the cache and memory

NoCs access patterns. Second, since the pages are hashed all over the tiles of the

system, even if only some of the tiles are effectively emitting memory operations, a

virtually larger cache is used and the cache thrashing is reduced with respect to the

local homing policy. However, when the number of tiles increases, total cache sizes

become the same for both policies, and the higher irregularity of the access patterns in

the NoCs with the hash-for-home policy reduces the bandwidth.

To further investigate the effects of random writes, we implemented a set of micro-

benchmarks that write sequential chunks of 16 (block-write-16), 32 (block-write-32), 64

(block-write-64) and 128 (block-write-128) bytes in random memory positions. Figure

7.3 reports the bandwidth for each of the mentioned micro-benchmarks. As expected,

block-write-16 has the lowest bandwidth, due to the lowest data locality of the writes.

Performing writes with larger sizes (block-write-32, block-write-64 and block-write-128)

considerably improves bandwidth utilization. Also, we can observe that local homing

is the most performing memory allocation policy for most of the cases.

7.4 Background

This section provides preliminaries to understand the material presented in the rest of

the work. Section 7.4.1 explains the reference serial radix sort implementations used in

this work. Section 7.4.2 discusses the related work.

7.4.1 Radix sort

Radix sort sorts data by grouping keys by the individual digits which share the same

significant position (radix). At each step, the grouping of the digits is usually done

through Counting or Bucket Sort. Radix Sort can operate starting from the least

158

0

1

2

3

4

5

2 4 8 16 32 62

G
B

/s
e
c

thread number

block-write-16 hash
block-write-16 local
block-write-32 hash
block-write-32 local
block-write-64 hash
block-write-64 local

block-write-128 hash
block-write-128 local

Figure 7.3: Write bandwidth for larger chunks of data.

significant digit and moving towards the most significant digit (LSD Radix Sort) or the

other way around (MSD Radix Sort).

In the first step, Radix Sort divides the bits of each key in k groups of size l bits

called radixes, e.g., 4 radixes of 8 bits form a 32-bit integer key. Then, for each radix,

the algorithm performs a pass, ordering all the keys according to the values of that

radix with the following steps: (1) compute the histogram of occurrences of each l-bit

digit for the current radix; (2) compute the offset of each keys to order them by the

current radix; (3) reorder the keys based on the offset.

After k passes, the algorithm produces a total ordering of the keys. While comparison-

based sorting algorithms are lower-bounded by computational complexity of O(n ×
log(n)), Radix Sort computational complexity is O(nk), where k is the number of

radixes (for fixed-lenght keys). The number of radixes can vary from 1 to the number

of bits used to represent the keys to be sorted. There is a trade-off between the number

of passes and the size of the histogram (2l).

159

7. EXPLOITING CACHE LOCALITY AND NETWORK-ON-CHIP TO
OPTIMIZE SORTING ON A MANY-CORE ARCHITECTURE

7.4.2 Related work

Sorting algorithms have attracted a large deal of research, due to their apparently

simple statement but complexity in finding efficient solutions. Platforms based on

multicore processors, manycore processors and GPUs have become interesting targets

for these algorithms. Lately, many works discussing parallel implementations of radix

sort on these architectures have appeared. Sohn and Kodama [152] present a balanced

parallel radix sort that first obtains the bin counts of all the processors, and then

computes for each processor the number of keys, their source bin and their source

processor. Partitioned parallel radix sort [108] further improves upon the previous

work by reducing the multiple rounds of data redistribution to one. In [84] a MSD

radix sort is used to evaluate scatter and gather primitives for GPUs.

Satish et al. [143] introduce a merge sort and a radix sort for GPUs. The implemen-

tations exploit efficient data-parallel primitives such as parallel scan and the high-speed

on-chip shared memory provided by NVIDIA’s GPU architectures. In particular, for

the radix sort implementation, the initial input is divided in tiles, that are assigned to

different threads blocks and sorted in the on-chip memory using b iterations of 1-bit

split operations [30]. The split operations are Single Instruction Multiple Data (SIMD)

friendly, as they can be executed with a SIMD prefix sum and a SIMD subtraction.

The radix sort implementation reaches a saturated performance of around 200 Mkeys/s

for floating point keys on a GeForce GTX 280.

In [144] the previous SIMD-friendly approach for GPUs is compared to a buffer

based scheme for CPUs that collects elements belonging to the same radix into buffers

in local storage. Buffers are written from local storage to global memory only when

enough elements have been accumulated. The buffer based scheme implementation

reaches up to 240 Mkeys/seconds on a Core i7 (Nehalem architecture) processor.

In [145] the Intel Many Integrated Cores (MIC) architecture is also introduced. The

SIMD-friendly approach for GPUs is adapted to the Knights Ferry implementation of

MIC . The authors show saturated performance respectively at about 325 Mkeys/s for

the GeForce GTX 280, 240 Mkey/s for the Core i7 and 560 Mkeys/s on Knights Ferry.

Merrill and Grimshaw [117] present a family of very efficient parallel algorithms

for radix sorting on GPUs. The proposed algorithms exploit an efficient parallel prefix

scan “runtime” that includes kernel fusion, multi-scan for performing multiple related,

concurrent prefix scans and a flexible algorithm serialization that removes unnecessary

synchronization and communication within the various phases. The algorithms pro-

posed are included in the NVIDIA Thrust Library and have a sustained performance

160

over 1000 Mkeys/s for the GeForce GTX 480 (Fermi architecture).

Wassenberg and Sanders [165] introduce a radix sort algorithm that builds upon

a microarchitecture-aware counting sort. It exploits virtual memory, by generating

as many containers as there are digits and inserting each value in the appropriate

container. It exploits write combining by accumulating the values in the appropriate

positions in buffers and then writing them directly to memory with non temporal stores

that bypass all the data caches. On a dual Xeon W5580 (Nehalem architecture, 4 cores,

3.2 GHz) this algorithm reaches 657 Mkeys/s. However, the extensive use of virtual

memory limits the maximum size of datasets.

7.5 Parallel Radix Sort

To parallelize radix sort, we divide the unsorted array of N keys into M blocks, where

M is equal to the number of threads. Each block blockt is assigned to a thread with

rank t (in the following, we use t to denote the rank of both threads and blocks). A

second array of size N stores the sorted keys at each pass. This array is also divided

into M blocks, where each block sortedt is assigned to the thread t. Algorithm 1 shows

the main loop of the parallel radix sort.

Algorithm 1 Parallel radix sort main loop.

for pass = 0 . . . P do
histt ← do local histogram(blockt, pass)
offsett ← compute offset(histt)
distribute keys(offsett, blockt, pass)
blockt ← block sortedt

end for

P is the number of passes, which corresponds to the number of radixes. At each

pass, thread t performs the following phases:

1. Computes the histogram of occurrences for blockt

(DO LOCAL HISTOGRAM()).

2. Computes the new position for the keys in blockt with a global parallel operation

(COMPUTE OFFSET()).

3. Writes the keys from blockt into block sortedt′ array, where t′ ∈ [0,M − 1] can be

a block owned by any thread (DISTRIBUTE KEYS()).

4. Then, replace blockt with block sortedt to prepare for the next pass.

161

7. EXPLOITING CACHE LOCALITY AND NETWORK-ON-CHIP TO
OPTIMIZE SORTING ON A MANY-CORE ARCHITECTURE

Algorithm 2 Local histogram computation.

function do local histogram(blockt, pass)
for i = 0 . . . B do

k ← blockt[i]
d← get digit(k,pass)
histt[d]← histt[d] + 1

end for
end function

7.5.1 Local histogram

In this phase each thread reads its block of keys and, for each key in the block, extracts

the proper radix and increments the histogram of occurrences. Algorithm 2 describes

the different steps of this phase. B = N/M is the number of keys in a block. The

function GET DIGIT() performs a mask operation to extract the digit from the number,

according to the current pass. At the end of this phase, histt contains the occurrences

of all digits in blockt.

7.5.2 Offset computation

The purpose of this phase is to compute the offset, in the sorted array, for each key of

the block. The offset is used in the next phase by thread t to distribute the keys from

blockt into block sortedt′ (where t′ ∈ [0,M − 1]). We define offsett[d] as a local array

that stores the new position of a key that has digit d and originally resides in blockt.

The offset is expressed with respect to the entire array of keys, i.e. with respect to the

first position of block sorted0. Moreover, keys with the same digit for the current pass

are stored in sequential positions, giving precedence to threads with lower index. The

offset for keys in blockt, with digit d, is computed by thread t as:

offsett[d] =
∑
t′<t

histt′ [d] + cumulative hist[d− 1] (7.1)

where histt′ is the local histogram of blocks with lower rank than the current one

(t′ < t) and cumulative hist is the cumulative global histogram. The cumulative

histogram, common to all the threads, accounts for all the digits smaller than d, while

the precedence rule for threads with index lower than t guarantees that the computed

offset is correct. To obtain the two operands of the sum in formula 7.1 we perform

a parallel prefix sum operation starting from local histograms. The schema in Figure

7.4 describes a parallel prefix sum involving eight threads. Each rectangle represents a

thread and h0, h1, . . . , h7, refer to the local histograms. At each iteration, a partial

162

sum of the local histograms is forwarded to the threads with higher rank. At the end

of the third iteration (iter = 3), each thread t has the sum of the local histograms

from the threads t′ < t and the thread with the highest rank has the global histogram.

Theoretically, this approach is not the most efficient way of performing a parallel prefix

sum. We explain this design choice in section 7.6.2.

Figure 7.4: Parallel prefix-sum with 8 threads.

7.5.3 Keys distribution

In this phase, each thread writes keys from block blockt to block sortedt′ (where t′ ∈
[0,M − 1]). Algorithm 3 describes the steps performed by a thread for each key.

The thread reads the key from the local block and extracts the digit d according to

the current pass. Then, it writes the key in a position obtained by offsett[d] into

block sortedt′ . Finally it increments offset[d] so that the next key with digit d is

written into the following position. Since the new position of the key o is expressed

as the offset from the beginning of the first block (block0), the destination block (t′)

and the relative offset (o mod B) are also computed. The division to obtain the block

number (t′ ← o / B) is rounded towards zero. At the end of this phase, the keys have

been partially reordered according to the current radix.

7.6 Optimizations

This section describes the optimizations to the radix sort implementation previously

presented. Although each optimization has been evaluated with the all datasets pre-

sented in Section 7.7.1, in this section we show their effects with a uniform distribution

of 240 million random 32-bit integers.

163

7. EXPLOITING CACHE LOCALITY AND NETWORK-ON-CHIP TO
OPTIMIZE SORTING ON A MANY-CORE ARCHITECTURE

Algorithm 3 Keys distribution.

function distribute keys(blockt, offsett, pass)
for i = 0 . . . B do

k ← blockt[i]
d← get digit(k,pass)
o← offsett[d]
t′ ← o / B
block sortedt′ [o mod B]← k
offsett[d]← offsett[d] + 1

end for
end function

7.6.1 Local Histogram

As mentioned in Section 7.4, the histogram size H depends on the size of the radix

l: H = 2l. The radix size significantly affects performance, because it determines the

size of several data structures and the number of radix sort passes. We found that the

best trade-off for our implementation is using five passes with the following radixes: 7,

7, 6, 6, 6. This determines local histograms of 512 bytes (128 elements of 32 bits) for

the first two passes and 256 bytes the other three passes. Because of the small sizes,

the local histograms likely reside in the caches. Since the update of a local histogram

corresponds to reading a chunk of sequential data and incrementing values in the cache,

the upper-bound for the performance of this phase is the memory bandwidth utilization

for sequential reads.

We implemented two optimizations to improve the performance of this phase: local

block caching and data prefetching. The first optimization leverages the flexibility of

Tilera’s caches by allocating the blocks of the input array and the histograms with the

local homing policy. This allows exploiting data locality at the tile level (a thread is

pinned on a tile), improving access latency and reducing memory traffic. The second

optimization leverages prefetching and loop-unrolling to increase bandwidth utilization

for contiguous reads from memory, as described in Section 7.3.2. We use the TMC

library function tmc mem prefetch() to prefetch chunks of data into the cache before

they are actually read. To fully exploit prefetching, we unroll the read loop in multiples

of the cache line size (64 bytes or 16 elements).

Figure 7.5 shows the bandwidth utilization for the unoptimized (hist) and the opti-

mized (hist-pref) implementations of this phase. As the figure shows, the optimizations

for this phase lead to a bandwidth improvement of 1.68 times. As expected, the band-

width of hist-pref is close to the bandwidth of the micro-benchmark read-seq-pref of

Section 7.3.2.

164

0

5

10

15

20

2 4 8 16 32 62

G
B

/s
e

c

thread number

hist
hist-pref

Figure 7.5: Histogram computation bandwidth.

7.6.2 Offset computation

The offset computation phase performs a prefix sum using the local histograms, and

does not involve the original dataset (keys). Since the local histograms fit in caches,

this is the only non-memory bounded phase. Our first implementation of this phase was

a shared-memory parallel prefix sum algorithm based on [30] (prefix-sum-shared). To

further improve this phase, we implemented a message passing version of the parallel

prefix sum as proposed by [88] (prefix-sum-udn), using the UDN (the NoC for user-

level inter-tile communication). Figure 7.6 reports the execution times of the two

implementations. Since the prefix sum is performed using local histograms with a

constant size per thread (512 bytes), the execution time increases when increasing the

number of threads. As the figure shows, with 62 threads the UDN-based prefix sum

is 2.57 times faster than the shared-memory version, even if the former has a higher

computational complexity.

165

7. EXPLOITING CACHE LOCALITY AND NETWORK-ON-CHIP TO
OPTIMIZE SORTING ON A MANY-CORE ARCHITECTURE

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

2 4 8 16 32 62

s
e
c

thread number

prefix-sum-udn
prefix-sum-shared

Figure 7.6: Prefix sum.

7.6.3 Keys Distribution

Even if the computational complexity of this phase is (O(n)), the presence of high-

latency non-contiguous memory writes makes it the bottleneck of the algorithm. In

fact, write locations for each key, that threads obtain from offsett[d], are independent

and most likely fall into un-cached portions of blocksorted. The probability of having

two contiguous writes is inversely proportional to the size of the dataset, hence it

is very low for large datasets. Since this phase is the bottleneck of the radix sort,

its optimizations have the highest impact on the overall algorithm performance. The

memory writes of this phase are analogous to the write-rand operation described in

section 7.3.2.

The first optimization is related to the starting address of the blocks. To exploit

local homing, each thread must allocate its own block. Every time a thread writes

to a block, not necessarily its own, it must retrieve its starting address (e.g., from a

global structure). However, in our implementation blocks are allocated contiguously

in memory, through the function tmc alloc map at(). This function allows specifying

the virtual address of each block. Because blocks are adjacent in memory, and all have

the same size, every memory location can be obtained by computing an offset from the

166

0

0.5

1

1.5

2

2.5

3

3.5

2 4 8 16 32 62

G
B

/s
e

c

thread number

distrib
distrib-adj
distrib-buf

Figure 7.7: Key distribution bandwidth.

starting address of the first block. For example, position 8 of block 3 can be accessed

by adding 8 + (3 × B), where B is the number of elements in a block, to the starting

address of block 0.

Furthermore, as shown in section 7.3.2, random write bandwidth can be improved

by writing chunks of data larger than 4 bytes. Hence, the second optimization is to

implement a write buffer to leverage larger memory writes. This optimization exploits

the observation that keys with the same digit are going to be written into consecutive

positions. Because each block is allocated using the local homing strategy, keys are

most probably going to be written into blocks that are remotely cached. Thus, it is

convenient to first accumulate keys with the same digit into the local cache (possibly

L1) and then write them all together to memory. The write buffer is allocated into the

local stack, that uses the local homing strategy by default.

Figure 7.7 reports the bandwidth utilization for the keys distribution phase: distrib

is the basic key distribution phase without optimizations, distrib-adj is the key distri-

bution phase with adjacent blocks in memory and distrib-buf uses adjacent blocks with

a write buffer of 8 elements. Allocating adjacent blocks improves the bandwidth up to

1.28 times with 62 threads. The write buffer of 8 elements, together with the adjacent

167

7. EXPLOITING CACHE LOCALITY AND NETWORK-ON-CHIP TO
OPTIMIZE SORTING ON A MANY-CORE ARCHITECTURE

block allocation, lead to a performance improvement of 1.55 times. As expected, the

bandwidth of distrib-buf is similar to the bandwidth of the micro-benchmark block-

write-64 local shown in Figure 7.3 that performs similar memory operations (a write

of 8 elements corresponds to 64 bytes). We found that using a write buffer larger than

8 elements causes a performance degradation. If we compute the buffer size (given a

digit size of 7 bits, the size of a buffer for 8 elements is 128 ∗ 4 ∗ 8 = 4096 byte) it is

easy to observe that a larger buffer would fill the L1 data cache (8192 KB), causing

conflicts with other structures used in the algorithm.

7.7 Experimental evaluation

This section discusses the experimental results of our radix sort implementation for the

Tilera TILEPro64 processor. Section 7.7.1 presents the experimental setup. Section

7.7.2 presents the performance improvement obtained with the optimizations. Section

7.7.3 analyzes the scalability of our implementation. Finally, Section 7.7.4 compares

the implementation for TILEPro64 to implementations for other architectures.

7.7.1 Experimental setup

The TILEPro64 is hosted on a TILEmpower platform, which offers 16GB of DDR2

memory at 800 MHz. However, since our radix sort implementation exploits shared

memory among all the tiles, it is constrained by the 32-bit addressing space (4 GB).

The compiler is a specific version for the Tilera architecture of GCC version 4.4.3,

provided with the Tilera MDE 3.0.1 IDE. The code has been compiled with the -O3

optimization flag. We configured the system to expose 62 tiles at user level, while

the other 2 are sequestered by the operating systems for executing the drivers of the

communication ports. Experiments are executed with one thread per tile.

We used six datasets with varying bit entropy. Lower entropy means higher prob-

ability to have similar numbers in the dataset. Dataset 1 is a uniform distribution of

pseudo-random numbers generated with the random r POSIX function. Datasets from

2 to 5 are generated by executing multiple bitwise AND operations among uniformly

distributed random numbers. Finally, dataset 6 only contains keys with the same value

(0). Hence, its entropy is zero. This is equivalent to ANDing all the possible random

numbers in the considered range. Table 7.2 reports how many numbers have been used

in the AND operation and the entropy of each dataset. The experiments use datasets

168

Table 7.2: Datasets description.

dataset keys in AND entropy

1 1 32.00 bit
2 2 25.95 bit
3 3 17.41 bit
4 4 10.78 bit
5 5 6.42 bit
6 inf 0.00 bit

with up to 240 million keys (MK)1. We repeated each experiment 10 times, and report

the arithmetic mean of the execution times.

7.7.2 Optimization effects

Figure 7.8 reports the throughput (millions of keys sorted per second - MK/sec) of

the optimized and non-optimized version of radix sort on the TILEPro64 processor on

dataset 1. The non-optimized version is the basic algorithm while the optimized version

includes all the optimizations previously discussed. As Figure 7.8 shows, optimizations

significantly improve performance and scalability of the algorithm. The non-optimized

algorithm with 62 threads shows a performance degradation similar to the write-rand

hash benchmark of Figure 7.3. The reason is that the performance of the algorithm

is dominated by the key distribution phase, and for the non-optimized version this is

analogous to the random write operation described in Section 7.3.2.

7.7.3 Scaling

We initially evaluated the scaling of the algorithm by progressively increasing the num-

ber of threads (threads are pinned to tiles), while sorting datasets of fixed size (240

MK).

Figure 7.9 shows the throughput of the algorithm on the six datasets with memory

allocations striped across memory controllers. Our implementation has an average

throughput of 132 MK/sec with 62 threads on dataset 1. The algorithm scales almost

linearly up to 32 threads. Over 32 threads the slope decreases, due to higher contention

on the memory controllers. Variability for different entropies is in the range of 10%.

Figure 7.10 shows the same set of experiments with allocations on specific memory

controllers. For these experiments, memory is allocated through the nearest memory

1To obtain adjacent block allocations each block is a multiple of the page size (64 KB), thus the
exact number of keys is 243, 793, 920

169

7. EXPLOITING CACHE LOCALITY AND NETWORK-ON-CHIP TO
OPTIMIZE SORTING ON A MANY-CORE ARCHITECTURE

0

20

40

60

80

100

120

140

2 4 8 16 32 62

M
K

/s
e
c

thread number

optimized
non-optimized

Figure 7.8: Throughput with and without optimizations for the TILEPro64 processor.

controller to the tile that performed the allocation, reducing access latencies for private

and local data. In contrast to Figure 7.9, there is a slight change of slope at 16 threads,

while the performance keeps scaling linearly when increasing the number of threads from

32 to 62. However, the throughput at 32 threads is lower. Since threads are pinned on

tiles in a ordered way (i.e., progressively filling rows), with 32 threads only two (out of

four) memory controllers are fully utilized. With striped memory allocations, instead,

32 tiles can exploit all the memory controllers. The peak performance with 62 threads

in the two cases is similar, since in average all the four memory controllers are equally

utilized. However, access patterns to the NoCs and to the memory controllers change,

leading to slightly different behaviors when changing the datasets.

Figure 7.11 shows the throughput of the algorithm when changing dataset sizes.

As expected, the throughput increases with larger datasets as the utilization of the

processor increases. Performance saturates in the range of 180-210 MK and is mainly

bounded by the memory bandwidth for scattered writes, as discussed in Section 7.6.3.

170

0

20

40

60

80

100

120

140

2 4 8 16 32 62

M
K

/s
e
c

thread number

32.00
25.95
17.41
10.78

6.42
0.00

Figure 7.9: Throughput with varying number of threads, 240 MK and striped alloca-
tions.

GPU x86 Tilera
Platform Tesla C2070 Tesla C2070 + comm. Xeon W5590 TILEPro64
Throughput [MK/sec] 664 254 212 132
TDP [Watt] 238 238 130 50.6
Efficiency [MK/sec · Watt] 2.79 1.07 1.63 2.61

Table 7.3: Comparison of various radix sort implementation in terms of throughput
(on 32-bit keys), Thermal Design Power (TDP) and performance-per-watt efficiency.
For the GPU, we show performance with and without communication of data across
the PCI Express bus.

7.7.4 Comparison

Table 7.3 compares the performance of the radix sort implementation for the TILEPro64

processor presented in this work to implementations for Graphic Processing Units

(GPUs) and x86 processors. Since the performance of a sorting algorithm depends

on the datasets on which it is applied, rather than considering only the results pro-

posed in literature, we chose to use accessible existing implementations or reimplement

the proposed approaches. For the GPU, we used the radix sort implementation pro-

vided in the CUDA Thrust Libraries, which corresponds to [117], and executed it on a

NVIDIA Tesla C2070 board (448 streaming processors at 1.15 GHz, 6 GB of GDDR5 at

171

7. EXPLOITING CACHE LOCALITY AND NETWORK-ON-CHIP TO
OPTIMIZE SORTING ON A MANY-CORE ARCHITECTURE

0

20

40

60

80

100

120

140

2 4 8 16 32 62

M
K

/s
e
c

thread number

32.00
25.95
17.41
10.78

6.42
0.00

Figure 7.10: Throughput with varying number of threads, 240 MK and allocations on
specific memory controllers.

3 GHZ) with CUDA 4.1. For the x86 processor, instead, we re-implemented the cache

optimized radix sort algorithm presented in [144], compiled it with GCC 4.6 at -O3

optimization level, and executed it on a system with an Intel Xeon W5590 processor

(4 cores with 2 threads each, 256 KB L2 cache per core and unified 8 MB L3 cache,

3.3 GHz) and 32 GB of DDR3-1066 memory. For all the experiments, we used dataset

1. The table also shows the maximum Thermal Design Power (TDP) in Watts and

the performance per Watt for each platform. TDPs have been taken from the board

specifications [8] for the Tesla C2070, from the Intel website [4] for the Xeon W5590

and from the TILEmpower user guide for the TILEPro64. Although the TDP only

represents a possible maximum power dissipation, and actual averages may be lower,

we believe that it is a reasonable approximation to understand performance-per-watt

behavior without requiring a non-trivial power instrumentation of all the platforms

[122].

From the Table, we can see that the GPU implementation reaches the highest per-

formance, with 664 MK/sec. It also appears the most efficient in terms of performance-

per-watt. However, when data communication across the PCI Express is considered,

the overall performance significantly decreases. Due to the high TDP of the board,

172

0

20

40

60

80

100

120

140

30 60 90 120 150 180 210 240

M
K

/s
e

c

MK

32.00
25.95
17.41
10.78
6.42
0.00

Figure 7.11: Throughput with varying dataset sizes and 62 threads.

when communication is included, the performance-per-watt also becomes the worst of

the evaluated platforms. Consequently, the preferred approach should be to use GPU

sorting as a phase of more complex algorithms that execute entirely on the GPU. The

x86 implementation is slower than the GPU implementation, even considering data

transfers. However, the TDP of the Xeon is lower than the TDP of the Tesla C2070,

thus performance-per-watt is higher than the GPU implementation with communica-

tions. The TILEPro64 implementation has the lowest performance of the solutions

considered. However, its TDP is also, by a large margin, the lowest of the three plat-

forms. This leads to a performance-per-watt comparable to the GPU implementation

without communication, and higher than the others.

7.8 Conclusions

In this chapter we show how to exploit hardware features of a many-core processor

such as Tilera TILEPro64 processor, to improve the performance of a fundamental

search algorithm such as the radix sort. The Tilera TILEPro64 processor is one of

the first successful low-power manycore architectures. Our implementation employs

several optimization techniques that exploit processor’s features such as the NoCs and

173

7. EXPLOITING CACHE LOCALITY AND NETWORK-ON-CHIP TO
OPTIMIZE SORTING ON A MANY-CORE ARCHITECTURE

the configurable Dynamic Distributed Cache. We have shown how the optimizations

impact the performance of each phase of the algorithm (i.e., local histogram generation,

offset computation and keys distribution). We discussed the scalability of the algorithm

with respect to the number of tiles (cores) used and the datasets size. We used datasets

with varying levels of entropy, showing how keys diversity influences the performance.

We compared our optimized radix sort implementation for the TILEPro64 processor

with current state-of-the-art implementations for x86 multicores and GPUs, considering

throughput and power efficiency. Even if our implementation does not achieve the same

peak performance of other architectures, it obtains comparable, or better, results in

terms of power efficiency.

The hardware features exploited to improve a specific kernel such as the radix

sort, could be integrated into a specialized runtime system to improve the performance

metrics of an entire class of applications (i.e. irregular applications).

174

Chapter 8

Conclusions

The last two decades witnessed an exponential growth of supercomputing performance.

HPC system software has evolved to keep pace with technology and applications evolu-

tion. Research on scalable system software for large-scale system has historically been

driven by two fundamental aspects: on one side, performance, efficiency and reliability,

on the other side the goal of providing a productive programming environment.

Exascale systems will be the result of current technology trends meeting with appli-

cation requirements, and leveraging the lessons learned from more than two decades of

supercomputing. The trends in hardware technologies will introduce additional com-

plexity and the need for highly adaptable and scalable system software. Moreover,

the difficulty of developing large-scale applications with an explicit message passing

programming model as it is commonly done today will introduce newer programming

models. These new developments imply radical changes at all levels of the system

software stack and in particular for the OS and the runtime system.

The contributions of this thesis are the following:

• Designed and implemented a methodology to provide detailed measurement of

system software interruptions and their effect on applications performance.

• Evaluated the effect of TLB misses on applications performance and artificially

simulated the effect of complex memory mapping schemas.

• Designed and implemented a runtime system for the class of irregular applications

that shows performance improvement of several orders of magnitude with respect

to more traditional approaches.

• Implemented several applications optimizations leveraging architecture-specific

hardware features and obtaining significant performance improvements. These

175

8. CONCLUSIONS

optimizations can be integrated into the specialized runtime system to be used

by an entire class of applications.

The work described in this thesis is being extended in various directions. A method-

ology for the detailed measurement of OS noise is being extended to a full large scale

system, and also integrated into the runtime system. Given the complexity of new-

generation runtime systems, detailed measurement of the runtime system events and

communications patterns is needed. The ability to measure and aggregate performance

profiling becomes fundamental as the system scale increases. Part of the future work is

to integrate performance profiling into the runtime system. Therefore, the runtime sys-

tem could automatically adapt to the changing workload using information gathered

during online performance profiling. The runtime system can integrate information

about the specific computation pattern of applications with the performance profiling

provided by the OS and implement effective policies to improve efficiency, scalability

and reliability.

The specialized runtime system developed (GMT) is being actively extended and

tested in order to improve its performance and reliability. GMT is the candidate run-

time system to support several new-generation applications such as analytics, big data

and in general irregular applications. A large project is using GMT to develop a Se-

mantic Graph Database. In this context, GMT is being extended to provide additional

features. New features include the ability of handling parallel IO from global arrays;

additional primitives to initialize arrays with a given value and to move large chunks of

global memory from one position to another. GMT performance is also being improved

redesigning and profiling the context switching and the aggregation mechanism.

GMT is currently available only for x86 architecture, but an adapted version of

GMT is being developed to execute on the Tilera many-core processor, to exploits fast

core-to-core communications and fine-grain locality control. Plans are also in place to

port GMT on the IBM POWER architecture to exploit hardware multithreading and

other hardware features specific to the POWER architecture.

176

Pubblications

Conference papers:

• A Quantitative Analysis of Operating System Noise - Alessandro Morari, Roberto

Gioiosa, Robert Wisniewski, Francisco J. Cazorla, Mateo Valero. May 2011 , An-

chorage, Alaska, USA. In 25th IEEE International Parallel & Distributed

Processing Symposium (IPDPS). 2011.

• Evaluating the Impact of TLB Misses on Future HPC Systems - Alessandro

Morari, Roberto Gioiosa, Robert W. Wisniewski, Bryan S. Rosenburg, Todd In-

glett, Mateo Valero. In 25th IEEE International Parallel & Distributed

Processing Symposium (IPDPS). 2012.

This paper won the IPDPS Best Paper Award.

• Efficient Sorting on the Tilera Manycore Architecture - Alessandro Morari, An-

tonino Tumeo, Oreste Villa, Simone Secchi, Mateo Valero. In 24th International

Symposium on Computer Architecture and High Performance Com-

puting (SBAC-PAD). 2012.

• Accelerating semantic graph databases on commodity clusters - Alessandro Morari,

Vito Giovanni Castellana, Oreste Villa, David Haglin, John Feo, Jesse Weaver,

and Antonino Tumeo. In IEEE International Conference on Big Data

(IEEE BigData 2013). 2013.

• Scaling Irregular Applications through Data Aggregation and Software Multi-

threading - Alessandro Morari, Oreste Villa, Antonino Tumeo, Daniel Chavarŕıa-

Miranda, Mateo Valero. In IEEE International Parallel & Distributed

Processing Symposium (IPDPS). 2014.

177

. PUBBLICATIONS

Journal articles:

• SMT Malleability in IBM POWER5 and POWER6 Processors - Alessandro Morari,

Carlos Boneti, Francisco J. Cazorla, Roberto Gioiosa, Chen-Yong Cher, Alper

Buyuktosunoglu, Pradip Bose and Mateo Valero. In IEEE Transactions on

Computers. 2012.

Workshop papers:

• Toward a Data Scalable Solution for Facilitating Discovery of Scientific Data Re-

sources - Alan Chappell, Sutanay Choudhury, John Feo, David Haglin, Alessandro

Morari, Sumit Purohit, Karen Schuchardt, Antonino Tumeo, Jesse Weaver, and

Oreste Villa. In Workshop on Data-Intensive Scalable Computing Sys-

tems (DISCS) held in conjuction with SC13: The International Conference for

High Performance Computing, Networking, Storage and Analysis. 2013.

Extended abstracts:

• Analyzing OS noise for HPC systems - Alessandro Morari, Francesco Piermaria,

Emiliano Betti, Marco Cesati, Roberto Gioiosa,Francisco J. Cazorla. In 6th In-

ternational Summer School on Advanced Computer Architecture and

Compilation for High-Performance and Embedded Systems (ACACES).

2010.

• HPC System Software for Regular and Irregular Parallel Applications - Alessan-

dro Morari, Mateo Valero. In 26th IEEE International Parallel & Dis-

tributed Processing Symposium (IPDPS). 2013.

178

References

[1] http://www.top500.org/lists/2007/06. 100

[2] AMBER: Assisted model building with energy refinement. http://ambermd.org/.

32

[3] Apache Giraph. http://incubator.apache.org/giraph/. 93

[4] Intel Xeon Processor W5590. Available at http://ark.intel.com/products/41643/.

170

[5] NAMD scalable molecular dynamics. http://www.ks.uiuc.edu/Research/namd/.

32

[6] OSU Micro-Benchmarks. http://mvapich.cse.ohio-state.edu/benchmarks/.

102

[7] TCP BENCHMARK H. Available at http://www.tpc.org/tpch/spec/tpch2.15.0.pdf.

15

[8] Tesla C2050 and Tesla C2070 computing processor board. Board specification.

Available at http://www.nvidia.com. 170

[9] Tilera TILEPro64. http://www.tilera.com/products/processors/TILEPRO64.

152

[10] TOP500 - top500 supercomputers list. http://www.top500.org/system/

177790. xi, 3, 9, 10, 19

[11] Tilera Corporation. Tilera and Quanta unveil the world’s most power efficient

and highest compute density server. http://www.tilera.com/about tilera/press-

releases/tilera-and-quanta-unveil-worlds-most-power-efficient-and-highest-

compute, June 2010. 152

179

http://incubator.apache.org/giraph/
http://mvapich.cse.ohio-state.edu/benchmarks/
http://www.top500.org/system/177790
http://www.top500.org/system/177790

REFERENCES

[12] S. Alam, R. Barrett, M. Bast, M. R. Fahey, J. Kuehn, C. McCurdy, J. Rogers,

P. Roth, R. Sankaran, J. S. Vetter, P. Worley, and W. Yu. Early evaluation of

ibm bluegene/p. In SC ’08: Proceedings of the 2008 ACM/IEEE conference on

Supercomputing, Piscataway, NJ, USA, 2008. IEEE Press. 49

[13] Saman Amarasinghe, Mary Hall, Pat McCormick, Richard Murphy, Keshav Pin-

gali, Dan Quinlan, Vivek Sarkar, and John Shalf. Exascale programming chal-

lenge workshop. Doe ascr, July 2011. 5

[14] Thomas E. Anderson, Henry M. Levy, Brian N. Bershad, and Edward D. La-

zowska. The interaction of architecture and operating system design. In Proceed-

ings of the fourth international conference on Architectural support for program-

ming languages and operating systems, ASPLOS-IV, pages 108–120, New York,

NY, USA, 1991. ACM. 62

[15] Wendell Anderson, Preston Briggs, C. Stephen Hellberg, Daryl W. Hess, Alexei

Khokhlov, Marco Lanzagorta, and Robert Rosenberg. Early Experience with

Scientific Programs on the Cray MTA-2. In Proceedings of the 2003 ACM/IEEE

conference on Supercomputing, SC ’03, pages 46–, New York, NY, USA, 2003.

ACM. 90

[16] Jonathan Appavoo, Kevin Hui, Michael Stumm, Robert W. Wisniewski,

Dilma Da Silva, Orran Krieger, and Craig A. N. Soules. An infrastructure for mul-

tiprocessor run-time adaptation. In WOSS ’02: Proceedings of the first workshop

on Self-healing systems, pages 3–8, New York, NY, USA, 2002. ACM. 35

[17] Edoardo Aprà, Alistair P. Rendell, Robert J. Harrison, Vinod Tipparaju, Wibe A.

deJong, and Sotiris S. Xantheas. Liquid water: obtaining the right answer for

the right reasons. In SC ’09: Proceedings of the Conference on High Performance

Computing Networking, Storage and Analysis, pages 1–7, New York, NY, USA,

2009. ACM. 32

[18] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi,

S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakr-

ishnan, and S. Weeratunga. The NAS parallel benchmarks. Technical report,

NASA Advanced Supercomputing (NAS) Division, March 1994. 144

[19] P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan. The influence of operating

systems on the performance of collective operations at extreme scale. Cluster

Computing, IEEE International Conference on, 0:1–12, 2006. 36

180

REFERENCES

[20] P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan. Operating system issues for

petascale systems. SIGOPS Oper. Syst. Rev., 40(2):29–33, 2006. 36

[21] Pete Beckman, Kamil Iskra, Kazutomo Yoshii, Susan Coghlan, and Aroon

Nataraj. Benchmarking the effects of operating system interference on extreme-

scale parallel machines. Cluster Computing, 11(1):3–16, 2008. 36

[22] P.H. Beckman, K. Iskra, K. Yoshii, and S. Coghlan. The influence of operating

systems on the performance of collective operations at extreme scale. In Proc. of

the 2006 IEEE Int. Conf. on Cluster Computing, Barcelona, Spain, 2006. 35

[23] C. Bekas, A. Curioni, and I. Fedulova. Low cost high performance uncertainty

quantification. In WHPCF ’09: Proceedings of the 2nd Workshop on High Per-

formance Computational Finance, pages 1–8, New York, NY, USA, 2009. ACM.

32, 59

[24] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally,

Monty Denneau, Paul Franzon, William Harrod, Kerry Hill, Jon Hiller, et al.

Exascale computing study: Technology challenges in achieving exascale systems.

Defense Advanced Research Projects Agency Information Processing Techniques

Office (DARPA IPTO), Tech. Rep, 2008. xi, 11, 13, 59

[25] J. Y. Berthou. Final report on roadmap and recommendations development.

Technical report, European Exascale Software Initiative, 2011. 3, 12, 13

[26] Emiliano Betti, Marco Cesati, Roberto Gioiosa, and Francesco Piermaria. A

global operating system for HPC clusters. In CLUSTER, pages 1–10, 2009. 38

[27] Abhishek Bhattacharjee, Daniel Lustig, and Margaret Martonosi. Shared last-

level tlbs for chip multiprocessors. In HPCA, pages 62–63. IEEE Computer So-

ciety, 2011. 62

[28] Abhishek Bhattacharjee and Margaret Martonosi. Characterizing the tlb behavior

of emerging parallel workloads on chip multiprocessors. In Proceedings of the

2009 18th International Conference on Parallel Architectures and Compilation

Techniques, pages 29–40, Washington, DC, USA, 2009. IEEE Computer Society.

62

[29] Abhishek Bhattacharjee and Margaret Martonosi. Inter-core cooperative tlb for

chip multiprocessors. SIGARCH Comput. Archit. News, 38:359–370, March 2010.

62, 80

181

REFERENCES

[30] Guy E. Blelloch. Vector models for data-parallel computing. MIT Press, Cam-

bridge, MA, USA, 1990. 152, 158, 163

[31] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leis-

erson, Keith H Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime

system, volume 30. ACM, 1995. 24

[32] Dan Bonachea. Gasnet specification, v1.1 - t.r. csd-02-1207. Technical report,

UC Berkeley, October 2002. 91, 101

[33] C. Boneti, F. Cazorla, R. Gioiosa, C-Y. Cher, A. Buyuktosunoglu, and M. Valero.

Software-Controlled Priority Characterization of POWER5 Processor. In The

35th Int. Symp. on Computer Architecture (ISCA)., Beijing, China, June 2008.

122, 124

[34] C. Boneti, R. Gioiosa, F. J. Cazorla, and M. Valero. A dynamic scheduler for

balancing HPC applications. In SC ’08: Proc. of the 2008 ACM/IEEE Conference

on Supercomputing, 2008. 49, 122, 124, 131, 142

[35] Carlos Boneti, Roberto Gioiosa, Francisco J. Cazorla, Julita Corbalán, Jesús

Labarta, and Mateo Valero. Balancing HPC applications through smart allo-

cation of resources in MT processors. In Proceedings of the 22th international

conference on Parallel and distributed processing, IPDPS ’08, pages 1–12, Miami,

Florida, USA, 2008. 124

[36] D.P. Bovet and M. Cesati. Understanding the Linux Kernel. O’Reilly, 3rd edition,

2005. 38, 49, 51, 69

[37] Javier Bueno, Luis Martinell, Alejandro Duran, Montse Farreras, Xavier Mar-

torell, Rosa M Badia, Eduard Ayguade, and Jesús Labarta. Productive cluster

programming with ompss. In Euro-Par 2011 Parallel Processing, pages 555–566.

Springer, 2011. 25

[38] David R Butenhof. Programming with POSIX threads. Addison-Wesley Profes-

sional, 1997. 25

[39] Laura Carrington, Dimitri Komatitsch, Michael Laurenzano, Mustafa M. Tikir,

David Michea, Nicolas Le Goff, Allan Snavely, and Jeroen Tromp. High-frequency

simulations of global seismic wave propagation using SPECFEM3D GLOBE on

62k processors. In SC ’08: Proceedings of the 2008 ACM/IEEE conference on

Supercomputing, Piscataway, NJ, USA, 2008. IEEE Press. 32

182

REFERENCES

[40] Umit V. Catalyurek, Florin Dobrian, Assefaw Gebremedhin, Mahantesh Halap-

panavar, and Alex Pothen. Distributed-memory parallel algorithms for matching

and coloring. In Proceedings of the 2011 IEEE International Symposium on Par-

allel and Distributed Processing Workshops and PhD Forum, IPDPSW ’11, pages

1971–1980, Washington, DC, USA, 2011. IEEE Computer Society. 114

[41] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. Habanero-java: the

new adventures of old x10. In Proceedings of the 9th International Conference on

Principles and Practice of Programming in Java, pages 51–61. ACM, 2011. 24

[42] F.J. Cazorla, P.M. W. Knijnenburg, R. Sakellariou, E. Fernandez, A. Ramirez,

and M. Valero. Predictable performance in SMT processors: Synergy between

the OS and SMTs. IEEE Trans. Comput., 55(7):785–799, 2006. 124

[43] Francisco J. Cazorla, Alex Ramirez, Mateo Valero, Peter M. W. Knijnenburg,

Rizos Sakellariou, and Enrique Fernández. QoS for High-Performance SMT Pro-

cessors in Embedded Systems. IEEE Micro, 24:24–31, July 2004. 124

[44] Intel Open Source Technology Center. Open community runtime.

http://www.kernel.or://01.org/open-community-runtime. 93

[45] Soumen Chakrabarti and Katherine Yelick. Implementing an irregular application

on a distributed memory multiprocessor. In Proceedings of the fourth ACM SIG-

PLAN symposium on Principles and practice of parallel programming, PPOPP

’93, pages 169–178, New York, NY, USA, 1993. ACM. 90

[46] B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel programmability and

the chapel language. Int. J. High Perform. Comput. Appl., 21(3):291–312, 2007.

24, 91

[47] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan

Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an

object-oriented approach to non-uniform cluster computing. In OOPSLA ’05:

Proceedings of the 20th annual ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications, pages 519–538, New York,

NY, USA, 2005. ACM. 26, 91

[48] J. Chen, A. Choudhary, S. Feldman, B. Hendrickson, C.R. Johnson, R. Mount,

V. Sarkar, V. White, and D. Williams. Synergistic challenges in data-intensive

183

REFERENCES

science and exascale computing. Doe ascac data subcommittee report, March

2013. 3, 14, 16, 85

[49] Guojing Cong, Gheorghe Almasi, and Vijay Saraswat. Fast PGAS connected

components algorithms. In Proceedings of the Third Conference on Partitioned

Global Address Space Programing Models, PGAS ’09, pages 13:1–13:6, New York,

NY, USA, 2009. ACM. 91

[50] Rich Cook, Evi Dube, Ian Lee, Lee Nau, Charles Shered, and Felix Wang. Survey

of novel programming models for parallelizing applications at exascale. Technical

report, Lawrence Livermore National Laboratory, 2011. 24

[51] Inc. Cray. Urika Big Data Graph Appliance. http://www.cray.com/Products/

BigData/uRiKA.aspx, April 2013. 90

[52] Raja Das, Mustafa Uysal, Joel Saltz, and Yuan-Shin Hwang. Communication

optimizations for irregular scientific computations on distributed memory archi-

tectures. J. Parallel Distrib. Comput., 22(3):462–478, September 1994. 91

[53] P. De, R. Kothari, and V. Mann. Identifying sources of operating system jitter

through fine-grained kernel instrumentation. In Proc. of the 2007 IEEE Int. Conf.

on Cluster Computing, Austin, Texas, 2007. 34, 35

[54] Pradipta De, Vijay Mann, and Umang Mittaly. Handling OS jitter on multicore

multithreaded systems. In IPDPS ’09: Proceedings of the 2009 IEEE Interna-

tional Symposium on Parallel&Distributed Processing, pages 1–12, Washington,

DC, USA, 2009. IEEE Computer Society. 36

[55] Mathieu Desnoyers and Michel R. Dagenais. The lttng tracer: A low impact

performance and behavior monitor for gnu/linux. In Proceedings of the 2006

Linux Symposium, 2006. 33, 39

[56] Mathieu Desnoyers and Michel R. Dagenais. LTTng, filling the gap between

kernel instrumentation and a widely usable kernel tracer. In Linux Foundation

Collaboration Summit 2009 (LFCS 2009), April 2009. 33

[57] Matthew DeVuyst, Rakesh Kumar, and Dean M. Tullsen. Exploiting unbalanced

thread scheduling for energy and performance on a cmp of smt processors. In

Proceedings of the 20th international conference on Parallel and distributed pro-

cessing, IPDPS’06, pages 140–140, Washington, DC, USA, 2006. 122, 124

184

http://www.cray.com/Products/BigData/uRiKA.aspx
http://www.cray.com/Products/BigData/uRiKA.aspx

REFERENCES

[58] Jack Dongarra, Pete Beckman, Terry Moore, Patrick Aerts, Giovanni Aloisio,

Jean-Claude Andre, David Barkai, Jean-Yves Berthou, Taisuke Boku, Bertrand

Braunschweig, et al. The international exascale software project roadmap. Inter-

national Journal of High Performance Computing Applications, 25(1):3–60, 2011.

6, 59

[59] Gautham K. Dorai and Donald Yeung. Transparent Threads: Resource Sharing in

SMT Processors for High Single-Thread Performance. In Proceedings of the 2002

International Conference on Parallel Architectures and Compilation Techniques,

PACT ’02, pages 30–, Washington, DC, USA, 2002. 146

[60] Tarek El-Ghazawi and Lauren Smith. Upc: unified parallel c. In Proceedings of

the 2006 ACM/IEEE conference on Supercomputing, page 27. ACM, 2006. 26,

60, 91

[61] Dawson R. Engler and M. Frans Kaashoek. Exterminate all operating system

abstractions. In Proceedings of the 5th Workshop on Hot Topics in Operating

Systems (HotOS-V), pages 78–83, Orcas Island, Washington, May 1995. IEEE

Computer Society. 35

[62] Dawson R. Engler, M. Frans Kaashoek, and James W. O’Toole, Jr. Exokernel:

an operating system architecture for application-level resource management. In

Proceedings of the 15th ACM Symposium on Operating Systems Principles (SOSP

’95), pages 251–266, Copper Mountain Resort, Colorado, December 1995. 35

[63] Dawson R. Engler, M. Frans Kaashoek, and James W. O’Toole, Jr. The operating

system kernel as a secure programmable machine. Operating Systems Review,

29(1):78–82, January 1995. 35

[64] H. Esmaeilzadeh, E. Blem, R. St.Amant, K. Sankaralingam, and D. Burger. Dark

silicon and the end of multicore scaling. In Computer Architecture (ISCA), 2011

38th Annual International Symposium on, pages 365–376, 2011. 12

[65] Stijn Eyerman and Lieven Eeckhout. Per-thread cycle accounting in smt proces-

sors. In Proceeding of the 14th international conference on Architectural support

for programming languages and operating systems, ASPLOS ’09, pages 133–144,

New York, NY, USA, 2009. 124

185

REFERENCES

[66] John Feo, David Harper, Simon Kahan, and Petr Konecny. ELDORADO. In

CF ’05: Proceedings of the 2nd conference on Computing frontiers, pages 28–34,

New York, NY, USA, 2005. ACM Press. 86, 90

[67] John Feo, Oreste Villa, Antonino Tumeo, and Simone Secchi. Irregular applica-

tions: architectures & algorithms. In Proceedings of the first workshop on

Irregular applications: architectures and algorithm, IAAA ’11, pages 1–2, New

York, NY, USA, 2011. ACM. 4

[68] Kurt B. Ferreira., Patrick G. Bridges, and Ron Brightwell. Characterizing appli-

cation sensitivity to OS interference using kernel-level noise injection. In SC ’08:

Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, pages 1–12,

Piscataway, NJ, USA, 2008. IEEE Press. 31, 34, 35, 60, 71, 75, 77, 80

[69] MPI Forum. MPI: A message passing interface standard. 8, 1994. 32

[70] G.R. Gao, T. Sterling, R. Stevens, M. Hereld, and Weirong Zhu. Parallex: A

study of a new parallel computation model. In Parallel and Distributed Processing

Symposium, 2007. IPDPS 2007. IEEE International, pages 1–6, 2007. 25, 92

[71] M. Giampapa, T. Gooding, T. Inglett, and R. W. Wisniewski. Experiences with

a lightweight supercomputer kernel: Lessons learned from blue gene’s cnk. 2010.

32, 35, 36, 46

[72] M. E. Giampapa, R. Bellofatto, M. A. Blumrich, D. Chen, M. B. Dombrowa,

A. Gara, R. A. Haring, P. Heidelberger, D. Hoenicke, G. V. Kopcsay, B. J.

Nathanson, B. D. Steinmacher-Burow, M. Ohmacht, V. Salapura, and P. Vranas.

Blue Gene/L advanced diagnostics environment. IBM Journal for Research and

Development, 2005. 60

[73] B. Gibbs, B. Atyam, F. Berres, B. Blanchard, L. Castillo, P. Coelho, N. Guerin,

L. Liu, C. Diniz Maciel, and C. Thirumalai. Advanced POWER Virtualization

on IBM eServer p5 Servers: Architecture and Performance Considerations. IBM

Redbook, 2005. 128

[74] R. Gioiosa, S. McKee, and M. Valero. Designing os for hpc applications: Schedul-

ing. Proceedings of the IEEE International Conference on Cluster Computing

(CLUSTER 2010), September 2010. 35, 36, 49

186

REFERENCES

[75] R. Gioiosa, F. Petrini, K. Davis, and F. Lebaillif-Delamare. Analysis of system

overhead on parallel computers. In The 4th IEEE Int. Symp. on Signal Process-

ing and Information Technology (ISSPIT 2004), Rome, Italy, December 2004.

http://bravo.ce.uniroma2.it/home/gioiosa/pub/isspit04.pdf. 31, 34, 35, 38, 46,

52, 60, 75, 77, 80

[76] R. Giorgi, C.A. Prete, G. Prina, and L. Ricciardi. Trace factory: generating

workloads for trace-driven simulation of shared-bus multiprocessors. Concur-

rency, IEEE, 5(4):54–68, Oct 1997. 35

[77] Roberto Giorgi. Teraflux: exploiting dataflow parallelism in teradevices. In Conf.

Computing Frontiers, pages 303–304, 2012. 27

[78] GNU. Gnu libc manual. http://www.gnu.org/software/libc/manual/html node/System-

V-contexts.html. 105

[79] David B. Golub, Daniel P. Julin, Richard F. Rashid, Richard P. Draves, Ran-

dall W. Dean, Alessandro Forin, Joseph Barrera, Hideyuki Tokuda, Gerald

Malan, and David Bohman. Microkernel operating system architecture and mach.

In In Proceedings of the USENIX Workshop on Micro-Kernels and Other Kernel

Architectures, pages 11–30, 1992. 19

[80] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos

Guestrin. PowerGraph: distributed graph-parallel computation on natural

graphs. In Proceedings of the 10th USENIX conference on Operating Systems

Design and Implementation, OSDI’12, pages 17–30, Berkeley, CA, USA, 2012.

USENIX Association. 86

[81] The graph 500 list. http://www.graph500.org, April 2013. 110

[82] Fei Guo, Yan Solihin, Li Zhao, and Ravishankar Iyer. A framework for providing

quality of service in chip multi-processors. In Proceedings of the 40th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 40, pages

343–355, Washington, DC, USA, 2007. 124

[83] Tim Harris, James R. Larus, and Ravi Rajwar. Transactional Memory, 2nd

edition. Synthesis Lectures on Computer Architecture. Morgan & Claypool Pub-

lishers, 2010. 60

187

http://www.graph500.org

REFERENCES

[84] Bingsheng He, Naga K. Govindaraju, Qiong Luo, and Burton Smith. Efficient

gather and scatter operations on graphics processors. In SC ’07: ACM/IEEE

conference on Supercomputing, pages 46:1–46:12, 2007. 158

[85] John L Hennessy and David A Patterson. Computer architecture: a quantitative

approach. Morgan Kaufmann, 2011. 16

[86] John L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH Comput.

Archit. News, 34(4):1–17, September 2006. 15, 123, 144

[87] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural sup-

port for lock-free data structures. SIGARCH Comput. Archit. News, 21(2):289–

300, May 1993. 60

[88] W. Daniel Hillis and Guy L. Steele, Jr. Data parallel algorithms. Commun. ACM,

29(12):1170–1183, December 1986. 163

[89] T. Hoefler, T. Schneider, and A. Lumsdaine. Characterizing the Influence of

System Noise on Large-Scale Applications by Simulation. In International Con-

ference for High Performance Computing, Networking, Storage and Analysis

(SC’10), Nov. 2010. 5

[90] Jerry Huck and Jim Hays. Architectural support for translation table manage-

ment in large address space machines. In Proceedings of the 20th annual interna-

tional symposium on computer architecture, ISCA ’93, pages 39–50, New York,

NY, USA, 1993. ACM. 62

[91] IBM. PowerPC Architecture book: Book III: PowerPC Operating Environment

Architecture. 128

[92] Ravi Iyer, Li Zhao, Fei Guo, Ramesh Illikkal, Srihari Makineni, Don Newell,

Yan Solihin, Lisa Hsu, and Steve Reinhardt. Qos policies and architecture for

cache/memory in cmp platforms. SIGMETRICS Perform. Eval. Rev., 35:25–36,

June 2007. 124

[93] Guohua Jin, J. Mellor-Crummey, L. Adhianto, W.N. Scherer, and Chaoran Yang.

Implementation and Performance Evaluation of the HPC Challenge Benchmarks

in Coarray Fortran 2.0. In Parallel Distributed Processing Symposium (IPDPS),

2011 IEEE International, pages 1089 –1100, May 2011. 91

188

REFERENCES

[94] H. Jin and R.F. Van der Wijngaart. Performance characteristics of the multi-zone

nas parallel benchmarks. J. Parallel Distrib. Comput., 66(5):674–685, 2006. 145

[95] Terry Jones, Shawn Dawson, Rob Neel, William Tuel, Larry Brenner, Jeffrey Fier,

Robert Blackmore, Patrick Caffrey, Brian Maskell, Paul Tomlinson, and Mark

Roberts. Improving the scalability of parallel jobs by adding parallel awareness

to the operating system. In SC ’03: Proceedings of the 2003 ACM/IEEE Confer-

ence on Supercomputing, page 10, Washington, DC, USA, 2003. IEEE Computer

Society. 35, 36

[96] Laxmikant V Kale and Sanjeev Krishnan. CHARM++: a portable concurrent

object oriented system based on C++, volume 28. ACM, 1993. 24, 60, 92

[97] R. Kalla, B. Sinharoy, and J.M. Tendler. Ibm power5 chip: A dual-core multi-

threaded processor. IEEE Micro, 24:40–47, 2004. 122, 139

[98] Gokul B. Kandiraju and Anand Sivasubramaniam. Characterizing the d-tlb be-

havior of spec cpu2000 benchmarks. In In Proceedings of the 2002 ACM SIG-

METRICS International Conference on Measurement and Modeling of Computer

Systems, pages 129–139. ACM Press, 2002. 62

[99] Henry Kasim, Verdi March, Rita Zhang, and Simon See. Survey on parallel

programming model. In Proceedings of the IFIP International Conference on

Network and Parallel Computing, NPC ’08, pages 266–275, Berlin, Heidelberg,

2008. Springer-Verlag. 22

[100] Darren J. Kerbyson, Philip W. Jones, Darren J. Kerbyson, and Philip W. Jones.

A performance model of the parallel ocean program. International Journal of

High Performance Computing Applications, 19, 2005. 32, 59

[101] Khronos Group. The OpenCL Specification, September 2010. 25

[102] Rob Knauerhase, Romain Cledat, and Justin Teller. For extreme parallelism,

your os is sooooo last-millennium. In Proceedings of the 4th USENIX conference

on Hot Topics in Parallelism, HotPar’12, pages 3–3, Berkeley, CA, USA, 2012.

USENIX Association. 4

[103] Jesus Labarta. Starss: A programming model for the multicore era. In PRACE

WorkshopNew Languages & Future Technology Prototypes at the Leibniz Super-

computing Centre in Garching (Germany), 2010. 25

189

REFERENCES

[104] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges, A. Gocke,

S. Jaconette, M. Levenhagen, and R. Brightwell. Palacios and kitten: New high

performance operating systems for scalable virtualized and native supercomput-

ing. Proceedings of the 24th IEEE International Parallel and Distributed Process-

ing Symposium (IPDPS 2010), April 2010. 32, 33, 60

[105] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen, B. J.

Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. Vaden. IBM POWER6

microarchitecture. IBM J. Res. Dev., 51:639–662, November 2007. 122, 125, 126,

140

[106] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. Mediabench:

a tool for evaluating and synthesizing multimedia and communicatons systems.

In Proceedings of the 30th annual ACM/IEEE international symposium on Mi-

croarchitecture, MICRO 30, pages 330–335, Washington, DC, USA, 1997. IEEE

Computer Society. 15

[107] Kyong-Ha Lee, Yoon-Joon Lee, Hyunsik Choi, Yon Dohn Chung, and Bongki

Moon. Parallel data processing with MapReduce: a survey. SIGMOD Rec.,

40(4):11–20, January 2012. 93

[108] Shin-Jae Lee, Minsoo Jeon, Dongseung Kim, and Andrew Sohn. Partitioned

parallel radix sort. J. Parallel Distrib. Comput., 62:656–668, April 2002. 158

[109] Jochen Liedtke. Improving IPC by kernel design. In SOSP ’93: Proceedings of

the 14th ACM Symposium on Operating Systems Principles, pages 175–188, New

York, NY, USA, 1993. ACM. 35

[110] LLNL. Sequoia benchmarks. https://asc.llnl.gov/sequoia/benchmarks/. 18, 32,

34, 43, 59, 61

[111] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola,

and Joseph M. Hellerstein. Distributed GraphLab: a framework for machine

learning and data mining in the cloud. Proc. VLDB Endow., 5(8):716–727, April

2012. 86, 93

[112] Carlos Luque, Miquel Moreto, Francisco J. Cazorla, Roberto Gioiosa, Alper

Buyuktosunoglu, and Mateo Valero. Cpu accounting in cmp processors. IEEE

Comput. Archit. Lett., 8:17–20, January 2009. 124

190

REFERENCES

[113] Carlos Luque, Miquel Moreto, Francisco J. Cazorla, Roberto Gioiosa, Alper

Buyuktosunoglu, and Mateo Valero. Itca: Inter-task conflict-aware cpu account-

ing for cmps. In Proceedings of the 2009 International Conference on Parallel

Architectures and Compilation Techniques, PACT ’09, pages 203–213, Washing-

ton, DC, USA, 2009. 124

[114] Zhiqiang Ma and Lin Gu. The Limitation of MapReduce: A Probing Case and

a Lightweight Solution. In CLOUD COMPUTING 2010: the 1st Intl. Conf. on

Cloud Computing, GRIDs, and Virtualization, 2010. 93

[115] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale

graph processing. In SIGMOD ’10: ACM International Conference on Manage-

ment of data, pages 135–146, 2010. 93

[116] Collin McCurdy, Alan L. Cox, and Jeffrey Vetter. Investigating the tlb behavior

of high-end scientific applications on commodity microprocessors. In Proceedings

of the ISPASS 2008 - IEEE International Symposium on Performance Analy-

sis of Systems and software, pages 95–104, Washington, DC, USA, 2008. IEEE

Computer Society. 62

[117] Duane Merrill and Andrew Grimshaw. High performance and scalable radix

sorting: A case study of implementing dynamic parallelism for GPU computing.

Parallel Processing Letters, 21(02):245–272, 2011. 158, 169

[118] Ingo Molnr. [patch] Modular Scheduler Core and Completely Fair Scheduler

[CFS] linux-kernel mailing list., 2007. http://lwn.net/Articles/230501/. 48

[119] José E. Moreira, Michael Brutman, nos José Casta Thomas Engelsiepen, Mark

Giampapa, Tom Gooding, Rober Haskin, Todd Inglett, Derek Lieber, Pat Mc-

Carthy, Mike Mundy, Jeff Parker, and Brian Wallenfelt. Designing a highly-

scalable operating system: the Blue Gene/L story. In SC ’06: Proceedings of

the 2006 ACM/IEEE Conference on Supercomputing, page 118, New York, NY,

USA, 2006. ACM. 35, 36, 60

[120] Miquel Moreto, Francisco J. Cazorla, Alex Ramirez, Rizos Sakellariou, and Mateo

Valero. FlexDCP: a QoS framework for CMP architectures. SIGOPS Oper. Syst.

Rev., 43:86–96, April 2009. 125

191

REFERENCES

[121] MPI forum. The Message Passing Interface (MPI) standard. http://www.mpi-

forum.org/. 24, 32

[122] A. Munir, S. Ranka, and A. Gordon-Ross. High-performance energy-efficient

multicore embedded computing. Parallel and Distributed Systems, IEEE Trans-

actions on, 23(4):684 –700, april 2012. 170

[123] Jens Muttersbach, Thomas Villiger, and Wolfgang Fichtner. Practical design

of globally-asynchronous locally-synchronous systems. In Advanced Research in

Asynchronous Circuits and Systems, 2000.(ASYNC 2000) Proceedings. Sixth In-

ternational Symposium on, pages 52–59. IEEE, 2000. 26

[124] NASA. NAS parallel benchmarks. http://www.nas.nasa.gov/Resources /Soft-

ware/npb.html. 32

[125] Aroon Nataraj and Matthew Sottile. The ghost in the machine: Observing the

effects of kernel operation on parallel application performance. In SC’7: Proceed-

ings of the 2007 ACM/IEEE Conference on Supercomputing, 2007. 34

[126] Jacob Nelson, Brandon Myers, A. H. Hunter, Preston Briggs, Luis Ceze, Carl

Ebeling, Dan Grossman, Simon Kahan, and Mark Oskin. Crunching large graphs

with commodity processors. In Proceedings of the 3rd USENIX conference on Hot

topic in parallelism, HotPar’11, pages 10–10, Berkeley, CA, USA, 2011. USENIX

Association. 92

[127] Kyle J. Nesbit, James Laudon, and James E. Smith. Virtual private caches. In

Proceedings of the 34th annual international symposium on Computer architec-

ture, ISCA ’07, pages 57–68, New York, NY, USA, 2007. 124

[128] J. Nieplocha, V. Tipparaju, M. Krishnan, and D. K. Panda. High Performance

Remote Memory Access Communication: The ARMCI Approach. Int. J. High

Perform. Comput. Appl., 20(2):233–253, 2006. 60, 91

[129] Jarek Nieplocha, Bruce Palmer, Vinod Tipparaju, Manojkumar Krishnan, Harold

Trease, and Edoardo Aprà. Advances, applications and performance of the global

arrays shared memory programming toolkit. Int. J. High Perform. Comput.

Appl., 20(2):203–231, May 2006. 24

[130] Jarek Nieplocha, Bruce Palmer, Vinod Tipparaju, Manojkumar Krishnan, Harold

Trease, and Edoardo Aprà. Advances, Applications and Performance of the

192

REFERENCES

Global Arrays Shared Memory Programming Toolkit. Int. J. High Perform.

Comput. Appl., 20(2):203–231, 2006. 91

[131] Robert W Numrich and John Reid. Co-array fortran for parallel programming.

In ACM Sigplan Fortran Forum, volume 17, pages 1–31. ACM, 1998. 24

[132] Robert W. Numrich and John Reid. Co-arrays in the next Fortran Standard.

SIGPLAN Fortran Forum, 24(2):4–17, August 2005. 91

[133] NVIDIA. NVIDIA CUDA Programming Guide 2.0. 2008. 23

[134] OpenMP Architecture Review Board. The OpenMP specification for parallel

programming. Available at http://www.openmp.org. 25, 32, 60

[135] Yoonho Park, Eric Van Hensbergen, Marius Hillenbrand, Todd Inglett, Bryan

Rosenburg, Kyung Dong Ryu, and Robert Wisniewski. Poster: Fusedos: A

hybrid approach to exascale operating systems. In Proceedings of the 2012 SC

Companion: High Performance Computing, Networking Storage and Analysis,

SCC ’12, pages 1417–, Washington, DC, USA, 2012. IEEE Computer Society. 5

[136] Krzysztof Parzyszek, Jarek Nieplocha, and Ricky A Kendall. A generalized

portable shmem library for high performance computing. Technical report, Ames

Lab., Ames, IA (US), 2000. 26

[137] F. Petrini, D. Kerbyson, and S. Pakin. The case of the missing supercomputer

performance: Achieving optimal performance on the 8,192 processors of ASCI Q.

In ACM/IEEE SC2003, Phoenix, Arizona, November 10–16, 2003. 4, 31, 34, 35,

46, 60, 75, 77, 80

[138] Vincent Pillet, Vincent Pillet, Jess Labarta, Toni Cortes, Toni Cortes, Sergi

Girona, Sergi Girona, and Departament D’arquitectura De Computadors. Par-

aver: A tool to visualize and analyze parallel code. Technical report, In WoTUG-

18, 1995. 33, 38, 40

[139] Nauman Rafique, Won-Taek Lim, and Mithuna Thottethodi. Architectural sup-

port for operating system-driven cmp cache management. In Proceedings of

the 15th international conference on Parallel architectures and compilation tech-

niques, PACT ’06, pages 2–12, New York, NY, USA, 2006. 124

[140] Rolf Riesen, Ron Brightwell, Patrick G. Bridges, Trammell Hudson, Arthur B.

Maccabe, Patrick M. Widener, and Kurt Ferreira. Designing and implementing

193

REFERENCES

lightweight kernels for capability computing. Concurr. Comput.: Pract. Exper.,

21(6):793–817, 2009. 4, 32, 35, 60

[141] Mendel Rosenblum, Edouard Bugnion, Stephen Alan Herrod, Emmett Witchel,

and Anoop Gupta. The impact of architectural trends on operating system perfor-

mance. In In Proceedings of the Fifteenth ACM Symposium on Operating Systems

Principles, pages 285–298, 1995. 62

[142] Vivek Sarkar and John Hennessy. Partitioning parallel programs for macro-

dataflow. In Proceedings of the 1986 ACM Conference on LISP and Functional

Programming, LFP ’86, pages 202–211, New York, NY, USA, 1986. ACM. 22

[143] Nadathur Satish, Mark Harris, and Michael Garland. Designing efficient sorting

algorithms for manycore gpus. In IPDPS ’09: IEEE International Symposium

on Parallel and Distributed Processing, pages 1–10, 2009. 158

[144] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D. Nguyen, Vic-

tor W. Lee, Daehyun Kim, and Pradeep Dubey. Fast sort on cpus and gpus: a

case for bandwidth oblivious simd sort. In SIGMOD ’10: ACM SIGMOD In-

ternational conference on Management of data, pages 351–362, 2010. 152, 158,

170

[145] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D. Nguyen, Vic-

tor W. Lee, Daehyun Kim, and Pradeep Dubey. Fast Sort on CPUs, GPUs and

Intel MIC Architectures. Technical report, Intel Labs, 2010. 158

[146] T. Shanley. InfiniBand Network Architecture. Mindshare, Inc., 2002. 49

[147] Nir Shavit and Dan Touitou. Software transactional memory. Distributed Com-

puting, 10(2):99–116, 1997. 60

[148] Edi Shmueli, George Almasi, José Brunheroto, nos José Casta Gabor Dozsa,

Sameer Kumar, and Derek Lieber. Evaluating the effect of replacing CNK with

Linux on the compute-nodes of Blue Gene/L. In ICS ’08: Proceedings of the 22nd

Annual International Conference on Supercomputing, pages 165–174, New York,

NY, USA, 2008. ACM. 5, 31, 36, 60, 63, 65, 74, 77

[149] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner.

POWER5 system microarchitecture. IBM Journal of Research and Development,

49(4/5):505–521, 2005. 122, 125, 126, 134

194

REFERENCES

[150] Allan Snavely, Larry Carter, Jay Boisseau, Amit Majumdar, Kang Su Gatlin,

Nick Mitchell, John Feo, and Brian Koblenz. Multi-processor performance on the

Tera MTA. In Proceedings of the 1998 ACM/IEEE conference on Supercomputing

(CDROM), Supercomputing ’98, pages 1–8, Washington, DC, USA, 1998. IEEE

Computer Society. 90

[151] Allan Snavely, Dean M. Tullsen, and Geoff Voelker. Symbiotic jobscheduling with

priorities for a simultaneous multithreading processor. In Proceedings of the 2002

ACM SIGMETRICS international conference on Measurement and modeling of

computer systems, SIGMETRICS ’02, pages 66–76, New York, NY, USA, 2002.

124, 129

[152] Andrew Sohn and Yuetsu Kodama. Load balanced parallel radix sort. In ICS

’98: international conference on Supercomputing, pages 305–312, 1998. 158

[153] Marco Solinas, Rosa M. Badia, Franois Bodin, Albert Cohen, Paraskevas Evripi-

dou, Paolo Faraboschi, Bernhard Fechner, Guang R. Gao, Arne Garbade, Sylvain

Girbal, Daniel Goodman, Behran Khan, Souad Koliai, Feng Li, Mikel Lujn, Lau-

rent Morin, Avi Mendelson, Nacho Navarro, Antoniu Pop, Pedro Trancoso, Theo

Ungerer, Mateo Valero, Sebastian Weis, Ian Watson, Stphane Zuckermann, and

Roberto Giorgi. The teraflux project: Exploiting the dataflow paradigm in next

generation teradevices. In Proceedings of the 2013 Euromicro Conference on Dig-

ital System Design, DSD ’13, pages 272–279, Washington, DC, USA, 2013. IEEE

Computer Society. 4

[154] M. Sottile and R. Minnich. Analysis of microbenchmarks for performance tun-

ing of clusters. In CLUSTER ’04: Proceedings of the 2004 IEEE International

Conference on Cluster Computing, pages 371–377, Washington, DC, USA, 2004.

IEEE Computer Society. 7, 38, 56

[155] P. Terry, A. Shan, and P. Huttunen. Improving application performance on

HPC systems with process synchronization. Linux Journal, November 2004.

http://www.linuxjournal.com/article/7690. 35

[156] D. Tsafrir, Y. Etsion, D.G. Feitelson, and S. Kirkpatrick. System noise, OS

clock ticks, and fine-grained parallel applications. In ICS ’05: Proc. of the 19th

Annual International Conference on Supercomputing, pages 303–312, New York,

NY, USA, 2005. ACM Press. 31, 34, 35, 38, 52

195

REFERENCES

[157] Nathan Tuck and Dean M. Tullsen. Initial observations of the simultaneous

multithreading pentium 4 processor. In Proceedings of the 12th International

Conference on Parallel Architectures and Compilation Techniques, PACT ’03,

pages 26–, Washington, DC, USA, 2003. 124

[158] Dean M. Tullsen and Jeffery A. Brown. Handling long-latency loads in a simul-

taneous multithreading processor. In Proceedings of the 34th annual ACM/IEEE

international symposium on Microarchitecture, MICRO 34, pages 318–327, Wash-

ington, DC, USA, 2001. 124

[159] Antonino Tumeo, Simone Secchi, and Oreste Villa. Designing Next-Generation

massively multithreaded architectures for irregular applications. Computer,

45(8):53–61, August 2012. 4

[160] Richard Uhlig, David Nagle, Tim Stanley, Trevor Mudge, Stuart Sechrest, and

Richard Brown. Design tradeoffs for software-managed tlbs. ACM Trans. Com-

put. Syst., 12:175–205, August 1994. 62

[161] UPC Consortium. UPC Language Specifications v. 1.2. www.gwu.edu/~upc/

docs/upc_specs_1.2.pdf, May 2005. 60

[162] Javier Vera, Francisco J. Cazorla, Alex Pajuelo, Oliverio J. Santana, Enrique

Fern, and Mateo Valero. Measuring the performance of multithreaded processors.

In 2007 SPEC Benchmark Workshop, Austin, TX, USA, 2007. 129, 131

[163] Javier Vera, Francisco J. Cazorla, Alex Pajuelo, Oliverio J. Santana, Enrique Fer-

nandez, and Mateo Valero. Fame: Fairly measuring multithreaded architectures.

In Proceedings of the 16th International Conference on Parallel Architecture and

Compilation Techniques, PACT ’07, pages 305–316, Washington, DC, USA, 2007.

129, 131

[164] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik

Schauser. Active messages: a mechanism for integrated communication and com-

putation. In Proceedings of the 19th annual international symposium on Com-

puter architecture, ISCA ’92, pages 256–266, New York, NY, USA, 1992. ACM.

23

[165] Jan Wassenberg and Peter Sanders. Engineering a multi-core radix sort. In

EuroPar ’11: international conference on Parallel processing - Part II, pages

160–169, 2011. 159

196

www.gwu.edu/~upc/docs/upc_specs_1.2.pdf
www.gwu.edu/~upc/docs/upc_specs_1.2.pdf

REFERENCES

[166] Jeremiah James Willcock, Torsten Hoefler, Nicholas Gerard Edmonds, and An-

drew Lumsdaine. Active pebbles: parallel programming for data-driven applica-

tions. In Proceedings of the international conference on Supercomputing, ICS ’11,

pages 235–244, New York, NY, USA, 2011. ACM. 23, 92

[167] Shixiong Xu and Li Chen. Shared work list: hacking amorphous data parallelism

in UPC. In Proceedings of the 2012 International Workshop on Programming

Models and Applications for Multicores and Manycores, PMAM ’12, pages 124–

133, New York, NY, USA, 2012. ACM. 91

[168] K. Yelick, P. Hilfinger, S. Graham, D. Bonachea, J. Su, A. Kamil, K. Datta,

P. Colella, and T. Wen. Parallel Languages and Compilers: Perspective from

the Titanium Experience. Int. J. High Perform. Comput. Appl., 21(3):266–290,

August 2007. 91

[169] Katherine A. Yelick. Programming models for irregular applications. SIGPLAN

Not., 28:28–31, January 1993. 86

[170] Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit,

Arvind Krishnamurthy, Paul Hilfinger, Susan Graham, David Gay, Phil Colella,

et al. Titanium: A high-performance java dialect. Concurrency Practice and

Experience, 10(11-13):825–836, 1998. 26

197

	Contents
	List of Figures
	I Introduction and Backround
	1 Introduction
	1.1 Challenges of Next-generation High-performance Large-scale systems
	1.2 Proposed approach and methodologies
	1.3 Thesis contributions
	1.4 Thesis structure

	2 Background: current trends in High Performance Computing
	2.1 Technology trends
	2.2 Scientific and large-scale applications
	2.2.1 Big data and exascale computing
	2.2.2 Data-intensive and Irregular Applications

	2.3 System software for large-scale systems
	2.3.1 Operating Systems
	2.3.2 Runtime Systems and Parallel Programming Models
	2.3.3 Trends in System Software

	II Operating System Scalability
	3 General Purpose Operating Systems
	3.1 Summary
	3.2 Experimental environment
	3.3 Related Work
	3.4 Measuring OS noise
	3.4.1 LTTng-noise
	3.4.2 Tracing scalability
	3.4.3 Analyzing FTQ with LTTng-noise

	3.5 Experimental Results
	3.5.1 Noise breakdown
	3.5.2 Page faults
	3.5.3 Scheduling
	3.5.4 Process preemption and i/o
	3.5.5 Periodic activities

	3.6 Noise disambiguation
	3.6.1 Disambiguation of qualitative similar activities
	3.6.2 OS noise composition
	3.6.3 Conclusions

	4 Light-weight Operating Systems
	4.1 Summary
	4.2 Experimental environment
	4.3 Related Work
	4.4 Memory management in general purpose OS and light-weight kernels
	4.5 Methodology
	4.5.1 Adding support for TLB misses to CNK
	4.5.2 Tracing TLB misses
	4.5.3 TLB noise injection

	4.6 Experimental results
	4.6.1 TLB pressure
	4.6.2 Analysis of TLB overhead at scale
	4.6.3 TLB noise injection

	4.7 Conclusions

	III Runtime System Scalability
	5 Scalable Runtimes for Distributed Memory Systems
	5.1 Summary
	5.2 Experimental environment
	5.3 Related Work
	5.4 Programming model and API
	5.4.1 PGAS communication model
	5.4.2 Loop parallelism program structure model
	5.4.3 Explicit data and code locality management
	5.4.4 Blocking and Non-blocking semantics
	5.4.5 Explicit synchronization
	5.4.6 Example

	5.5 Runtime architecture
	5.5.1 Overview
	5.5.2 Communication
	5.5.3 Aggregation
	5.5.4 Multithreading

	5.6 Experimental Evaluation
	5.6.1 Micro-benchmarks
	5.6.2 BFS
	5.6.3 Graph Random Walk
	5.6.4 Concurrent Hash Map Access

	5.7 Conclusions

	IV User-level Scalability Exploiting Hardware Features
	6 Exploiting Hardware Thread Priorities on Multi-threaded Architectures
	6.1 Summary
	6.2 Experimental environment
	6.3 Related Work
	6.4 POWER5 and POWER6 Microarchitecture
	6.4.1 POWER5 and POWER6 Core Microarchitecture
	6.4.2 Simultaneous Multi-Threading
	6.4.3 Software-controlled Hardware Thread Priorities

	6.5 Experimental Setup
	6.5.1 Experimental environment
	6.5.2 The Linux kernel modification
	6.5.3 Running the experiments
	6.5.4 Micro-benchmarks description
	6.5.4.1 Integer micro-benchmarks
	6.5.4.2 Floating point micro-benchmarks
	6.5.4.3 Memory micro-benchmarks

	6.6 Analysis of results
	6.6.1 Default Priorities
	6.6.2 Malleability
	6.6.3 Higher Priority
	6.6.4 Lower Priority
	6.6.5 Maximum priority difference
	6.6.6 Malleability of SPEC CPU2006

	6.7 Use cases
	6.7.1 Use case A - Load Balancing
	6.7.2 Use case B - Transparent threads

	6.8 Conclusions

	7 Exploiting cache locality and network-on-chip to optimize sorting on a Many-core architecture
	7.1 Summary
	7.2 Experimental environment
	7.3 Tilera many-core processor
	7.3.1 Processor architecture
	7.3.2 Architectural characterization

	7.4 Background
	7.4.1 Radix sort
	7.4.2 Related work

	7.5 Parallel Radix Sort
	7.5.1 Local histogram
	7.5.2 Offset computation
	7.5.3 Keys distribution

	7.6 Optimizations
	7.6.1 Local Histogram
	7.6.2 Offset computation
	7.6.3 Keys Distribution

	7.7 Experimental evaluation
	7.7.1 Experimental setup
	7.7.2 Optimization effects
	7.7.3 Scaling
	7.7.4 Comparison

	7.8 Conclusions

	8 Conclusions
	Pubblications
	References

