525 research outputs found

    Detecció automàtica i robusta de Bursts en EEG de nounats amb HIE. Enfocament tensorial

    Get PDF
    [ANGLÈS] Hypoxic-Ischemic Encephalopathy (HIE) is an important cause of brain injury in the newborn, and can result in long-term devastating consequences. Burst-suppression pattern is one of several indicators of severe pathology in the EEG signal that may occur after brain damage caused by e.g. asphyxia around the time of birth. The goal of this thesis is to design a robust method to detect burst patterns automatically regardless of the physiologic and extra-physiologic artifacts that may occur at any time. At first, a pre-detector has been designed to obtain potential burst candidates from different patients. Then, a post-classification has been implemented, applying high dimensional feature extraction methods, to get the real burst patterns from these patients with a high sensitivity.[CASTELLÀ] La Hipoxia-Isquemia Encefálica (HIE) es una causa importante de lesión cerebral en los recién nacidos, pudiendo acarrear devastadoras consecuencias a largo plazo. El patrón Burst-Suppression es uno de los indicadores dados en patologías severas en señales EEG los cuales ocurren después de una lesión cerebral causada, por ejemplo, por una asfixia poco después del nacimiento. El objetivo de esta tésis es diseñar un método robusto que detecte automáticamente patrones Burst, prescindiendo de los artefactos fisiológicos y extra-fisiológicos que puedan aparecer en cualquier momento. Primeramente, se ha diseñado un pre-detector para obtener los candidatos potenciales a Burst provenientes de diferentes pacientes. Seguidamente, se ha implementado una post-clasificación, aplicando métodos de extracción de características para altas dimensiones, para obtener patrones reales de Burst con una alta sensitividad.[CATALÀ] La Hipòxia-Isquèmia Encefàlica (HIE) és una causa important de lesió cerebral en nounats, que poden comportar devastadores conseqüències a llarg termini. El patró Burst-Suppression és un dels indicadors donats en patologies severes en els senyals EEG els quals ocorren després d'una lesió cerebral causada, per exemple, per una asfixia poc després del naixement. L'objectiu d'aquesta tesis és dissenyar un mètode robust que detecti automàticament patrons Burst, prescindint dels artefactes fisiològics i extra-fisiològics que poden aparèixer en qualsevol moment. Primerament, s'ha dissenyat un pre-detector per obtenir els candidats potencials a Burst provinents de diferents pacients. Seguidament, s'ha implementat una post-classificació, aplicant mètodes d'extracció de característiques per a altes dimensions, per tal d'obtenir patrons reals de Burst amb una alta sensitivitat

    EEG signal processing methods for BCI applications

    Get PDF
    Abstract Brain-computer interface (BCI) is a communication system that translates brain activity into commands for a computer or other digital device. The majority of BCI systems work by reading and interpreting cortically-evoked electro-potentials ("brain waves") via an electroencephalogram (EEG) data. The EEG data is inherently complex. The signals are non-linear, non-stationary and therefore difficult to analyze. After acquisition, pre-processing, feature extraction and dimensionality reduction is performed, after witch machine learning algorithms can be applied to classify the signals into classes, where each class corresponds to a specific intention of the user. BCI systems require correct classification of signals interpreted from the brain for useful operation. This paper reviews our proposed methods for EEG signal processing and classification, which include Wave Atom transform, use of nonlinear operators, class-adaptive denoising using Shrinkage Functions and real time training of Voted Perceptron artificial neural networks

    EEG signal processing methods for BCI applications

    Get PDF
    Abstract Brain-computer interface (BCI) is a communication system that translates brain activity into commands for a computer or other digital device. The majority of BCI systems work by reading and interpreting cortically-evoked electro-potentials ("brain waves") via an electroencephalogram (EEG) data. The EEG data is inherently complex. The signals are non-linear, non-stationary and therefore difficult to analyze. After acquisition, pre-processing, feature extraction and dimensionality reduction is performed, after witch machine learning algorithms can be applied to classify the signals into classes, where each class corresponds to a specific intention of the user. BCI systems require correct classification of signals interpreted from the brain for useful operation. This paper reviews our proposed methods for EEG signal processing and classification, which include Wave Atom transform, use of nonlinear operators, class-adaptive denoising using Shrinkage Functions and real time training of Voted Perceptron artificial neural networks

    Topography-specific spindle frequency changes in obstructive sleep apnea

    Get PDF
    Background: Sleep spindles, as detected on scalp electroencephalography (EEG), are considered to be markers of thalamo-cortical network integrity. Since obstructive sleep apnea (OSA) is a known cause of brain dysfunction, the aim of this study was to investigate sleep spindle frequency distribution in OSA. Seven non-OSA subjects and 21 patients with OSA (11 mild and 10 moderate) were studied. A matching pursuit procedure was used for automatic detection of fast (≥ 13Hz) and slow (< 13Hz) spindles obtained from 30min samples of NREM sleep stage 2 taken from initial, middle and final night thirds (sections I, II and III) of frontal, central and parietal scalp regions. Results: Compared to non-OSA subjects, Moderate OSA patients had higher central and parietal slow spindle percentage (SSP) in all night sections studied, and higher frontal SSP in sections II and III. As the night progressed, there was a reduction in central and parietal SSP, while frontal SSP remained high. Frontal slow spindle percentage in night section III predicted OSA with good accuracy, with OSA likelihood increased by 12.1% for every SSP unit increase (OR 1.121, 95% CI 1.013 - 1.239, p=0.027). Conclusions: These results are consistent with diffuse, predominantly frontal thalamo-cortical dysfunction during sleep in OSA, as more posterior brain regions appear to maintain some physiological spindle frequency modulation across the night. Displaying changes in an opposite direction to what is expected from the aging process itself, spindle frequency appears to be informative in OSA even with small sample sizes, and to represent a sensitive electrophysiological marker of brain dysfunction in OSA

    Improving time–frequency domain sleep EEG classification via singular spectrum analysis

    Get PDF
    Background: Manual sleep scoring is deemed to be tedious and time consuming. Even among automatic methods such as Time-Frequency (T-F) representations, there is still room for more improvement. New method: To optimise the efficiency of T-F domain analysis of sleep electroencephalography (EEG) a novel approach for automatically identifying the brain waves, sleep spindles, and K-complexes from the sleep EEG signals is proposed. The proposed method is based on singular spectrum analysis (SSA). The single-channel EEG signal (C3-A2) is initially decomposed and then the desired components are automatically separated. In addition, the noise is removed to enhance the discrimination ability of features. The obtained T-F features after preprocessing stage are classified using a multi-class support vector machines (SVM) and used for the identification of four sleep stages over three sleep types. Furthermore, to emphasize on the usefulness of the proposed method the automatically-determined spindles are parameterised to discriminate three sleep types. Result: The four sleep stages are classified through SVM twice: with and without preprocessing stage. The mean accuracy, sensitivity, and specificity for before the preprocessing stage are: 71.5 ± 0.11%, 56.1 ± 0.09% and 86.8 ± 0.04% respectively. However, these values increase significantly to 83.6 ± 0.07%, 70.6 ± 0.14% and 90.8 ± 0.03% after applying SSA. Comparison with existing method: The new T-F representation has been compared with the existing benchmarks. Our results prove that, the proposed method well outperforms the previous methods in terms of identification and representation of sleep stages. Conclusion: Experimental results confirm the performance improvement in terms of classification rate and also representative T-F domain

    Topography-Time-Frequency Atomic Decomposition for Event-Related M/EEG Signals.

    Get PDF
    International audienceWe present a method for decomposing MEG or EEG data (channel x time x trials) into a set of atoms with fixed spatial and time-frequency signatures. The spatial part (i.e., topography) is obtained by independent component analysis (ICA). We propose a frequency prewhitening procedure as a pre-processing step before ICA, which gives access to high frequency activity. The time-frequency part is obtained with a novel iterative procedure, which is an extension of the matching pursuit procedure. The method is evaluated on a simulated dataset presenting both low-frequency evoked potentials and high-frequency oscillatory activity. We show that the method is able to recover well both low-frequency and high-frequency simulated activities. There was however cross-talk across some recovered components due to the correlation introduced in the simulation

    Characterization of early and mature electrophysiological biomarkers of patients with Parkinson’s disease

    Get PDF

    Classification of electroencephalography for pain and pharmaco-EEG studies

    Get PDF

    Recent Applications in Graph Theory

    Get PDF
    Graph theory, being a rigorously investigated field of combinatorial mathematics, is adopted by a wide variety of disciplines addressing a plethora of real-world applications. Advances in graph algorithms and software implementations have made graph theory accessible to a larger community of interest. Ever-increasing interest in machine learning and model deployments for network data demands a coherent selection of topics rewarding a fresh, up-to-date summary of the theory and fruitful applications to probe further. This volume is a small yet unique contribution to graph theory applications and modeling with graphs. The subjects discussed include information hiding using graphs, dynamic graph-based systems to model and control cyber-physical systems, graph reconstruction, average distance neighborhood graphs, and pure and mixed-integer linear programming formulations to cluster networks

    Brain-Computer Interface

    Get PDF
    Brain-computer interfacing (BCI) with the use of advanced artificial intelligence identification is a rapidly growing new technology that allows a silently commanding brain to manipulate devices ranging from smartphones to advanced articulated robotic arms when physical control is not possible. BCI can be viewed as a collaboration between the brain and a device via the direct passage of electrical signals from neurons to an external system. The book provides a comprehensive summary of conventional and novel methods for processing brain signals. The chapters cover a range of topics including noninvasive and invasive signal acquisition, signal processing methods, deep learning approaches, and implementation of BCI in experimental problems
    • …
    corecore