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Preface

The research providing the foundation of this PhD dissertation has been carried out at the
Department of Biomedical Engineering at the Technical University of Denmark in close
cooperation with the Danish Center for Sleep Medicine at the Department of Clinical Neuro-
physiology at Rigshospitalet, Glostrup and the pharmaceutical company H. Lundbeck A/S.
The research constitutes a partial fulfillment of the requirements for the degree of Doctor of
Philosophy in Engineering.

The current PhD dissertation presents the primary research carried out over a period starting
from September 2011 to May 2015, where other activities such as teaching, taking courses,
participating in conferences, supervising students through Bachelor’s and Master’s projects
and staying as a visiting student researcher at Stanford Center for Sleep Sciences and Medicine
also have been completed.

The PhD dissertation consists of current summary report, four journal papers, two patent ap-
plications and two conference papers. All papers are accepted, and are included as appendixes
to this thesis.

Julie Anja Engelhard Christensen
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Abstract

Neurodegenerative diseases (NDD) are highly disabling and severe diseases, and become more
common with increasing age. As no cure exist and as the aging population increases, NDDs
are considered to be one of the most serious health problems facing modern society. The
most elusive goal in the field of NDD is to find a neuroprotective agent, and if such treatment
becomes available, it is essential that the patients can be identified as early as possible.
Parkinson’s disease (PD) is the second most common NDD, and early disease identification
is an active field of research as no reliable markers yet exist [83]. Sleep disturbances are
common non-motor symptoms of PD, and strong findings associating a specific sleep disorder
("iRBD") to Parkinsonism suggest that sleep disturbances might precede the clinical diagnosis
of PD. Analysis of sleep thus hold potential to serve as early disease identification, but as the
current standard for sleep analysis relies on manual scorings guided by standards designed to
fit healthy and normal sleep, manual sleep analysis of pathological sleep lacks substance.

This dissertation hypothesizes that automated sleep analysis can identify altered patterns of
EEG and EOG in pathological sleep and may serve to reveal PD biomarkers. The aims of this
dissertation was to: 1) Develop full data-driven sleep models based on EEG, EOG or both, that
can describe sleep in detail and can be used in the analysis of normal as well as pathological
sleep. 2) Extract appropriate features from the automated sleep models describing alterations
in the sleep patterns of patients with PD or iRBD. 3) Identify changes of sleep spindles in the
EEG of patients with PD by extracting features describing spindle morphology.

The results showed that patients with PD or iRBD reflect 1) altered eye movements during
sleep, 2) altered amount and stability of data-determined stages linked to N3 and REM sleep,
3) more REM-NREM sleep transitions determined by a data-driven model, 4) decreased
spindle density and 5) altered spindle morphology compared to non-NDD subjects.

In conclusion, this dissertation illustrates how appropriate biomedical signal processing can
be used to reveal indicative alterations in the sleep EEG and EOG of patients with iRBD and
PD. The automated methods developed analyze sleep in a robust and standardized way and
can be supportive for sleep evaluation. Conclusively, this dissertation contributes to the field
of early PD identification, but substantiates the claim that no known PD biomarker is reliable
enough to stand alone.
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Resumé

Neurodegenerative sygdomme (NDD) er yderst invaliderende og alvorlige lidelser, som
bliver mere udbredt med alderen. Der findes ingen kur og da den aldrende befolkning
stiger, anses NDDs for at være et af de mest alvorlige sundhedsproblemer i det moderne
samfund. Et aktuelt mål indenfor NDD forskning er at udvikle et neurobeskyttende middel,
og hvis et sådan middel bliver udviklet, er det essentielt at kunne identificere patienterne
så tidligt som muligt. Parkinson’s sygdom (PD) er den næstmest udbredte NDD, og da der
ikke findes en pålidelig markør for sygdommen, omhandler meget forskning netop dette.
Søvnforstyrrelser er almindelige blandt patienter med PD, og forskningsresultater viser at
der er en stærk sammenhæng mellem en bestemt søvnsygdom ("iRBD") og PD, som antyder
at søvnforstyrrelser går forud for PD symptomerne. Tidlig sygdomsindikation kan derfor
potentielt findes ved søvnanalyser, men da nutidens analyser er baseret på standarder udviklet
for normale søvnmønstre, er analyserne af patologisk søvn mangelfulde.

Denne afhandling fremsætter hypotesen om, at man ved at analysere søvn automatisk kan
identificere forandringer i elektroencefalografi (EEG) og elektrooculografi (EOG) i patologisk
søvn, og derved måske afsløre mulige biomarkører for PD. Formålene med denne afhandling
var at 1) udvikle data-drevne søvnmodeller baseret på EEG og/eller EOG, der kan beskrive
søvn i detaljer og derved supplere de manuelle analyser af normal og patologisk søvn; 2) udfra
de data-drevne søvnmodeller at udtrække karakteristiske egenskaber der beskriver forandrede
søvnmønstrer i patienter med iRBD og PD; 3) identificere ændringer i søvnspindler i EEG’et
fra patienter med PD ved at udtrække mål for spindel morfologien.

Resultaterne viste at patienter med PD eller iRBD har 1) ændret øjenbevægelser under søvn,
2) ændret fordeling og stabilitet af automatisk fundne søvnstadier, der henholdsvis minder
om N3 og REM søvn, 3) flere REM-NREM transitioner fundet ved en data-dreven model, 4)
færre spindler og 5) ændret spindel morfologi sammenlignet med kontrolpersoner.

Denne afhandling illustrerer hvordan biomedicinsk signalbehandling kan anvendes til automa-
tisk at identificere EEG og EOG ændringer under søvn hos patienter med iRBD eller PD. De
udviklede automatiske metoder analyserer søvn på en robust og standardiseret måde og kan
supplere nutidens søvnevaluering. Afslutningsvis, bidrager denne afhandling til forskningen
indenfor tidlig PD identifikation, men konkluderer samtidigt at ingen kendt PD biomarkør er
pålidelig nok til at stå alene.
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1

Introduction

Parkinson’s disease (PD) involves a progressive loss of structure or function of neurons in the
brain area controlling voluntary movements. Almost 1% of the population over the age of 60
suffer from the disease, and the incidence rate grows with age [59]. No cure or neuroprotective
agent yet exist, and due to the increasing aging population, neurodegenerative diseases (NDD),
such as PD, are considered to be one of the most serious health problems facing modern
society.

The clinical diagnosis of PD relies on motor symptoms, although it is widely known that there
exist a pre-symptomatic interval where the pathological process has begun, but motor signs
are absent. The pre-symptomatic interval can last several years, and less apparent symptoms
such as cognitive decline, depression, behavioral changes, gastrointestinal and cardiovascular
dysfunction, hyposmia or obesity exist, but are typically not observed or not linked to PD
before the motor signs appear. Twenty years ago, it was discovered that a sleep disorder called
idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) is closely related to
Parkinsonism as it often precede the clinical diagnosis [71] [72] [70]. This group of patients
therefore provide an opportunity for detecting biomarkers of PD before the symptoms onset,
and its discovery lead to a huge new research area within the sleep community.

Sleep analysis relies on manual scoring, although it has been criticized for its oversimplifi-
cation, high inter-scorer variability and large time consumption. Moreover, the standard for
sleep scoring is designed to fit healthy and normal sleep, making the scoring of pathological
sleep of dubious quality. This might explain why no clear disease marker has yet been
identified in sleep. Abnormal high muscle activity during REM sleep has been indicated to
be a PD biomarker [36] [73], but to strengthen the precision and give a more diverse picture
of the individual disease progression, several indicative biomarkers are needed. Analysis of
EEG has, to date, played a relatively minor role in this search, although it obviously hold the
potential of contributing to early disease identification. This project proposes to use EEG
and associated modalities such as EOG to characterize patients with PD or iRBD relative
to control subjects. By employing appropriate biomedical signal processing algorithms, the
characterization is expected to reveal new potential disease markers exempted from manual
scorings that in future could result in higher precision of early disease identification that is
possible today.
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Chapter 1. Introduction

1.1 Problem statement

The most elusive goal in neurodegeneration including PD is the discovery of a neuroprotective
agent that could slow down or stop the degenerative process. If a such treatment becomes
available, it is essential that the patients can be identified as early as possible, also to let
partially effective treatments have a much more powerful impact. This is the primary moti-
vation for identifying markers for the pre-symptomatic interval of PD, and strong findings
suggest that sleep analysis possess this potential. However, manual assessment of pathological
sleep is problematic, as the sleep scoring standard do not guide the scoring of abnormal and
altered sleep. This leads to imprecise analyses and may hinder identification of a robust PD
biomarker.

1.2 Project objectives

With the motivation and problem statement discussed above, the overall objective of this PhD
project was to provide new knowledge to the research of PD by analyzing sleep EEG and
EOG patterns by use of appropriate biomedical signal processing algorithms. Specifically, the
following focus points can be stated for this project:

• To develop a full data-driven and unsupervised model based on EOG, that can give a
detailed description of the patterns of eye movements during sleep in non-NDD subjects
as well as in patients with PD or iRBD.

• To develop a full data-driven and unsupervised model based on EEG, that can give a
detailed description of the EEG patterns during sleep in non-NDD subjects as well as
in patients with PD or iRBD.

• To develop a full data-driven and supervised model based on EEG and EOG, that can
give a detailed description of sleep in non-NDD subjects as well as in patients with PD
or iRBD.

• To extract appropriate features from the automated models describing deficits or alter-
ations in the EOG, EEG and sleep patterns of patients with PD or iRBD compared to
non-NDD subjects.

• To develop a database for sleep spindles in the EEG to be used when investigating
spindle alterations in patients with PD.

• To identify changes of sleep spindles in the EEG of patients with PD by extracting
features describing sleep spindle morphology.

2



Thesis outline and contributions

1.3 Thesis outline and contributions

This dissertation is structured in three parts, each of them dealing with one specific area
that could hold for potential biomarkers of PD. Besides the three chapters, it contains this
introduction, preliminaries, and a conclusion where the findings are summarized and future
aspects are stated and discussed.

Chapter 2 provides the basis of PD, sleep and an overview of the different research areas in
the field of early identification of PD.

Chapter 3 presents our findings from working on eye movements during sleep. It encom-
passes results presented in two conference papers, paper I and II. It was decided to patent
some of the work done on eye movements during sleep, which is presented in Patent I.

Chapter 4 presents our findings from working on a data-driven topic model used for sleep
EEG and EOG analysis in PD. It presents the development of data-driven models based on
EEG and EOG (in Paper III) as well as our findings when using such a model to characterize
sleep stage transitions and stability in patients with PD (paper IV).

Chapter 5 presents our work done on an EEG sleep event called sleep spindles. It describes
the development and utility of an automatic spindle detector (paper V), and our findings when
characterizing spindle morphology in patients with PD (paper VI). It was decided to patent
some of the work described in paper V which is presented in Patent II.

Chapter 6 summarizes our findings and suggestions for potential early PD biomarkers. It
encompasses the final conclusions on the results of the project as well as ideas and directions
for future work.

The scientific contributions of the PhD project are mainly covered by four journal papers, two
conference papers, two patent applications and eight co-authored papers. These are listed as
follows:

Patents:

• Application No.: PCT/EP2013/067297 / Publication No.: WO 2014/029764
Applicant: Technical University of Denmark
Title: Method for detection of an abnormal sleep pattern in a person
Date of Priority: 20 Aug 2012
Inventors: Christensen JAE, Sorensen HBD, Jennum P, Christensen SR, Arvastson L

• Application No.: 14/290,402 / Publication No.: US 2015/0080671
Applicant: Technical University of Denmark
Title: Sleep spindles as biomarker for early detection of neurodegenerative disorders
Date of Priority: 29 May 2013
Inventors: Christensen JAE, Kempfner L, Jennum P, Sorensen HBD, Arvastson L,
Christensen SR
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2

Preliminaries

Objective Parkinson’s disease (PD) is the second most common neurodegenerative disorder

(NDD) and has been estimated to affect 7-10 million people worldwide; a number that is

increasing with the increasing aging population. Current treatment is purely symptomatic,

and does not alter the underlying progress, but if a neuroprotective agent becomes available,

intervention at an early stage is essential. During the last decades, it has become clear that

patients with idiopathic rapid-eye-movement (REM) sleep behavior disorder (iRBD) are at

high risk of developing PD, and therefore research has focused on sleep data in the search for

PD biomarkers. Thus, this chapter will present the basic knowledge on PD and sleep, and will

give an overview of the different research areas carried out in the search for PD biomarkers.

2.1 Parkinson’s disease

Neurodegenerative disorders (NDD) is an umbrella term for disorders were neurons are
progressively degenerated. NDDs are among the most serious health problems facing modern
society, especially because many of them become more common with advancing age. NDDs
include the disorders Alzheimer’s disease, Parkinson’s disease (PD), Dementia, Amyotrophic
lateral sclerosis and Huntington’s disease. The characteristics and pathology of the different
disorders depend on the function of the neurons affected, but due to huge inter-subject
variability in symptom profile and disease progression, some of the diseases can in a clinical
setting easily be confused with one another. There are many similarities between the different
NDDs, an essential one being atypical protein assemblies, that may or may not be the main
reason for the progressively worsening of the diseases. The treatment of all NDDs is purely
symptomatic and do not cure nor alter the underlying process.

PD is the second-most common NDD after Alzheimer’s disease and has been estimated to
affect 0.5-1% among persons 65-69 years of age and 1-3% among persons 80 or more years
of age [59]. Onset of PD is rarely before age 50 years, and the incidence rate increases with
age with a sharp increase seen after age 60 years [23]. PD is characterized by Lewy body
aggregations of a protein called alpha-synuclein [29]. The Lewy body aggregations typically
starts in caudal areas of the brain and progress anteriorly [6]. When they reach the substantia
nigra located in the midbrain, dopaminergic neurons die or fail to function resulting in a
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reduction or depletion of dopamine [29]. The decline in dopamine production is causative
for the typical motor symptoms of PD, as dopamine is an essential neutrotransmitter in the
controlling of voluntary movements. As the disease progresses and dopamine production
declines, patients are left unable to control movement normally.

Clinical assessment of PD relies on identification of characteristic motor abnormalities, and
the diagnosis is typically set by stating the presence of at least two of the four motor symptoms:
1) resting tremor, 2) bradykinesia, 3) rigidity and 4) postural imbalance. Additionally, a lot of
PD comorbidity exist including mental disorders, autonomic and gastrointestinal dysfunction
and severe sleep disturbances, all of which considerable impair the quality of life of PD
patients and relatives [49]. The non-dopaminergic and non-motor symptoms may appear
years before the clinical diagnosis, and in advanced stages of PD, they can dominate the
clinical picture and may be the most difficult symptoms to treat adequately [11]. This comes
in line with the idea that the pathology of PD already has reached an advanced stage before
the clinical appearance of PD [6]. Specifically, Braak et al. [6] has suggested that the neuronal
damage in PD follows the Lewy-body distribution, which rise from the dorsal motor nucleus
of the vague nerve in the medulla and in the olfactory bulb (stage 1). This stage is considered
a pre-Parkinsonian state together with stage 2, where the inclusions have emerged through the
subceruleus-ceruleus complex and the magnocellularis reticular nucleus. It is not considered a
Parkinsonian state until involvement of the substantia nigra, the pedunculopontine nucleus and
the amygdala (stage 3) as well as the temporal mesocortex (stage 4). Lastly, late-Parkinsonian
states include initial involvement of the neocortex (stage 5) and at last an affection of nearly
the entire neocortex (stage 6) [6].

Figure 2.1 schematically illustrates how PD progress according to Braak et al. [6]. The
horizontal dotted line indicates the clinical manifestation stated as year 0. Above the line, the
typical clinical symptoms are indicated together with a theoretical time line and the Hoehn
and Yahr (H&Y) stages schematically stating the severity of the PD motor symptoms. Below
the line are stated potential biomarkers of PD as these are the typical symptoms apparent
before the clinical onset of PD. As seen in figure 2.1, a sleep disorder named rapid-eye-
movement (REM) sleep behavior disorder (RBD) has been associated with PD. It has become
increasingly clear that the presence of the idiopathic form of RBD (iRBD) even without
the presence of motor or cognitive complaints confers a significant risk of conversion into
PD or another synucleinopathy [38] [70] [72] [71] [11]. The discovery of iRBD provides
opportunities to investigate trends of non-dopaminergic and non-motor signs of PD before
the clinical onset, and several studies have focused on analysis of sleep data in the search for
PD biomarkers [24] [11] [47] [46]. Additionally, early signs of sleep disturbances fit well in
Braak’s hypothesis, as the control of sleep is regulated by brainstem structures located close
to where the Lewy body aggregation starts in early stages of PD [86].
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In systematic long-term prospective studies, 40-65% patients with iRBD eventually 
develop a neurodegenerative disease after 10-15 years, on average. 
. 
 
 

 
Fig. 2.1:  The degenerative process begins in the lower brain stem and spreads throughout the brain in six stages, 
(“Braak stages”). One of the first symptoms is REM sleep with abnormally high muscle activity, also called REM 
sleep behavior disorder.  This can be seen 10-20 years before the diagnosis of PD is made, which makes it a potential 
biomarker of early diagnosis. Juxtaposition of brain and timeline illustrations taken from [4], [36].  

2.3 Sleep 
The macrostructure of sleep consists of two stages, the dream stage, known as rapid-
eye-movement (REM) sleep, and non-rapid-eye-movement (NREM) sleep. Roughly, a 
normal adult enter NREM sleep from wakefulness, while REM sleep does not begin 
until at least 80 minutes thereafter. The two stages continue to alternate cyclically 
through the night a pattern known as the NREM-REM sleep cycle, with a period of 
nearly 90 minutes. This is illustrated in Fig. 2.7 by a hypnogram staging every 30 sec-
ond into different sleep stages. REM sleep usually occurs in 4-6 discrete episodes, 
which make up approximately 20-25% of the total sleep, NREM sleep therefore usually 
accounting for the remaining 75-80%, approximately. Sleep is usually interrupted by 
wakefulness, which accounts for less than 5% of the night. The length of sleep depends 
on a range of factors. However, most young adults report sleeping approximately 7.5 
hours a night, which gradually lessens over the lifespan [37–39]. Age is the strongest 
factor affecting the pattern of sleep stages.  
 
 

Figure 2.1: The progression of Lewy bodies according to Braak et al. [6]. Brain illustration
taken from [1] and timeline taken from [82].

2.2 Sleep

During the last decades, sleep research has expanded tremendously, not only in the field of
PD biomarkers, but also due to the increase in incidences of patients with apnea and other
sleep disorders, and the fact that sleep has a major effect on one’s normal well-being and
functioning. Sleep is a vital and complex part of the human life and although we spent up
to a third of our lifetime asleep, the functioning and mechanisms of sleep are still not fully
understood. A lot of factors influence the sleep-wake cycle including body temperature, light
exposure, hormone levels and others. Illness and stress can easily change the overall sleep
structure from one night to another, and lack of sleep can influence cognitive functions. The
overall sleep architecture changes with age, and the need and experience of sleep is very
individual.

2.2.1 Sleep architecture and scoring

Analysis of sleep requires a sleep recording called polysomnography (PSG), which typi-
cally includes electroencephalography (EEG), electrooculography (EOG), electromyography
(EMG), electrocardiography (ECG), respiratory airflow and peripheral pulse oximetry [34].
According to the newest standard for scoring sleep and associated events (described in the
American Academy of Sleep Medicine (AASM) standard) [34], sleep annotation is done by
manually assigning non-overlapping periods of 30 seconds to either wakefulness (W), REM
sleep or one of three non-REM (NREM) sleep stages (N1-N3) dependent on the degree of
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drowsiness. The scoring of sleep relies on identification of specific characteristics of the PSG
signals including the clinical EEG frequency bands (delta, theta, alpha, beta), EEG microsleep
events (sleep spindles (SS), K-complexes, sawtooth waves), EOG microsleep events (eye
blinks, slow and rapid eye movements (EMs)) and EMG appearance and tonus [34]. These
characteristics serve as hallmarks for the individual stages and can, based on their position
within an epoch, define the initiation or termination of sleep stages.

Figure 2.2 provides an overview of the typical characteristics of each of the five sleep stages,
and table 2.1 states the approximately stage distribution and the definitions of the microsleep
events hallmarking the sleep stages.
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Figure 2.2: Polysomnographic characteristics of the different sleep stages.

During wakefulness, the EEG is typically low in amplitude and high in frequency (alpha
(8-13 Hz) or beta (14-30 Hz) activity). When the eyes are closed, alpha activity dominates
the picture and is mostly apparent at occipital derivations. When concentrating with open
eyes, the EEG frequencies rise to beta activity with lower amplitudes, and when relaxing and
becoming more drowsy, the EEG frequencies are slowing to become theta activity (4-7 Hz)
with higher amplitudes.

Typically, N1 is the first sleep stage to enter from wakefulness. Here, theta activity dominates
the picture and is mostly apparent at central and frontral derivations. Alpha activity is
diminished and in some individuals vertex sharp waves (VSW) can be seen during N1. These
are sharply contoured waves lasting less than half a second, and their appearance is one of
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Stage Percent of total Definitions
time in bed

Wake <5 %
EEG: Alpha activity (8-13 Hz) when eyes closed
EOG: Eye blinks, reading or rapid eye movements
EMG: Variable amplitude, high tonus

N1 5-10 %
EEG: Low amplitude, mixed frequency (predominantly 4-7 Hz)

Vertex sharp waves: Sharply contoured, duration < 0.5 s
EOG: Slow eye movements
EMG: Variable amplitude, lower tonus than in wake

N2 45-55 %

EEG: Low amplitude, mixed frequency activity
K-complexes: Low frequency (0.5-2Hz), high amplitude,
predominantly frontally
Sleep spindles: Frequency of 11-16 Hz, duration of 0.5-3 s,
predominantly centrally or frontally

EOG: No or slow eye movements
EMG: Variable amplitude, usually lower tonus than in N1

N3 15-20 %
EEG: Large amplitude (>75 µV), slow wave activity (0.5-2 Hz)
EOG: No eye movements, EEG activity might be reflected
EMG: Usually lower tonus than in N2

REM 20-25 %

EEG: Low amplitude, mixed frequency (predominantly 4-7 Hz),
slow alpha activity in some individuals
Sawtooth waves: Sharply contoured waves (2-6 Hz),
predominantly centrally

EOG: Rapid eye movements
EMG: Lowest tonus

Table 2.1: Percent of total time in bed as well as EEG, EOG and EMG characteristics of the
different sleep stages.

the hallmarks of sleep onset [34]. As K-complexes, VSW can be systematically excited by
stimuli and is though to reflect an active inhibitory process designed to facilitate sleep onset
[17].

N1 sleep is seen as a stage between drowsy wakefulness and the stable sleep stage N2. We
spend approximately half our sleep time in N2 sleep which is characterized by an EEG activity
of low amplitudes and mixed frequencies and presence of micro-sleep events such as SS and
K-complexes. Essential restorative functions are performed during N2 sleep and maintaining
sleep is therefore crucial. It is, however, also crucial for the brain to rouse in the face of danger.
K-complexes are thought to suppress arousals in response to stimuli that are judged not to be
dangerous [9]. They are often followed by a SS, which is thought to have a sleep-preserving
role [30].

From N2, sleep usually continues into deep sleep, N3, which consists of slow-wave high-
amplitude delta activity (0.5-2 Hz). The delta activity is dominantly at frontal derivations
and is partly also reflected in the EOG. The SS density declines during N3, whereas the
K-complex has been suggested to be a precursor to the delta waves produced during deep
sleep [57] [22]. This stage takes up 15-20% of the total sleep times.
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After approximately 90 minutes after sleep onset, REM sleep typically commences. Desyn-
chronized and low-amplitude EEG activity dominates the picture, in some cases with presence
of sharply contoured waves called sawtooth waves. Characteristic and name-given for this
stage is the conjugated REMs seen in the EOG. It has been suggested that 80% of all dreaming
occur during REM sleep, and a natural procession hereof is the typical atonia present during
REM sleep. In healthy adults, the EMG tonus during REM sleep should be the lowest seen
across all sleep stages, however, with small twitches that can break through the paralysis.

100 200 300 400 500 600 700 800 900 1000

N3

N2

N1

REM

W
↓

Lights off Lights on
↓

Epoch Number

Figure 2.3: Manually scored hypnogram from a healthy male subject of age 54. Each epoch
represents 30 seconds of sleep and the indications of lights off and lights on are self-reported
timepoints.

Figure 2.3 shows an example of a hypnogram, which illustrates the temporal pattern of sleep
summarizing the labeling of each 30-s epoch in a full night sleep. The shown example is a
male of 54 years of age, with no known neurological disorders or sleep disturbances. As can
be seen, a normal sleep typically starts with N1 followed by N2 and N3, thereafter turning
into REM sleep. A normal healthy adult on average have four N1-N2-N3-REM sleep cycles
during a full night sleep. The cycles gradually change throughout the night with most N3
sleep early in the night and more REM sleep close to waking up.

2.2.2 Changes in sleep with age

Age is the most consistent factor affecting sleep. With increasing age, alterations in the
circadian and sleep homeostatic systems occur leading to poor sleep quality, increased sleep
disturbances as well as difficulties in initiation and maintenance of sleep [55] [26]. Specifically,
older adults have a sleep architecture that includes increased wake after sleep onset, increased
time spent in N1 and N2, and reduced duration of N3 and REM sleep [26] [60]. Self-reports
indicate increased time needed to fall asleep (i.e. increased sleep latency (SL)) and a slightly
decrease in nighttime sleep amount, for which only the latter is confirmed by PSG data [26].
Whether sleep disturbances in older adults are due to changes in circadian rhythm directly
or indirectly through e.g. changes in core body temperature and thereby melatonin secretion
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is still unclear. Additionally, factors such as light exposure, menopause, medical conditions,
medications, exercise and diet can effect melatonin production and may contribute to the
sleep-wake disturbances in older adults [55].

The reduction in N3 sleep in elderly is profound, but might mainly reflect a decrease in the
amplitude of delta activity rather than an absent of slow frequency activity [19]. K-complexes,
possibly a precursor of delta waves, may reflect the ability of the brain to produce large
amplitude synchronized waveforms, and with increasing age this micro-sleep structure is also
found to be decreased in density and amplitude [19] [20]. Lastly, SS have been reported to
be affected by age showing a reduction in density, amplitude and duration and are in general
less well formed with increasing age [31] [20] [30] [44]. All of these age-related changes
in the EEG is consistent with the neural degeneration seen with aging, and may indicate an
inevitable age-related alteration of thalamo-cortical regulatory mechanisms.

2.2.3 Neuronal control of sleep

Sleep is strongly regulated by groups of neurons located in the brainstem and midbrain areas,
which form reciprocal connections [51] [66] [67] [74]. These “sleep-wake switches” are
mutually dependent and have been referred to as the wake-sleep and REM-NREM sleep
switches, respectively.

Figure 2.4 shows illustrations of the sleep-wake switches and the neurons involved during
wakefulness, NREM sleep and REM sleep as suggested by Saper et al. [67].

During wakefulness and REM sleep, cholinergic neurons located in the pedunculopontine
and laterodorsal tegmental nucleus (PPT and LDT) fire rapidly, exciting ascending projec-
tions to the forebrain, notably the thalamus. This population of neurons forms one of two
major branches involved in the ascending arousal system. The second branch consists of
monoaminergic cell groups projecting to the lateral hypothalamus, basal forebrain (BF) and
cerebral cortex [67] [74]. These include noradrenergic neurons of the locus coeruleus (LC),
serotoninergic dorsal and median raphe nuclei (DR and MR), dopaminergic neurons adjacent
to the DR, and histaminergic neurons of the tuberomammillary nucleus (TMN) [51] [67]. The
neurons fire most rapidly during wakefulness, slowing down during NREM sleep and almost
ceasing to fire during REM sleep.

The main sleep-promoting pathways consist of the ventrolateral and median preoptic nuclei
(VLPO and MnPO), which act by inhibiting the circuits of the ascending reticular activating
system. The mutually inhibitory relationship of the arousal- and sleep-promoting pathways
together form the wake-sleep controlling mechanism, which generates complete transitions
between waking and sleeping states [51] [67] [74].

The REM-NREM sleep transitions are controlled by the mutually inhibitory relationship of
two populations of neurons located in the upper pons [67]. During wake and NREM sleep
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the sleep disorder narcolepsy, an example of state instability in
which the circuitry that stabilizes switching is damaged.

Networks Supporting Sleep and Wakefulness
Wake-Promoting Networks
Current models of the ascending arousal system are still gener-
ally based on the observations by Moruzzi and Magoun (1949)
that electrical stimulation of the paramedian reticular formation,
particularly within the midbrain, produces EEG desynchroniza-
tion consistent with arousal. Subsequent studies identified
a slab of tissue at the junction of the rostral pons and caudal
midbrain as critical for maintaining the waking state (Lindsley
et al., 1949). Although the neurons responsible for arousal
were initially thought to be part of the undifferentiated reticular
formation, subsequent studies showed that the cell groups at
the mesopontine junction that project to the forebrain mainly
consist of monoaminergic and cholinergic neurons that reside
in specific cell groups rather than the reticular core (Figure 1)
(see Saper [1987] for review).

Cholinergic neurons that project to the forebrain are found in
the pedunculopontine and laterodorsal tegmental nuclei (PPT
and LDT). They provide the main innervation from the mesopon-
tine junction to the thalamic relay nuclei but also innervate the
intralaminar and reticular thalamic nuclei, as well as the lateral
hypothalamus, basal forebrain, and prefrontal cortex (Hallanger
et al., 1987; Satoh and Fibiger, 1986). Many neurons in the
PPT and LDT fire most rapidly during wakefulness and REM
sleep, and most slowly during NREM sleep, suggesting that
they help drive cortical activation (el Mansari et al., 1989;
Steriade et al., 1993). These nuclei are heterogeneous, but extra-
cellular recordings combined with juxtacellular labeling confirm
that cholinergic neurons in the LDT fire during cortical activation,
usually increasing their firing rates just before the transition from
cortical slow waves to faster frequencies (Boucetta and Jones,
2009).

The monoaminergic cell groups at the mesopontine level that
project to the forebrain include the noradrenergic locus coeru-
leus (LC) and the serotoninergic dorsal and median raphe nuclei
(Aston-Jones and Bloom, 1981; Dahlstroem and Fuxe, 1964;
Kocsis et al., 2006), as well as dopaminergic neurons adjacent
to the dorsal raphe nucleus (Lu et al., 2006a). Histaminergic
neurons in the tuberomammillary nucleus (TMN) have similar
projection targets and firing patterns (Panula et al., 1989;
Steininger et al., 1999). Axons from these cell groups predomi-
nantly target the lateral hypothalamus, basal forebrain, and
cerebral cortex, where they terminate extensively, particularly
in the prefrontal cortex. Each of these monoaminergic systems
also sends smaller but important populations of axons to the
thalamus where they largely target the intralaminar and reticular
nuclei. Generally, neurons in these cell groups fire most actively
during wakefulness, decrease activity during non-REM sleep,
and fall silent during REM sleep (Aston-Jones and Bloom,
1981; Kocsis et al., 2006; Steininger et al., 1999; Takahashi
et al., 2006, 2010).

Another source of arousal influence from the rostral pons may
be glutamatergic neurons in the parabrachial nucleus and the
adjacent precoeruleus area (PC, the lateral corner of the rostral
pontine periventricular gray matter, just rostral to the main

Figure 1. The Wake-Sleep Switch
Many wake-promoting projections arise from neurons in the upper brainstem
(A). Cholinergic neurons (aqua) provide the major input to the thalamus,
whereasmonoaminergic and (presumably) glutamatergic neurons (dark green)
provide direct innervation of the the hypothalamus, basal forebrain, and cere-
bral cortex. The orexin neurons in the lateral hypothalamus (blue) reinforce
activity in these brainstem arousal pathways and also directly excite the
cerebral cortex and BF. The main sleep-promoting pathways (magenta in B)
from the ventrolateral (VLPO) and median (MnPO) preoptic nuclei inhibit the
components of the ascending arousal pathways in both the hypothalamus
and the brainstem (pathways that are inhibited are shown as open circles
and dashed lines). However, the ascending arousal systems are also capable
of inhibiting the VLPO (C). This mutually inhibitory relationship of the arousal-
and sleep-promoting pathways produces the conditions for a flip-flop switch,
which can generate rapid and complete transitions between waking and
sleeping states. The following abbreviations are used: DR, dorsal raphe
nucleus (serotonin); LC, locus coeruleus (norepinephrine); LDT, laterodorsal
tegmental nucleus (acetylcholine); PB, parabrachial nucleus (glutamate); PC,
precoeruleus area (glutamate); PPT, pedunculopontine tegmental nucleus
(acetylcholine); TMN, tuberomammillary nucleus (histamine); vPAG, ventral
periaqueductal gray (dopamine).

1024 Neuron 68, December 22, 2010 ª2010 Elsevier Inc.

Neuron

Perspective

(a) The sleep-wake switch (b) Wake on (c) Sleep on

(d) The REM-NREM sleep switch (e) REM on (f) REM on

Figure 2.4: Illustration of the neurons active during wake and sleep stages as suggested
by Saper et al. [67]. (a): The basic neurons involved in the sleep-wake switch. (b): Wake-
promoting projections from neurons in the upper brainstem provide input to the thalamus,
hypothalamus, basal forebrain (BF) and cerebral forebrain. Neurons in the hypothalamus
reinforce activity in the wake-promoting projections and directly excite the cerebral cortex
and BF. (c): The sleep-promoting pathways inhibit the ascending arousal pathways in the
hypothalamus and the brainstem. (d): The basic neurons involved in the REM-NREM
switch. (e): Neurons in the locus coeruleus (LC) and dorsal raphe nucleus (DR) inhibit REM
sleep by exciting REM-off neurons and inhibiting REM-on neurons, whereas neurons of the
laterodorsal tegmental nucleus (LDT) promotes REM sleep by having opposite actions on
these populations. Orexin neurons inhibit entry into REM sleep by exciting the REM-off
neurons, whereas the ventrolateral preoptic nucleus (VLPO) promotes the entry into REM
sleep by inhibiting this target. (f): Neurons in the sublaterodorsal region (SLD) activate
inhibitory interneurons in the medulla and spinal cord leading to atonia. Projections from the
parabrachial nucleus and precoeruleus area (PC) activates forebrain pathways leading to the
characteristic EEG of REM sleep. All illustrations are taken from [67].
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GABAergic (REM-off) neurons of the ventolateral periaqueductal gray (vlPAG) matter and
the adjacent lateral pontine tegmentum (LPT) fire rapidly, inhibiting REM-on neurons in the
sublaterodorsal region (SLD) [67]. The REM-on neurons are thought to be GABAergic or
cholinergic by some groups [67], and glutamatergic by others [51] [50]. It has been proposed
that the ascending branch of these neurons project into rostral brain areas responsible for
the cortical activation during REM, while a descending branch projects into medullary
glycinergic pre-motorneurons generating muscle atonia [10] [65]. Furthermore, Luppi et
al. [51] [50] suggest that the descending branch also sends direct efferent projections to
medullary GABA/glycinergic neurons, not only hyperpolarizing motorneurons but also dorsal
horn sensory neurons involved in sensory processing. Most importantly, activity of the REM-
on neurons inhibits the REM-off neurons and vice versa, which makes the REM-NREM
controlling mechanism capable of generating complete transitions between REM and NREM
sleep states.

Despite the mutually inhibitory loops involved in the two switching mechanisms, if either
side of the two loops is weakened or injured, unwanted instability can occur in either of the
states, irrespective of which side is damaged [74].

2.3 Early detection of Parkinson’s disease

Looking at Braak’s hypothesis of the progression path for the aggregations of Lewy bodies
in synucleinopathies, it makes sense to search for PD biomarkers in physiological patterns
linked to structures or neurons in the lower brainstem or the pons (see figure 2.1 and 2.5).
As previously mentioned, an inevitable group of patients to analyze when searching for
early PD biomarker is iRBD patients, as they possess a significant risk of conversion into
synucleinopathies. As described by the AASM [2] in the 3rd edition of the international
classification of sleep disorders, the diagnosis of RBD requires complaints or an anamnesis
describing dream enactment (DE) behaviors as well as a manifestation of REM sleep without
atonia (RSWA) as measured by PSG. This means that if either one of the two criteria is not
obtained, e.g. no statement of DE or no REM sleep or RSWA in the recorded night, the
diagnosis can not be stated. The idiopathic form of RBD is diagnosed when no concurrent
neurological or other causing disease are found. This also entails that the idiopathic form of
RBD only can be stated in cases where severe apnea is treated with CPAP.

The prevalence of RBD has previously been estimated to be 0.38% in elderly people [13] and
0.5% in the age group 15-100 years [61] [35], indicating this disease as rare among the general
population. However, a recent study from Korea states the prevalence of RBD to be 2.01%,
but the prevalence of subclinical RBD (i.e. increased muscle activity but with no history of
DE behavior) to be 4.95% in elderly Koreans [40]. This suggests that more than twice as
many people are affected by the disorder as first presumed, and these people may or may not
have a risk just as high as the diagnosed patients for conversion into a synucleinopathy.
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Stated in the diagnostic criteria, the most pronounced symptom of iRBD is the loss of atonia
during REM sleep. A lot of research has been carried out in order to find reliable and objective
measures of RSWA [41] [62] to be used to support diagnostic evaluations. This is an area
associated with a lot of challenges, mainly because there is no exact definition of when atonia
is present and when it is absent. AASM states that the REM sleep is associated with low
EMG tonus, and in periods where REMs are absent, the scoring of sleep relies on EMG and
EOG, which in cases of iRBD with RSWA, makes the manually scoring of REM sleep very
difficult. With no clear REMs in the EOG and no clear EEG hallmarks of REM sleep, the
scorer is left to decide whether the person is in REM sleep but with a high EMG tonus, has
awakened or transitioned into another sleep stage as the criteria for scoring REM sleep are
no longer met. Conclusively, the diagnosis of iRBD is associated with a lot of subjectivity,
both from the patient in terms of stating DE, but also from the evaluator in terms of stating
the presence of RSWA.

Besides analysis of RSWA, other sleep research has been carried out in iRBD patients, includ-
ing analysis of slow wave sleep [47] [53], heart rate variability [75] [76] and EEG spectral
power analysis [25] [68] [37]. However, quantitative sleep research in iRBD patients is still
a new area and requires further efforts to clarify what abnormalities iRBD patients possess
besides RSWA, and which of these present a true early marker of subsequent conversion into
PD. The aim of this PhD project was to search for early PD biomarkers in electrophysiological
signals, mainly EEG and EOG, recorded during sleep.

In figure 2.5 is given examples of potential PD biomarkers found during sleep and their
neuroanatomic correlates. In this thesis, the focus has been on EMs, sleep stage switching
and stability as well as characterization of SS in the EEG. Specifically, quantification of EMs
during sleep and sleep stability are new research areas and not confirmed by any other group.
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Figure 2.5: Examples of potential early PD biomarkers found during sleep and their
neuroanatomic correlates. The most investigated of these areas is analysis of the loss of atonia
during REM sleep. Also, a lot of research has been carried out in EEG during slow wave
sleep and REM sleep. This thesis focus on sleep spindles, eye movements and sleep stability,
whereof in specific the two last-mentioned areas are new and not confirmed by any other
group. Brain template taken from [67].
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3

Eye movements during sleep

Objective Eye movements (EMs) are controlled by neurons located in the lower brainstem,

midbrain and frontal areas. Rapid EMs are present during REM sleep, indicating that the ocu-

lomotor muscles are not affected by the atonia during REM sleep. As the neurodegeneration

is thought to start at lower brainstem areas, EMs during sleep might be affected in both iRBD

and PD patients. Several studies have reported impairment of the oculomotor function in

patients with PD during wakefulness, but no studies have investigated how neurodegeneration

effect EMs during sleep. This chapter comprises two studies concerning this area. The first

study is a pilot study investigating if features extracted from one EOG derivation can separate

iRBD and PD patients from control subjects. As the first study revealed that features reflecting

EMs were indicative of neurodegeneration, the second study focuses on EMs and tries to look

deeper into the timely distribution of EMs by developing a data-driven model.

3.1 Background

A saccade is a voluntary quick, simultaneous movement of both eyes. A lot of neurons
and brain areas are involved in controlling a saccade, and the system can be divided in
three major levels. The lowest level concerns the oculomotor muscles moving the eye balls,
the intermediate level concerns the mechanisms for locating object and directing the eye
movements (EMs), and the highest level concerns the decision-making of whether of not to
move the eyes [8]. In figure 3.1 is seen a schematic representation of the main features of the
saccadic control system.

The movement of the eyeballs themselves is controlled by neurons in the brainstem area. This
movement has to be extremely fast, as eyes in motion are effectively blind. At the lowest
level of the saccadic control system, neurons called omnipausers fire continuously and rapidly
during rest. During a saccade, they pause for exactly the duration of the movement, regardless
of its direction. The omnipausers control the firing of burst units, that fire rapidly during a
saccade reflecting the direction of the saccade. The burst units control the tonic units, that fire
tonically at one steady level before the saccade and at another steady level after the saccade
reflecting the position of the eye [8]. The nucleus prepositus hypoglossi is thought to be
the neural region that integrates the burst and tonic units. Controlling oculomotor neurons
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Figure 3.1: Schematic representation of the saccadic control system. Visual information
is sent to the cortical areas for visual recognition and to the superior colliculus for target
localization. When it is decided to look at a target, the basal ganglia and the substantia
nigra pars reticulata lift their inhibitory blanket allowing the superior colliculus to initiate
the processes needed to activate the oculomotor muscles. A schematically illustration of the
activity patterns of the different neurons is seen to the left. Illustration modified from [8].

by these two signals ensures that saccades can happen as quick as a little more than 20
milliseconds.

At the intermediate level, objects are located and eyes are directed to the appropriate position.
This is thought to be controlled by the superior colliculus (SC) located at the top of the
brainstem. SC contain neurons that respond to visual stimuli at different places in the visual
field as well as motor neurons that can direct and fixate the eyes. A model proposes that
when a visual stimulus is registered at the SC from the retina fibers, neurons called long-lead
bursters are stimulated at a site corresponding to a particular visual location that will lead the
eyes to the appropriate spot in the outside world. Additionally, the visual stimulus will inhibit
neurons that fire rapidly during fixation of the eyes. An inhibition of the fixation neurons
lead to a pause in the firing from omnipausers which initiates the saccade itself. During the
saccade, information from the oculomotor neurons is send back to the SC (efference copy),
that continuously guide the gaze towards the fixation region. When this region is reached,
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the omnipausers and the fixation neurons are turned back on again, and the eyes fixate. The
fact that the oculomotor muscles do not carry any external load makes the oculomotor system
very fast and precise, as it can work out where the eyes are positioned at any given time only
by monitoring the signals being send to the muscles (efference copy).

The highest level of the saccadic control system concerns the decision-making, and involves
several regions of the cerebral cortex [8]. Before the decision is made, the eyes are kept in
position, which is achieved by continuously inhibiting the SC. The responsible tonically active
inhibitory fibers project down from the substantia nigra pars reticulata in the basal ganglia.
Fibers from the retina project to the visual cortex, where the visual image is broken down into
its fundamental shapes used for visual recognition. The visual recognition occurs in several
areas of the cerebral cortex, and when it is decided to look at a target, the blanket of inhibition
is lifted briefly and locally, permitting the SC to generate an appropriate saccade [8].

3.1.1 Electrooculography

During a polysomnography (PSG), the recording of EMs is done by placing electrodes besides
each outer canthus. As the eyeball acts as a dipole with a potential difference between the
negative retina (posterior point of the eyeball) and the positive cornea (anterior point of the
eyeball), the EOG electrodes will register negative and positive potentials as the eyes are
moving. The simultaneously movement of the eyeballs entails the two EOG signals to be
synchronized and anti-correlated. The EOG electrode nearest the retina will reflect a negative
potential and the one nearest the cornea will reflect a positive potential.

The horizontal and vertical distance from the outer canthus to the electrode as well as the
angle at which the eyes are gazing influence the relative amplitude change in the EOG signals.
Also, during a PSG, the EMs are recorded by placing EOG electrodes a bit higher (right eye)
or a bit lower (left eye) than the mid-line of the eyes. Therefore, the EOG signals recorded as
part of a PSG typically do not show the same relative amplitude change as the eyes moves.
Optimally, electrodes should be places above, under, and on either side of both eyes in order
to fully reflect the vertical and horizontal EMs. During a PSG, however, the EOG is mostly
used to reflect the presence of slow and rapid EMs.

3.1.2 Research hypothesis

The main hypothesis is that patients with iRBD and especially patients with PD reflect
abnormal EMs during sleep. In iRBD patients, the neurodegeneration is thought to effect
the lower level of the saccadic control system, leading to abnormal form of saccades. As the
disease progresses, the intermediate and higher level might be affected as well, maybe also
effecting the sustained inhibition of the SC leading to uncontrolled EMs in patients with PD.
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The aim with this research area was to:

• reveal with a pilot study whether or not EMs during sleep have potential to be a
biomarker for PD.

• develop a data-driven model based on data describing EMs during sleep, and investigate
its usability to analyze and automatic classify control subjects and patients suffering
from iRBD or PD.

3.2 Paper I: Separation of Parkinson’s patients in early
and mature stages from control subjects using one
EOG channel

This study is a pilot study investigating whether EOG hold information that can be used to
separate control subjects from iRBD and PD patients. The features are derived so they are
easy to interpret to make it accessible to reveal whether indicative features reflect EMs or
other physiological signals recorded at the EOG side.

The overall methodology of this study is seen in figure 3.2.
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Figure 3.2: Overall methodology of study I concerning eye movements during sleep.
The features fI(p) were extracted from each sleep epoch between lights off and lights
on determined by the manually scored hypnogram. The Shrunken Centroids Regularized
Discriminant Analysis (SCRDA) method was used for feature selection and classification.
SCRDA outputs the class label g̃ for each subject classifying them as "control" or "patient".

3.2.1 Methods: Preliminary analysis of EOG features by the
Shrunken Centroids Regularized Discriminant Analysis

Subjects and recordings

A total of ten control subjects, ten patients with iRBD and ten patients with PD were enrolled
in this study. The evaluation of the patients included a comprehensive medical and medication
history and a PSG analyzed according to the American Academy of Sleep Medicine (AASM)
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standard [34]. If narcolepsy was suspected, a multiple sleep latency test (MSLT) was per-
formed as well. Subjects taking anti-depressants, including hypnotics or medication known
to affect sleep were excluded, though dopaminergic treatments were allowed and continued.
The control subjects had no history of dream-enacting behavior, movement disorder or sleep
disorders. Demographic data for the three groups analyzed is seen in table 3.1. The total
number of epochs in between light off and light on is also provided.

Controls iRBD PD

Total number 10 10 10
Male / Female 5 / 5 8 / 2 6 / 4
Age [years] 59.8 ± 8.4 59.0 ± 14.2 63.2 ± 8.4
Wake (%) 1173 (12) 1881 (18) 1882 (19)
REM (%) 2000 (21) 1731 (16) 1531 (15)
N1 (%) 678 (7) 1081 (10) 1275 (13)
N2 (%) 4443 (46) 4881 (46) 4073 (42)
N3 (%) 1347 (14) 1114 (10) 1084 (11)

Table 3.1: Demographic data and total number of epochs across the sleep stages between
lights off and lights on for the three groups analyzed in study I.

The quality of the PSG recordings was individually evaluated and recordings with discontinued
or artifact-contaminated channels were excluded. Besides the manually scored hypnogram,
only the left side EOG channel was used in this study. The sampling frequency was 256 Hz.

Feature extraction

After removal of the 50 Hz powerline noise, each sleep epoch (N1, N2, N3 or REM determined
by the manually scored hypnogram) was decomposed using the Discrete Wavelet Transform
(DWT). In DWT, an input signal x(n) is passed through a series of filters splitting the
signal into its high and low frequency components, denotes as detail (D) and approximation
(A) components, respectively. After filtration, the components contain redundancies and a
downsampling by a factor of two is applied. The decomposition in DWT is based on shifting
and scaling a mother wavelet finite in length. A mother wavelet that is contracted twice will
have a twice higher central frequency and a twice smaller time duration, which entails a
decrease in frequency resolution and an increase in time resolution with increasing frequencies
[4]. By using DWT in this study, we obtained a high resolution at lower frequencies compared
to higher frequencies, which was preferred as the low frequency ranges are the ones reflecting
EMs.

For each sleep epoch, a DWT decomposition was carried out to level eight using the
Daubechies 4 (db4) as the mother wavelet. The energy percentage and the common logarithm
of the summed absolute signal values of the reconstructed detail subbands d2-d8 were com-
puted, and a single feature vector, fI(p) was obtained for each subject p by taking the mean

23



Chapter 3. Eye movements during sleep

(µ) and standard deviation (σ) of these values across all sleep epochs. For each subject, fI(p)
hold 28 feature values described as,

fI(p) =



[
fµ(%E)

]d8

d2[
fσ(%E)

]d8

d2[
fµ(log10E)

]d8

d2[
fσ(log10E)

]d8

d2


where [fE]d8

d2 =


fEd2

...
fEd8

 (3.1)

and %Edx and log10Edx indicate the energy percentage and the common logarithm of the
summed absolute signal values of the reconstructed detail subbands dx, respectively. The
features are summarized in table 3.2, and they reflect the energy distribution of EOG across
different frequency ranges. As it is assumed that controls have periods with no EMs (low
energy) and periods with rapid or slow EMs (higher energy), the standard deviation across the
night might be different in between patients and controls.

Feature name Feature explanation Total no per subject

[
fµ(%E)

]d8
d2

Mean across all sleep epochs of the energy percentages in the reconstructed 7subbands d2-d8[
fσ(%E)

]d8
d2

Standard deviation across all sleep epochs of the energy percentages in the 7reconstructed subbands d2-d8[
fµ(log10 E)

]d8
d2

Mean across all sleep epochs of the common logarithm of the summed 7absolute signal values of the reconstructed subbands d2-d8[
fσ(log10 E)

]d8
d2

Standard deviation across all sleep epochs of the common logarithm of the 7summed absolute signal values of the reconstructed subbands d2-d8

Table 3.2: Overview of the features computed in study I. For each sleep epoch, the energy
percentage and the common logarithm of the summed absolute signal values were computed.
The features reflect the mean or the standard deviation of these energy measures across all
sleep epochs.

Feature selection and classification

To avoid overfitting, only a subset of features was used to classify the subjects. In this study,
the Shrunken Centroids Regularized Discriminant Analysis (SCRDA) method that generalizes
the idea of Nearest Shrunken Centroids into the classical discriminant analysis was used to
evaluate the features and classify the subjects. This method was chosen as it is designed
for classification problems where the number of features is larger or nearly the same as the
number of observations, as in this case. Also, SCRDA is very suitable for feature eliminating
purposes, enabling sparse models less likely to overfit. The criteria in the standard Linear
Discriminant Analysis can be stated as:

xg,i ∈ population
(
g̃ = arg max

g′
dg′(xg,i)

)
where

dg(x) = xTΣ−1µg −
1
2µ

T
g Σ−1µg + log(πg)

(3.2)
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where the observation xg,i is classified to the population g̃ that has the largest posterior

probability of the observation when the prior probability πg is included. Here, µg = 1
ng

ng∑
i=1

xg,i

and Σ = 1
2
(
X −X

) (
X −X

)T
describes the mean vector and the common covariance

matrix of population g, respectively. X and X are p×n matrices holding the observations and
the mean vectors column wise, respectively, and ng is the number of samples in population
g. In cases where the number of samples is small compared to the number of features, the
covariance matrix is poorly estimated, and in SCRDA this singularity issue is managed by
estimating the covariance matrix by use of a regularization parameter 0 ≤ α ≤ 1 [32],
yielding the estimate

Σ̃ = αΣ + (1− α)D with D = diag(Σ). (3.3)

When α is shifted toward zero, Σ̃ tends to be the diagonal estimate of the covariance matrix
D and when α is close to 1, the standard estimate of the covariance matrix Σ is chosen as the
optimal choice. By changing α, SCRDA thereby perform well on all conditions.

Another useful aspect of the SCDRA is that it gains sparsity meaning that it removes variables
that are thought to be noisy leaving only a small subset of variables for further investigation.
This is gained by substitution the class means µg with the shrunken centroids µgs, which is
achieved by first transforming µg to µ∗gs and then shrinking it toward 0 by use of a tuning
parameter ∆:

µ∗gs = sign
(
Σ̃−1µg

) (
|Σ̃−1µg| −∆

)
+
. (3.4)

The subscript plus means positive part and entails t+ = t if t > 0 and zero otherwise. Finally,
µ∗gs is transformed back to get the shrunken centroid µgs = Σ̃µ∗gs. The shrunken centroids
has the benefit of eliminating noise variable which does not contribute to classification. It
automatically select the variables i.e. by eliminating a variable if the class centroid is zero for
all classes [12] [32].

Conclusively, the criteria the SCRDA can be stated as:

xg,i ∈ population
(
g̃ = arg max

g′
d̃g′ (xg,i)

)
where

d̃g(x) = xT Σ̃−1µ̃gs −
1
2 µ̃

T
gsΣ̃−1µ̃gs + log(πg).

(3.5)

Each subject was classified by a leave-one-out approach where the values of ∆ and α were
found by a 10-fold cross-validation on the 29 subjects not held out. The leave-one-subject out
approach was chosen due to the limited number of subjects included in this project, and the
10-fold cross validation was chosen to avoid overfitting. The final values were found as the
mean across the 30 runs, indirectly giving the optimal subset of features across the 30 runs.
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3.2.2 Results

Table 3.3 summarizes the optimal subset of features found by the SCDRA method where
the parameters ∆ and α are the mean values across the 30 runs. It is seen that two of the
features include frequencies in the range 1-2 Hz, which could reflect EMs. Feature number 1
includes frequencies in the range 32-64 Hz, which must reflect electromyographic (EMG)
activity recorded at the EOG side. Feature number 2 includes frequencies in the range 16-32
Hz, which could reflect EMG activity and to a lesser degree also EEG activity recorded at the
EOG side.

Original feature no. Frequency range [Hz] Description of feature

1 32-64 Mean of the logarithmic "energy" in d2
2 16-32 Mean of the logarithmic "energy" in d3
20 1-2 Mean of the percentage energy in d7
27 1-2 Standard deviation of the percentage energy in d7

Table 3.3: The optimal subset of features found by using the SCRDA method to classify
controls and iRBD/PD patients in study I.

In figure 3.3 is seen the posterior probability of belonging to the NDD class using the leave-
one-out SCRDA classification approach. It should be emphasized, that because an optimal set
of parameters, ∆ and α, was found for each subject, the included features for classifying each
subject may vary. The four features presented in table 3.3 reflect the overall best subset. It
was, however, noted that feature number 1 and 27 were chosen in all 30 runs indicating that
these two might be the most discriminative ones.

Figure 3.3: The posterior probability of belonging to the NDD class holding the iRBD
and PD patients indicated as green and red stars, respectively. Controls are indicated as
blue open circles. For each subject, the posterior probability was computed based on the
leave-one-subject out classification approach by use of the discriminant function in equation
3.5, where the optimal values for ∆ and α were obtained from a 10-fold cross-validation
on the 29 subjects not held out. The closer to 1 (= 100%) a subject is, the higher posterior
probability of belonging to the NDD class.
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Following the criteria in SCRDA, it is seen that three control subjects were misclassified
as patients (posterior probability > 0.5) and one PD patient was misclassified as control
(posterior probability < 0.5). This yielded a final sensitivity of 95%, a specificity of 70% and
an accuracy of 86.7%.

3.3 Paper II: Classification of iRBD and Parkinson’s
disease patients based on eye movements during sleep

The previous study demonstrated that analysis of EMs during sleep and EMG activity mea-
sured at the EOG side both hold potential of being biomarkers of PD. This study focuses on
EMs alone and aims at illustrating the timely distribution and course of EMs. There exist no
exact criteria for duration, amplitude or frequency of an EM in the PSG, and no clear criteria
for when an EM is rapid or slow, or when they can be stated as present or absent. Therefore
no golden standard exist, and therefore no standard can be used to develop an EM detector.
Instead, it was chosen to evaluate EMs by use of a data-driven topic model. A topic model
is a statistical model revealing "topics" or "themes" describing latent structures behind the
generation of a collection of text documents. By applying the topic model on data describing
EMs during sleep for control subjects, each sleep epoch will be presented as a mixture of
three different states thought to be related to slow EMs, rapid EMs or no EMs. In this way,
the timely course and the transitions between EM states can be illustrated for each subject
and it can be investigated how well EMs from iRBD and PD patients fall into the EM states
found based on control subjects. A topic model approach was chosen as it is a data-driven
model suitable for subdivision of epochs into underlying themes, that may be unnoticeable by
human scorers. Additionally, as one sleep epoch can contain rapid EMs, slow EMs as well
as periods with no EMs, an indication of each epoch’s EM state membership was preferred.
Allowing one epoch to be presented as a mixture of states rather that a single state, entails
that transitions between states can be illustrated as continuously passages rather than abrupt
changes. A topic model called Latent Dirichlet Allocation (LDA) was chosen as it embraces
all these ambitions.

The overall methodology of this study is seen in figure 3.4.

3.3.1 Methods: Topic modeling of eye movements

Subjects and recordings

A total of 40 subjects were included in this study. The same 30 subjects as in the first pilot
study and addition 10 control subjects used for developing the topic model. The demographic
data can be seen in table 3.4.

27



Chapter 3. Eye movements during sleep

EOGL(

Automa8c(EM(topic(
mixture(classifica8on(

Feature(
extrac8on(

Naive(Bayes(
classifica8on(

Control(

iRBD/PD(EOGR(

xraw (s) pk (n) fII (p) y

Figure 3.4: Overall methodology of the second study concerning eye movements (EMs)
during sleep. Raw data xraw(s) from the left and right side EOG derivations were fed into
an automatic EM topic mixture classification model, which outputs a topic mixture diagram
indicating the probability mixtures pk(n) across K topics for each epoch n. For each topic
mixture diagram, three features described in fII(p) were extracted and fed into a Naive Bayes
classifier automatically classifying subjects as "control" or "patient".

Controls Controls iRBD PD
(for train) (for test) (for test) (for test)

Total number 10 10 10 10
Male / Female 5 / 5 5 / 5 8 / 2 6 / 4
Age [years] 57.2 ± 8.1 59.8 ± 8.4 59.0 ± 14.2 63.2 ± 8.4

Table 3.4: Demographic data for the four groups analyzed in study II.

As in study I, the quality of the PSG recordings were individually evaluated and recordings
with discontinued or artifact-contaminated channels were excluded. In this study, only the
two EOG signals were used and they were both sampled with a sampling frequency of 256
Hz.

Generation of a topic model: Latent Dirichlet Allocation

Originally, topic models were used to investigate topics in a collection of text documents
[5]. It is a statistical model that reveals underlying themes or topics describing the latent
structures in a collection of text documents. Linking particular word combinations to the
topic of a document, a topic model can identify the topics and give a topic mixture for
each document based on statistics of the appearances of these words [5]. In this study, a
common topic model approach called the Latent Dirichlet Allocation (LDA) was used. This
approach assumes that a given document contains a combination of multiple topics, and it
allows identification of concurrent topics, which are related to a small subset of words [5].
Specifically, LDA considers that each datapoint or word may belong to more than a single
cluster or topic [3]. Considering that a collection of documents, or a corpus, consists of M
documents all containing words drawn from the same overall fixed dictionary of V words
indexed by {1, . . . , V }, a document w can be described as a vector of N word indices,

w = (w1, . . . , wN) , wn ∈ {1, . . . , V } , (3.6)
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where N is the number of words in the the document. LDA assumes that each document may

contain more than one topic, and therefore a distribution of topics θ with
K∑
k=1

θk = 1 exist

for each document giving a description of the document in terms of its topic membership.
To control for complexity, i.e. limit the number of topics to ensure that words are grouped
and not considered individual topics, the Dirichlet prior is used to limit the number of topics
active in each document [3]:

p (θ | α) = Dirichlet (θ | α) =
Γ
(∑K

k=1 αk
)

∏K
k=1 Γ (αk)

θα1−1
1 . . . θαK−1

K , (3.7)

where α is a vector of length K with components αk > 0, and Γ(x) is the Gamma function.

In LDA, the generative process for each document w with N words is given by:

1. Choose a distribution of topics θ ∼ Dirichlet (θ | α)

2. For each word position wn, n = 1, . . . , N :

• Choose a topic zn from the topic distribution: zn ∼ p (zn | θ)

• Choose a word wn from the word distribution of that topic: wn ∼ p (wn | zn,β)LATENT DIRICHLET ALLOCATION

β

α z wθ N
M

zθ

φγ
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Figure 5: (Left) Graphical model representation of LDA. (Right) Graphical model representation
of the variational distribution used to approximate the posterior in LDA.

5.1 Inference

The key inferential problem that we need to solve in order to use LDA is that of computing the
posterior distribution of the hidden variables given a document:

p(θ,z |w,α,β) =
p(θ,z,w |α,β)
p(w |α,β)

.

Unfortunately, this distribution is intractable to compute in general. Indeed, to normalize the distri-
bution we marginalize over the hidden variables and write Eq. (3) in terms of the model parameters:

p(w |α,β) =
Γ(∑iαi)

∏iΓ(αi)

Z  k

∏
i=1

θαi�1i

! 
N

∏
n=1

k

∑
i=1

V

∏
j=1

(θiβi j)w
j
n

!
dθ,

a function which is intractable due to the coupling between θ and β in the summation over latent
topics (Dickey, 1983). Dickey shows that this function is an expectation under a particular extension
to the Dirichlet distribution which can be represented with special hypergeometric functions. It has
been used in a Bayesian context for censored discrete data to represent the posterior on θ which, in
that setting, is a random parameter (Dickey et al., 1987).

Although the posterior distribution is intractable for exact inference, a wide variety of approxi-
mate inference algorithms can be considered for LDA, including Laplace approximation, variational
approximation, and Markov chain Monte Carlo (Jordan, 1999). In this section we describe a simple
convexity-based variational algorithm for inference in LDA, and discuss some of the alternatives in
Section 8.

5.2 Variational inference

The basic idea of convexity-based variational inference is to make use of Jensen’s inequality to ob-
tain an adjustable lower bound on the log likelihood (Jordan et al., 1999). Essentially, one considers
a family of lower bounds, indexed by a set of variational parameters. The variational parameters
are chosen by an optimization procedure that attempts to find the tightest possible lower bound.

A simple way to obtain a tractable family of lower bounds is to consider simple modifications
of the original graphical model in which some of the edges and nodes are removed. Consider in
particular the LDA model shown in Figure 5 (left). The problematic coupling between θ and β
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Figure 5: (Left) Graphical model representation of LDA. (Right) Graphical model representation
of the variational distribution used to approximate the posterior in LDA.
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The key inferential problem that we need to solve in order to use LDA is that of computing the
posterior distribution of the hidden variables given a document:
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.
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a function which is intractable due to the coupling between θ and β in the summation over latent
topics (Dickey, 1983). Dickey shows that this function is an expectation under a particular extension
to the Dirichlet distribution which can be represented with special hypergeometric functions. It has
been used in a Bayesian context for censored discrete data to represent the posterior on θ which, in
that setting, is a random parameter (Dickey et al., 1987).

Although the posterior distribution is intractable for exact inference, a wide variety of approxi-
mate inference algorithms can be considered for LDA, including Laplace approximation, variational
approximation, and Markov chain Monte Carlo (Jordan, 1999). In this section we describe a simple
convexity-based variational algorithm for inference in LDA, and discuss some of the alternatives in
Section 8.

5.2 Variational inference

The basic idea of convexity-based variational inference is to make use of Jensen’s inequality to ob-
tain an adjustable lower bound on the log likelihood (Jordan et al., 1999). Essentially, one considers
a family of lower bounds, indexed by a set of variational parameters. The variational parameters
are chosen by an optimization procedure that attempts to find the tightest possible lower bound.

A simple way to obtain a tractable family of lower bounds is to consider simple modifications
of the original graphical model in which some of the edges and nodes are removed. Consider in
particular the LDA model shown in Figure 5 (left). The problematic coupling between θ and β

1003

(b)

Figure 3.5: (a): Graphical model representation of LDA. The open circles are hidden
variables and the filled one is known. The outer box (M) represents the repeated choice of
documents and the inner box (N) represents the repeated choice of topics and words within
a document. (b): Graphical model of the variational distribution used to approximate the
posterior topic probabilities in LDA. Both figures are taken from [5].

A graphical model representation of LDA is given in figure 3.5(a). The open nodes are hidden
variable and the filled node is a known variable. The word distribution β for each topic, and
the parameters of the topic distribution α are the parameters describing the model. These are
corpus parameters and are sampled once per corpus. The document variables θ are sampled
once per document, whereas z and w are word-related variables sampled for each word in
each document [5].

Training the LDA model corresponds to learning the parameters β and α. This is typically
done through approximate inference algorithms, as the posterior distribution of the hidden
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variables given by Bayes’ rule,

p (θ, z | w,α,β) = p (θ, z,w | α,β)
p (w | α,β) where (3.8)

p (w | α,β) = Γ (∑k αk)∏
k Γ (αk)

∫ (
K∏
k=1

θαk−1
k

) N∏
n=1

K∑
k=1

V∏
j=1

(
θkβkj

)wkn dθ (3.9)

is computationally intractable due to the coupling between θ and β [5]. One example of an
approximate inference algorithm is variational inference, which uses free parameters, γ and
φ to find the tightest lower bound on the log-likelihood function. The problematic coupling
between θ and β arises due to the edges between θ, z and w seen in figure 3.5(a). Variational
inference overcomes this by dropping the w nodes and the edges between θ and z to obtain
a simplified graphical model with free variational parameters as seen in figure 3.5(b) [5].
Together γ and φ are a family of lower bounds giving the family of distributions on the latent
variables θ and z characterized by

q (θ, z | γ, φ) = q (θ | γ)
N∏
n=1

q (zn | φn) , (3.10)

where γ is the Dirichlet parameter and φ1, . . . , φN are the multinominal parameters. The
optimization problem determining the value of the free variational parameters is now given
by [5]

(γ∗, φ∗) = arg min
(γ,φ)

D (q (θ, z | γ, φ) ‖ p (θ, z | w,α,β)) , (3.11)

which can be solved by use of an iterative fixed-point method and two update equations given
by,

φnk ∝ βkwn exp {Eq [log (θk) | γ]} and (3.12)

γk = αk +
N∑
n=1

φnk. (3.13)

The expectation in the multinomial update is given by:

Eq [log (θk) | γ] = Ψ (γk)−Ψ
 K∑
j=1

γj

 (3.14)

where Ψ is the first derivative of the log Γ function which is computable via Taylor approxi-
mation [5]. As the optimization problem in equation 3.11 is conducted for fixed w, γ∗ and
φ∗ are dependent on w and could be written as γ∗(w) and φ∗(w) instead. Given these values,
the variational distribution q(θ, z | γ∗(w), φ∗(w)) can thus be viewed as an approximation to
the posterior distribution p(θ, z | w,α,β), or i.e. the joint distribution of the topic mixture
θ and a set of K topics z given a set of N words w, the Dirichlet parameters α and the
word distribution β for each of the topics. The optimization problem is solved for each
document, and when applying a trained LDA topic model to new data, γ∗(w) and φ∗(w) are
approximated by use of equation 3.11 and the values of α and β learned trough training.
Finally, the topic mixtures for a new document are approximated through iterations using the
update equations stated in 3.12 and 3.13.
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Generating topic model for EM states

Relating topic modeling to sleep data, a sleep epoch can be seen as a document and the words
used for revealing the topics can be explained as variables or structures indicative for the
different sleep states.

As this study focuses on EMs, the number of topics was set to K = 3 to reflect the three states
(slow, rapid and no EMs), that are believed to be the overall states EMs can be in during sleep.
In order to train a LDA topic model, a transformation from EOG signals to "word" is needed.
As described in last section, each document, or sleep epoch, has to be described by a vector w
In figure 3.6 is given an overview of the transformation of raw EOG data to a word vector w.

The words used for describing the EM topics were computed from the two EOG signals.
Initially, both signals were bandpass filtered to focus on the frequencies in the range 0.3-10
Hz. The signals were divided into non-overlapping segments of length L s, for which three
word features were computed:

TEOG(m) =


Xll(m)
Xrr(m)
Xlr(m)

 where Xlr(m) =

√√√√ σlr(m)
σ2
ll(m)σ2

rr(m) −Xlr (3.15)

where m denoted the segment index and Xll and Xrr represents the spectral power computed
by the fast Fourier Transform (FFT) below 5 Hz in the left and right EOG signal segment,
respectively. The variance of the left and right EOG signal segment is denoted σ2

ll and σ2
rr,

respectively, and σlr denotes the covariance of the two segments. The normalized cross-
correlation coefficient Xlr will obtain negative values when EMs are present (EOG signals
anti-correlated), positive values when EEG artifacts such as delta waves are present (EOG
signals correlated) and values close to zero when background EOG activity dominates the
segment (EOG signals uncorrelated). To normalize Xlr across recordings, the values were
aligned around zero by subtracting the subject-specific median Xlr.

The word feature vector, TEOG(m) was converted into words by discretizing the values on
a per-subject basis. The word features Xll and Xrr were given the symbols 1 to 4 based on
boundaries set at each quartile q0.25, q0.50, q0.75 for the full range of feature values for that
specific subject, described as,

Xw
ll =



1 if Xll ≤ ql0.25

2 if ql0.25 < Xll ≤ ql0.50

3 if ql0.50 < Xll ≤ ql0.75

4 if ql0.75 < Xll

and Xw
rr =



1 if Xrr ≤ qr0.25

2 if qr0.25 < Xrr ≤ qr0.50

3 if qr0.50 < Xrr ≤ qr0.75

4 if qr0.75 < Xrr

(3.16)

where ql and qr denote quartiles based on values from Xll and Xrr, respectively. The cross-
correlation word featureXlr was given symbols 1 to 4 based on boundaries set at [−0.7, 0, 0.7]
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Figure 3.6: (a): Schematically presentation of the conversion of the raw EOG signals,
xraw(s), to vectors, wEOG(n), describing the words of each sleep epoch n. The vectors
are given as input to the Latent Dirichlet Allocation (LDA) model, which outputs the topic
probability mixtures pk(n) across the KEOG = 3 topics. (b): Graphic illustration of the
conversion of raw EOG signals in a REM epoch to a vector wEOG describing the words of
that epoch. In this illustration the power values Xrr and Xll and the cross-correlation values
Xlr were given the symbols 1 to 4 and a word length was set to be W = 3.
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for all subjects, described as,

Xw
lr =



1 if Xlr ≤ −0.7
2 if − 0.7 < Xlr ≤ 0
3 if 0 < Xlr ≤ 0.7
4 if 0.7 < Xlr

. (3.17)

The boundary values were set based on trial-and-error of best catching the EMs (values below
-0.7) and the EEG artifacts measured at the EOG sites (values above 0.7). Xw

ll , X
w
rr and Xw

lr

together described the symbolized word feature vector TwEOG, as

TwEOG(m) =


Xw
ll (m)

Xw
rr(m)

Xw
lr(m)

 . (3.18)

Different word lengths were tried (W = 2, 3, 5) resulting in EOG words to be presented
by either one of all combinations of W succeeding symbols of 1 to 4. A sleep epoch of 30

seconds with a number of
30
L

segments yields a total of 4W available words for each word

feature thereby giving a total of 3× 4W different words. For each sleep epoch, counts of the
available words were performed, yielding a specific fingerprint of each epoch, here described
by a vector wEOG(n) where W=3:

wEOG(n) =


wll
EOG(n)

wrr
EOG(n)

wlr
EOG(n)

 =



# ”111” in epoch n of Xw
ll

# ”112” in epoch n of Xw
ll

...
# ”444” in epoch n of Xw

ll

# ”111” in epoch n of Xw
rr

# ”112” in epoch n of Xw
rr

...
# ”444” in epoch n of Xw

rr

# ”111” in epoch n of Xw
lr

# ”112” in epoch n of Xw
lr

...
# ”444” in epoch n of Xw

lr



, (3.19)

where # denotes the total number. The topics are assumed to be defined by certain distribution
of the available words (β in previous section), and using the word counts for each sleep epoch,
a distribution over topics is derived (θ in previous section). Specifically, LDA outputs the
posterior probability pk(n) for EM topic k in epoch n.

Training a LDA topic model lies in learning the distribution of words β for each topic, and the
parameter α of the topic distribution, and in this study all sleep data from ten control subjects
was used to train a general topic model. The trained topic model was applied on the three test
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groups (see table 3.4) yielding a topic mixture diagram holding the posterior probabilities for
the three EM states in each sleep epoch from each of the test subjects.

Feature extraction

For each test subject, three features were extracted from the topic diagrams. The features are
summarized in table 3.5 and are for each subject p described by,

fII(p) =


fcertainty(p)

ffragmentation(p)
fstability(p)

 . (3.20)

Feature name Feature explanation Total no per subject
EOG

Certainty Normalized number of epochs with any topic 1
probability higher than t

Fragmentation Normalized number of transitions from one 1
topic to another topic

Global stability Normalized number of epochs in a period of 1
epochs where the topic is the same

Table 3.5: Overview of the feature groups computed in study II. The threshold t denotes
when an epoch was counted as certain. Different values were tried (t = [0, 0.025, . . . , 1])
and the best was chosen as the one giving the highest Area Under the Receiver Operating
Characteristic (ROC) Curve (AUC) when classifying the 30 test subjects.

The certainty feature fcertainty was designed to capture the trait that control subjects show
more epochs with high topic probability compared to the patients, i.e. that they show a
more "clear" sleep outlook as they have distinct differences between the EM states. The
fragmentation feature ffragmentation was designed to capture the trait that patients show a
more abrupt and fragmented pattern of EMs compared to controls. Finally, the stability feature
fstability was designed to capture the trait that patients show a decreased ability to sustain
a given EM state and thereby stay less time in any state before switching to another state
compared to control subjects. The three features are described as,

fcertainty = 1
N

N∑
n=1

1{pk(n)>t} (3.21)

ffragmentation = 1
N

N−1∑
n=1

1{
arg max

k
pk(n) 6= arg max

k
pk(n+1)

} (3.22)

fstability = 1
S

S∑
s=1

Ls with Ls = ls −min(ls)
max(ls)−min(ls)

(3.23)

where N is the subject-specific total number of epochs, pk(n) defined the probability of EM
topic k in epoch n and 1 is an indicator function, and t defined when an epoch is counted
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as certain. The best value for t = [0, 0.025, ..., 1] was chosen as the one giving the highest
Area Under The Receiver Operating Characteristic (ROC) Curve (AUC) when classifying the
30 test subjects using the leave-one-subject out approach. In fstability, s is a period in which
the dominant topic is maintained and the vector ls expresses the number of epochs in such
periods.

As the topic diagrams depend on the initialization of the LDA model, it was noticed that
the features slightly changed across runs, and the final features used for classification was
computed as the mean across 20 different runs on the test data.

Classification

Using the leave-one-subject-out classification approach, a standard Naive Bayes (NB) clas-
sifier was used to classify the test subjects as "control" or "patient". A NB classifier is a
simple probabilistic classifier, which assigns an observation x to the class Cg with the highest
posterior probability, i.e. it assigns the label y based on,

y = arg max
g∈{1,...,G}

p (Cg)
n∏
i=1

p (xi | Cg) , (3.24)

where g is the class index, p (Cg) is the prior probability of class g and p (x | Cg) is the
likelihood function. By doing so, a NB classifier assigns x to the class with the minimum
expected loss.

Different classification schemes were tried: The three features were given as input one by
one, combined in pairs or all together, and the NB classifier with the highest AUC was chosen
as the final one. The NB classifier was chosen for simplicity, and to make a brief evaluation
of the features’ capability to separate patients and controls.

3.3.2 Results

The final topic model performing the best according to AUC after NB classification was found
to include a word length of W = 3 and a segment length of L = 1 s. In figure 3.7 is seen
examples of topic mixture diagrams from a control subject, an iRBD patient and a PD patient.
Each vertical colored bin represents a sleep epoch, and the amount of each color represents
the individual topic probability. The characteristics of the sleep evolution is captured although
the model only includes information about EMs. The blue topic could be interpreted as having
something to do with rapid EMs in REM sleep, the green topic could be linked to slow EMs
and the red topic could be linked to states where no EMs are present.

In figure 3.8 is the decision boundary obtained from the best NB classification illustrated by
the colors gray (classified as "patient") and white (classified as "control"). The best model
includes fcertainty with a threshold of t = 0.75 and fstability and it obtained a sensitivity of
95%, a specificity of 80% and an accuracy of 90%.
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V. CONCLUSIONS

Training a general topic model based on sleep EOG
from ten control subjects, revealed that the characteristic
sleep cycles can be encompassed solely by use of features
reflecting EMs. By applying the topic model on testdata
from ten other control subjects, ten iRBD patients and ten
PD patients, a topic mixture diagram was obtained for each
subject. Features reflecting “certainty”, “fragmentation” and
“stability” of these diagrams were derived. It was found

that by use of the features “certainty” and “stability”, a
simple NB classifier classified the subjects with a sensitivity
of 95 %, a specificity of 80 % and an accuracy of 90 %.
The separability of the individual features as well as new
features derived from the topic mixture diagrams should be
further investigated. Although more focused analyzes of the
morphology of EMs are needed, this study demonstrates
with a data-driven, unsupervised approach that PD and iRBD
patients reflect abnorm form and/or timely distribution of
EMs during sleep.

Fig. 5. The best NB classification result was based on two features. The
decision boundary is illustrated by the colors white (control area) and gray
(patient area), and the 30 test subjects are marked with blue (control subject),
green (iRBD patient) or red (PD patient) filled circles.
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sleep cycles can be encompassed solely by use of features
reflecting EMs. By applying the topic model on testdata
from ten other control subjects, ten iRBD patients and ten
PD patients, a topic mixture diagram was obtained for each
subject. Features reflecting “certainty”, “fragmentation” and
“stability” of these diagrams were derived. It was found

that by use of the features “certainty” and “stability”, a
simple NB classifier classified the subjects with a sensitivity
of 95 %, a specificity of 80 % and an accuracy of 90 %.
The separability of the individual features as well as new
features derived from the topic mixture diagrams should be
further investigated. Although more focused analyzes of the
morphology of EMs are needed, this study demonstrates
with a data-driven, unsupervised approach that PD and iRBD
patients reflect abnorm form and/or timely distribution of
EMs during sleep.
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(b) An iRBD patient.
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Fig. 2. A topic mixture diagram and the manually scored hypnogram for
a control subject.
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V. CONCLUSIONS

Training a general topic model based on sleep EOG
from ten control subjects, revealed that the characteristic
sleep cycles can be encompassed solely by use of features
reflecting EMs. By applying the topic model on testdata
from ten other control subjects, ten iRBD patients and ten
PD patients, a topic mixture diagram was obtained for each
subject. Features reflecting “certainty”, “fragmentation” and
“stability” of these diagrams were derived. It was found

that by use of the features “certainty” and “stability”, a
simple NB classifier classified the subjects with a sensitivity
of 95 %, a specificity of 80 % and an accuracy of 90 %.
The separability of the individual features as well as new
features derived from the topic mixture diagrams should be
further investigated. Although more focused analyzes of the
morphology of EMs are needed, this study demonstrates
with a data-driven, unsupervised approach that PD and iRBD
patients reflect abnorm form and/or timely distribution of
EMs during sleep.

Fig. 5. The best NB classification result was based on two features. The
decision boundary is illustrated by the colors white (control area) and gray
(patient area), and the 30 test subjects are marked with blue (control subject),
green (iRBD patient) or red (PD patient) filled circles.
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(c) A PD patient.

Figure 3.7: Examples of topic mixture diagrams expressing mixtures of eye movement (EM)
topics. Each vertical bin represents a sleep epoch of 30 s and the amount of color in each bin
represents the individual topic probability. For comparison, the manually scored hypnograms
are provided below each diagram.

3.4 Conclusive remarks

Study I:
In the first study, EOG was found to hold indicative information of NDD. By use of the
wavelet decomposition technique, features reflecting energy in different frequency bands
were extracted for each sleep epoch. The means and standard deviations across all sleep
epochs were computed to make a brief assessment of whether patients with iRBD or PD
had values deviating from controls. Four features were found to be the most indicative ones,
whereof two reflected energy in the frequency range (1-2 Hz) considered to be related to EMs
during sleep. Specifically, these two features reflected the mean and the standard deviation of
the percentage energy in the frequency range 1-2 Hz across all sleep epochs, thereby only
reflecting the overall differences in EMs between controls and iRBD/PD patients. The study
emphasizes that artifacts such as baseline drift as well as EEG activity measured at the EOG
side might have had impact on the result.
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V. CONCLUSIONS

Training a general topic model based on sleep EOG
from ten control subjects, revealed that the characteristic
sleep cycles can be encompassed solely by use of features
reflecting EMs. By applying the topic model on testdata
from ten other control subjects, ten iRBD patients and ten
PD patients, a topic mixture diagram was obtained for each
subject. Features reflecting “certainty”, “fragmentation” and
“stability” of these diagrams were derived. It was found

that by use of the features “certainty” and “stability”, a
simple NB classifier classified the subjects with a sensitivity
of 95 %, a specificity of 80 % and an accuracy of 90 %.
The separability of the individual features as well as new
features derived from the topic mixture diagrams should be
further investigated. Although more focused analyzes of the
morphology of EMs are needed, this study demonstrates
with a data-driven, unsupervised approach that PD and iRBD
patients reflect abnorm form and/or timely distribution of
EMs during sleep.

Fig. 5. The best NB classification result was based on two features. The
decision boundary is illustrated by the colors white (control area) and gray
(patient area), and the 30 test subjects are marked with blue (control subject),
green (iRBD patient) or red (PD patient) filled circles.
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Figure 3.8: The best Naive Bayes classification result was based on fcertainty and fstability.
A blue dot illustrates a control subject, a green dot illustrates an iRBD patients and a red dot
illustrates a PD patient. The white and gray areas illustrate where the subjects are classified
as controls and patients, respectively. One iRBD patients and two controls were misclassified
yielding a specificity of 95%, a sensitivity of 80% and an accuracy of 90%.

Study II:
In the second study, the analysis was focused on EMs alone, and a data-driven topic model
was developed independently of manually sleep scorings. The topic model was found to
be helpful when evaluating EMs during sleep, and extracted features reflecting the overall
patterns of EMs during sleep were found to be indicative of patients with iRBD or PD.

Overall:
Based on the two studies, it can be concluded that patients with iRBD and patients with PD
reflect abnormal form and/or timely distribution of EMs during sleep. More focused analysis
is needed to further investigate how the neurodegeneration effect the EM morphology (the
rapidness, the amplitude etc.) as well as the EM controlling mechanisms, i.e. when are
rapid and slow EMs present and are EMs limited to certain periods as in controls or are they
distribution randomly across the night.

Due to neuroanatomy, EMs during sleep are very likely to possess indicative information
about neurodegeneration, but as no standard exist for manually scoring start and stop for EMs,
it is difficult to confirm their presence or absence. Consequently, it is hard to certify that the
described EOG analyses only reflect EMs. Although limited, artifacts such as baseline drift,
EEG delta waves, EEG micro-sleep structures and EMG activity recorded at EOG sites could
all have non-neglectable influence on the results found.

Overall, this research area conclude:

• that EMs during sleep hold potential as a PD biomarker.

• that a data-driven topic model describing EMs during sleep can be helpful when
analyzing and automatically classifying controls and patients with iRBD or PD.
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4

Sleep stage switching and stability

Objective Sleep disturbances are frequent complains in patients with NDDs, including PD.

The control of sleep and wakefulness relies on multiple interacting switching mechanisms

mainly regulated by neurons located in the brainstem and midbrain areas [7]; all of which

are at risk of being affected in early stages of PD [6]. A malfunction or destruction of any of

the switching mechanisms might be observed in the sleep architecture as either unstructured

transitions, and/or abnormal amount of time spent in the individual stages. Sleep from patients

with PD or iRBD is altered due to the neurodegeneration making it difficult to follow the

standard for sleep scoring. This chapter is composed upon Paper III and IV, and serves to

show the advantages of using topic modeling when analyzing sleep from patients with NDDs.

4.1 Background

Shifts between sleep stages and transitions from sleep into wakefulness are controlled by
switching mechanisms regulated by several neurons in the brainstem and midbrain areas as
further described in section 2.2.3. The model suggests sleep-wake and NREM-REM flip-flop
switches to be mutually dependent making them capable of generating complete and rapid
transitions between wake and sleep stages.

Despite the mutually inhibitory loops involved in the two switching mechanisms, if either side
of the two loops is weakened or injured, unwanted instability can occur in either of the states,
irrespective of which side is damaged [74]. Neurodegeneration affecting the controlling area
might therefore be observed in the sleep architecture as either unstructured transitions and/or
abnormal amount of time spent in the individual stages.

Manually scoring of sleep in iRBD and PD patients is challenged with altered sleep character-
istics such as fewer or abnormal sleep spindles (SS) [15], changes in slow-wave characteristics
[47], frequency slowing [64], abnormal eye movements (EMs) [14] [16] and presence of
REM sleep without atonia (RSWA) [41] [62]. The inter-rater reliability of scoring sleep in this
pathology has been indicated to be low [21] [39], mainly because the scoring standard simply
does not fit to altered sleep where stage-dependent characteristics can not be recognized.
Sleep analysis would therefore benefit from a data-driven method that could look deeper into
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Chapter 4. Sleep stage switching and stability

the data and recognize the important characteristics in a robust and consistent way. In that
way, data would lead the analysis independently of manual scorings.

The EMG activity is enhanced in iRBD and PD patients, suggesting that the neurodegenerative
process occurs in the region of the brainstem generating REM atonia [7]. In other words,
there is strong evidence that the neurodegeneration has affected the descending branch of
neurons inhibiting the skeleton muscles during REM sleep. To avoid influence from the
EMG abnormalities, the data-driven models developed are based on EOG and EEG features
alone, hereby focusing on the characteristics affected by the ascending cortical parts of the
sleep-wake and the REM-NREM sleep switches.

4.1.1 Research hypothesis

The main hypothesis for this research area was that patients with iRBD and PD express
altered transitions between wake and sleep stages compared to controls. Alterations in several
micro-sleep structures challenge the manually scoring of sleep in this pathology, which makes
the manual scoring questionable when investigating the sleep stage transitions. Traditional
sleep scoring assigns one sleep stage per sleep epoch, which does not reflect the various
micro-sleep events in the epochs. By allowing each sleep epoch to be described by a mixture
of sleep stages, the timely course of sleep and the transitions between sleep stages can be
described in much more detail. These intentions were achieved by addressing sleep analysis
by a data-driven topic modeling approach.

The aim with this research area was to:

• develop usable data-driven models based on EEG and/or EOG data from control
subjects.

• use the data-driven models to analyze how well sleep data from iRBD and PD patients
fit into the standard topics identified from control subjects.

• use the data-driven models to extract features reflecting sleep stage transitions, sleep
stage stability and amount of time spent in each sleep stage.

• investigate the robustness of features for indication of NDD by including patients with
a motor disturbance but not an NDD; i.e. patients with periodic leg movement disorder
(PLMD).
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Paper III: Data-driven modeling of sleep EEG and EOG reveals characteristics indicative of
pre-Parkinson’s and Parkinson’s disease

4.2 Paper III: Data-driven modeling of sleep EEG and
EOG reveals characteristics indicative of
pre-Parkinson’s and Parkinson’s disease

In this study a data-driven topic model was developed based on EEG and EOG data from
control subjects. The study evaluates the diagnostic value of features reflecting sleep char-
acteristics such as the stability, fragmentation and distribution of sleep stages in patients
with iRBD or PD. By addressing sleep analysis with a topic modeling approach, this study
does not attempt to match the manually scored sleep stages, but aims at identifying topics in
the EEG and EOG and thereby capture latent diversities between subjects with and without
neurodegeneration.

The overall methodology of this study is seen in figure 4.1
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Figure 4.1: Overall methodology of study III dealing with sleep stability, fragmentation and
sleep stage distribution as determined by a data-driven topic model approach. EEG and EOG
data was used separately to build two topic models; an EEG topic mixture model and an EM
topic mixture model, respectively. Features describing sleep EEG and EOG characteristics,
fEEG(p) and fEOG(p), were extracted from the obtained topic mixture diagrams pk(n). Three
Lasso regularized logistic regression models were trained; one given EEG features, one given
EOG features and one given both as input. Indicative features were selected and used to
classify the subjects by evaluating the posterior probability p(NDD | f) of belonging to the
"NDD" class. The "NDD" class holds the iRBD and PD patients and the "non-NDD" class
holds controls and patients with periodic leg movement disorder (PLMD).
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4.2.1 Methods: Topic modeling of EOG and EEG data

Subjects and recordings

A total of 125 subjects were enrolled in this study. Of these, 36 were PD patients, 31 were
iRBD patients, 25 were patients with PLMD and 33 were control subjects. All patient
evaluations included a comprehensive medical and medication history and a PSG according
to the AASM standard [34]. Patients treated with medication known to effect sleep stages
(antidepressants, antipsychotics, hypnotics) were excluded, although dopaminergic treatments
were continued. The PLMD patients were included as an additional control group to stress
the model as these patients show motor abnormalities, but should not be confused with
patients with NDD. The PLMD patients did not show any signs of neurodegeneration or
RSWA. No PSG findings or NDD-related symptoms were reported for this group and they
were considered as solely PLMD patients. The control subjects had no history of movement
disorder, dream-enacting (DE) behavior or other previously diagnosed sleep disorders. The
quality of the PSG data was individually evaluated, and recordings were excluded if the
analyzed channels were disconnected or continuously contaminated with artifacts.

The data was split into three groups: one for developing the topic models (10 control subjects),
another for training Lasso regularized logistic regression models for classifying NDD patients
(16 subjects from each group) and a third for final validation of the classifications (7 control
subjects, 9 PLMD, 15 iRBD and 20 PD patients). The datasets were designed to be matched
by age with no further knowledge of the subjects. The building dataset was, however, designed
to be balanced in age and sex. The demographic data of the datasets are seen in table 4.1, and
the distribution of the manually scored sleep stages are summarized in table 4.2.

Patient Total Age BMI SE BT LM Disease
group number [years] [kg/m2] [%] [min] index duration

(M/F) [years]

Data used for building topic models
Controls 10(5/5) 56.0±8.4 23.8±2.7 89.4±5.5 480±52.9 38.6±43.8 NA
Training dataset
Controls 16(5/11) 56.7±10.2 23.1±2.6 87.7±8.3 490±72.3 21.6±13.7 NA
PLMD 16(9/7) 56.9±11.8 25.1±3.5 86.5±6.1 434±32.7 60.4±42.3 NA
iRBD 16(13/3) 62.9±8.6 25.8±3.3 87.4±5.7 485±104.2 44.4±32.0 NA
PD 16(11/5) 65.4±6.4 26.4±2.6 78.5±13.5 462±87.9 47.1±47.6 3.6±4.5
Validation dataset
Controls 7(2/5) 56.9±7.4 23.1±2.1 82.7±15.5 470±103.6 10.8±8.5 NA
PLMD 9(4/5) 57.0±12.1 26.7±4.3 85.0±9.8 428±73.9 49.7±25.1 NA
iRBD 15(13/2) 63.4±5.8 25.4±3.1 80.8±8.6 486±94.0 32.8±26.4 NA
PD 20(13/7) 65.1±6.9 25.0±3.4 76.3±13.7 430±66.6 29.4±30.3 8.8±3.5

Table 4.1: Demographic characteristics of the four groups used to develop, train and validate
the topic models. The characteristics are indicated by means and standard deviations (µ± σ).
SE: Sleep efficiency; BT: Time in Bed; LM: Leg movements.
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Development of an EEG and an EOG topic model

Patient Wake REM N1 N2 N3 Sum
group [No. (%)] [No. (%)] [No. (%)] [No. (%)] [No. (%)] [No. (%)]

Data used for building topic models
(epochs were selected to have an approximately equal number in each stage)
Controls 642 (20) 700 (22) 617 (19) 700 (22) 597 (18) 3256 (100)
Training dataset
Controls 1887 (12) 3114 (20) 1292 (8) 7091 (45) 3201 (15) 15685 (100)
PLMD 1836 (13) 2767 (20) 1090 (8) 6010 (43) 2170 (16) 13873 (100)
iRBD 2012 (13) 2923 (19) 1637 (11) 6789 (44) 2149 (14) 15510 (100)
PD 3113 (21) 1652 (11) 1867 (13) 6251 (42) 1889 (13) 14772 (100)
Validation dataset
Controls 1137 (17) 1136 (17) 683 (10) 2890 (44) 733 (11) 6579 (100)
PLMD 1141 (15) 1204 (16) 732 (10) 3674 (48) 951 (12) 7702 (100)
iRBD 2967 (20) 2098 (14) 1106 (8) 5880 (40) 2535 (17) 14586 (100)
PD 4057 (24) 2464 (14) 1521 (9) 6523 (38) 2625 (15) 17190 (100)

Table 4.2: The distribution of sleep stages as determined by the manually scored hypnogram
used in the development, training and validation of the EEG and EOG topic models.

Development of an EEG and an EOG topic model

Sleep data from 10 control subjects was used to build two general topic models; one based
solely on EOG and one based solely on EEG. As in paper II described in section 3.3, the
LDA topic model was used to build the models. Again, conversion of EEG and EOG data
into words was needed, thereby describing each sleep epoch as a word vector of EEG words,
wEEG(n), and a word vector of EOG words, wEOG(n).

A schematic and a graphic illustration of the conversion of raw EEG data to the word vector
wEEG(n) fed into LDA is seen in figure 4.2.

The EEG words were extracted from the C3-A2, F3-A2 and O1-A2 EEG derivations, all
sampled with a sampling frequency of fs = 256 Hz. After the signals were filtered forward
and reverse with a bandpass filter with cutoff frequencies at 0.3 and 35 Hz, they were divided
into non-overlapping 1-s segments. Four EEG word features were computed for each segment
m, yielding a word feature vector TEEG(m) expressed as,

TEEG(m) =


XC3−A2(m)
XF3−A2(m)
XO1−A2(m)

 where X(m) =


xδ(m)
xθ(m)
xα(m)
xβ(m)

 (4.1)

represents the spectral power in the clinical EEG frequency bands delta (δ : f < 4Hz), theta
(θ : 4 Hz ≤ f < 8 Hz), alpha (α : 8 Hz ≤ f < 13 Hz) and beta (β : 13 Hz ≤ f < 30 Hz)
computed by the fast Fourier transform (FFT) using zeropadding and a rectangular window
function. The EEG word feature vector TEEG(m) was converted into EEG words by assigning
the spectral power values symbols 1 to 5 based on subject-specific boundaries set at each
quintile, q0.20, q0.40, q0.60 and q0.80, for the full range of spectral power values for that specific
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Figure 4.2: (a): Schematically presentation of the conversion of raw EEG signals, xraw(s), to
vectors wEEG(n) describing the words of each sleep epoch n. The word vectors are given as
input to the Latent Dirichlet Allocation (LDA) model, which outputs the probability mixtures
pk(n) of the KEEG = 5 topics. (b): Graphic illustration of the conversion of one epoch of raw
EEG signal to a vector wF3−A2

EEG describing the EEG words of the frontal EEG derivation. The
same was done for the central and occipital derivation, and wC3−A2

EEG , wF3−A2
EEG and wO1−A2

EEG

were combined into the final word vector wEEG(n) as seen in figure 4.3.
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subject, derivation and clinical band. The EEG word feature vector is described by,

TwEEG =


Xw
C3−A2

Xw
F3−A2

Xw
O1−A2

 where Xw
d =


xwδ

xwθ

xwα

xwβ

 where xwc =



1 if xc ≤ qd,c0.20

2 if qd,c0.20 < xc ≤ qd,c0.40

3 if qd,c0.40 < xc ≤ qd,c0.60

4 if qd,c0.60 < xc ≤ qd,c0.80

5 if qd,c0.80 < xc

(4.2)

where qd,c denotes the quintile for the power values in the clinical band c in the EEG derivation
d. The word length was set to be three, and an EEG word was thus defined as either one
of all combinations of three succeeding symbols of 1-5. This was done for all three EEG
derivations, and a final EEG fingerprint of a sleep epoch was thus presented as the word count
across the 3× 4× 53 = 1500 available words (3 EEG derivations, 4 clinical bands, 53 word
combinations), described by a vector wEEG(n),

wEEG(n) =


wC3−A2
EEG (n)

wF3−A2
EEG (n)

wO1−A2
EEG (n)

 =



#”111” in epoch n of Xw
C3−A2,δ

#”112” in epoch n of Xw
C3−A2,δ

...
#”555” in epoch n of Xw

C3−A2,δ

#”111” in epoch n of Xw
C3−A2,θ

...
#”555” in epoch n of Xw

C3−A2,θ
...

#”111” in epoch n of Xw
C3−A2,β

...
#”555” in epoch n of Xw

C3−A2,β

#”111” in epoch n of Xw
F3−A2,δ

...
#”555” in epoch n of Xw

F3−A2,β

#”111” in epoch n of Xw
O1−A2,δ

...
#”555” in epoch n of Xw

O1−A2,β



, (4.3)

where # denotes the total number. As in study II described in section 3.3, the EOG words
were extracted from the left and right side EOG derivations, also sampled with a sampling
frequency fs = 256 Hz. After the signals were filtered forward and reversed with a bandpass
filter with cutoff frequencies at 0.3 and 10 Hz, they were divided into non-overlapping 1-s
segments. Three EOG word features were computed for each segment m, yielding a vector
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Chapter 4. Sleep stage switching and stability

TEOG(m) expressed as,

TEOG(m) =


Xll(m)
Xrr(m)
Xlr(m)

 where Xlr =

√√√√ σlr(m)
σ2
ll(m)σ2

rr(m) −Xlr (4.4)

represents the normalized cross-correlation coefficient between the left and right EOG signal
segment m. It is based on the variance of the left (σ2

ll) and right (σ2
rr) signal segment and

the covariance (σlr) of the left and right signal segment. Xll and Xrr represent the spectral
power below 5 Hz in the left and right EOG signal segment, respectively, computed by FFT
using zeropadding and a rectangular window. Xlr describes the subject-specific median. The
transformation into EOG words was done by assigning the spectral power values symbols 1
to 3 based on subject-specific boundaries set at each tertile, q0.33 and q0.66, for the full range
of spectral power values for that specific subject and derivation. Xlr were assigned symbols 1
to 3 based on boundaries set at [-0.7; 0.7] for all subjects. The symbolized EOG word feature
vector TwEOG is described as,

TwEOG =


Xw
ll

Xw
rr

Xw
lr

 where Xw
d =


1 if Xd ≤ qd0.33

2 if qd0.33 < Xd ≤ qd0.66

3 if qd0.66 ≤ Xd

and

Xw
lr =


1 if Xlr ≤ −0.7
2 if − 0.7 < Xlr ≤ 0.7
3 if 0.7 ≤ Xlr

, (4.5)

where qd is the tertile for the d EOG derivation. As in paper II, the boundaries [-0.7; 0.7] were
set on a trial-and-error basis for the best separation of the data into either EMs (values below
-0.7), background EOG (values between -0.7 and 0.7) or EEG artifacts measured at the EOG
site (values above 0.7). The word length was set to two, and an EOG word was thus defined
as either one of all combinations of two succeeding values of 1 to 3. A final EOG fingerprint
of a sleep epoch was thus presented as the word count across the 3× 32 = 27 available words
(2 EOG derivations plus 1 cross-correlation measure, 32 word combinations), described by
the EOG word vector wEOG,

wEOG(n) =


wll
EOG(n)

wrr
EOG(n)

wlr
EOG(n)

 =



#”11” in epoch n of Xw
ll

#”12” in epoch n of Xw
ll

...
#”33” in epoch n of Xw

ll

#”11” in epoch n of Xw
rr

...
#”33” in epoch n of Xw

rr

#”11” in epoch n of Xw
lr

...
#”33” in epoch n of Xw

lr



, (4.6)
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Development of an EEG and an EOG topic model

where # denotes the total number. Data from 10 control subjects was used to build a general
EEG topic model and a general EOG topic model. Approximately 70 sleep epochs from each
AASM sleep stage were taken out randomly in between lights off and lights on from each of
the ten control subjects. Approximating an equal representation of the AASM sleep stages
equalized the changes for each AASM stage to be described by a topic. Not all subjects had
70 epochs of all stages, and the final number of epochs used in the building process is shown
in table 4.2. Figure 4.3 illustrates how the EEG and EOG word vector for each of the epochs
in the building dataset was combined into an EEG and EOG word matrix (i.e. to form the
EEG and EOG "document corpus"). These matrices were each fed into LDA to built the
general EEG and EOG topic model, respectively.
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Figure 4.3: Illustration of how the EEG and EOG word vectors, wEEG and wEOG, describing
the EEG or EOG words for each sleep epoch, conform the input matrices, or in topic modeling
language the "document corpora". Together with a fixed number of topics,KEEG and KEOG,
the word matrices are given as input to the Latent Dirichlet Allocation (LDA) in order to built
the general EEG and EOG topic model.

To reflect the number of AASM stages, the number of EEG topics was set to KEEG = 5. To
reflect the three major EMs during sleep (slow, rapid or no EMs), the number of EOG topics
was set to KEOG = 3.

For subjects included in the training or validation dataset, the general topic models were
applied on all epochs between lights off and lights on, yielding an EEG topic diagram and
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Chapter 4. Sleep stage switching and stability

an EOG topic diagram for each subject describing the distribution over EEG or EOG topics
in each sleep epoch, respectively. Specifically, LDA outputs the posterior probability pk(n)
for sleep topic k in epoch n based on the distribution across words learned from the building
dataset. In figure 4.4 is seen an example of an EEG and EOG topic mixture diagram from a
control subject in the training dataset. Each vertical bin presents a sleep epoch and the amount
of each of the colors in each bin represents the probability of each topic. EEG topics are
illustrated by colors and EOG topics are presented by gray, white and black.
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Figure 4.4: Examples of an EOG and an EEG topic mixture diagram from a control subject
in the training dataset. A sleep epoch of 30 seconds is presented as a vertical colored bin,
where each color represents a topic. The amount of color in each bin illustrates the probability
of that topic. EEG topics are illustrated by colors and EOG topics are illustrated by gray,
white and black. For comparison, the manually scored hypnogram is presented below the
diagrams.

Feature extraction

Table 4.3 gives an overview of the features computed in this study, and the feature vector
extracted from each of the two topic models can be described as,

f =



fcertainty

ffragmentation

fstability

fkTamount
fkTstability


, (4.7)

where k denotes the topic number. The certainty, fragmentation and global stability features
were computed once for each topic model. The topic amount feature group fkTamount and the
topic stability feature group fkTstability each comprise five features computed from the EEG
topic diagrams and three features from the EOG topic diagrams, reflecting the number of
topics for the diagrams. A total of nine features were thus extracted from the EOG topic
diagrams and 13 features from the EEG topic diagrams.
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Feature extraction

Feature name Feature explanation Total no per subject
EEG EOG

Certainty Normalized number of epochs with any topic 1 1
probability higher than 0.90

Fragmentation Normalized number of transitions from one 1 1
topic to another topic

Global stability Normalized number of epochs in a period of 1 1
epochs where the topic is the same

Topic amount Normalized number of epochs with a given topic, 5 3
and with a topic probability higher than 0.70

Topic stability Normalized number of epochs in a period of 5 3
epochs with the same given topic

Table 4.3: Overview of the feature groups computed in study III.

The "certainty feature", "fragmentation feature" and the "global stability feature" were com-
puted in a similar way as described in section 3.3.1 and were given by:

fcertainty = 1
N

N∑
n=1

1{pk(n)>t} (4.8)

ffragmentation = 1
N

N−1∑
n=1

1{
arg max

k
pk(n) 6= arg max

k
pk(n+1)

} (4.9)

fstability = 1
S

S∑
s=1

Ls with Ls = ls −min(ls)
max(ls)−min(ls)

(4.10)

where N is the subject-specific total number of epochs, pk(n) is the probability of topic k
for epoch n and s is a period of epochs for which the dominant topic is the same. In this
study, t = 0.9 is the threshold value defining when an epoch is counted as certain and 1 is
an indicator function. The threshold of t = 0.9 was decided as it was considered to be a
reasonable high threshold for when an epoch should be counted as mainly concerning one
topic. Also, by visual judgment of several threshold values in the range 0.6-1, this threshold
seemed to be the best to separate controls and iRBD/PD patients. As in paper II, these
features try to capture the characteristics that diagrams from non-NDD subjects show 1) more
bins with a high probability (certainty feature), 2) more structure and less fragmentation
(fragmentation feature) and 3) more subsequent epochs with the same dominant color (global
stability feature) compared to the diagrams from the NDD patients. The non-NDD subjects
encompasses the control subjects and the PLMD patients and the NDD patients hold the
iRBD and PD patients.

The "topic amount feature" and "topic stability feature" were computed for each of the three
EOG topics and five EEG topics and can be expressed as:

fkTamount = 1
N

N∑
n=1

1{pk(n)>tk} (4.11)

fkTstability = 1
N

N−1∑
n=1

1{
arg max

j
( pj(n) )=k and arg max

j
( pj(n+1))=k

} (4.12)
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where k is the topic number, tk = 0.7 is a certainty threshold defining when an epoch is
counted as a topic k epoch. Again, the threshold tk = 0.7 was decided as it was considered to
be the best to separate the groups based on visual judgment of several thresholds in the range
0.6-1. These features reflect the amount and stability of each of the three EOG topics and
five EEG topics, and try to capture the traits that diagrams from non-NDD subjects 1) show
changed amount of the different topics and 2) more often remain in a given topic for longer
time compared to the diagrams from the NDD patients.

Feature ranking and classification

A subset of features was chosen using a logistic regression with Lasso regularization. This
classification method was chosen as the coefficients are easy to interpret and the regularization
forces the coefficients of irrelevant or redundant features to zero thereby yielding simple
models less likely to overfit [33] [81]. In logistic regression a logistic sigmoid function is
used to model the posterior probability of the positive class for the input variable y:

p(positive | y) = 1
1 + e−(β0+βT y)

(4.13)

where β0 is the model offset and β is a vector of the variable coefficients. The inverse of the
logistic function is the logit transformation expressed as,

log p(positive | y)
1− p(positive | y) = β0 + βTy (4.14)

and the final classification is made by defining the decision boundary β0 + βTy = 0. The
parameters in logistic regression models are often trained using maximum likelihood, maxi-
mizing the log-likelihood L expressed as:

L(β0,β) =
I∑
i=1

{
zi(β0 + βTyi)− log

(
1 + eβ0+βT yi

)}
(4.15)

where I is the number of observations and zi is the classification output stating zi = 1 for
the positive class (NDD) and zi = 0 for the negative class (non-NDD). The complexity of
the model is controlled by introducing a regularization term λ > 0 yielding an optimization
problem in the Lasso regularized logistic regression expressed as [81],

arg max
(β0,β)

{
I∑
i=1

[
zi
(
β0 + βTyi

)
− log

(
1 + eβ0+βTyi

)]
− λ

D∑
d=1
| βd |

}
(4.16)

whereD is the dimension of the input variable. Lasso regularization performs feature selection
as some of the coefficients are driven to zero, thereby excluding the corresponding feature. As
the regularization term λ increases, the number of nonzero components of β decreases and
the model becomes more sparse [81]. Only features with nonzero components are included in
the final model, and the size of the component value indicates each feature’s impact in the
final posterior probability output.
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Results

Sixteen subjects from each of the four groups were included in the training dataset, which
was used to optimize the Lasso regularized logistic regression model using 8-fold cross
validation. Three models were trained: (1) one in which all features were available initially,
(2) one in which only the EOG features were available initially and (3) one in which only
the EEG features were available initially. For each trained model, values for β and λ were
obtained, thereby giving the optimal feature subset for each case. By training three models,
the performance of the EOG and EEG features alone as well as in combination were evaluated.

4.2.2 Results

Figure 4.5 presents examples of obtained EEG and EOG topic diagrams from a control
subject, a PLMD, an iRBD and a PD patient, respectively. The diagrams from the iRBD
and PD patients were less structured, had a more fragmented profile, more abrupt transitions
between topics and fewer epochs with a high certainty of either topic compared to the topic
diagrams from control subjects or PLMD patients. The features were designed to detect these
characteristics.

Visual comparison between the manually scored hypnograms and topic models show clear
concordances, especially for the EEG topic diagrams. Table 4.4 gives an overview of the
visual interpretation of the different EEG and EOG topics. Some of the topics were easy to
link to one specific sleep stage and some were harder, as e.g. the EEG green and red topic and
the EOG gray and white topic which were present in several sleep stages. Specifically, the
black EOG topic may be related to the low-frequency high-amplitude EEG artifacts measured
at the EOG during N3 sleep. The gray topic may be related to the rapid EMs during REM
sleep and the white may include both the low-amplitude slow EMs and periods with no EMs.

Topic EOG EOG EOG EEG EEG EEG EEG EEG
black gray white dark-blue light-blue green orange red

AASM stage N3 REM/W N1/N2 REM W N1/N2 N3 N1/N2

Table 4.4: Overview of the visual interpretation of the different EEG and EOG topics. Some
topics were easy to link to one sleep stage and some topics were well presented during several
sleep stages.

Figure 4.6 illustrates the feature values extracted from the EEG and EOG topic diagrams from
each subject, and figure 4.7 shows the output from the final logistic regression models. The
final models were expressed as,

p (NDD | fEEG) =
(
1 + exp

(
−0.002 + 0.363fDark blueTAmount

+ 0.311fOrangeTAmount

−0.310fGreenTStability
+ 0.343fOrangeTStability

))−1
and (4.17)

p (NDD | fEOG) =
(
1 + exp

(
− 0.003 + 0.011fCertainty

+0.320fBlackTAmount

))−1
. (4.18)
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(a) Control subject
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(b) PLMD patient
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(c) iRBD patient
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(d) PD patient

Figure 4.5: Examples of EOG (left) and EEG (right) topic mixture diagrams from a control
subject (a), a PLMD patient (b), an iRBD patient (c) and a PD patient (d). A sleep epoch of
30 seconds is represented as a vertical colored bin, where each color represents a topic. The
amount of color in each bin illustrates the probability of that topic. Below each topic diagram
is provided the manually scored hypnogram for comparison.
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Results

The logistic regression model initially including all 13 EEG features ended up including four
EEG features, and the regression model initially including nine EOG features ended up using
two EOG features. The model initially including all 22 features ended up being the same
model as the one including the four EEG features, thereby indicating that the EOG features
did not contribute the EEG features in this study.
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Fig. 7. The feature values obtained for the training and validation datasets. Subjects included in the validation and training datasets are presented as open and filled circles,
respectively. Markers indicate control subjects (dark-blue), PLM patients (light-blue), iRBD patients (light-red) and PD patients (dark-red). The features chosen for the final
regression models are indicated by gray, unfilled circles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 8 also illustrates the probabilities of belonging to the NDD
class as given by the two regression models using standardized
feature values. Subjects included in the training of the regression
models are indicated by filled circles, and open circles indicate
subjects in the validation dataset. The regression model initially
including all features and that initially including solely EEG features

were identical and so only one is shown. The results show that
the distribution of the PLM patients in the validation set was rela-
tively different from that of the training dataset. Together with the
small amount of control and PLM patients in the validation set, this
change in distributions is considered the main reason for the small
specificity measures obtained in this study.

Table 5
AUC, sensitivity and specificity values for classifying PD and iRBD patients using the best logistic regression model obtained when (1) all features (EOG and EEG), (2) only
EOG  features or (3) only EEG features were available initially. The optimal subsets of features in each case are also presented. The same regression model was obtained for
cases  (1) and (3).

Input features Feature subset Performance measure

EOG EEG Training dataset Validation dataset

X X 1: EEG topic “dark-blue” amount (REM amount)
2: EEG topic “orange” stability (N3 stability)
3: EEG topic “orange” amount (N3 amount)
4:  EEG topic “green” stability (N1/N2 stability)

AUC: 93.1%
Sensitivity: 93.8%
Specificity: 87.5%

AUC: 84.3%
Sensitivity: 91.4%
Specificity: 68.8%

X  1: EOG topic “black” amount (N3 amount)
2.  EOG overall certainty

AUC: 79.3%
Sensitivity: 65.6%
Specificity: 87.5%

AUC: 64.6%
Sensitivity: 57.1%
Specificity: 62.5%

X  1: EEG topic “dark-blue” amount (REM amount)
2: EEG topic “orange” stability (N3 stability)
3: EEG topic “orange” amount (N3 amount)
4:  EEG topic “green” stability (N1/N2 stability)

AUC: 93.1%
Sensitivity: 93.8%
Specificity: 87.5%

AUC: 84.3%
Sensitivity: 91.4%
Specificity: 68.8%

Figure 4.6: Feature values obtained from each subject in the training (filled circles) and
validation (open circles) dataset. The EOG features are presented to the left of the vertical
black lines and EEG feature are presented to the right of the lines. The larger gray circles
indicate the features used in the final regression models.

As seen in equation 4.17, small values of fDark blueTAmount
, fOrangeTAmount

and fOrangeTStability
and a large value

of fGreenTStability
increase the probability of belonging to the NDD class. The coefficients show that

fDark blueTAmount
followed by fOrangeTStability

, fOrangeTAmount
and fGreenTStability

were the most indicative, implying
that the amount of a topic linked to REM sleep and the amount and stability of a topic linked
to N3 sleep were considerable higher for the non-NDD class than for the NDD class. The
stability of a topic linked to N1/N2 sleep was less for the non-NDD class than for the NDD
class.
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Fig. 8. Probabilities of being NDD as indicated by the best regression models obtained. The closer a subject is to the value 1 on the x-axis, the higher probability of belonging to
the  “NDD” class. The upper figure shows results from a model that includes four EEG features: f Dark Blue

TAmount
(amount of ∼REM), f Orange

TAmount
(amount of ∼N3), f Orange

TStability
(stability of ∼N3)

and  f Green
TStability

(stability of ∼N1/N2). The lower figure shows results from a model including two  EOG features: fCertainty (certainty of any EOG topic) and f Black
TAmount

(amount of ∼N3).

The non-NDD groups contained more females and slightly
younger subjects than the NDD groups, and therefore the results
were additionally validated by analyzing different subgroups of the
data. Table 6 illustrates the performance measures obtained from
the model including four EEG features for (1) subjects aged younger
than 60 years, (2) subjects aged 60 years or more, (3) females only
and (4) males only. It may  be seen that the model performed best
for the female subset and worst for the male subset.

4. Discussion

We  propose a complete data-driven approach to reveal the
immanent states in sleep EEG and EOG. Without any prior

information such as manual sleep staging or subjective inputs, the
immanent states are found and features reflecting EEG and EOG
characteristics are derived. These characteristics are used to classify
iRBD and PD patients automatically using a training dataset to build
classifiers and a validation dataset to evaluate the classifiers’ per-
formance. Our study has three major findings. Firstly, it was  found
that features reflecting the amount and stability of two  EEG topics
similar to N3 and REM sleep, respectively, were specific to iRBD
or PD. The feature reflecting amount of REM sleep was the more
sensitive of the two, and the features reflecting the amount and sta-
bility of N3 sleep and the stability of a topic linked to N1/N2 were
supportive. Secondly, it was found that by using features extracted
from the EOG alone, two  features, reflecting the amount of an EOG

Table 6
AUC, sensitivity and specificity values for classifying PD and iRBD patients in four subsets of the data. The best logistic regression model, which includes four EEG features,
was  used.

Dataset subgroup Counts [total (control + PLM/iRBD + PD)] Performance measures

Training
dataset

Validation
dataset

Training dataset Validation dataset

Subjects aged <60 years 28 (21/7) 18 (9/9) AUC: 99.3%
Sensitivity: 100%
Specificity: 95.2%

AUC: 87.7%
Sensitivity: 88.9%
Specificity: 77.8%

Subjects aged ≥60 years 36 (11/25) 33 (7/26) AUC: 87.3%
Sensitivity: 92.0%
Specificity: 72.7%

AUC: 79.1%
Sensitivity: 92.3%
Specificity: 57.1%

Female subjects 26 (18/8) 19 (10/9) AUC: 88.9%
Sensitivity: 75.0%
Specificity: 94.4%

AUC: 91.1%
Sensitivity: 77.8%
Specificity: 80.0%

Male  subjects 38 (14/24) 32 (6/26) AUC: 91.7%
Sensitivity: 100%
Specificity: 78.6%

AUC: 71.8%
Sensitivity: 96.2%
Specificity: 50.0%

Figure 4.7: Probabilities of belonging to the NDD class as indicated by the best logistic
regression models obtained. Each marker is a subject from the training (filled circles) or
validation (open circles) dataset. The top figure shows the results from a model using four
EEG features and the lower one shows the results from a model using two EOG features. The
closer a subject is to 1, the higher probability of belonging to the NDD class.

As seen in equation 4.18, small values of fBlackTAmount
and fCertainty increased the probability of

belonging to the NDD class, where fBlackTAmount
was the most indicative of the two. This imply

that the amount of EEG activity at EOG sites during N3 sleep was considerable higher and the
overall EOG certainty (agreement to EOG topics found in control subjects) was marginally
higher for the non-NDD class compared to the NDD class.

The final classification was made by assigning subjects to the NDD class when p(NDD |
f) ≥ 0.5. Table 4.5 presents the performance measures for the final regression models and
the optimal subset of features chosen for each model. Finally, table 4.6 presents performance
measures for different subgroups of the data in order to analyze the effect of age and gender.

As seen in figure 4.7, the distribution of PLMD patients in the validation dataset was relatively
different for that of the training dataset. Together with the small amount of control and PLMD
patients, this distribution difference is considered the main reason for the small specificity
measures obtained. The best model was the one including four EEG features, and the EOG
features were found to be non-supportive as they did not add value to the model initially
including all features. Although the best model seem to perform better for younger female
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Results

Input features Feature subset Performance measures
EOG EEG Training dataset Validation dataset

X X 1: EEG topic "dark blue" (∼ REM) amount AUC: 93.1% AUC: 84.3%
2: EEG topic "orange" (∼N3) stability Sens: 93.8% Sens: 91.4%
3: EEG topic "orange" (∼N3) amount Spec: 87.5% Spec: 68.8%
4: EEG topic "green" (∼N1/N2) stability

X 1: EOG topic "black" (∼ N3) amount AUC: 79.3% AUC: 64.6%
2: EOG overall certainty Sens: 65.6% Sens: 57.1%

Spec: 87.5% Spec: 62.5%

X 1: EEG topic "dark blue" (∼REM) amount AUC: 93.1% AUC: 84.3%
2: EEG topic "orange" (∼N3) stability Sens: 93.8% Sens: 91.4%
3: EEG topic "orange" (∼N3) amount Spec: 87.5% Spec: 68.8%
4: EEG topic "green" (∼N1/N2) stability

Table 4.5: Performance measures for the three final regression models. The model initially
including EEG and EOG features ended up being the same as the model initially including
only the EEG features. Sens: Sensitivity; spec: Specificity.

Dataset subgroup Counts [non-NDD / NDD] Performance measures
Training dataset Validation dataset Training dataset Validation dataset

Subjects aged 28 (21/7) 18 (9/9) AUC: 99.3% AUC: 99.3%
<60 years Sens: 100% Sens: 88.9%

Spec: 95.2% Spec: 77.8%

Subjects aged 36 (11/25) 33 (7/26) AUC: 87.3% AUC: 79.1%
≥ 60 years Sens: 92.0% Sens: 92.3%

Spec: 72.7% Spec: 57.1%

Female subjects 26 (18/8) 19 (10/9) AUC: 88.9% AUC: 91.1%
Sens: 75.0% Sens: 77.8%
Spec: 94.4% Spec: 80.0%

Male subjects 38 (14/24) 32 (6/26) AUC: 91.7% AUC: 71.8%
Sens: 100% Sens: 96.2%
Spec: 78.6% Spec: 50.0%

Table 4.6: Performance measures for different subgroups of the data where the best logistic
regression model including four EEG features was used to classify the subjects. Sens:
Sensitivity; Spec: Specificity.

subjects, the area under the Receiver Operating Characteristic (ROC) Curve (AUC) measures
for the validation dataset in table 4.6 illustrate that the findings in this study were not solely
due to age and gender effects.
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Chapter 4. Sleep stage switching and stability

4.3 Paper IV: Sleep stability and transitions in patients
with idiopathic REM sleep behavior disorder and
patients with Parkinon’s disease

This study investigates stability of REM sleep, NREM sleep and wake as well as REM-
NREM and wake-sleep transitions in control subjects and patients with PLMD, iRBD or PD.
The sleep stability and transitions were determined by a data-driven approach as well as by
manually labeled stages to investigating whether the topic model approach is beneficial when
evaluating iRBD and PD patients. The topic model used is similar to the one described in
paper III in section 4.2, but in stead of building one topic model based on EEG and one based
on EOG, this approach combine the two modalities to better match the manually scorings.
Again, EMG data was left out of the analysis in order to focus on other alterations or potential
biomarkers than the affected EMG tonus seen in these patients. The overall methodology of
this method is seen in figure 4.8.
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Figure 4.8: The overall methodology of study IV. Features were derived from vectors, hman
and haut, indicating NREM, REM and W stages determined by manually scorings based on
the hypnogram or automatic labeled stages, respectively. The automatic labeled stages were
found based on topic probability mixtures pk(n) found from an automatic sleep topic mixture
classification model built on EEG and EOG data. Between group comparisons were made
between the six groups included in this study.

4.3.1 Methods: Topic modeling for automatic sleep staging

Subjects and recordings

A total of 27 patients with PD, 23 patients with iRBD, 25 patients with PLMD and 23 control
subjects aged 40 years or more and with no history of movement disorder, DE behavior
or other previously diagnosed sleep disorders were included in this study. As in the other
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studies, the patient evaluations included a comprehensive medical and medication history
and a PSG analyzed according to the AASM standard. A MSLT was performed in any cases
where narcolepsy was suspected. Medication affecting sleep (hypnotics, antidepressants,
antipsychotics) was not allowed, except for dopaminergic treatments. The PD patients were
divided in those with (PD+) and those without (PD−) RBD determined by the presence of
RSWA as well as clinical complaints. The iRBD patients were divided in those with a total
score of nine or less (iRBD−) and those with a total score of 10 or more (iRBD+) on the
RBD Screening Questionnaire (RBDSQ) [80]. This division of patient groups was done in
order to investigate if the presence of RBD in PD patients and the self-reported complaints
in iRBD patients had an influence on the measures. The cutoff on the RBDSQ score was
chosen to divide the iRBD patients into those with major self-reported DE (iRBD+) and
those with minor (iRBD−) on a scale of 1-13 where all iRBD patients have to have a score of
minimum 5. The PLMD patients were included as an additional control group and did not
show any signs of neurodegeneration or RSWA, and could be considered as solely PLMD
patients. The quality of the PSG data was individually evaluated and excluded if the quality
was unacceptable. Demographic and PSG data for the six groups are summarized in table 4.7.

Automatic labeling of sleep

Neurodegeneration have been reported to cause changes in sleep micro- and macroarchitecture,
thereby interfering with sleep scoring. Sleep is especially altered in iRBD and PD patients
making it difficult to identify stage-dependent characteristics, and consequently, sleep stage
scoring this pathology is associated with high inter-rater variability [21] [39]. In this study,
this challenge was solved by letting a data-driven topic model label the sleep epochs. The
automatic detector is fully described in the co-authored paper [42], and was developed in
a Master’s project simultaneously and in a similar way as the ones described in section 4.2
(paper III). The aim for the Master’s project was to build a supervised topic model to match
manually scorings and a wide range of settings were tried, such as which derivations to
include, number of topics, word length and number of symbols to use in the symbolization.
The method was optimized on the same PSG data as used in this thesis, and with the aims
for that project, the best topic model was found to be build on information from both EEG
(the central and frontal derivation) and EOG data (left and right). Also, the number of topics
K = 6 and a word length of three were found to be the optimal. Figure 4.9 illustrates the
development of the sleep topic mixture classification model used in this study.

Each epoch was divided into non-overlapping 1-s segments, yielding a word feature vector
T (m) expressed as,

T (m) =


XC3−A2(m)
XO1−A2(m)
TEOG(m)

 where X(m) =


xδ(m)
xθ(m)
xα(m)
xβ(m)

 (4.19)
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Controls PLMD iRBD− iRBD+ PD− PD+

Total counts 23(7/16) 25(13/12) 12(9/3) 11(10/1) 8(5/3) 19(13/6)
(Male/Female)
Age 56.7±9.2 56.9±11.6 61.8±6.8 66.3±7.2 68.8±8.4 63.7±6.7
[years, µ± σ]
BMI 23.1±2.5 25.7±3.8 25.1±2.6 25.9±3.6 24.1±3.6 25.9±2.9[
kg/m2, µ± σ

]
SE 86.2±10.9 86.1±7.5 82.5±7.4 85.8±6.7 67.9±15.5 80.3±9.9
[%, µ± σ]
BT 484±81.2 431±50.0 518±107.3 474±71.1 427±53.8 461±88.3
[min, µ± σ]
W 13.8±10.9 13.9±7.5 17.5±7.4 14.2±6.7 32.1±15.5 19.7±9.9
[%, µ± σ]
REM 18.9±6.6 18.5±6.1 17.7±7.1 16.3±7.1 9.3±5.3 14.6±10.8
[%, µ± σ]
N1 8.8±4.6 8.4±7.2 7.5±2.6 10.8±5.4 7.3±6.0 12.6±9.9
[%, µ± σ]
N2 44.7±9.4 44.7±10.9 40.0±10.9 43.0±10.3 39.2±12.9 39.3±15.1
[%, µ± σ]
N3 13.8±7.3 14.5±9.1 17.3±9.9 15.7±11.2 12.1±9.1 13.9±17.6
[%, µ± σ]
LM index 18.1±13.1 56.5±36.8 49.9±32.0 31.6±22.9 39.2±40.1 42.7±44.4
[no/hour, µ± σ]
PLM index 7.7±7.4 36.5±24.6 14.9±16.3 23.0±17.1 11.2±11.5 10.8±10.3
[no/hour, µ± σ]
Disease duration NA NA 5.3±9.8 11.3±12.0 7.7±5.7 4.6±3.3
[years, µ± σ]
RBD score NA NA 7.7±1.6 11.1±1.0 2.5±1.1 9.7±2.3
[µ± σ]

Table 4.7: Demographic and PSG data for the six groups enrolled in study IV. The PD
patients were divided into those with RBD (PD+) and those without (PD−), and the iRBD
patients were divided into those with a total score of ≤ 9 (iRBD−) and those with a total score
of >9 (iRBD+) on the RBD screening questionnaire. Disease duration is stated as years from
clinical diagnosis (PD patients) or self-reported subjective RBD-symptoms (iRBD patients).
SE: Sleep efficiency; BT: Time in Bed; LM: Leg movements; PLM: Periodic leg movements.

represents the spectral power in the clinical EEG frequency bands, and where TEOG(m)
is the same as stated in equation 4.4. The transformation into EEG words was done as
described in section 4.2.1 assigning symbols 1 to 5 to obtain TwEEG stated in equation 4.5. The
transformation into EOG words was done as described in section 3.3.1 assigning symbols 1 to
4 to obtain TwEOG as stated in equation 3.18. The word length was chosen to be three, thereby
yielding a total of 2 × 4 × 53 = 1000 possible EEG words (2 derivations, 4 clinical bands,
53 word combinations) plus 3× 43 = 192 possible EOG words. A fingerprint of each epoch
thereby consist of a distribution across 1192 different words holding information from EEG
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Figure 4.9: Illustration of the conversion of raw EEG and EOG signals, xraw(s), to vectors
w(n) describing the words of each sleep epoch n. The word vectors are given as input to the
Latent Dirichlet Allocation (LDA) model, which outputs the probability mixture pk(n) across
the K = 6 topics.

and EOG, described by a word vector described as,

w(n) =



wC3−A2
EEG (n)

wO1−A2
EEG (n)

wll
EOG(n)

wrr
EOG(n)

wlr
EOG(n)


=



#”111” in epoch n of Xw
C3−A2,δ

...
#”555” in epoch n of Xw

C3−A2,β

#”111” in epoch n of Xw
O1−A2,δ

...
#”555” in epoch n of Xw

O1−A2,β

#”111” in epoch n of Xw
ll

...
#”444” in epoch n of Xw

ll

#”111” in epoch n of Xw
rr

...
#”444” in epoch n of Xw

rr

#”111” in epoch n of Xw
lr

...
#”444” in epoch n of Xw

lr



, (4.20)

where # denotes the total number. The topic model used in this study was developed and
trained using the same datasets as described in section 4.2.1. The main difference between
the two papers is that the one described in section 4.2.1 used EEG and EOG separately and
did not attempt to match the manually scorings, whereas the topic model used in this study
and described in [42] combine the two modalities and try to best match manually scorings
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from control subjects. For a more detailed description of the optimization of the topic model
used in this study, see paper [42].

For each epoch n, the topic model outputs the posterior probability pk(n) for each of six
sleep topics k. Examples of epochs containing one topic with high certainty are seen in figure
4.10. As we were only interested in REM sleep, NREM sleep and wake in this study, the
probabilities for topic 1, 2 and 3 were combined into NREM, and by letting the dominant
probability decide, each epoch was labeled REM, NREM or W, described by,

haut(n) =


W if arg max

j
(pj(n)) = 4

REM if arg max
j

(pj(n)) = 5.

NREM if arg max
j

(pj(n)) = {1, 2, 3}
(4.21)

By doing so, the overall mean accuracy rates for detecting NREM, REM and W ranged
from 70% for patients with PD to 77% for control subjects when comparing with manually
single-scored hypnograms. It should be noticed that topic 6 was left out, but this combination
of topic probabilities was found to give the highest performance when detecting REM, NREM
and W.

H. Koch et al. / Journal of Neuroscience Methods 235 (2014) 130–137 135

Fig. 3. Cumulative sum of word impacts transformed by 2Ck . Each graph illustrates
the  sum of word impacts when including more words, starting with the most pow-
erful word. Topic 1 is the simplest topic with few impacting words and a small total
impact. Topic 3 is the most complex topic with many impacting words and a large
total impact.

investigated visually, and Fig. 4 shows examples of the four PSG sig-
nals in these epochs. The figure supports the concordances between
topics and AASM sleep stages stated in Table 3.

The final model was validated on a per-subject basis using
mSVM (explained in Section 2.2.3) and 20-fold cross validation.
The manual scoring was used to ensure representation of all AASM
sleep stages in all folds. Accuracy was calculated for each subject
on a by-epoch basis and Cohen’s kappa was derived to take the
agreement occurring by chance into account. The mean accuracy
and Cohen’s kappa were calculated for all subjects in the validation
and base term matrix data, for each subject group and overall. The
validation data reached an overall accuracy of 68.3 ± 7.44 (% ! ± ")
and Cohen’s kappa of 0.67 ± 0.08 (! ± ") and the base term matrix
reached an overall accuracy of 68.8 ± 9.02 and Cohen’s kappa of

0.67 ± 0.09. For comparison, well performing automatic sleep stage
classifiers have accuracies 71–91% (Ahmed and Tafreshi, 2009).
Table 4 contains the group specific accuracies for the individual
AASM sleep stages and all NREM stages combined. Visually the
topic diagrams showed that no specific combination of topics pre-
dict wake periods, and the validation supports this observation by
low wake prediction accuracy. Further, the validation shows that
N3 and REM sleep epochs are called more accurately compared to
wakefulness and N1.

It should be mentioned that the accuracy is highly dependent
on the manually scored hypnogram. Further, the accuracy will
decrease if the transition inflection points differ inconsistently
between the manual scoring and sleep topic model. The document
exchangeability in LDA and the fact that manual scoring takes prior
epochs into account may  introduce more differences.

4. Discussion

4.1. Automatic sleep classifier

The proposed model carries out automatic generalized sleep
classification and reveals latent sleep states using EEG and EOG. A
detailed description of sleep is given with continuous state switch-
ing using the clinical frequency bands as the only biased knowledge.
In order to evaluate the model against a gold standard, the sleep
model was optimized and compared using the manual scored
hypnograms. The optimized model used six sleep topics which
indicates that sleep has six latent states. The modelling approach
may  be interpreted as partially data-driven because equal rep-
resentaion of the AASM sleep stages was used for optimization.
However, this was done to benchmark the novel sleep classifi-
cation with the golden standard’s sleep staging and to ensure
representation of topics describing certain states e.g. wakeful-
ness (visual evaluation of models built on all-night data showed
a decreased wake description and more detailed description of
deep sleep). Sleep topic 1 and 2 corresponds to N3 in the AASM
standard but the content of topic 1 is in accordance with the
Rechtschaffen and Kales manual scoring standard, which defines
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Fig. 4. Examples of epochs containing one topic with high certainty. Dominating topic certainty in the respective epochs are: topic 6 p6 = 46.8%, topic 5 p5 = 88.9%, topic 4
p4 = 68.9%, topic 3 p3 = 82.9%, topic 2 p2 = 86.0% and topic 1 p1 = 34.7%.Figure 4.10: Examples of epochs containing one topic with high certainty. Dominating

topic certainty in the respective epochs are: Topic 6: p6 = 46.8%, topic 5: p5 = 88.9%, topic
4: p4 = 68.9%, topic 3: p3 = 82.9%, topic 2: p2 = 86.0% and topic 1: p1 = 34.7%. Figure
taken from [42].
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Analysis of transitions and stability

Analysis of transitions and stability

Two transition measures and three stability measures were defined and analyzed in this study.
The measures were computed based on the automatic labeled epochs, described by haut(n) as
well as the manually scored epochs. Wake-sleep transitions were defined as the number of
shifts from any sleep stage (N1, N2, N3, REM) to wakefulness or vise versa, and REM-NREM
shifts were defined as the number of transitions between any NREM stage (N1, N2, N3) to
REM sleep or vice versa. Stability measures were computed as the number of passages from
1) REM to REM, 2) NREM to NREM or 3) W to W. The transition measures were defined
as the frequency per minute of total time in bed, and the stability measures were defined as
the frequency of passages between two REM, NREM or W epochs per minute of the total
time spent in these stages, respectfully. The features are summarized in table 4.8 and a vector
faut(p) hold the ones derived from the automatic labeled sleep stages while fman(p) hold the
ones derived from the manually labeled sleep stages.

Feature name Feature explanation
Total no per subject

Automatic Manual
scorings scorings

REM-NREM transitions Number of transitions from NREM to REM or 1 1
REM to NREM per minute of total time in bed

Wake-sleep transitions Number of transitions from sleep to wake 1 1
or wake to sleep per minute of total time in bed

REM stability Number of toggles from REM to REM 1 1
per minute of total time spent in REM sleep

NREM stability Number of toggles from NREM to NREM sleep 1 1
per minute of total time spent in NREM sleep

W stability Number of toggles from W to W 1 1
per minute of time spent in W

Table 4.8: Overview of the feature groups computed in study IV.

To test for between-group differences, Wilcoxon rank-sum tests were performed on the two
transition and three stability measures, each having 15 between-group comparisons thereby
summing up to 5 × 15 = 75 tests in total. A significance level of p < 0.05 was used and
the Benjamini-Hochberg procedure was used to correct for multiple testing using a false
discovery rate (FDR) at level q = 0.10. This procedure was done for the measures computed
based on the manual and automatic labeled sleep epochs.

4.3.2 Results

Figure 4.11 presents the frequency of the sleep-wake and REM-NREM shifts and the stability
measures for REM sleep, NREM sleep and wake measured by the manually scored as well
as the automatic scored sleep epochs. Only the results for the comparisons that remained
significant after FDR correction are presented.
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Chapter 4. Sleep stage switching and stability

It was found that both groups of iRBD patients showed significantly lower REM stability
compared to control subjects, and that the iRBD+ group also showed significantly lower
REM stability compared with PLMD patients. Both groups of PD patients showed lower
REM stability compared to controls and PLMD patients, and the PD+ group also showed
significantly lower NREM stability than controls and significantly more REM-NREM shifts
than controls. Finally, non-significant trends were seen for the iRBD− group that showed
a trend of lower REM stability compared with PLMD patients, and the iRBD+ group that
showed a trend of more REM-NREM shifts than controls. No significant between-group
differences were found between any of the iRBD and PD patients, although the PD patients
showed a trend towards lower REM stability compared with iRBD patients. Finally, no
significant differences were found for any of the measures computed from the manually
scored sleep epochs.

Comparing the results obtained from the two different scoring techniques, it is seen that
the stability measures computed from the manually scored hypnograms are all greater than
the measures computed from the automatic labeled sleep epochs. This is especially true for
the REM stability measure, which is considered the main reason for why the REM-NREM
sleep transitions are greater for the automatic staging techniques compared to the manually
scorings.

4.4 Conclusive remarks

Study III:
In the first study (Paper III) several features reflecting characteristics of EEG and EOG
topics were analyzed separately and combined. The distribution and stability of EEG topics
linked to REM and N3 sleep were found to be the most indicative characteristics. The study
demonstrates that characteristics derived from EEG topics were better suitable for classifying
iRBD and PD patients compared to characteristics derived from EOG topics. The EOG
characteristics were found not to be supportive for EEG, maybe because the EOG topic
diagrams reflect the same sleep structures as the EEG topic diagrams, but to a less complex
and varied degree. However, the topic diagrams as well as the features derived from both
EOG and EEG showed differences between iRBD/PD and controls/PLMD patients.

Study IV:
In the second study (Paper IV), the topic model approach was used to determine sleep stability
and transitions and the data-driven method was found to be supportive when evaluating iRBD
and PD patients. Specifically, it was found that the ability to maintain NREM sleep and
in specific REM sleep is progressively affected in iRBD and PD, probably reflecting the
successive involvement of brainstem areas from early on in the disease. The manually scorings
failed to identify these alterations, maybe due to poor visual identification of micro-sleep
structures needed to terminate REM sleep.
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Conclusive remarks

scored sleep stages, and the differences between the REM stability
measures are thought to be the main cause hereof.

4. Discussion

This study is the first to analyze wake–sleep and REM–NREM
transitions and the stability of REM, NREM and W in PD, iRBD
and PLMD patients compared with controls. Furthermore, we
divided the PD patients into those with and those without RBD,
and the iRBD patients were divided in those with a high total score
on the RBDSQ and those with a low score. Our main findings are:
(1) REM sleep is less stable in iRBD and PD patients than in
PLMD patients and control subjects, regardless of the RBDSQ total
score and the presence of RBD. A non-significant trend was seen for
a lower REM sleep stability in PD compared to iRBD patients. (2) PD
patients with RBD showed significantly lower NREM stability and
significantly more REM–NREM shifts than controls. Same trend,
however non-significant, was seen for iRBD with high scores in
the RBDSQ compared with control subjects. Overall, trends were
seen for lower REM stability and more REM/NREM transitions in
both groups of iRBD and PD patients. These results indicate that

the ability to maintain REM and NREM sleep is a biomarker for
iRBD and PD, regardless of the presence of clinical symptoms.

The sub-division of iRBD and PD patients might not be optimal,
as it does not reflect the actual RBD severity in the recording ana-
lyzed. The PD patients without RBD might have RSWA to a certain
degree but no RBD diagnosis as they lack to report subjective
symptoms. Contradictory, the iRBD patients with major self-
reported dream enactments might show just sufficient RSWA to
be diagnosed. Analyzing trends for the stability and transitional
measures as a function of clinical RBD severity could give a better
insight in how correlated the features are with RBD severity. The
clinical RBD severity scale reported in (Sixel-Döring et al., 2011)
analyzes RBD on an event-to-event basis, including both vocaliza-
tion and movements, and could be used in future studies to look
for such trends and correlations.

Wake–sleep and REM–NREM shifts as well as stability measures
were computed based on the manually scored hypnogram as well as
a data-driven identification of REM, NREM and W stages. A data-
driven model recognizes the underlying structure of the data and
automatically identifies wake and sleep stages. Using a data-driven
sleep staging approach has several advantages over manual scoring.

Fig. 1. The frequencies of wake–sleep and REM–NREM shifts and the stability measures for REM sleep, NREM sleep and wake for the six groups based on the automatically
scored REM, NREM and W epochs. Left, bar charts with heights indicating means, and error bars indicating one standard deviation of the observations above and below the
mean. Right, results from each subject indicated as dots. Dark blue, control subjects; light blue, PLMD patients; light red, iRBD patients; dark red, patients with Parkinson’s
disease (PD). Asterisks indicate a significant between-group difference, determined by Wilcoxon rank-sum tests: ⁄p < 0.05; ⁄⁄p < 0.01; ⁄⁄⁄p < 0.001. The Benjamini–Hochberg
procedure was used to control the false discovery rate (FDR) at level q = 0.10. Fifteen between-group comparisons were made of five measures, giving a total of 75 tests. Only
the results for the comparisons that remained significant after FDR correction are presented. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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(a) Automatic scored epochs

First, automatic staging encompasses micro-sleep characteristics
delineated over time intervals as short as one second; the dynamics
over such short intervals are not captured by manual scoring, which
is of a much lower resolution. The model looks deeper into each
sleep epoch and can survey and identify many more sleep character-
istics than the human eye can assess. Although final identification is
made for 30-s intervals in the automatic detection as well, decisions
are based on changes or transitions occurring at a much faster rate.
Second, using an automatic, data-driven approach, sleep stages
across the night as well as across subjects are more comparable as
they are obtained using exactly the same algorithm. Third, using
the automatic model, identification of each epoch is based solely
on micro-sleep characteristics and changes within the epoch in
question, rather than on the scoring of adjacent epochs. As the
model features the analysis of short time intervals, it enables a
highly detailed description of each sleep epoch, which reduces
variation in inter- and intra-subject scoring. Consistent with this,
manual scorings for patients with PD have low inter-rater agree-
ment rates (Danker-Hopfe et al., 2004; Jensen et al., 2010).

No significant differences between groups were found for the
manually scored hypnograms, whereas the data-driven labeling

indicated many between-group differences. The reason for these
contradictory results are suggested to be caused by the two differ-
ent sleep scorings strategies. The fact that the data-driven method
makes the labeling solely based on the characteristics of the epoch
in question and not the labeling of the prior epoch allows in
specific REM sleep to be terminated when no clear EEG and EOG
structures supporting REM sleep are present. Contrarily, manually
scorings terminate REM sleep only when a clear NREM or W
structure is present (Iber et al., 2007). Specifically, REM sleep is
besides the characteristic eye movements identified by atonia
and EEG similar to that during wakefulness. In periods where eye
movements are not present, but the atonia as well as the aroused
EEG is maintained, the manual scoring of REM sleep is continued.
Relating this to EMG with lack of atonia and EEG with altered
characteristics or lack of clear micro-sleep structures as seen in
patients with PD or iRBD (Christensen et al., 2014a,b; Dauvilliers
et al., 2007; Fantini et al., 2003; Kempfner et al., 2014a,b; Petit
et al., 2004), termination of REM sleep is harder to confirm for a
manual scorer. As a result, the manually scorings lack to illustrate
differences in the REM stability measure, as well as in the
REM–NREM sleep transitions.

Fig. 2. The frequencies of wake–sleep and REM–NREM shifts and the stability measures for REM sleep, NREM sleep and wake for the six groups based on the manually scored
REM, NREM and W epochs. Left, bar charts with heights indicating means, and error bars indicating one standard deviation of the observations above and below the mean.
Right, results from each subject indicated as dots. Dark blue, control subjects; light blue, PLMD patients; light red, iRBD patients; dark red, patients with Parkinson’s disease
(PD). Asterisks indicate a significant between-group difference, determined by Wilcoxon rank-sum tests: ⁄p < 0.05; ⁄⁄p < 0.01; ⁄⁄⁄p < 0.001. The Benjamini–Hochberg
procedure was used to control the false discovery rate (FDR) at level q = 0.10. Fifteen between-group comparisons were made of five measures, giving a total of 75 tests. No
comparisons remained significant after FDR correction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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(b) Manually scored epochs

Figure 4.11: (a): The frequency of wake-sleep and REM-NREM shifts and the stability of
REM sleep, NREM sleep and wake for the six groups based on the automatic labeled epochs.
(b): The frequency of wake-sleep and REM-NREM shifts and the stability of REM sleep,
NREM sleep and wake for the six groups based on the manually scored epochs. The measures
are illustrated by bars (group mean ± one standard deviation) to the left and as dots (one per
subject) to the right. Only the results for the comparisons that remained significant after false
discovery rate (q = 0.10) correction are illustrated. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.
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Chapter 4. Sleep stage switching and stability

Overall:
The two studies illustrate that iRBD and PD patients suffer from micro-sleep fragmentation
expressed both in EEG and EOG, which interferes with and challenges today’s way of scoring
sleep. As the REM sleep specifically was found to hold indicative information and as the topic
models did not include EMG activity, the studies illustrate that the neurons regulating the
cortical activation during REM sleep are affected by the neurodegeneration. Finally, the two
studies suggest iRBD to be an intermediate stage between controls and PD patients, consistent
with Braak’s hypothesis [6].

It is concluded, that LDA is a useful approach for analyzing sleep. The proposed methods
proved to reflect the overall sleep pattern and gave a more detailed representation of sleep
compared to the AASM standard. Allowing sleep epochs to be expressed as mixtures of
stages revealed that the transitions between sleep stages are continuous rather than abrupt.
The continuous processes and the association between topics should be investigated in much
more detail in future studies. Also, it should be emphasized that although the studies illustrate
EEG and EOG alterations in patients, the characteristic of the alterations are not identified.
The complexity of LDA makes it feasible of detecting concurrent topics that are associated to
only few words, but it also makes it difficult to investigate the direct link between words and
topics.

Overall, this research area conclude:

• that topic models developed on EOG and/or EEG data from control subjects can be
useful when evaluating EOG and EEG from patients with PLMD, iRBD or PD.

• that sleep data from patients with iRBD or PD do not fit well into topics derived from
control subjects, illustrating that both EOG and EEG in these patients are altered.

• that features reflecting sleep stage transitions and stability as well as amount of time
spent in each sleep stage can be extracted from the topic diagrams and thereby be used as
an automated indication of alterations in iRBD/PD patients compared to controls/PLMD
patients.
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5

Sleep spindles

Objective Sleep spindles (SS) are controlled by a complex interaction involving thalamic,

limbic and cortical areas. Thalamus hold the primary role in generating and controlling

spindles, and as it is located between the cerebral cortex and the midbrain, it is sensitive to

involvement in neurodegenerative disorders (NDD). This chapter is composed upon paper V

and VI, and serves to investigate the biomarker potential of SS. In Paper V the spindle density

is investigated as a potential biomarker of PD, whereas paper VI serves to identify spindle

alterations in PD patients.

5.1 Background

Sleep spindles (SS) are EEG hallmarks of NREM sleep, and are mostly present during N2
sleep. They are generated in thalamus, as evidenced by the fact that thalamectomy eliminates
SS in the sleep EEG [43]. Many neurological connections exist between the thalamus and
the cerebral cortex and these are thought to play an important role in the generation and
controlling of different micro-sleep structures, including SS. In figure 5.1 is seen a typical SS
and an illustration of the generation of SS.

The generation of SS begins in the di-synaptic circuit between thalamic reticular neurons
(RE) and thalamocortical relay cells (TC), where spontaneously spindle-like oscillations
are generated. The oscillations are conveyed to the cortex by the TC cells, and cortical
pyramidal cells (PY) mediate a cortico-thalamic feedback as they project back to the RE
and TC cells, that conveyed the spindle. In the cortex, cortical interneurons (IN) ensure
cortico-cortical connections, which together with the cortico-thalamic feedback loop are
important in synchronizing the occurrence of SS over widespread thalamic and cortical areas
[43].

The functional meaning as well as the triggers of SS are not fully known, but as the TC
cells also receive input from prethalamic fibers (PRE) arising from specific sensory systems
as well as systems located in the brainstem and posterior hypothalamus [79] [78], SS are
thought to have a sleep-preserving role through inhibition of sensory input [30]. Also, they are
assumed to play an important role in memory consolidation during sleep, synaptic plasticity
and cognition [27] [28] [46] [69] [79]. The formation of SS begins in the infant brain [30], and

65



Chapter 5. Sleep spindles

Chapter 2. Clinical Background

2.4 Sleep spindles

Traditionally, SS have been defined as nearly sinusoidal waves with a frequency profile at 12-
14 Hz lasting at least 0.5 seconds and displaying an increasing, then decreasing amplitude
envelope [29]. This definition has later expanded to include frequencies in the range 12-16
Hz, and as stated above, the AASM standard defines SS as having frequencies in the range
11-16 Hz. Additionally, it is getting more and more accepted, that there exist two kinds of
SS, namely the slow ones with frequencies of 11.5-14 Hz and the fast ones with frequencies of
14-16 Hz [29]. In this thesis, the AASM definition is the one definition used, but the other
definitions should be kept in mind, when comparing di/erent SS studies and results.

SS are generated in the thalamus, as evidenced by the fact that thalamectomy eliminates SS
in the sleep EEG [29]. Thalamus is a part of the diencephalon, and is situated between the
cerebral cortex and the midbrain. Many neurological connections exist between the thalamus
and the cerebral cortex, and thalamic-cortical mechanism are though to play an important role
in the generation and outlook of the sleep EEG [29]. In figure 2.6a is seen a typical SS, and
in figure 2.6b is seen a schematic representation of thalamic and cortical cell types involved in
the generation of sleep EEG rhythms.

1.2. Basics of sleep

sleep spindle can be seen in figure 1.4. The N3 stage is characterized by slow wave
activity with a frequency of 0.5-2 Hz and an amplitude that is at least 75 µV. Finally,
the REM stage is characterized by low-voltage, mixed-frequency activity and sawtooth
waves [26]. The sawtooth waves appear with a very distinctive shape resembling teeth
on the cutting edge of a knife. The appearance of this waveform can also be found in
figure 1.4. However, for some subjects, it is not possible to identify sawtooth waves in
the EEG signal.

Vertex Sharp Waves K-complex Sleep Spindle Sawtooth Waves 

Figure 1.4: Appearances of Vertex sharp waves, K-complexes, sleep spindles and sawtooth waves.

In the REM-stage a tonic condition is seen, where the EEG is desynchronized, con-
currently with an atonia of the skeletal muscles and suppression of monosynaptic and
polysynaptic reflexes. A phasic state is also observed, which is characterized by rapid eye
movements together with variations in the blood pressure and heart rate, and irregular
respiration [45].
Normally a NREM-REM sleep cycle lasts about 90 minutes, and the amount of time in
REM sleep increases as a function of the total sleep time. Thus, over a nights sleep,
stages are changed many times. An illustration of this shift in sleep stages is given in a
hypnogram. An example of a hypnogram is seen in figure 1.5. The horizontal axis in the
hypnogram displays the amount of sleep time, and the vertical axis displays the di�erent
sleep stages.
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Figure 1.5: Example of a hypnogram. Scored according to the R & K manual. Stages 1-4 are the
NREM stages. Stage 1 roughly corresponds to stage N1 in the AASM scoring, stage 2
corresponds to N2, and stage 3 and 4 roughly correspond to stage N3. Inspired by [45].
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Figure 2.6: Schematic representation of thalamic and cortical cell types involved in the generation of sleep
EEG rhythms, as well as their synaptic interactions. TC represents the thalamortical pyramidal cells, IN
represents the cortical interneurons and PRE represents the prethalamic a erent fibers ariseing from specific
sensory systems as well as systems located in the brainstem and posterior hypothalamus.

TC represents the thalamocortical relay cells, RE represents the thalamic reticular neurons,
PY represents the cortical pyramidal cells and IN represents the cortical interneurons. PRE
represents prethalamic a/erent fibers, which arise from specific sensory systems as well as sys-
tems located in the brainstem and posterior hypothalamus [29]. It is seen that TC cells receive
input from PRE fibers and relay the information to the appropriate cortical area by ascending
thalamocortical axons, as illustrated by the arrow pointing upwards. The TC cells also have
collateral axons that make synaptic contact with RE neurons, that again have projections
back to the TC neurons. This disynaptic circuit between the RE and TC cells can generate
spontaneously spindle-like oscillations, which in the thalamus is conveyed to the cortex by the
patterns of burst firing in the TC neurons [29]. It is also seen, that there exists a corticotha-
lamic feedback, which is mediated by the PY neurons. These project back to the same TC
neurons from which they derive the thalamic input, and they as well have collateral axons to
the RE neurons. This cortical feedback as well as the cortico-cortical connections through the
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tems located in the brainstem and posterior hypothalamus [29]. It is seen that TC cells receive
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thalamocortical axons, as illustrated by the arrow pointing upwards. The TC cells also have
collateral axons that make synaptic contact with RE neurons, that again have projections
back to the TC neurons. This disynaptic circuit between the RE and TC cells can generate
spontaneously spindle-like oscillations, which in the thalamus is conveyed to the cortex by the
patterns of burst firing in the TC neurons [29]. It is also seen, that there exists a corticotha-
lamic feedback, which is mediated by the PY neurons. These project back to the same TC
neurons from which they derive the thalamic input, and they as well have collateral axons to
the RE neurons. This cortical feedback as well as the cortico-cortical connections through the
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Figure 5.1: (a): A typical sleep spindle. (b): Illustration of thalamic and cortical cells
and neural interactions involved in the generation and controlling of sleep spindles. PRE:
Prethalamic fibers; TC: thalamocortical pyramidal cells; RE: thalamic reticular neurons; PY:
cortical pyramidal cells; IN: cortical interneurons.

as several decreasing trends in SS characteristics occur with age [30] [58], they are suggested
to have an important role in normal cognitive function.

According to the AASM standard, SS have an oscillating frequency of 11-16 Hz and a duration
of 0.5-3 seconds [34]. They are nearly sinusoidal waves with a characteristic Gaussian
amplitude envelope and an ability to stand out from the background EEG. Previously, the
frequency profile has been stated at 12-14 Hz or 12-16 Hz, and in some studies SS are referred
to as two different kinds - the slow ones with frequencies of 11.5-14 Hz and the fast ones
with frequencies of 14-16 Hz [43]. As the manual scoring relies on subjective assessment,
it can be a difficult and tedious task to identify SS, and the inter-scorer agreement rate for
scoring SS in normal sleep has been indicated to be as low as 70±8% [87]. Also, automated
SS detectors have been indicated to show significant variance between them when identifying
SS in normal sleep [84].

SS identification and characterization in pathological sleep is not well studied, but has been
indicated to be altered in patients with PD and other NDDs such as Dementia, Alzheimer’s
disease and mild cognitive impairment [46] [63] [85]. Generally, the SS density has been
reported to be low in these patient groups, and although not specific to a certain patient group,
they could be useful as biomarkers of disease progression or therapeutic efficacy [48] [54]
[56].

Besides age and pathology, terms such as memory consolidation, pharmacological interven-
tions and pre-PSG conditions have been reported to affect SS activity. Taken together with
the different definitions of SS, the reliance on subjective evaluation and the high inter-expert
variability, the impact of the different terms are very difficult to state.
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Research hypothesis

5.1.1 Research hypothesis

The main hypothesis for this research area was that SS hold potential for being a PD biomarker.
The research area also serves to illustrate the challenges faced when developing automated
spindle detectors to be used on pathological sleep.

The aim with this research area was to:

• develop an automated SS detector suitable for detecting SS with an acceptable perfor-
mance.

• investigate whether the presumed reduced SS activity is apparent in iRBD patient as
well as in PD patients.

• identify changes in SS density and morphological characteristics in patients with PD
compared to controls.

• identify specific SS features that may be useful as prognostic biomarker of PD by
relating them to disease duration and cognitive measures.

It should be mentioned, that the development of the SS detector (first- and second-mentioned
aim) was carried out in the Master’s project preceding current PhD dissertation. Inclusion of
more data, re-evaluation of results, re-writing, submission and revision of the manuscript was,
however, carried out during the PhD, and Paper V is thus included in this research area.

5.2 Paper V: Decreased sleep spindle density in patients
with idiopathic REM sleep behavior disorder and
patients with Parkinson’s disease

In this study an automated SS detector was developed, and used to measure the SS density in
control subjects, patients with iRBD and patients with PD with or without RBD. The overall
methodology of the development of the SS detector is seen in figure 5.2.

5.2.1 Methods: Development of an automated spindle detector

Subjects and recordings

A total of 15 control subjects, 15 patients with iRBD, 15 patients with PD and RBD and
15 patients with PD without RBD were enrolled in this study. The inclusion and exclusion
criteria for controls and patients were as stated in the previous studies, and the demographic
data for the four groups are summarized in table 5.1.
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C3[A2( MP(and(
feature(extrac8on(

SVM(
classifica8on(

Sleep(
spindle(

F3[A2(
Background(

EEG(

xraw (s)

Filtering(

x filt (s) fV (l) yl

Figure 5.2: Schematic illustration of the development of the SS detector described in paper
V. Data from the central and frontal EEG derivation was bandpass filtered and decomposed by
Matching Pursuit (MP) from where features were extracted. The feature vector fV (l) holds 12
features per segment l. A Support Vector Machine (SVM) was used to classify each segment
of data as "sleep spindle" or "background EEG".

Controls iRBD PD-RBD PD+RBD

Frequency 15(6/9) 15(12/3) 15(8/7) 15(11/4)(Male/female)
Age 58.3±9.5 60.1±7.4 61.9±6.1 62.4±5.2[years]
BMI 23.2±2.8 24.4±3.1 24.7±2.2 26.0±3.2[
kg/m2]

SE 88.9±8.4 85.6±8.3 82.8±7.9 85.4±9.7[%]
BT 480±47.5 489±95.3 443±67.2 445±71.8[min]
Wake 1606(11) 2220(15) 2387(18) 1889(14)[no(%)]
REM 271(19) 2893(20) 1808(13) 1761(13)[no(%)]
N1 1205(8) 1238(8) 1191(9) 1623(12)[no(%)]
N2 6491(45) 5909(40) 5817(44) 5957(45)[no(%)]
N3 2388(17) 2423(17) 2097(16) 2128 (16)[no(%)]

Table 5.1: Demographic data for the four groups included in study V. PD-RBD denotes
patients with PD without RBD and PD+RBD denotes patients with PD and RBD. SE: Sleep
efficiency; BMI: Bode mass index; BT: Time in bed.

Feature extraction

The C3-A2 and F3-A2 EEG derivations, both sampled with a sampling frequency fs=256 Hz,
were used to extract appropriate features for detecting SS. In this study, the Matching Pursuit
(MP) method was used for feature extraction, and after the signals were band-pass filtered
from 2 to 35 Hz, they were decomposed using MP. In MP, a given signal is represented by a
weighted sum of Gabor atoms, gγ(t), expressed as [52],

gγ(t) = K(γ)e−π(
t−u
s )2

cos (ω (t− u) + φ) (5.1)
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where γ = {u, s, ω, φ} represents time shift u and width s in seconds, frequency ω in rad/s,
phase φ in rad and K (γ) represents a normalization scaling factor. The decomposition is an
iterative process, where the input signal for each step is matched with Gabor atoms and where
the Gabor atom with the highest correlation is selected and subtracted the input signal. The
iterative process in MP is illustrated in figure 5.3.

Threshold

⌘f⌘2 =

M�1⌧

n=0

�
⌘Rnf⌘2 � ⌘Rn+1f⌘2

⇥
+ ⌘Rmf⌘2

=

M�1⌧

n=0

|�Rnf · g⇥n✏|2 + ⌘Rmf⌘2 (4.9)

In this way, the original signal f is decomposed into a sum of dictionary elements (Gabor
atoms), that are chosen to best match its residues [66]. A visual explanation of the MP
algorithm is sketched in figure 4.4.

Figure 4.4: A sketch of the decomposition algorithm in MP. First, the Gabor atoms in the dictionary to the
left are compared to the analysed signal, and the one with the biggest inner product with the analysed signal is
chosen. This atom (after adjusting the amplitude of the atom to the structure of the signal) is then subtracted
from the analysed signal, and the resulting residual becomes the new signal to be decomposed. Figure taken
from [69]

4.1.1 Threshold

As stated in equation 4.8, the MP algorithm has after M iterations decomposed a signal into
an approximation and a residual term. The summation of equation 4.8 holds the approxima-
tion, which only uses the partial structures given by �Rnf · g⇥n✏g⇥n for 0 ⇧ n < M and the
residual Rmf is the error of the approximation. Theoretically, the optimal solution is when
the summation in equation 4.8 describes the original signal in full, and hence the residual
Rmf = 0. Mallat and Zhang showed that the norm of the residuals decays exponentially, and
they introduced a threshold based on this property [66]. The threshold criteria looks at how
fast the residual energy decays,

⌥ (Rmf) =

�
1 � ⌘Rn+1f⌘2

⌘Rnf⌘2
. (4.10)

The higher the correlation between a given signal f and it’s residuals, the faster the decay
in the norm of the residuals. A signal consisting of a few high energy structures included
in the dictionary D⇥ will initially have residuals with high correlation ratios, and their norm
will decrease quickly. After a number of iterations, the high energy structures have been
modulated, and the residuals will now have low correlation ratios, and hence their norm will

31

Figure 5.3: Schematic illustration of the iterative process in Matching Pursuit (MP). The
Gabor atoms in the dictionary to the left are compared to the analyzed signal, and the one
with the biggest inner product with the signal is chosen. The atom is adjusted and subtracted
from the analyzed signal and the resulting residual becomes the new signal to be decomposed.
The process stops when a the residual is below a given threshold. Figure taken from [77].

The process stops when the residual is below a given threshold, and the original signal f(t)
can be expressed as [52],

f(t) =
M−1∑
n=0
〈Rnf (t) , gγn (t)〉 gγn (t) +RMf (t) (5.2)

where 〈Rnf (t) , gγn (t)〉 represents the inner product of the nth atom and the signal Rnf (t)
and RMf (t) denotes the residual signal after approximating f (t) by using M Gabor atoms.
The time-frequency distribution of the signal energy is derived by adding Wigner-Ville
distributions of selected atoms, yielding [52]

WVf (t, ω) =
M−1∑
n=0
| 〈Rnf (t) , gγn (t)〉 |2 WVgγn (t, ω) +

M−1∑
n=0

M−1∑
k=1,k 6=n

〈Rnf (t) , gγn (t)〉
〈
Rkf (t) , gγk (t)

〉
WVgγn,γk (t, ω) , (5.3)

where WVf and WVgγn indicate the Wigner-Ville distribution of the signal f and the Gabor
atom gγn , respectively, and 〈, 〉 represents the inner product. Finally, the energy density of the
signal f(t) is found by removing the cross-terms of the Wigner-Ville transform, yielding

Ef (t, ω) =
M−1∑
n=0
| 〈Rnf (t) , gγn (t)〉 |2 WVgγn (t, ω) . (5.4)
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The features were all computed from the energy densities obtained from signal windows of 2
s with a 1-s overlap. For each 2-s window l and for each EEG derivation, six features were
computed, yielding 12 features in total described as,

fV (l) =
 fC3−A2

V

fF3−A2
V

 where fdV =



Ed
l (t, ω) for ω < 11 · 2π

Ed
l (t, ω) for 11 · 2π ≤ ω ≤ 16 · 2π

Ed
l (t, ω) for 16 · 2π < ω

log
(
|
〈
Rild (t) , gγi (t)

〉
|2 WVgγi (t, ω)

)
log

(
max
t,ω

(
Ed
l (t, ω)

))
ω at max

t,ω

(
Ed
l (t, ω)

)


(5.5)

where i denotes the first Gabor atom with a frequency of 11 Hz ≤ f ≤ 16 Hz, ld(t) denotes
the signal segment and Ed

l denotes the energy density found by equation 5.4 for the EEG
derivation d. An overview of the features is provided in table 5.2. Before given as input to
SVM, the 12 features were normalized with respect to the 95th percentile of the feature values
across all 2-s windows for that specific subject.

Feature name Feature explanation Total no per 2-s window
F3-A2 C3-A2

Energy features Energy in the frequency bands f <11 Hz, 3 3
11 Hz ≤ f ≤ 16 Hz and f > 16 Hz
computed by equation 5.4.

Gabor atom features The logarithm of the energy contribution of the 1 1
first Gabor atom with a frequency of 11 Hz ≤
f ≤ 16 Hz.

Max energy density The logarithm of the maximum energy point in 2 2
point features the energy density found by equation 5.4 and

the corresponding frequency

Table 5.2: Overview of the features computed in study V. For each 2-s window, six features
were computed for each EEG derivation. Three of the features reflected energy in the
frequency bands below, in and above the spindle frequency band, one reflected the energy
contribution from the first Gabor atom with a frequency in the spindle band, and two reflected
the energy and the frequency of the maximum energy point in the energy distribution.

Classification

In this study the Support Vector Machine (SVM) algorithm was used to classify the SS [18].
SVM is a binary supervised learning method, where two classes are separated by a separating
hyperplane in a high-dimensional feature space [18]. The hyperplane is found based on a
labeled training dataset described as {xi, yi}Li=1, xi ∈ <D where yi ∈ {−1, 1} indicates which
class the sample vector xi belongs to. The samples that impact the slope of the hyperplane
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the most are called support vectors and they all satisfy the constraint,

〈xi,w〉+ b ≥ 1− ξi for yi = 1
〈xi,w〉+ b ≤ −1− ξi for yi = −1

 ⇒ yi (〈xi,w〉+ b)− 1 + ξi ≥ 0 ∀i (5.6)

where w is the normal to the hyperplane, b is a shifting constant and ξi ≥ 0 ∀i is a slack
variable included to relax the constraints of the fully separable case by introducing a penalty
to misclassified samples. The separating hyperplane is thus found by solving the problem
summarized to [18], 

min
(

1
2‖w‖

2 + C
L∑
i=1

ξi

)
yi (〈w, xi〉+ b)− 1 + ξi ≥ 0 ∀i

ξi ≥ 0 ∀i

(5.7)

where C is a user-defined cost parameter indicating the penalty for misclassification. The
problem is solved by introducing Lagrange multipliers, and the final SVM classifier is defined
through w and b describing the optimal orientation of the separating hyperplane. Classification
is carried out by evaluating on which side of the separating hyperplane a new sample point x′

lies, or simply by evaluating the sign of the function,

h (x′) = 〈x′,w〉+ b. (5.8)

In cases where the classes are not linearly separable, a kernel K (xi, xj) is used to map the
data into a Euclidean space H where the classes can be linearly separated. In this study a

Radial basis function kernel K (xi, xj) = e

(
−
‖xi−xj‖

2

2σ2

)
was used where the cost parameter C

and the kernel-specific parameter γ = 1
2σ2 were optimized by grid search.

The SS detector was trained using a number of randomly selected sleep epochs from 13 of the
control subjects. All SS in these epochs were manually labeled where only the F3-A2, C3-A2
and O1-A2 EEG derivations were visible for the SS scorer. The spindle criteria stated in the
AASM standard were used, and each second of data was labeled either SS (1) or background
EEG (-1). Table 5.3 summarize the data used for training the automated SS detector. A total
of 882 SS were manually labeled.

Sleep stage W REM N1 N2 N3 Total
Number of epochs (%) 0 (0) 4 (1) 13 (4) 330 (88) 28 (7) 375 (100)

Table 5.3: Distribution of the different sleep stages for use in the development of the SS
detector.

The SVM classifier was trained using the leave-one-subject out approach, and the overall
performance measures were calculated as the mean across the 13 runs.
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5.2.2 Results

In figure 5.4 is seen the Receiver Operating Characteristic (ROC) curve for the final SS
detector. The area under the ROC curve (AUC) reached 91.0% based on the leave-one-subject-
out strategy. Choosing the best point on the curve as the point ranking the false and true
positive rate equally, the mean sensitivity reached 84.7% and the mean specificity reached
84.5%. These were considered appropriate for the purpose of this study.

ing Lagrange multipliers, and knowing the values for w and b de-
fines the optimal orientation of the separating hyperplane, and
the SVM classifier is defined. The classification of a new unknown
data point x0 = [f1 . . . f12] indicated by the 12 features described
above merely requires the sign of the function:

hðx0Þ ¼ hx0;wiþ b ð9Þ

to be evaluated. The sign indicates on which side of the separating
hyperplane the data point x0 lies.

The SVM classification can easily be extended to work on non-
linear separable classes by using kernels K(xi,xj), mapping the data
into a Euclidean space H where they can be linearly separated. In
this study, a Radial Basis Function (RBF) kernel was used for the
SVM, and a parameter optimization study was performed by doing
a grid search on the cost parameter C and the kernel-specific
parameter c ¼ 1

2r2 0, which controls the flexibility of the decision
boundaries with higher c values allowing greater flexibility. The
evaluated values were c = {0.125,0.25,0.5,1,2,3} and
C = {1,4,16,64,256,1024}. The optimal pair for the final model
was found to be (C, c) = (256,1).

As in other studies, only the data with manually scored SS was
used in the development of the automatic SS detector (Schönwald
et al., 2006; Causa et al., 2010). Hence, the feature vectors from the
sleep epochs with manual scores of SS were used to train and test
the classifier in this study. Each second of EEG data was labeled
either SS (1) or background EEG (%1). The training and testing
phases employed the leave-one-subject-out strategy. As illustrated
in Fig. 2, the test data set in each of the 13 runs were of unequal
size, as the number of available scored sleep epochs differed be-
tween the control subjects. Overall performance measures were
calculated as the mean of the 13 runs.

The SVMperf algorithm developed by Thorsten Joachims at Cor-
nell University was used in this study (Joachims, 2005, 2006;
Joachims and Yu, 2009). This can be found at (Joachims, 2009).

3. Results

3.1. Performance of automatic SS detector

To validate the performance of the algorithm, different statisti-
cal measures were defined on the basis of four variables: True Pos-
itives (TP), False Positives (FP), True Negatives (TN) and False

Fig. 2. Illustration of the leave-one-subject-out strategy used in this study. Each
small rectangle represents a sleep epoch. Blue and white rectangles are used for
testing and training, respectively. The numbers N0001–N0013 are the IDs for the
control subjects. Different numbers of sleep epochs were available from each
subject, so different amounts of data were held out in each run.

Fig. 3. Definition of the four variables, True Positive (TP), False Positive (FP), True Negative (TN) and False Negative (FN), based on seconds.

Fig. 4. The overall ROC curve for a mean AUC measure of 91.0%, based on the leave-
one-subject-out method.

J.A.E. Christensen et al. / Clinical Neurophysiology 125 (2014) 512–519 515

Figure 5.4: The overall Receiver Operating Characteristic (ROC) curve with a mean area
under the curve (AUC) measure of 91.0% based on the leave-one-subject-out strategy used
for automatic spindle detection in paper V.

The SS detector was applied on all data between lights off and lights on for the 4×15 subjects
included in this study. SS density was defined as SS/min and was found for N1, N2, N3, all
NREM and REM sleep. Table 5.4 summarizes the mean values and standard deviations of SS
densities obtained for the four groups.

N1 N2 N3 All NREM REM

Controls 4.4±1.6 6.2±1.5 5.6±1.3 6.0±1.3 2.2±1.4
iRBD 4.4±1.7 4.7±1.9 4.1±2.4 4.5±1.8 2.8±1.4
PD-RBD 4.4±1.7 5.1±1.8 4.9±2.3 5.0±1.5 2.4±1.4
PD+RBD 4.4±2.1 4.2±1.9 3.6±2.1 4.2±1.8 3.6±2.2

Table 5.4: Means and standard deviations of the SS densities for the four groups obtained
using the SS detector. SS density was defined as SS/min.

Unpaired two-sample t-tests were performed to establish between-group differences. When
comparing the control group with a group of patients, the t-tests were one-sided in order to

72



Results

test whether the control group had a significantly higher mean SS density compared to the
patients. Comparing two patient groups, the t-tests were two-sided to establish whether the
means differed from each other. Figure 5.5 illustrates the significant differences found.

It was found that patients with iRBD, and patients with PD with or without RBD had
significantly lower SS densities compared to controls in N2 and in all NREM sleep combined.
Also, patients with iRBD and patients with PD and RBD showed significantly lower SS
densities compared to controls in N3 sleep. No significant differences were found between
any two groups of patients, and no significant differences were found in REM sleep.

In this study, no performance values were obtainable for the SS detector used on pathological
sleep. Also, the detector labeled each second (limited by the resolution of the manual scorings),
which is considered to be low when detecting SS.
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affected by RBD as a disease than by PD as a disease. Following this
hypothesis, this could explain why other studies investigating SS
densities in neurodegenerative diseases do not find significant
changes (Happe et al., 2004; Rauchs et al., 2008). In the study by
Rauchs et al., 2008, significant differences in spindle types, but
no differences in mean SS intensity could be found when

comparing patients with Alzheimer’s Disease (AD) to an age-
matched unmedicated control group.

Several studies have reported links between consolidation of
memory and increases of SS density during sleep that followed
learning (Steriade and Timofeev, 2003; Schmid et al., 2012). Also,
the influence of different pharmacological interventions on SS den-

Fig. 5. Results for N2, N3 and all NREM combined. The figures on the left illustrate the mean and standard deviation of the individuals in the four groups, while the individual
measures for each subject and patient are seen in the figures on the right. A single asterisk indicates significant changes with p < 0.05. Double asterisks indicate significant
changes with p < 0.01.

J.A.E. Christensen et al. / Clinical Neurophysiology 125 (2014) 512–519 517

Figure 5.5: Sleep spindle (SS) densities obtained for the four groups in N2, N3 and all
NREM sleep combined. The group means ± one standard deviation are illustrated as the
heights of bars with error bars (left) and the individual SS densities are illustrated as dots
(right). ∗: p<0.05; ∗∗: p<0.01.
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5.3 Paper VI: Sleep spindle alterations in patients with
Parkinson’s disease

In this study, five independent sleep experts manually labeled and rated SS from control data
and data from PD patients by assigning a confidence score for each SS. For SS meeting a
group consensus rule, features describing morphological characteristics were computed and
between-group comparisons were performed in order to determine if SS are altered in patients
with PD, and if they can serve as prognostic biomarker of disease. It was decided to obtain SS
characteristics from manually scored rather than automatically identified SS to allow spindles
not bounded to the limits given by the AASM standard. Also, a SS detector developed based
on normal sleep only might be biased and hinder true alterations to be identified. Due to these
reasons and the fact that the developed SS detector described in paper V had a resolution of
one second, it was decided that morphology measures of spindles should be extracted from
manually labeled spindles rather than automatically detected.

The overall methodology of this study is seen in figure 5.6.

C3[A2( Spindle(annota8on(
from(five(experts(

Group(
consensus(

Morphology(
measures(

Between(group(
comparisons(

Inter[expert(
reliability(
measures(

Between(group(
comparisons(

F1  and κ

fVI (p)
TGC(=(0.25%

Figure 5.6: Overall methodology of paper VI. Five sleep experts identified spindles (SS) in
data from the central EEG derivation. Applying a threshold TGC=0.25 on the average score
across samples, a group consensus of SS was obtained, from which morphology measures
were extracted. Also, the inter-expert reliability measures, F1-score and Cohen’s κ, were
computed and between group comparisons were conducted for the morphology and inter-
expert reliability measures.

5.3.1 Methods: Generation of a spindle database and computation of
morphology measures

Subjects and recordings

A total of 15 PD patients and 15 sex- and age-matched control subjects with no history
of movement disorder, dream-enacting (DE) behavior or other previously diagnosed sleep
disorders were included in this study. As in the previous studies, patients were evaluated
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with a comprehensive medical and medication history and a PSG analyzed according to the
AASM standard [34]. None of the patients had Dementia at inclusion, but one of them later
developed Multiple System Atrophy (MSA) of the Parkinsonian type (MSA-P). Medications
known to affect sleep were not accepted, although dopaminergic treatments were permitted.
The quality of each PSG recording was individually examined and accepted. Demographic
data and PSG variables for the two groups are seen in table 5.5.

Characteristics PD patients Controls P

Total counts (Male/female) 15 (7/8) 15 (7/8) -
Age [years] 62.7±5.8 62.9±5.9 0.90

BMI
[
kg/m2] 25.3±3.5 22.1±2.5 0.02

Disease duration [years] 6.7±4.5 NA -
Hoehn & Yahr stage 2.0±1.2 NA -
UPDRS part III "on" 20.9±7.0 NA -
ACE 90.2±4.8 NA -
Levodopa equivalent dosage [mg] 621.1±301.5 NA -
Levodopa use [n (%)] 10 (67) NA -
Dopamine agonist use [n (%)] 14 (93) NA -
Sleep efficiency [%] 79.7±14.1 87.1±8.4 0.09
Time in bed [min] 448.1±82.0 499.6±63.7 0.07
LM index [no/hour] 31.8±34.8 30.4±35.3 0.91

Table 5.5: Demographic and PSG data for the two groups included in study VI. BMI: Body
mass index; UPDRS: Unified Parkinson’s disease rating scale; ACE: Addenbrooke’s cognitive
examination; LM: Leg movements.

Manual labeling of spindles

The inter-rater variability of scoring SS has been reported to be as low as 70±8% [87], which
clarify the need for several scorers when building a reliable dataset of SS. For each subject,
eight blocks of five consecutive epochs of N2 sleep were randomly selected in between
lights off and lights on. In these blocks, five independent sleep experts identified SS in the
C3-A2 EEG derivation, which was the only one visible. The scoring was performed in a
Matlab-based program "EEG viewer", which mimics a standard sleep scoring program in a
clinical setting. Before scoring SS, the C3-A2 signal was filtered in the program with a notch
filter at 50 Hz and a band-pass filter with cutoff frequencies at 0.3 and 35 Hz, as indicated by
the AASM standard.

For each SS, the experts assigned a confidence score of 1 for "definitely SS", 0.75 for
"probably a SS" and 0.5 for "maybe a SS". Background EEG was labeled with 0. The final
SS identification used for morphology measures were defined using a group consensus rule
where the confidence scores were averaged at each sample point and aggregated into a single
consensus. Sample points with an average score of higher than TGC = 0.25 were included
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in the final group consensus. An illustration of the group consensus rule is seen in figure
5.7. This scoring procedure allows the experts to label doubtful spindles, and if identified
by several experts, they are included in the final spindle database. In this way, the database
will hold spindles that have had an ability to stand out from the background EEG but not
necessarily bound to the limits given by AASM.

3 
 

Supplementary Figure 1: Group consensus rule.  Example demonstrating how the 
annotations of 5 annotators (colored boxes) with weighted confidence scores (green = 
'Definitely' =1.0, yellow = 'Probably' = 0.75, red = 'Maybe'/'Guessing' = 0.5, no spindle = 0) are 
averaged at each sample point and aggregated into a group consensus.  Each data sample 
point is included in the consensus (black bars) if the average confidence score exceeds the 
threshold for group consensus (Tgc).  In epochs that have been viewed by at least 5 experts, 
a Tegc of 0.25 requires that at least two experts identify the spindle with confidence equal or 
greater than 'Probably’ in order for it to be included in the group consensus. 
 

 

 
 
  

Nature Methods: doi:10.1038/nmeth.2855

Figure 5.7: Illustration of the group consensus rule applied to obtain the final spindle
identification. Taken from [84].

Feature extraction

For the spindles included in the group consensus, five features reflecting morphology measures
were computed. These include 1) the duration dur in seconds, 2) the oscillation frequency
fosc in Hz, 3) the maximum peak-to-peak amplitude in mV of the original spindle signal
(Ap2p) and of a high-pass filtered signal (Ahpp2p), 5) a symmetry measure sym in % and 6) the
density in spindles/min. Table 5.6 summarizes the morphology features computed.

Feature name Feature explanation Total no
Per spindle Per person

Duration Duration in seconds. 1 -

Oscillation frequency Frequency in Hz computed based on the number 1 -
of extrema points and the duration

Max peak-to-peak amplitude Amplitude in µV computed as the max vertical 2 -
distance between two extrema points

Symmetry Percentage of samples before max peak-to-peak 1 -
amplitude

Density Number of spindles per minute - 1

Table 5.6: Overview of the features computed in study VI. For each spindle, the duration,
oscillation frequency, max peak-to-peak amplitude and symmetry measure were computed.
The max peak-to-peak amplitude was computed twice for each spindle; once for the spindles
filtrated from 0.3-35 Hz (Ap2p), and once where frequencies below 4 Hz were removed (Ahpp2p).
The density measure was computed for each subject.
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Letting fs = 256 Hz be the sampling frequency, K the number of extrema points, Ae a vector
holding the original amplitude values of the extrema points and Ahpe a vector holding the
amplitude values of the high-pass filtered spindle signal, the morphology features were defined
as,

fV I =



dur = # samples
fs

fosc = K

2 · dur
Ap2p = max (| Ae (k + 1)− Ae (k) |) , k = 1, 2, ..., K − 1

Ahpp2p = max
(
| Ahpe (k + 1)− Ahpe (k) |

)
, k = 1, 2, ..., K − 1

sym = # samples before point ofAp2p

# samples

density = 2 ·# SS
# epochs reviewed

. (5.9)

The extrema points were detected using matlab’s findpeaks-function on a 5-point moving
average smoothed version of the SS signal and with a minimum peak-to-peak distance of 11
samples. The extrema points were defined as the sum of the maxima points found by applying
the findpeaks-function directly, and the minima points found by applying it on the flipped
spindle signal. These settings were chosen as they were considered best for estimating fosc
when visually investigating numerous randomly selected examples of SS.

The reason for why two maximum peak-to-peak amplitudes were computed (Ap2p and Ahpp2p),
was to investigate the influence on SS from the high amplitude, low-frequency K-complexes
or delta waves. Forward and reverse filtration with a 10th order high-pass filter with a cut-off
frequency (-3dB) at 4 Hz was considered suitable for removing low frequency, high amplitude
waves that may interfere with the peak-to-peak calculation.

The morphology measures were computed for the spindle identifications for each expert as
well as for each spindle in the group consensus. Due to the shortening effect of the group
consensus, a duration threshold of durth = 0.2 s was used on spindles in the group consensus
resulting in the exclusion of three spindles. For each measure, two-sided Wilcoxon rank sum
tests with a significance level of α = 0.05 were used to test for significance between controls
and PD patients.

Inter-expert reliability when scoring spindles

Five independent sleep experts identified SS in the same data, given ten available expert-pair,
for which inter-expert reliability measures indicated as the F1-score and the Cohen’s Kappa
coefficient (κ) were computed. True positives (TP) and true negatives (TN) define the number
of samples where both experts have marked SS and not marked SS, respectively, and false
positive (FP) and false negative (FN) define the number of samples where the reference-expert
has not marked SS, but the other expert has, and number of samples where the reference-expert
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has marked a SS, but the other has not, respectfully. Given these, the inter-expert reliability
measures are expressed by,

F1-score = 2 ·R · P
R + P

and κ =
TP+TN

N
− Pr

1− Pr , (5.10)

where N = TP + TN +FP +FN defines the total number of samples and where precision
P , recall R and hypothetical probability of change agreement Pr are given as,

P = TP

TP + FP
, R = TP

TP + FN
and (5.11)

Pr = TP + FN

N

TP + FP

N
+
(

1− TP + FN

N

)(
1− TP + FP

N

)
. (5.12)

The F1-score is the harmonic mean of P and R and reaches its best value at 1 (perfect
agreement) and the worst at 0 (no agreement). The κ is often used as an inter-annotator
reliability measure, as it takes the agreement occurring by chance into account. It reaches
its best value at 1 (perfect agreement), its worst at -1 (no agreement), and when κ = 0, the
accuracy is equal to what is expected by chance. κ is often categorized with the labels "poor"
(κ < 0.00), "slight" (0.00 ≤ κ ≤ 0.20), "fair" (0.21 ≤ κ ≤ 0.40), "moderate" (0.41 ≤ κ ≤
0.60), "substantial" (0.61 ≤ κ ≤ 0.80) or "almost perfect" (0.81 ≤ κ ≤ 1.00) [45].

5.3.2 Results

In figure 5.8 is seen the five morphology measures computed. The maximum peak-to-
peak amplitude provided is the one computed from the spindle signal before removal of
frequencies below 4 Hz. Table 5.7 summarizes the means and standard deviations for the
spindle characteristics found for each of the experts’ identifications as well as for the spindles
included in the group consensus.

It was found that patients with PD show altered SS compared to controls, as they differed
significantly in terms of density, duration, oscillation frequency and maximum peak-to-peak
amplitude. Specifically, patients with PD had a lower SS density and showed spindles with
a longer duration, lower oscillating frequency and higher max peak-to-peak amplitude both
before and after removal of frequencies below 4 Hz.

Both measures of the max peak-to-peak amplitude were significant different between groups
for all five experts, the duration and oscillation frequency was significant different between
groups for 4/5 experts, and density was significantly different between groups for 3/5 experts.
One of the PD patients had a very high spindle density, and considering that this patient later
developed MSA, the spindles from this patient were excluded and the results were reanalyzed.
Again, same spindle measures were found to be significant, as seen in table 5.8.
In figure 5.9 and 5.10 is seen the morphology measures for the patients when they are sorted
according to the disease duration (5.9(a)), Addenbrookse’s cognitive examination (ACE)
score (5.9(b)), Hoehn and Yahr (H&Y) stage (5.10(a)) and Unified Parkinson’s Disease rating
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Figure 5.8: Illustration of the five morphological measures computed for the spindles in the
group consensus. The maximum amplitude is the one computed from the spindles before
removal of frequencies below 4 Hz. The P values were obtained from two-sided Wilcoxon
rank sum tests between the two groups.

dur fosc Ap2p Ahpp2p Sym Density

Expert 1 PD 0.93±0.44 12.38±1.27 57.73±17.23 53.87±15.99 0.49±0.23 1.29±2.44
(947 SS) C 0.84±0.41 12.96±1.27 48.26±15.37 45.42±14.17 0.47±0.24 1.87±1.56

Expert 2 PD 0.66±0.29 12.92±1.24 56.96±18.14 54.38±16.85 0.46±0.23 0.91±1.36
(752 SS) C 0.67±0.29 13.07±1.11 46.88±15.96 44.16±14.89 0.46±0.23 1.60±1.27

Expert 3 PD 0.74±0.29 12.45±1.22 57.75±17.15 54.89±16.34 0.46±0.24 1.16±1.95
(952 SS) C 0.68±0.27 12.62±1.34 48.52±15.47 45.43±14.18 0.46±0.23 2.01±1.82

Expert 4 PD 0.88±0.20 12.73±1.14 64.60±16.68 62.40±16.64 0.46±0.22 0.30±0.51
(282 SS) C 0.77±0.24 13.13±1.00 49.95±14.04 47.51±13.13 0.46±0.21 0.64±0.84

Expert 5 PD 1.19±0.52 11.69±1.24 51.44±18.14 46.20±16.62 0.45±0.25 2.91±2.52
(2135 SS) C 1.12±0.51 12.03±1.28 45.02±15.73 40.15±13.92 0.45±0.25 4.21±2.14

GC PD 0.86±0.35 12.51±1.21 57.64±17.34 54.78±16.24 0.47±0.23 1.15±2.06
(901 SS) C 0.77±0.36 12.80±1.23 48.19±15.55 45.29±14.41 0.46±0.23 1.86±1.57

P <0.002 <0.02 <0.001 <0.001 NS <0.05
1,3,4,5,GC 1,3,4,5,GC 1,2,3,4,5,GC 1,2,3,4,5,GC 1,2,3,GC

Table 5.7: Mean and standard deviation for the spindle characteristics for each of the experts’
identifications as well as for spindles in the group consensus (GC). 1: Significant for expert 1;
2: Significant for expert 2; 3: Significant for expert 3; 4: Significant for expert 4; 5: Significant
for expert 5; GC : Significant for the group consensus. The data investigated is the same across
all experts.
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dur fosc Ap2p Ahpp2p Sym Density

GC PD(-MSA) 0.86±0.35 12.27±1.07 56.35±18.97 53.42±17.84 0.47±0.23 0.72±1.28
(759 SS) C 0.77±0.36 12.80±1.23 48.19±15.55 45.29±14.41 0.46±0.23 1.86±1.57

P <0.001 <0.001 <0.001 <0.001 NS <0.007

Table 5.8: Mean and standard deviation for the spindle characteristics found for spindles
in the group consensus (GC) when spindles from the patients that later developed MSA
(PD(-MSA)) were excluded.

scale (UPDRS) part III "on" score (5.10(b)), respectfully. No clear visual trends were seen
for any of the disease or cognitive indicators, reflecting that SS can not be used alone as an
indicator for disease severity. It may also be that this study includes too few subjects to show a
trend due to the great inter-subject variance in SS characteristics, or simply that the cognitive
assessment (ACE and UPDRS part III) are too brief.

In table 5.9 is seen the fraction of SS included in the group consensus that do not strictly pass
AASM criteria for a spindle. A fourth (25.3%) of all spindles in the group consensus did
not meet AASM criteria, mostly because they were too short (16.9%) or had an oscillation
frequency that were too slow (9.7%). Controls were found to show significantly more spindles
not meeting the AASM criteria, i.e. more spindles with a too short duration compared with PD
patients. Excluding spindles from the outlier patient (MSA-P), no significant differences were
found, but may be due to lack of enough data. When performing between-group comparisons
only including SS meeting the AASM criteria, however, the same characteristics were found
to be significant between controls and PD patients (results not shown here).

AASM criteria Total SS PD SS PD(-MSA) SS Control SS P P
(901) (344) (202) (557) PD vs. C PD(-MSA) vs. C

Duration too short 0.169 0.128 0.134 0.194 0.010 NS(<0.5 s)

Duration too long 0.001 0 0 0.002 NS NS(>3 s)

Oscillation frequency 0.097 0.90 0.099 0.101 NS NStoo slow (<11 Hz s)

Oscillation frequency 0.002 0.003 0.005 0.002 NS NStoo high (>16 Hz)

At least one criteria 0.253 0.212 0.228 0.278 0.027 NSnot met

Table 5.9: Percent of spindles included in the group consensus that do not strictly meet
AASM criteria. PD indicate all patients with PD. PD(-MSA) indicate all PD patients except
the one that later developed Multiple System Atrophy (MSA).
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Figure 5.9: (a): Spindle characteristics for all 15 PD patients sorted according to their
disease duration. (b): Spindle characteristics for 13/15 PD patients sorted according to their
Addenbrookse’s cognitive examination (ACE) score. The max peak-to-peak amplitudes are
the ones computed from the spindles before removal of frequencies below 4 Hz.
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Figure 5.10: Spindle characteristics for 11/15 PD patients sorted according to their Hoehn
and Yahr (H&Y) stage ((a)) or their Unified Parkinson’s Disease rating scale (UPDRS) score
((b)). The max peak-to-peak amplitudes are the ones computed from the spindles before
removal of frequencies below 4 Hz.
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Lastly, table 5.10 summarizes inter-expert reliabilities for SS identification, when they were
grouped according to their confidence score. In all cases, the agreement rates were lower for
scoring SS in PD patients compared to controls, but only the reliability of identifying "definite
SS" computed by κ was found to be significantly lower. Also, a trend was seen for a lower κ
for "probable/definite SS" in patients compared with controls.

SS group definition F1-score κ PPD C PD C

Low confidence 0.12±0.11 0.17±0.12 0.14±0.11 0.16±0.12 NS"maybe" "slight" "slight"

Medium confidence 0.13±0.10 0.19±0.11 0.15±0.10 0.18±0.11 NS"probably" "slight" "slight"

High confidence 0.24±0.13 0.32±0.13 0.21±0.13 0.32±0.13 <0.005κ"definitely" "fair" "fair"

Medium or high confidence 0.34±0.15 0.39±0.17 0.28±0.15 0.39±0.17 NS"probably/definitely" "fair" "moderate"

Table 5.10: Mean and standard deviation for the inter-expert reliability measures F1-score
and κ for identifying SS. The mean and standard deviations are taken across the ten expert-
pairs available.

5.4 Conclusive remarks

Study V:
In the first study (paper V), an automated SS detector was developed based on features
extracted from the MP algorithm and a SVM used to classify each second into "SS" or
"background EEG". By use of the detector, this study demonstrated that PD patients, both
with and without RBD, as well as iRBD patients show significantly decreased SS activity.
The study argues for the problem that the detector is solely trained on control data and that
performance values when applying it on data from patients were unobtainable. Also, it argues
for the problem that due to the resolution of the manual scorings, the SS can only be detected
on a second-by-second basis, which is considered to be too low. Nevertheless, the study
illustrates that SS density as determined by an automated detector identifying "control" SS
could be a PD biomarker as it was found to be decreased in patients with iRBD or PD.

Study VI:
In the second study (Paper VI), specific morphological characteristics of SS were computed
and compared between control subjects and PD patients. Specifically, it was found that the SS
density was lower, duration was longer, oscillation frequency slower and max peak-to-peak
amplitude higher in PD patients compared to controls. Based on a group consensus of five
individual experts’ identification of SS, this study demonstrated that spindles are significantly
altered in PD patients. The study lacked to demonstrate correlation between any spindle
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characteristics and disease duration, severity or cognitive identifiers, and concluded that due
to high inter-subject variability in disease progression and severity, longitudinal studies are
needed to investigate the clinical utility as well as the prognostic biomarker potential of SS
alterations.

Overall:
The two studies demonstrate that SS activity in form of density and the morphological
measures duration, oscillation frequency and maximum peak-to-peak amplitude all have
potential to be a biomarker of PD.

Although none of the morphology measures were specific nor sensitive enough as an inde-
pendent biomarker, certain spindle characteristics might have utility as markers of disease
progression. SS are according to the AASM standard defined to have a certain duration and
frequency profile, but the dilemma is that these criteria are set based on how SS look in normal
sleep. Pathological influence can alter the SS to such a degree that they no longer obey the
definitions. The two studies illustrate and discuss the challenges faced when developing a SS
detector for use in pathological sleep, the high inter-scorer variability in SS identification and
the high inter-subject variability in SS activity.

Overall, this research area conclude:

• that a SS detector developed based on features extracted from the MP algorithm and
a classification based on a SVM is suitable when investigating SS density, but that it
due to a low resolution (second-by-second basis) is not suitable when investigating SS
morphology.

• that SS density is decreased in patients with iRBD and patients with PD with or without
RBD determined by an automated SS detector.

• that SS density and morphology is altered in patients with PD determined based on a
group consensus of five sleep experts’ manual SS identifications.

• that no SS morphology alterations have clear correlates with disease duration or cogni-
tive measures, and that much more data on SS, cognitive function and disease severity
is needed to investigate such relations.
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Discussion and conclusive remarks

The overall purpose of this PhD dissertation was to identify new potential PD biomarkers by
employing appropriate biomedical signal processing algorithms on sleep signals. Overall, the
main findings of this project can be summarized by following statements:

• Patients with iRBD and patients with PD reflect abnormal form and/or timely distribu-
tion of EMs during sleep compared to control subjects.

• Patients with iRBD and patients with PD show altered distribution and stability of N3
and REM sleep determined by a data-driven approach compared to control and PLMD
patients.

• Patients with iRBD or PD show less stable REM sleep determined by a data-driven
approach regardless of the RBDSQ total score and the presence of RBD compared to
controls and PLMD patients.

• Patients with PD and RBD show lower NREM stability and more REM-NREM shifts
determined by a data-driven approach compared with controls.

• Patients with iRBD and patients with PD with and without RBD show a decreased
spindle density determined by an automated SS detector compared to controls.

• Patients with PD show altered spindles with longer duration, slower oscillation fre-
quency and higher max peak-to-peak amplitude compared with controls.

In summary, the findings of this project emphasize that patients with iRBD or PD suffer from
micro-sleep fragmentation and alterations expressed both in the EOG and EEG. Also, the
findings of this project are in line with the hypothesis that iRBD is an intermediate stage
between controls and PD patients, and that analysis of sleep signals hold huge potential
for identification of PD biomarkers. The project illustrates the challenges associated with
identifying a reliable biomarker that is both sensitive and specific. Finally, the project
highlights how appropriate biomedical signal processing can be used to reveal biomarkers in
a robust and standardized way, and thereby support the evaluation of sleep from iRBD and
PD patients.
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The path and pace of the neurodegenerative progress varies between patients, and as the
affection on specific neurons and brain areas differs, the characteristics of the different
biomarkers are likely to vary. One patient may show decreased density and altered sleep
spindles but normal REM stability and shifts between sleep stages, while the opposite is true
for another patient. Also, the biomarkers provide a snapshot of the circumstances as they are
based on only one night of sleep. To overcome the high inter-subject variability, the patients
should ideally be referenced to themselves, so the trends of the biomarkers are investigated
instead of the snapshots.

It is hard to set any limit values for abnormality based on one recording of PSG, and in spite
of the indicative findings of this project, it may be unrealistic to think that one electrophysio-
logical biomarker can stand alone and identify people who will develop PD. By combining
several biomarkers, the precision of early disease identification is expected to raise simply
because more aspects of a complex disease would be reflected. Especially if the biomarkers
express alterations in different areas or mechanisms of the brain. Optimally, a combination of
biomarker trends could indicate at which stage the disease is and at which pace and in which
direction it is progressing. This would not only provide guidance to identify the patients at
highest risk of developing PD, and thereby maybe facilitate PD treatment before PD diagnosis,
but also provide insight in treatment efficiency and thereby help in personalized treatment.

PD is a complex disease and the progress, severity and symptom profile vary greatly across
patients. The disease is sporadic and the symptom profile dependents on which brain areas
and to what degree the neurodegeneration strikes. It is not known whether the diversity across
PD patients are due to the sporadic nature of the disease, or if there exist PD subgroups
pathological different. Questions such as why some PD patients do not have RBD nor RSWA,
why some iRBD patients do not progress into PD or another NDD and why the iRBD patient
group is much more male-dominated compared to the PD patient group are just few questions
that lack answers. Although this project focused on synucleinopathy, some of the patients
evaluated may suffer from a different pathology just not defined nor clarified yet.

It should be emphasized that the findings of this dissertation are all found through guidance
using hypotheses built on how the neurodegeneration in PD could change sleep patterns. This
dissertation has thus confirmed the theories by scientific proves and by generalized methods
rather than discovered new physiologic findings. Additionally, all the findings are based on
group comparisons revealing overall tendencies rather than specific indications of disease.
The findings need to be validated with much more data, both from patients with iRBD,
PD and other NDDs, but also from patients with sleep disorders such as apnea, narcolepsy
and insomnia. Conclusively, although some of the here presented classifiers obtained high
sensitivity and specificity, none of the suggested biomarkers would be able to identify early
stages of neurodegeneration in a new individual with high enough certainty to be used as a
diagnostic test.
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6.1 Future aspects

Analysis of PSG recordings hold huge potential of early identification of PD, but is still
a relatively new research area and a lot of investigation is still needed. Dividing in two
categories, further investigation should aim to:

Medical aims:

• obtain prognostic data to investigate subject-specific trends for the biomakers.

• include untreated patients with PD to investigate the dopaminergic treatment effect.

• include patients with other NDDs or sleep disorders to test the usability of the biomark-
ers in a clinical setting.

• include multiscored data to compare inter-scorer reliability across pathologies and
thereby make a better "gold standard" to train detectors from.

• include data from other sleep clinics in order to investigate the usability of the biomark-
ers across cites and countries.

• include more in-depth cognitive tests and disease severity measures for the patients as
well as for the controls.

Technical aims:

• combine the potential biomarkers to investigate their joint strength for identifying
patients with iRBD and PD.

• validate indicative EEG and EOG words given as input to the topic models in order to
better understand what they reflect and their impact on different stages.

• investigate the continuous transitions between topics more thoroughly.

• investigate the sleep topic mixtures more thoroughly to investigate if patients show
abnormal topic mixtures compared to controls.

• build new topic models where other words are tried, e.g. words describing SS, K-
complexes, EMG tonus, rapid and slow EMs, etc.

• build sleep models released from the 30-s epoch rule in order to see the pace of sleep
stage switching determined by a data-driven approach.

• build sleep models released from the five sleep stage rule in order to see how many
sleep stages a data-driven approach suggests.

• build subject-specific or group-specific sleep models to understand and investigate the
huge variability in sleep signals.
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Classification of iRBD and Parkinson’s Disease patients based on eye
movements during sleep

Julie A. E. Christensena,b,c, Henriette Kocha, Rune Frandsenc, Jacob Kempfnera,c, Lars Arvastsonb,
Soren R. Christensenb, Helge B. D. Sorensena and Poul Jennumc

Abstract— Patients suffering from the sleep disorder idio-
pathic rapid-eye-movement sleep behavior disorder (iRBD)
have been observed to be in high risk of developing Parkinson’s
disease (PD). This makes it essential to analyze them in the
search for PD biomarkers. This study aims at classifying
patients suffering from iRBD or PD based on features reflecting
eye movements (EMs) during sleep. A Latent Dirichlet Allo-
cation (LDA) topic model was developed based on features
extracted from two electrooculographic (EOG) signals mea-
sured as parts in full night polysomnographic (PSG) recordings
from ten control subjects. The trained model was tested on ten
other control subjects, ten iRBD patients and ten PD patients,
obtaining a EM topic mixture diagram for each subject in
the test dataset. Three features were extracted from the topic
mixture diagrams, reflecting “certainty”,“fragmentation” and
“stability” in the timely distribution of the EM topics. Using
a Naive Bayes (NB) classifier and the features “certainty”
and “stability” yielded the best classification result and the
subjects were classified with a sensitivity of 95 %, a specificity
of 80 % and an accuracy of 90 %. This study demonstrates in a
data-driven approach, that iRBD and PD patients may exhibit
abnorm form and/or timely distribution of EMs during sleep.

I. INTRODUCTION

Patients suffering from the sleep disorder idiopathic rapid-
eye-movement sleep behavior disorder (iRBD) are at high
risk of developing Parkinson’s disease (PD) [1]. In con-
sequence, some studies focus on sleep data in the search
for PD biomarkers, where polysomnographic (PSG) data are
analyzed either manually or automatic [2] [3]. Supportively,
many different attempts to automatic score sleep stages, both
in control subjects as well as in sleep disorder patients, have
been developed [4] [5]. In [4], a data-driven method was de-
veloped, where a topic model with five topics were conducted
for each subject based on their sleep electroencephalography
(EEG). The method was subject-specific, as it was aimed
at providing a complementary approach to sleep analysis by
presenting each sleep epoch as a mixture of stages. This
study raised the idea of developing a data-driven topic model
with the aim of using it to analyze and automatic classify
control subjects and patients suffering from either iRBD or
PD.

Corresponding author: Julie AEC: jaec@elektro.dtu.dk
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During sleep, eye movements (EMs) are among other
structures controlled by neurons located in the brain stem,
and in [6], it was found that EMs during sleep hold the
possibility of being a PD biomarker. In [6], the obtained
performance was based on features reflecting EMs as well
as features reflecting electromyography (EMG) measured at
the EOG site. Also, the features were computed as the means
and standard deviations in energy measures across all sleep
epochs during a whole night of sleep. They thereby only
reflected the overall differences in EMs between control
subjects and iRBD/PD patients. In this study, the focus is
on EMs alone, and a general data-driven topic model will be
developed illustrating the timely distribution of EMs. A topic
model is a statistical model revealing “topics” or “themes”,
which describe the latent structure behind the generation of
a collection of documents. Here, a topic model is applied
on data desribing EMs during sleep, and each sleep epoch
will be represented as a mixture of three different states for
EMs. The three states are thought to be related to slow
EMs (SEMs), rapid EMs (REMs) and no EMs (NEMs).
By applying the topic model on three test groups of ten
control subjects, ten iRBD patients and ten PD patients, it
will be analyzed how well the EMs from the patients fall
into the normal states for EMs during sleep. By extracting
three features from the topic models reflecting “certainty”,
“fragmentation” and “stability”, the test subjects will be
classified as “control” or “patient” by use of a Naive Bayes
(NB) classifier.

In [7] is a general topic model built on EEG developed
based on the same training data as in this study. The number
of topics were set to five reflecting the five sleep stages
stated in 2004 by the American Academy of Sleep Medicine
(AASM) [8]. Features were extracted from the topic models
obtained from the same test groups as in this study, and
thereby the same subjects as in this study were classified.
In this way, this study and [7] reveal how well these patient
groups can be classified by application of EOG and EEG,
respectively.

II. DATA ACQUISITION

Fourty subjects were enrolled in this study. They were
all evaluated at the Danish Center for Sleep Medicine at
Glostrup Hospital in Denmark, and the evaluation of the
patients included PSG, multiple sleep latency test and a
comprehensive medical history and medication. The control
subjects included have no history of movement disorder,
dream enacting behavior or other former diagnosed sleep
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disorders. The quality of the PSG data was individually
evaluated, and recordings were excluded if the analyzed
channels were disconnected or continuously contaminated
with artifacts. The demographic data for the groups is seen
in Table I.

TABLE I
DEMOGRAPHIC DATA FOR THE FOUR SUBJECT GROUPS

Patient Total Male / Age (µ ±σ )
groups No. Female [years]

Controls (for train) 10 5 / 5 57.2 ± 8.1
Controls (for test) 10 5 / 5 59.8 ± 8.4

iRBD (for test) 10 8 / 2 59.0 ± 14.2
PD (for test) 10 6 / 4 63.2 ± 8.4

All subjects underwent at least one full night PSG accord-
ing to AASM standards by use of different amplifier systems,
where the lowest anti-aliasing filter cut-off frequency was 70
Hz. The EOG electrodes were placed one cm out and up (left)
or down (right) from the outer canthus with reference to the
right and left mastoid, respectively. The sampling frequency
of the analyzed sleep data was 256 Hz.

III. METHODOLOGY
The overall methodology of this study is presented

schematically in Fig. 1. Ten control subjects selected to best
match the patient groups in age were used to develop a
general topic model. As input to the topic model, features
extracted from bandpass filtered EOG signals were given. By
use of the general topic model, 30 topic mixture diagrams
were obtained from ten control test subjects, ten iRBD
test patients and ten PD test patients. Three features were
extracted from these mixture diagrams, and by use of a
standard NB classifier, the test subjects were classified as
being either “patient” or “control”. Below follows a more
detailed description of the steps seen in Fig. 1

10 PD, 10 
iRBD and 
10 control 
subjects 
(testing) 

General 
topic 
model 

30 topic 
mixture 
diagrams 

Training general topic model 
 
 
 
 
 

EOGL 

EOGR 

FFT 
Word
count 

Discre- 
tization LDA 

Corr 

Applying general topic model 
 
 
 
 
 

EOGL 

EOGR 

FFT 
Word
count 

Discre- 
tization LDA 

Corr 

10 control 
subjects 
(training) 

Feature  
extraction 

Leave-one-out 
classification 
by Naive Bayes 
classifier Patient 

Control 

Fig. 1. A schematical overview of the methodology of this study. A general
topic model was trained using ten control subjects. The general topic model
was applied on ten other control subjects, ten iRBD patients and ten PD
patients obtaining 30 topic mixture diagrams. Features were extracted from
the topic mixture diagrams, and the subjects were classified as “control” or
“patient” using an NB classifier.

A. Generating topic model
Initially, both EOG signals were bandpass filtered by a

4th order Butterworth filter with cut-off frequencies (3 dB)
at 0.3 Hz and 10 Hz. These cut-off frequencies were chosen
to focus the topic model on EMs by suppressing the influence
of the baseline drift, the EMG activity as well as some
EEG activity measured at the EOG sites. Both EOG signals
were divided into non-overlapping segments of length L, and
for each of these segments, three features were computed,
yielding a feature vector f (n) expressed as,

f (n) =

⎡
⎣

Sll(n)
Srr(n)
Rlr(n)

⎤
⎦ (1)

where n denotes the segment index, Sll and Srr represents
the spectral power computed by the fast Fourier Transform
(FFT) below 5 Hz in the left and right EOG signal segment,
respectively. Any EMs, whether it be SEMs, REMs or a
combination of the two, are assumed to be in the range of 0-
5 Hz [9]. The Rlr represents the normalized cross-correlation
coefficient between the left and right EOG signal segment
given by,

Rlr(n) =
σlr(n)√

σll(n)σrr(n)
(2)

where σll and σrr denotes the variance of the left and
right EOG signal segment, respectively, and σlr denotes the
covariance of the left and right EOG signal segment. As the
EOG signals appear anticorrelated during EMs, it is assumed
that Rlr will obtain negative values when REMs occur during
REM sleep or wakefulness and when SEMs occur during N1
sleep. Background EOG should appear almost uncorrelated,
and the high-amplitude EEG artifacts which can occur during
deep sleep should appear correlated. The subject-specific
median of the cross-correlation features was subtracted to
align the values around zero.

As in [4], the aim is to train a topic model by use of
the Latent Dirichlet Allocation (LDA) model. To be able to
use the features as input to such a topic model, the features
were discretized on a per-subject basis. The spectral power
features were given the values 1 to 4 based on boundaries
set at each quartile for the full range of feature values
for that specific subject. The cross-correlation features were
discretized given values 1 to 4 based on boundaries set at [-
0.7, 0, 0.7] for all subjects. These boundaries were set based
on trial-and-error of best catching the EMs (at values below
-0.7), and the EEG artifacts (values above 0.7) as well as the
idea of having symmetric boundaries around zero.

The LDA method assumes that a “collection of docu-
ments” is derived from an underlying set of “topics”, and
that the topics are defined as a set of related “words” [10].
As the discretization in this study was done by symbols
of 1 to 4, a word length of W is presented by either
one of all combinations of W succeeding values of 1 to
4. The LDA assumes that each topic can be defined as a
certain distribution over all of the available words. For each
document in the collection of documents, a count is formed
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of the number of occurrences of each word, and as an end
result a topic-by-document matrix X is found, descriping the
distribution over topics in each document [10].

As in [4], the document length in this study was set to 30
seconds (comparable with a sleep epoch), yielding that each
sleep epoch consisted of a total of 3× 30

L symbol instances.
Different word lengths were tried (W = 2,3,5), giving that
the total number of available words was 3×4W . The number
of topics was set to T = 3, in trying to reflect the different
states (SEMs, REMs and NEMs) for EMs during sleep.

To train a general topic model, all the available sleep
epochs in between lights off and lights on from ten control
subjects were used as the collection of documents. By using
data from control subjects only, a general “control topic
model” was thereby trained. The topic model was applied on
the three test groups (see Table I), yielding a topic mixture
diagram X holding the distribution of the three “control
topics” in each sleep epoch from each of the subjects in
the test data.

B. Feature extraction and classification
The aim of this study is to classify the 30 test subjects

into either “control” or “patient” based on the topic mixture
diagrams obtained when using a general topic model. For
each test subject, three features were computed. The features
reflect “certainty”, “fragmentation” and “stability”, and are
defined as:

Feature 1 - “Certainty”: The amount of epochs with
a dominating topic of a probability higher than a given
threshold. Normalization was done by dividing the number
with the subject-specific total number of epochs. Feature 1
is expressed as,

f p
1 =

∑K
k=1 logical

(
max(X p

k ) > th
)

K
(3)

where K is the subject-specific total number of epochs and
X p

k is the EM topic mixture for epoch k in subject p. The
threshold value th was defined as the one giving the highest
mean Area Under Curve (AUC) when classifying the 30 test
subjects using the leave-one-subject-out validation scheme.

Feature 2 - “Fragmentation”: The amount of state shifts
between topics when the dominating topic defines the state
of an epoch. Normalization was done by dividing the number
with the subject-specific total number of epochs. Feature 2
is expressed as,

f p
2 =

∑K−1
k=1 logical

(
max(X p

k ) ̸= max(X p
k+1)

)

K
(4)

Feature 3 - “Stability”: The normalized mean number
of epochs kept in a certain state when the dominating topic
defines the state of an epoch. Feature 3 is expressed as,

f p
3 =

∑M
m=1 enew

m

M
with enew =

eold −min(eold)

max(eold)−min(eold)
(5)

where m is an index for a period, in where the epochs all
have the same dominating topic, M is the subject-specific
total number of such periods and eold is a vector holding the
M non-normalized numbers of epochs in each period.

As the topic mixture diagrams depend on the initialization
of the LDA method, and as it was noticed that the feature
values therefore slightly differed in between different runs
on the same test subject, the three described features were
computed for 20 different runs on the testdata. The mean
of the 20 feature values were used as the final feature
values. Using the leave-one-subject-out approach, a standard
NB classifier was used to classify the subjects into either
“control” or “patient”. The classification were performed
using all combinations of either one, two or all three feature
values.

As mentioned earlier, different values were tried for the
word length W (W = 2,3,5) and for the segment length L
(L = 1,3). The final topic model developed from the training
dataset was chosen based on how well the NB classifier
performed (according to accuracy) on the test dataset.

IV. RESULTS AND DISCUSSION

A. Interpreting the topic mixture diagrams

Fig. 2, 3 and 4 present an example of a topic mixture
diagram from a control subject, an iRBD patient and a PD
patient, respectively. Each vertical coloured bin presents a
sleep epoch, and the amount of each color in a bin presents
the individual topic probability. Remembering that the three
topics are derived based on features reflecting EMs, it is seen,
that the general topic model do recognize the characteristic
temporal evolution of sleep. More specifically, the “blue”
topic could be interpreted as having something to do with
the REMs in REM sleep, whereas the “green” topic could be
linked to SEMs and the “red” topic could be linked to NEMs.
It is seen from the mixture topic diagrams in Fig. 3 and 4,
that not as many sleep epochs show a high certainty of either
topic as compared to the control mixture diagram in Fig. 2.
Interpreting the topics as just described, this observation lead
to the conception that the EMs (both the REMs and SEMs)
in the patients are less pronounced or less alike the EMs in
control subjects. Other observations include the more abrubt
transitions in between topics as well as the less structured
and more fragmented profiles for the iRBD and PD patients
compared to the control subjects. These observations are
tried captured in the features “certainty”, “fragmentation”
and “stability”.

B. Classification

A standard NB classifier was used to classify the subjects
by the leave-one-subject-out validation approach, and it was
found that the model, which obtained the highest mean
accuracy, had a segment length of L = 1 and a word length of
W = 3. This model used the features “certainty” and “stabil-
ity”, and in Fig. 5 the decision boundary is illustrated by the
colors gray (classified as “patient”) and white (classified as
“control”). The test subjects are marked by red (PD patient),
green (iRBD patient) or blue (control subject) filled circles.
It is seen that two control subjects and one iRBD patient are
misclassified, yielding a sensitivity of 95 %, a specificity of
80 % and an accuracy of 90 %.
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Fig. 2. A topic mixture diagram and the manually scored hypnogram for
a control subject.
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Fig. 3. A topic mixture diagram and the manually scored hypnogram for
an iRBD patient.
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Fig. 4. A topic mixture diagram and the manually scored hypnogram for
a PD patient.

V. CONCLUSIONS

Training a general topic model based on sleep EOG
from ten control subjects, revealed that the characteristic
sleep cycles can be encompassed solely by use of features
reflecting EMs. By applying the topic model on testdata
from ten other control subjects, ten iRBD patients and ten
PD patients, a topic mixture diagram was obtained for each
subject. Features reflecting “certainty”, “fragmentation” and
“stability” of these diagrams were derived. It was found

that by use of the features “certainty” and “stability”, a
simple NB classifier classified the subjects with a sensitivity
of 95 %, a specificity of 80 % and an accuracy of 90 %.
The separability of the individual features as well as new
features derived from the topic mixture diagrams should be
further investigated. Although more focused analyzes of the
morphology of EMs are needed, this study demonstrates
with a data-driven, unsupervised approach that PD and iRBD
patients reflect abnorm form and/or timely distribution of
EMs during sleep.

Fig. 5. The best NB classification result was based on two features. The
decision boundary is illustrated by the colors white (control area) and gray
(patient area), and the 30 test subjects are marked with blue (control subject),
green (iRBD patient) or red (PD patient) filled circles.
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• A  data-driven  topic  modeling  approach  characterizing  sleep  EEG  and EOG  is  proposed.
• The  approach  showed  potential  for  evaluating  patients  with  neurodegeneration.
• The  number  of  topics  linked  with  REM  and  N3  could  be  an  early  PD  biomarker.
• The  ability  to maintain  NREM  and  REM  sleep  could  be  an  early  PD  biomarker.
• Patients  were  classified  with  91.4%  sensitivity  and  68.8%  specificity.
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a  b  s  t  r  a  c  t

Background:  Manual  scoring  of  sleep  relies  on identifying  certain  characteristics  in  polysomnograph  (PSG)
signals. However,  these  characteristics  are  disrupted  in patients  with neurodegenerative  diseases.
New  method:  This  study  evaluates  sleep using  a  topic  modeling  and  unsupervised  learning  approach  to
identify  sleep  topics  directly  from  electroencephalography  (EEG)  and  electrooculography  (EOG).  PSG  data
from control  subjects  were  used  to develop  an  EOG  and  an  EEG  topic  model.  The models  were  applied
to  PSG  data  from  23  control  subjects,  25  patients  with periodic  leg  movements  (PLMs),  31  patients  with
idiopathic  REM  sleep  behavior  disorder  (iRBD)  and  36 patients  with  Parkinson’s  disease  (PD).  The  data
were  divided  into  training  and  validation  datasets  and  features  reflecting  EEG  and  EOG characteristics
based  on  topics  were  computed.  The  most  discriminative  feature  subset  for separating  iRBD/PD  and
PLM/controls  was  estimated  using  a Lasso-regularized  regression  model.
Results: The  features  with  highest  discriminability  were  the  number  and  stability  of  EEG topics  linked
to  REM  and  N3,  respectively.  Validation  of  the  model  indicated  a sensitivity  of 91.4%  and  a specificity  of
68.8%  when  classifying  iRBD/PD  patients.
Comparison  with  existing  method:  The  topics  showed  visual  accordance  with  the  manually  scored  sleep
stages, and  the features  revealed  sleep  characteristics  containing  information  indicative  of  neurodegen-
eration.
Conclusions:  This  study  suggests  that the amount  of N3 and  the  ability  to maintain  NREM  and  REM  sleep
have  potential  as  early  PD biomarkers.  Data-driven  analysis  of sleep  may  contribute  to  the  evaluation  of
neurodegenerative  patients.

©  2014  Elsevier  B.V.  All  rights  reserved.

∗ Corresponding author at: Technical University of Denmark, Orsteds Plads, Build-
ing 349, DK-2800 Kongens Lyngby, Denmark. Tel.: +45 40255689/45255737.
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1. Introduction

Patients suffering from the sleep disorder idiopathic rapid eye-
movement sleep behavior disorder (iRBD) have been observed to
be at high risk of developing Parkinson’s disease (PD) (Iranzo et al.,

http://dx.doi.org/10.1016/j.jneumeth.2014.07.014
0165-0270/© 2014 Elsevier B.V. All rights reserved.
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2006; Schenck et al., 2013, 1996). These longitudinal studies indi-
cate that after a period of approximately 13 years 45% of the patients
initially diagnosed with iRBD develop PD or another neurological
disorder. Sixteen years after an iRBD diagnosis the incidence rate is
81%. This indicates long latencies from the reported onset of iRBD to
the appearance of detectable neurodegeneration. Braak et al. (2003)
described the evolution of PD as initially involving the brain stem,
then pursuing an ascending course to additional brain areas includ-
ing the cortex. During this process, there is symptom progression
that can potentially be detected in features that are expressed
electrophysiologically during sleep. It follows that investigating
polysomnograph (PSG) data either manually or automatically may
be useful for developing specific and objective markers for PD diag-
nosis (Christensen et al., 2014; Latreille et al., 2011; Postuma et al.,
2010a). According to the American Academy of Sleep Medicine
(AASM) Staging Manual from 2007, sleep annotation is done by
manually assigning periods of 30 s to either wakefulness (W),
rapid eye movement (REM) sleep stage or one of three non-REM
sleep stages (N1–N3). Manual scoring relies on identifying certain
characteristics in the electrophysiological PSG signals, including
the various EEG frequency bands (delta, theta, alpha, beta), EEG
microsleep events, such as sleep spindles and K-complexes, and
EOG events, such as rapid and slow eye movements (REMs and
SEMs, respectively) (Iber et al., 2007). The duration of microsleep
events is typically 0.5–3.0 s (Iber et al., 2007).

Reported sleep EEG changes in patients with PD and other neu-
rodegenerative diseases (NDDs) include changed patterns and/or
reduced numbers of several sleep-specific phenomena such as
sleep spindles (Christensen et al., 2014), changed slow wave char-
acteristics (Latreille et al., 2011) and frequency-slowing (Rodrigues
Brazète et al., 2013) relative to age-matched control subjects. As
eye movements (EMs) are controlled by neurons located in the
brain stem, midbrain areas and frontal areas (Carpenter, 2000), it
is believed that patients suffering from an NDD can show affected
EMs. Several studies have reported impairment of the oculomotor
function in patients with PD (Corin et al., 1972; Mosimann et al.,
2005). The oculomotor abnormalities include limitation or absence
of gaze in various planes, inadequate convergence and impairment
in reflexive saccades during wakefulness. Few studies have investi-
gated PSG EOG in patients with iRBD or PD during sleep, and these
reported abnormalities in the outlook and the nightly distribution
of rapid and slow EMs  (Christensen et al., 2013, 2012).

Stage shifts during sleep and the transition from sleep to wake-
fulness are controlled by switching mechanisms regulated by
several neurons mainly located in the brainstem and midbrain
areas (Saper et al., 2001, 2010; Schwartz and Roth, 2008). Proposed
models describe the transitions between sleep and wakefulness,
and those between REM and NREM as flip-flop switches. These
switches are mutually dependent and determine the wake-sleep
cyclic rhythm (Lu et al., 2006). The sleep–wake flip-flop switch
involves the ascending arousal pathway and the sleep-promoting
pathway. The ascending arousal pathway involves a branch of
cholinergic neurons, which fire rapidly during wakefulness and
REM sleep. Further, the ascending pathway involves a branch
of noradrenergic, serotoninergic, dopaminergic and histaminergic
neurons, which fire rapidly during wakefulness, less rapidly dur-
ing NREM sleep and almost cease firing during REM sleep (Saper
et al., 2010; Schwartz and Roth, 2008). The neurons of the sleep-
promoting pathway inhibit the circuits of the ascending arousal
system, and the mutually inhibitory relationship can generate rapid
transitions between waking and sleeping states. The REM–NREM
flip-flop switch involves two mutually inhibitory populations of
GABAergic neurons located in the upper pons, which enables it to
generate rapid transitions between REM and NREM sleep states. A
malfunction or destruction of any of the loops involved in the two
flip-flop switches might be observed in the sleep architecture as

either unstructured transitions and/or abnormal amount of time
spent in the individual stages. This study investigates whether the
neurodegeneration present in iRBD and PD patients affects these
mechanisms to a degree that can be revealed by analyzing EEG
and EOG. The putative changes in the appearance of the EEG or
EOG are linked to the ascending cortical branch of neurons active
during REM sleep. It has been shown that the normal descending
inhibition of the skeleton muscles in iRBD patients during REM
sleep is affected by neurodegeneration (Kempfner et al., 2010;
Postuma et al., 2010b). The electromyograph (EMG) activity in these
patients is enhanced, which suggests that a neurodegenerative pro-
cess occurs in the region of the brain stem generating REM atonia
(Brown et al., 2012). By not including EMG  features, this study focus
on the characteristics affected by the ascending cortical parts of the
sleep–wake and the REM–NREM sleep switches.

The aim of this study was to evaluate the diagnostic value of
features reflecting sleep characteristics such as the stability, frag-
mentation and distribution of sleep stages in patients with iRBD or
PD. To solve the well-known problems with the manual scoring of
sleep, we characterized sleep using a data-driven approach based
on certain clues from either EEG or EOG. By addressing sleep anal-
ysis with a topic modeling approach, we did not attempt to match
the manually scored sleep stages. We  set out to identify topics in
the EEG and EOG and thereby capture latent diversities between
subjects with and without neurodegeneration. Data from control
subjects were used to develop models defining EEG or EOG  topics.
To analyze how well the EEG and EOG sleep structures from NDD
patients fell into the standard topics, the models were applied to
PSG data from additional control subjects, patients with a motor
disturbance but not an NDD (periodic leg movements (PLMs)), iRBD
patients and PD patients. By extracting features reflecting charac-
teristics of the EEG and EOG topic patterns, this study attempted
to reveal sleep characteristics indicative of early and mature neu-
rodegeneration in PD patients.

2. Materials and methods

2.1. Subjects

Subjects were recruited from patients evaluated at the Danish
Center for Sleep Medicine (DCSM) in the Department of Clinical
Neurophysiology, Glostrup University Hospital. All patient evalu-
ations included a comprehensive medical and medication history.
All patients were assessed by PSG and with a multiple sleep latency
test (MSLT). Patients treated with medication known to affect sleep
stages (antidepressants, antipsychotics, hypnotics) were excluded,
although dopaminergic treatments were continued. A total of 36
PD, 31 iRBD and 25 PLM patients were included. The iRBD patients
included expressed dream enactment coinciding with REM sleep
without atonia (RSWA), manifested as sustained muscle activity in
the chin EMG  and/or excessive transient muscle activity in either
the chin or limb EMG. They were diagnosed with idiopathic RBD
since the disease could not be linked to the presence of narcolepsy,
neurodegenerative, cerebrovascular, or other neurological disor-
ders or other factors such as specific drugs or psychological state.
The PLM patients included did not show any signs of neurodegen-
eration or RSWA. No PSG findings or NDD-related symptoms were
reported for the PLM group, and they were considered as solely PLM
patients. Henceforth, the term ‘PLM patients’ refers to patients suf-
fering solely from PLMs. Thirty-three age-matched control subjects
with no history of movement disorder, dream-enacting behavior or
other previously diagnosed sleep disorders were included.

The data were split into three groups: one for developing the
topic models (10 control subjects), another for training a statistical
model for classifying NDD patients (16 subjects from each group),
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Table 1
Demographic characteristics of the four groups used to develop, train and validate the sleep models. Means and standard deviations are indicated with ! and ", respectively.

Patient group Total counts
(male/female)

Age [years,
! ± "]

BMI [kg/m2,
!  ± "]

Sleep efficiency
[%, ! ± "]

Time in bed
[min, ! ± "]

LM index Disease duration
[years, ! ± "]

Data used for building sleep models
Controls 10 (5/5) 56.0 ± 8.4 23.8 ± 2.7 89.4 ± 5.5 480 ± 52.9 38.6 ± 43.8 NA

Training dataset
Controls 16 (5/11) 56.7 ± 10.2 23.1 ± 2.6 87.7 ± 8.3 490 ± 72.3 21.6 ± 13.7 NA
PLM  16 (9/7) 56.9 ± 11.8 25.1 ± 3.5 86.5 ± 6.1 434 ± 32.7 60.4 ± 42.3 NA
iRBD  16 (13/3) 62.9 ± 8.6 25.8 ± 3.3 87.4 ± 5.7 485 ± 104.2 44.4 ± 32.0 NA
PD  16 (11/5) 65.4 ± 6.4 26.4 ± 2.6 78.5 ± 13.5 462 ± 87.9 47.1 ± 47.6 3.6 ± 4.5

Validation dataset
Controls 7 (2/5) 56.9 ± 7.4 23.1 ± 2.1 82.7 ± 15.5 470 ± 103.6 10.8 ± 8.5 NA
PLM  9 (4/5) 57.0 ± 12.1 26.7 ± 4.3 85.0 ± 9.8 428 ± 73.9 49.7 ± 25.1 NA
iRBD  15 (13/2) 63.4 ± 5.8 25.4 ± 3.1 80.8 ± 8.6 486 ± 94.0 32.8 ± 26.4 NA
PD  20 (13/7) 65.1 ± 6.9 25.0 ± 3.4 76.3 ± 13.7 430 ± 66.6 29.4 ± 30.3 8.8 ± 3.5

and a third for the final validation of the classification (7 control
subjects, and 9 PLM, 15 iRBD and 20 PD patients). The datasets
were designed to be matched by age with no further knowledge
of the subjects, except for the building dataset, which was  also bal-
anced by gender. The building dataset included 10 control subjects
because two pilot studies concerning topic modeling of sleep have
shown this number to produce sufficient data (Christensen et al.,
2013; Koch et al., 2013). The training and validation dataset sizes
were selected on the basis of two criteria: (1) the training dataset
should include equal numbers of subjects from the four groups, and
(2) the number of subjects in any group in the validation dataset
should at least be approximately half that of the corresponding
group in the training dataset. Two of the PD patients included in the
training dataset were later diagnosed with multiple system atro-
phy and Lewy body dementia, respectively. The demographic data
for the three datasets are summarized in Table 1.

2.2. Polysomnograph recordings

All controls underwent at least one night of PSG recording as
outpatients, and all patients underwent at least one night of PSG
recording, either as outpatients or in hospital in accordance with
the AASM standard (Iber et al., 2007). As a minimum requirement,
the PSGs used in this study included 16 channels, comprising EEG
(F3, F4, C3, C4, O1, O2) and EOG (EOGL, EOGR) with reference
to the mastoids (A1, A2), EMG  (TIBL, TIBR, CHIN) and ECG in a
referential montage. Two flexible belts measuring abdominal
and chest respiratory effort, a finger censor measuring SpO2
and HR and a nasal cannula were also used. PSG was repeated
only if the quality of traces was inadequate for clinical use. The
quality of the PSG data was individually evaluated, and recordings
were excluded if the analyzed channels were disconnected or

continuously contaminated with artifacts. Table 2 summarizes the
manually scored sleep stage distributions.

The raw sleep data, hypnograms and sleep events were
extracted from Somnologica Studio (V5.1, Embla, Broomfield, CO,
USA) or Nervus (V5.5, Cephalon DK, Nørresundby, Denmark), using
the built-in export data tool. For analysis, data were imported into
MATLAB (R2012a, MathWorks, Inc., Natick, MA,  USA) and analyzed
with a sampling frequency of 256 Hz.

2.3. Data-driven staging of EEG and EOG

The overall method of this study is presented in Fig. 1. Sleep
data from 10 control subjects were used to build two general topic
models; one based solely on EOG and one based solely on EEG. The
general topic models were used to generate two topic mixture dia-
grams (referred to henceforth in this paper as the EOG or EEG topic
diagrams) for the remaining 115 subjects. Based on these diagrams,
nine and 13 features were extracted from the EOG and EEG topic
diagrams, respectively. All features reflect certain characteristics
of the sleep EOG and EEG, described in Section 2.4. The discrimina-
tive nature of the features and a subgroup of features was analyzed
for the two-class problem “NDD” versus “non-NDD” by training a
regularized logistic regression model. A detailed description of the
steps in Fig. 1 is provided below.

2.3.1. Generating topic models
Topic models were first used to investigate topics in a collec-

tion of text documents (Blei et al., 2003). In this context, a topic
model is a statistical model that reveals underlying themes or topics
describing the latent structures behind the generation of a collec-
tion of text documents. Given that each document concerns a given
topic, it may  be assumed that particular words in the document

Table 2
The distribution of sleep stages used in the development, training and validation of the EEG and EOG sleep models.

Patient group Wake [number of
epochs (%)]

REM [number of
epochs (%)]

N1 [number of
epochs (%)]

N2 [number of
epochs (%)]

N3 [number of
epochs (%)]

Sum [number of
epochs (%)]

Data used for building sleep models (epochs were selected to have an approximately equal number in each stage)
Controls 642 (20) 700 (22) 617 (19) 700 (22) 597 (18) 3256 (100)

Training dataset
Controls 1887 (12) 3114 (20) 1292 (8) 7091 (45) 3201 (15) 15,685 (100)
PLM  1836 (13) 2767 (20) 1090 (8) 6010 (43) 2170 (16) 13,873 (100)
iRBD  2012 (13) 2923 (19) 1637 (11) 6789 (44) 2149 (14) 15,510 (100)
PD  3113 (21) 1652 (11) 1867 (13) 6251 (42) 1889 (13) 14,772 (100)

Validation dataset
Controls 1137 (17) 1136 (17) 683 (10) 2890 (44) 733 (11) 6579 (100)
PLM  1141 (15) 1204 (16) 732 (10) 3674 (48) 951 (12) 7702 (100)
iRBD  2967 (20) 2098 (14) 1106 (8) 5880 (40) 2535 (17) 14,586 (100)
PD  4057 (24) 2464 (14) 1521 (9) 6523 (38) 2625 (15) 17,190 (100)
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Fig. 1. A schematic overview of the method adopted in this study. An extract of the sleep data from ten control subjects was used to train an EOG topic model using the
EOGL-A2 and EOGR-A1 derivations and an EEG topic model using the C3-A2, F3-A2 and O1-A2 derivations. The trained topic models were applied to sleep data from 23
control subjects, and 25 PLM, 31 iRBD and 36 PD patients, yielding two  sleep diagrams per subject. Nine features were extracted from the EOG topic diagrams and 13 features
were  extracted from the EEG topic diagrams. Using a training dataset of 16 subjects from each group, feature subsets were selected and three regularized logistic regression
models were trained to classify each subject as either “NDD patient” or “non-NDD subject”. The performance of the regression models was  assessed in the validation dataset.

are strongly linked to that specific topic. As an example, words
such as “computer”, “screen” and “keyboard” will be frequent in
a document about “IT equipment”, whereas words such as “ring”,
“gold” and “necklace” will be frequent in a document concern-
ing “jewellery”. The statistics of the appearances of words in
a collection of documents are used to identify what the topics
include as well as the topic mixture in each document (Blei et al.,
2003).

In the context of sleep data, each sleep epoch is a document.
The words used for revealing the topic mixtures can be explained
as variables that represent characteristics (EEG and EOG character-
istics) of the latent or immanent structures in the different sleep
stages. As an example, a “word” linked to a delta wave will appear
more frequently in an N3 epoch, whereas “words” linked to sleep
spindles or theta waves will appear more frequently in an N2 epoch.
In this way, a topic model can find topics and reveal the mixture of
topics for each sleep epoch. Intuitively, the topics are linked to the
standard sleep stages but topics and standard sleep stages are not
identical.

The EEG words were extracted from the C3-A2, F3-A2 and
O1-A2 EEG derivations, which initially were forward and reverse
bandpass-filtered with a fourth-order Butterworth filter with cut-
off frequencies (3 dB) at 0.3 Hz and 35 Hz, in concordance with the
AASM standard. The signals were divided into non-overlapping 1-s

segments, m,  and four word features were computed for each of
these segments. This yielded a vector TEEG(m) expressed as,

TEEG(m)  =

⎡
⎢⎣

XC3−A2(m)

XF3−A2(m)

XO1−A2(m)

⎤
⎥⎦ where X(m) =

⎡
⎢⎢⎢⎢⎣

xı(m)

x#(m)

x˛(m)

xˇ(m)

⎤
⎥⎥⎥⎥⎦

(1)

represents the spectral power in the clinical EEG frequency bands
delta (f < 4 Hz), theta (4 Hz ≤ f < 8 Hz), alpha (8 Hz ≤ f < 13 Hz) and
beta (13 Hz ≤ f < 30 Hz). The spectral power was computed by the
fast Fourier transform (FFT) using zeropadding and a rectangular
window function.

The feature vector TEEG(m) was  converted into words by dis-
cretizing the spectral power on a per-subject basis, given the values
1–5 based on boundaries set at each quintile for the full range of
features for that specific subject. For each EEG channel, the quin-
tile boundaries were set individually for each spectral power band
based on the full range of power values for one subject across the
whole night. Fig. 2 illustrates how the EEG words for a frontal EEG
channel were generated. The discretized values 1–5 are illustrated
as the height of the colored bins and the clinical band is indicated
by the color. Given a word length of three, an EEG word is presented
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Fig. 2. Illustration of how the EEG words were generated for a frontal EEG signal in a single epoch. For each second, the delta, theta, alpha and beta powers were computed
and  discretized to obtain values between 1 and 5. The EEG words were defined as any combination of three consecutive values of 1–5 and the final output was  a vector of
the  word counts across the four power bands. Similar vectors were obtained for the central and occipital EEG signal, and combined they make up a specific fingerprint of the
sleep  epoch analyzed.

as either one of all combinations of three succeeding values of
1–5. The length of three was chosen to reflect the typical length
of microsleep events, and the range of five was chosen, as success-
ful results have previously been reported using this length (Koch
et al., 2013; Van Esbroeck and Westover, 2012). The available words
in the three EEG channels were counted for each sleep epoch, and
the final fingerprint of the given sleep epoch consisted of a distribu-
tion over all possible words across the three different EEG channels.
Specifically, the final EEG fingerprint for a given epoch was a column
vector of word distributions from the central, frontal and occipital
EEG channels (Fig. 2 shows solely the frontal channel).

The EOG words were extracted from the EOGR-A1 and EOGL-
A2 derivations, which were forward and reverse bandpass-filtered
with a fourth-order Butterworth filter with cutoff frequencies
(3 dB) at 0.3 Hz and 10 Hz. These cutoff frequencies were chosen
to focus the analysis on eye movements by suppressing the influ-
ence of baseline drift, EMG  activity and some EEG activity measured
at the EOG sites. For each segment, three word features were com-
puted, yielding a word feature vector TEOG(m) expressed by

TEOG(m)  =

⎡
⎢⎣

XII(m)

Xrr(m)

Xlr(m)

⎤
⎥⎦ , where Xlr(m) =

√
"lr(m)

"2
ll (m)"2

rr(m)
(2)

represents the normalized cross-correlation coefficient between
the left and right EOG signal segments m.  "2

ll and "2
rr denote the

variance of the left and right EOG signal segments, respectively,
and " lr denotes the covariance of the left and right EOG signal
segments. Xll and Xrr represent the spectral power below 5 Hz in
the left and right EOG signal segments, respectively, computed by
FFT using zeropadding and a rectangular window. All eye move-
ments, whether they were SEMs, REMs or a combination of the
two, are assumed to be in the range of 0–5 Hz (Agarwal et al., 2005;
Christensen et al., 2013, 2012).

The word feature vector TEOG(m) was  converted into words
in a similar manner as for TEEG(m). The EOG spectral power was
assigned values between 1 and 3 based on boundaries set at each
tertile. The tertile boundaries for each EOG power feature were
established on a subject-specific basis over the full range of power
values throughout the entire night. The subject-specific median of
the cross-correlation features was  subtracted, and the normalized
cross-correlation features assigned the values 1–3 on the basis of
boundaries set at [-0.7; 0.7] for all subjects. These boundaries were
set on a trial-and-error basis for the best separation of the data into
either EMs  (values below −0.7), background EOG (values between
−0.7 and 0.7) or EEG artifacts measured at the EOG site (values
above 0.7). The length of the EOG words was  set at two, given
that an EOG word in this study is presented as either one of all
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Fig. 3. Illustration of how the vectors describing the word distribution for each epoch conform the input matrices to the LDA. Each column of the matrices presents a sleep
epoch,  and CON1 and CON2 illustrate different subjects. In the case of EEG, three vectors were combined, containing the word distribution across the central (XC3-A2), frontal
(XF3-A2) and occipital (XO1-A2) EEG signals, respectively. Each of these vectors contains the discretized power values for the clinical bands delta (xı), theta (x#), alpha (x˛) and
beta  (xˇ), as illustrated in Fig. 2. In the case of EOG, two  vectors of discretized power values of the left (Xll) and right (Xrr ) EOG channels, respectively, and a vector of the
discretized cross-correlation coefficient measures (Xlr ) were combined.

combinations of two succeeding values of 1–3. The choice of the
boundary values, the length of the EOG words and the range length
were all set on the basis of the experience gained and the conclu-
sions of the pilot study described by Christensen et al. (2013). The
final EOG fingerprint of an epoch was a column vector of the word
distribution of the discretized power measures of the left and right
EOG channels and the discretized cross-correlation coefficients.

This study uses Latent Dirichlet Allocation (LDA) (Blei et al.,
2003), and the MATLAB-based LDA toolbox implemented by
Verbeek (2006). LDA is a common approach used in topic mod-
eling and assumes that a given document contains a combination
of multiple topics. This allows identification of concurrent topics
and topics, which are related to a small subset of words. Each topic
is assumed to be defined by a certain distribution of all available
words, and the number of occurrences of each word in each docu-
ment is counted. In this way, a multinormal distribution over topics
is derived for every document. Relating this to sleep analysis, a
specific distribution over sleep topics k is provided for every sleep
epoch n, and LDA outputs the posterior probability pk(n) for sleep
topic k in epoch n.

Ten control subjects were used to build the general EEG and EOG
topic models. By using data only from control subjects, a general
“control EOG topic model” and a “control EEG topic model” were
trained using the EOG and EEG words separately. As we aimed to
use equal representation of the AASM sleep stages in the building
process, 70 sleep epochs from each AASM sleep stage were taken
out randomly in between lights-off and lights-on from each of the
ten control subjects. In the cases where 70 sleep epochs of a given
AASM stage were not present (only the case for N1, N3 or W),  all
the available epochs of that stage were included. An equal number
of epochs from each AASM stage were included to give each stage
the same chance of being described by a topic. The final number
and distribution of sleep epochs used in the building process are
shown in Table 2. A matrix containing the word counts for each of

the epochs included in the building dataset was fed into LDA. Fig. 3
illustrates how the matrix was  conformed for the EEG and the EOG
models, respectively. To reflect the three major EMs  during sleep
states (SEMs, REMs and no EMs), the number of topics in the EOG
model was set to three. The number of topics in the EEG model was
set to five to reflect the five sleep stages (N1, N2, N3, REM and W).

The general sleep models were applied in all epochs between
lights-off and lights-on from 36 PD, 31 iRBD and 25 PLM patients
and 23 control subjects. Only the raw frontal, central and occipital
EEG signals and the two raw EOG signals were used as input and
no manual staging or any other subjective information was needed.
An EEG topic diagram and an EOG topic diagram were obtained for
each subject, describing the distribution over EEG or EOG  topics in
each sleep epoch, respectively. Fig. 4 shows examples of an EOG and
an EEG topic mixture diagram from a control subject. Each vertical
bin presents a sleep epoch, and the amount of each of the colors
in each bin represents the probabilities of each topic. If a bin is
dominated by red, for example, this reflects a high probability of
the red topic. For the purposes of comparison, the manually scored
hypnogram is provided below each topic diagram.

2.4. Feature extraction

The aim of this study was  to identify sleep EEG and sleep EOG
features or characteristics indicative of neurodegeneration. The
approach sought to classify the subjects as “NDD patient”, contain-
ing iRBD and PD patients, or “non-NDD subject”, containing PLM
patients and control subjects, based on features extracted from the
topic diagrams. A description of the features computed is provided
below and the reflections and topic diagram observations that gave
rise to the feature ideas are stated. Table 3 provides an overview by
stating the feature name, a short explanation and the total number
of features computed for each feature group.
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Fig. 4. Examples of an EEG and an EOG topic diagram from a control subject. The figures are stacked percentage column charts, where a sleep epoch is presented as a vertical
line  made up of a mixture of colors. Each color presents an EOG (black, gray or white) or EEG (dark-blue, light-blue, green, orange or red) topic, where the amount of color in
each  vertical bin represents the probability of that topic. For comparison, the manually scored hypnogram is presented below the topic diagrams. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

2.4.1. Certainty feature
It was hypothesized that control subjects have a more “clear”

sleep outlook, since they show distinct differences between the
sleep stages. Comparison of the control/PLM and iRBD/PD topic dia-
grams indicates that the control subjects and PLM patients have
more epochs with high topic probability, i.e., more vertical bins
with a high probability of any color. This characteristic was cap-
tured in a feature, fcertainty, which contains the number of epochs
with any given topic probability higher than a given threshold.
The feature was normalized with respect to the total number of
epochs. pk(n) defines the probability of topic k in epoch n, thereby
the certainty feature can be expressed as:

fcertainty = 1
N

N∑

n=1

1{pk(n)>t} (3)

where N is the subject-specific total number of epochs, t = 0.9 is a
threshold value defining when an epoch is counted as certain and
1 is an indicator function. For each subject, the feature fcertainty was
computed for the EOG and EEG topic diagram.

2.4.2. Fragmentation feature
It was hypothesized that iRBD and PD patients show more

abrupted sleep with more transitions between the different
sleep/EM states. Comparison of the control/PLM and iRBD/PD topic
diagrams indicates less structure and more fragmentation in the
diagrams of the iRBD and PD patients, for the EOG and specifically
for the EEG topic diagrams. This characteristic was  captured in a

feature, ffragmentation, which encapsulates the number of transitions
from one topic to another (from one dominant color to another).
The feature was normalized with respect to the total number of
epochs N and is expressed as:

ffragmentation = 1
N

N−1∑

n=1

1{arg max
k

pk(n) /=  arg max
k

pk(n+1)} (4)

The ffragmentation feature was computed for the EOG and the EEG
topic diagrams for each subject.

2.4.3. Global stability feature
It was hypothesized that iRBD and PD patients have a decreased

ability to sustain a given sleep/EM state and therefore will stay less
time in any sleep stage before switching to another stage. This char-
acteristic is reflected in the topic diagrams as the patients show
less structure and few subsequent epochs with the same dominant
color. This was  captured in a feature, fstability, which encompasses
the mean number of epochs in a period s, in which the dominant
topic is maintained. A vector ls expresses the number of epochs in
such periods, and is illustrated in Fig. 5. Before computing the mean,
ls was  normalized by the subject-specific minimum and maximum
values. fstability is expressed as:

fstability = 1
S

S∑

S=1

LS with LS = lS − min(lS)
max(lS) − min(lS)

. (5)

Table 3
Overview of the feature groups computed in this study. The certainty, fragmentation and global stability features were computed once for each topic model. The topic amount
feature group and the topic stability feature group each comprise five features computed from the EEG topic diagrams (based on the dark-blue, light-blue, green, orange and
red  topics) and three features computed from the EOG topic diagrams (based on the black, gray and white topics).

Feature name Feature explanation Total number per subject

EEG EOG

Certainty Normalized number of epochs with any topic probability higher than 90% 1 1
Fragmentation Normalized number of transitions from one topic to another topic 1 1
Global stability Normalized number of epochs in a period of epochs where the topic is the same 1 1
Topic  amount Normalized number of epochs with a given topic, and with a topic probability higher than 70% 5 3
Topic  stability Normalized number of epochs in a period of epochs with the same given topic 5 3
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Fig. 5. Illustration of how the vector l used in the stability features described in Section 2.4.3 is computed. A given topic diagram with mixtures of topics in each bin is
converted to a diagram, in which the dominant topic defines the epoch. The number of epochs in each period for which the same topic is dominant is computed and forms
the  elements in vector l.

The feature was computed for the EOG and the EEG topic diagrams
for each subject.

2.4.4. Topic amount feature
It was hypothesized that iRBD and PD patients express changed

amounts of the different sleep stages during the night. This was
captured in the topic amount feature f k

Tamount
, which was  computed

for every topic, k, and can be expressed as:

f k
Tamount

= 1
N

N∑

n=1

1{pk(n)>tk}, (6)

where k is the topic number and tk = 0.7 is a certainty threshold
defining when an epoch is counted as a topic k epoch. The feature
f k
Tamount

was computed for each of the three EOG topics and five EEG
topics for each subject.

2.4.5. Topic stability feature
It was hypothesized that the ability to stay in a given sleep stage

is affected by the neurodegeneration in the basal ganglia, which
the sleep diagrams support as the patients rarely remain in a given
topic for a long time. The overall measure of this characteristic was
captured in the feature fstability described in Section 2.4.3. The ability
to stay in specific EEG or EOG topics was not represented by fstability

but was encapsulated by the topic stability feature f k
Tstability

, which

was computed for every topic k. This is expressed as:

f k
Tstability

= 1
N

N−1∑

n=1

1{arg max
j

pj(n) /=  k and arg max
j

pj(n+1)=k}, (7)

and was computed for each of the three EOG topics and five EEG top-
ics for each subject. It reflects the ability of the subject to maintain
any of the five EEG topics or the three EOG topics.

2.5. Feature ranking and classification

In total, 22 features were computed for each subject. Nine and 13
reflect characteristics of the EOG and EEG topic diagrams, respec-
tively. The aim of this study was to identify the most indicative
features for classifying subjects as “NDD patients” or “non-NDD
subjects”. Some of the 22 features may  be irrelevant or redundant
for this classification, and therefore the optimal subset of features
was determined using a logistic regression with Lasso regulariza-
tion. This classification method was chosen because the coefficients
are easy to interpret and the regularization forces the coefficients
of irrelevant or redundant features to zero, yielding simple models
(Hastie et al., 2008; Tibshirani, 1996). Logistic regression is a binary
and linear classification method that uses the logistic sigmoid func-
tion to model the posterior probability of the positive class for the
input variable y (Hastie et al., 2008):

p( positive
∣∣ y) = 1

1 + e−(ˇ0+ˇT y)
(8)

where ˇ0 is the model offset and  ̌ is a vector of the variable
coefficients. The final classification is made by defining the decision
boundary ˇ0 + ˇTx = 0 for the logit transformation

log
p(positive|y)

1 − p(positive| y)
= ˇ0 + ˇT y. (9)

Maximum likelihood optimization was  used for training the
model, and the complexity of the model was controlled by introduc-
ing the regularization term $ > 0, yielding an optimization problem
expressed as:

arg max
(ˇ0+ˇ)

{
I∑

i=1

[
zi(ˇo + ˇT yi) − log(1 + eˇ0+ˇT yi )

]
− $

D∑

d=1

|ˇd|

}
,

(10)

where I is the number of subjects, zi the classification output stat-
ing zi = 1 for positive cases (“NDD”) and zi = 0 for negative cases
(“non-NDD”) and D is the dimension of the input variable. As the
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Table 4
Overview of visual interpretation of the topics obtained from the EOG and EEG sleep models.

Topic EEG “dark-blue” EEG “light-blue” EEG “green” EEG “orange” EEG “red” EOG “black” EOG “gray” EOG “white”
AASM  stage REM W N1/N2 N3 N1/N2 N3 REM/W N1/N2

regularization term $ increases, the number of nonzero compo-
nents of  ̌ decreases, and the model becomes more sparse. Features
with nonzero components are included in the final feature subset,
and the component values indicate each feature’s impact on the
final posterior probability output.

The data were split into training and validation datasets, the
former consisting of 16 control subjects, and 16 PLM, iRBD and PD
patients each. Only this dataset was used for optimizing the classi-
fication model, and all input features were standardized. Eight-fold
cross-validation was used to optimize the logistic regression mod-
els. Three such models were trained: (1) one in which all features
were available initially, (2) one in which only the EOG features were
available initially and (3) one in which only the EEG features were
available initially. The optimal feature subset was found for each
regression model, thereby enabling the performance of the EOG

and EEG features as well as the combination of the two  modalities
to be investigated. Performance measures were obtained for the
training and validation datasets.

3. Results

3.1. Interpretation of topic models

Fig. 4 shows an example of an EEG and an EOG topic diagram
from a control subject. Each sleep epoch is presented as a vertical
bin with colors. Each color represents an automatically found topic,
and the amount of color in each vertical bin represents the topic
probability. The manually scored hypnogram is given below each
topic diagram. To discriminate between the EEG and EOG diagrams,
the EEG topics are illustrated in bright colors and the EOG topics
are shown in black, white or gray.

Clear concordances between the manually scored hypnogram
and the EEG topics are seen. There was a link between N3 and the
orange topic, REM sleep and the dark-blue topic and W was  linked
to the light-blue topic. The green and red EEG topics were present in
many sleep epochs and therefore more difficult to link to a specific
sleep stage. However, they were both pronounced during N1 and
N2 sleep. An overview of the visual interpretation of the different
EEG and EOG topics is provided in Table 4.

The EOG model was built on words derived from the EOG deriva-
tions but it is assumed to recognize the characteristic temporal
evolution of sleep. Visual inspection showed that the gray and
black EOG topics were most pronounced during REM and N3 sleep,
respectively. Specifically, the black EOG topic may  be related to
low-frequency high-amplitude EEG artifacts measured at the EOG
during N3. The gray topic is interpreted as being related to the REMs
during REM sleep, whereas the white topic may  include both the
low-amplitude SEMs and periods with no EMs.

Fig. 6 shows examples of EEG and EOG topic diagrams from PLM,
iRBD and PD patients. The diagrams from the iRBD and PD patients
had a less structured appearance, more fragmented profiles and
more abrupt transitions between topics compared with those from
the PLM patients and control subjects in Fig. 4. Further, fewer sleep
epochs in the iRBD and PD diagrams had a high certainty of either
topic compared with the sleep diagrams from a control subject.

These observations and characteristics are captured in the features
explained in Section 2.4.

3.2. Feature subsets and classification performances

Fig. 7 presents the feature values extracted from the two  topic
diagrams from each of the subjects and indicates that some of the
features had discriminative properties for iRBD and PD patients
versus PLM patients and control subjects. Feature subsets were
selected when including all the 22 features in order to investigate
the discriminating ability of the features and how they perform
together. Additionally, feature subsets were selected when includ-
ing only the EOG features or only the EEG features. The regression
model initially including all 13 EEG features ended up selecting four
EEG features, as shown by the logistic regression model obtained:

p(NDD| f EEG) = 1

1 + exp(−0.002 + 0.363f Dark Blue
TAmount

+ 0.311f Orange
TAmount

− 0.310f Green
TStability

+ 0.343f Orange
TStability

)
. (11)

This expression indicates that small values of f Dark Blue
TAmount

, f Orange
TAmount

and

f Orange
TStability

and a large value of f Green
TStability

increased the probability of

belonging to the NDD class. The coefficients show that f Dark Blue
TAmount

,

followed by f Orange
TStability

, f Orange
TAmount

and f Green
TStability

were the most indicative.

The dark-blue, orange and green topics are interpreted as REM, N3
and N1/N2 sleep, respectively. It was  found that the amount of REM
sleep, and the amount and stability of N3 were considerably higher
for the control/PLM group than for the iRBD/PD group, which is
reflected by high positive  ̌ values in the regression model. The sta-
bility measure of N1/N2 was  less for the control/PLM group than for
the iRBD/PD group, which is reflected by a negative  ̌ value in the
regression model.

The regression model initially including all nine EOG  features
ended up using two EOG features, as shown by the logistic regres-
sion model obtained:

p (NDD|f EOG) = 1
1 + exp(−0.003 + 0.011fCertainty + 0.320f Black

TAmount
)
.

(12)

This expression indicates that small values of f Black
TAmount

and
fCertainty increased the probability of belonging to the NDD class.
f Black
TAmount

was  the most indicative and may  be linked to the EEG activ-
ity at EOG sites during N3 sleep. The coefficients show that the
amount of EEG activity at EOG sites during N3 sleep was  consider-
ably higher and the overall EOG certainty measure was marginally
higher for the control/PLM group than for the iRBD/PD group.

The regression model initially including all 22 features selected
the same four EEG features as the EEG regression model and gave
an identical model expression.

Table 5 presents the performance measures for the final regres-
sion models and the optimal feature subset for each. Performance
measures were computed using the number of true positives (TP),
true negatives (TN), false positives (FP) and false negatives (FN),
stated as:

sensitivity = #TP
#TP + #FN

and specificity = #TN
#TN + #FP

. (13)

A subject is detected as NDD when p(NDD| f ) ≥ 0.5 and TP and FN
represent the number of iRBD and PD patients detected as NDD and
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Fig. 6. Examples of EEG and EOG topic diagrams from a PLM (top), an iRBD (middle) and a PD (bottom) patient. The figures are stacked percentage column charts, where
a  sleep epoch is presented as a vertical line possessing a mixture of colors. Each color presents an EOG (black, gray or white) or EEG (dark blue, light blue, green, orange or
red)  topic, where the amount of color in each vertical bin presents the probability of the specific topic. The colors are comparable between diagrams. The manually scored
hypnograms are provided below the topic diagrams. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

non-NDD cases, respectively. TN and FP represent the number of
control subjects and PLM patients classified as non-NDD and NDD
cases, respectively. The measures of the area under the receiver
operation curve (AUC) were computed as the area under the curve
obtained when going through the ranked probability measures. The
regression model including four EEG features yielded estimates of

93.8% sensitivity and 87.5% specificity for the training dataset (filled
circles in Figs. 7 and 8), and 91.4% sensitivity and 68.8% specificity
for the validation dataset (open circles in Figs. 7 and 8). The regres-
sion model including two  EOG features estimated a sensitivity of
65.6% and a specificity of 87.5% for the training dataset and a sensi-
tivity of 57.1% and a specificity of 62.5% for the validation dataset.
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Fig. 7. The feature values obtained for the training and validation datasets. Subjects included in the validation and training datasets are presented as open and filled circles,
respectively. Markers indicate control subjects (dark-blue), PLM patients (light-blue), iRBD patients (light-red) and PD patients (dark-red). The features chosen for the final
regression models are indicated by gray, unfilled circles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 8 also illustrates the probabilities of belonging to the NDD
class as given by the two regression models using standardized
feature values. Subjects included in the training of the regression
models are indicated by filled circles, and open circles indicate
subjects in the validation dataset. The regression model initially
including all features and that initially including solely EEG features

were identical and so only one is shown. The results show that
the distribution of the PLM patients in the validation set was rela-
tively different from that of the training dataset. Together with the
small amount of control and PLM patients in the validation set, this
change in distributions is considered the main reason for the small
specificity measures obtained in this study.

Table 5
AUC, sensitivity and specificity values for classifying PD and iRBD patients using the best logistic regression model obtained when (1) all features (EOG and EEG), (2) only
EOG  features or (3) only EEG features were available initially. The optimal subsets of features in each case are also presented. The same regression model was obtained for
cases  (1) and (3).

Input features Feature subset Performance measure

EOG EEG Training dataset Validation dataset

X X 1: EEG topic “dark-blue” amount (REM amount)
2: EEG topic “orange” stability (N3 stability)
3: EEG topic “orange” amount (N3 amount)
4:  EEG topic “green” stability (N1/N2 stability)

AUC: 93.1%
Sensitivity: 93.8%
Specificity: 87.5%

AUC: 84.3%
Sensitivity: 91.4%
Specificity: 68.8%

X  1: EOG topic “black” amount (N3 amount)
2.  EOG overall certainty

AUC: 79.3%
Sensitivity: 65.6%
Specificity: 87.5%

AUC: 64.6%
Sensitivity: 57.1%
Specificity: 62.5%

X  1: EEG topic “dark-blue” amount (REM amount)
2: EEG topic “orange” stability (N3 stability)
3: EEG topic “orange” amount (N3 amount)
4:  EEG topic “green” stability (N1/N2 stability)

AUC: 93.1%
Sensitivity: 93.8%
Specificity: 87.5%

AUC: 84.3%
Sensitivity: 91.4%
Specificity: 68.8%
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Fig. 8. Probabilities of being NDD as indicated by the best regression models obtained. The closer a subject is to the value 1 on the x-axis, the higher probability of belonging to
the  “NDD” class. The upper figure shows results from a model that includes four EEG features: f Dark Blue

TAmount
(amount of ∼REM), f Orange

TAmount
(amount of ∼N3), f Orange

TStability
(stability of ∼N3)

and  f Green
TStability

(stability of ∼N1/N2). The lower figure shows results from a model including two  EOG features: fCertainty (certainty of any EOG topic) and f Black
TAmount

(amount of ∼N3).

The non-NDD groups contained more females and slightly
younger subjects than the NDD groups, and therefore the results
were additionally validated by analyzing different subgroups of the
data. Table 6 illustrates the performance measures obtained from
the model including four EEG features for (1) subjects aged younger
than 60 years, (2) subjects aged 60 years or more, (3) females only
and (4) males only. It may  be seen that the model performed best
for the female subset and worst for the male subset.

4. Discussion

We  propose a complete data-driven approach to reveal the
immanent states in sleep EEG and EOG. Without any prior

information such as manual sleep staging or subjective inputs, the
immanent states are found and features reflecting EEG and EOG
characteristics are derived. These characteristics are used to classify
iRBD and PD patients automatically using a training dataset to build
classifiers and a validation dataset to evaluate the classifiers’ per-
formance. Our study has three major findings. Firstly, it was  found
that features reflecting the amount and stability of two  EEG topics
similar to N3 and REM sleep, respectively, were specific to iRBD
or PD. The feature reflecting amount of REM sleep was the more
sensitive of the two, and the features reflecting the amount and sta-
bility of N3 sleep and the stability of a topic linked to N1/N2 were
supportive. Secondly, it was found that by using features extracted
from the EOG alone, two  features, reflecting the amount of an EOG

Table 6
AUC, sensitivity and specificity values for classifying PD and iRBD patients in four subsets of the data. The best logistic regression model, which includes four EEG features,
was  used.

Dataset subgroup Counts [total (control + PLM/iRBD + PD)] Performance measures

Training
dataset

Validation
dataset

Training dataset Validation dataset

Subjects aged <60 years 28 (21/7) 18 (9/9) AUC: 99.3%
Sensitivity: 100%
Specificity: 95.2%

AUC: 87.7%
Sensitivity: 88.9%
Specificity: 77.8%

Subjects aged ≥60 years 36 (11/25) 33 (7/26) AUC: 87.3%
Sensitivity: 92.0%
Specificity: 72.7%

AUC: 79.1%
Sensitivity: 92.3%
Specificity: 57.1%

Female subjects 26 (18/8) 19 (10/9) AUC: 88.9%
Sensitivity: 75.0%
Specificity: 94.4%

AUC: 91.1%
Sensitivity: 77.8%
Specificity: 80.0%

Male  subjects 38 (14/24) 32 (6/26) AUC: 91.7%
Sensitivity: 100%
Specificity: 78.6%

AUC: 71.8%
Sensitivity: 96.2%
Specificity: 50.0%
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topic related to N3 and the overall certainty of EOG, classified the
patients with 57.1% sensitivity and 62.5% specificity, which are con-
sidered low performance measures. Thirdly, it was found that the
features derived from the EEG topic models were better at classify-
ing iRBD and PD patients than were the features derived from the
EOG topic models. The best regression model included four EEG fea-
tures and classified the iRBD and PD patients with 91.4% sensitivity
and 68.8% specificity. The low specificity measures are thought to
be caused by the skewed distribution of the PLM patients between
the training and validation datasets. Overall, this study highlights
the potential of the data-driven characterization of sleep EEG and
EOG for evaluating neurodegenerative patients.

As may  be seen in Fig. 7, the stability of the orange EEG topic
(∼N3 sleep) and the dark-blue EEG topic (∼REM sleep) were lower
in iRBD and PD patients. Controls and PLM patients had greater sta-
bility, expressed as the higher frequency of successive sleep epochs
with a dominant probability of N3 or REM. These findings suggest
that the sleep-regulating system in iRBD and PD patients, which
may  involve REM–NREM transition (Lu et al., 2006), is affected. Loss
of atonia during REM sleep is a diagnostic criterion for RBD, and the
neurons regulating atonia are probably affected in these patients.
REM sleep in this study was identified on the basis of EEG “words”,
and the finding that iRBD patients have lower REM stability sug-
gests that the neurons regulating EEG components of REM sleep
are also affected.

The amount of the dark-blue EEG topic (∼REM) and the orange
EEG topic (∼N3) are both discriminative features, as shown in Fig. 7.
It should be emphasized that the features reflect the amount of
“certain” orange and “certain” dark-blue topic, as only sleep epochs
with a probability of more than 70% of the given topic are included
in the feature value. NDD patients have lower probabilities of these
topics in many sleep epochs, which may  be explained by the EEG
word combination. The lower probabilities of orange topics in these
patients could be caused by greater sleep fragmentation, and they
thus rarely display a period of maintained delta waves, as do con-
trol subjects during N3 sleep. Additionally, the deep structures
and/or the integrity of the brain could be affected in such a way
that patients simply cannot generate and/or maintain delta wave
sleep. Presuming that a delta wave is represented as a given word
used in the EEG topic model, the absence or low frequency of delta
waves in an epoch will be reflected by a lower probability of topic
orange.

Another reason for the lower probability of the orange and dark-
blue topics in iRBD and PD patients could be that the epochs are
contaminated with different mixtures of microsleep events. Each
microsleep event is thought to be presented as a given word and
in the process of training the topic models, a certain distribution
of words is acquired from control subjects. If the distributions of
microsleep events in patients differ significantly from the distri-
butions in controls, the topic models are unable to recognize the
distribution over words (the “fingerprint” of the epoch), which will
be reflected as lower probabilities of the topics.

A third explanation of the lower probabilities seen in the
patients could be that microsleep events in patients are changed
or affected to such a degree that they are not expressed as
the same words as in control subjects. The microsleep events
themselves as well as the distribution of them form specific fin-
gerprints of the sleep stages. If the “vocabulary” is not the same for
patients and control subjects, the topic models might not recog-
nize the word distribution in patients and thereby provide lower
probabilities of the topics. Whether the reduced amount of the
dark-blue and orange topic is caused by changes in the individ-
ual words or in the distribution of words has to be investigated
thoroughly in future studies. Such a study could also investigate
the influence of topography of EEG words on topic probabili-
ties.

The most indicative EOG feature was  found to be the amount of
the black topic, which is believed to be related to the low-frequency
high-amplitude EEG artifacts present in the EOG signals during N3
sleep. This result is consistent with the findings of the most indica-
tive EEG features, as these also showed that the amount of N3 sleep
was indicative of PD/iRBD. It is suggested that the black topic (EOG)
reflects the same characteristic as the orange topic (EEG), as both
are pronounced during N3 sleep. This may  explain why no EOG
features were found to be supportive of the EEG features. The EOG
topic diagrams do not show as complex and varied a sleep struc-
ture as the EEG topic diagrams. Therefore, it is concluded that even
though the overall sleep pattern can be described by the use of EOG
alone, potential EOG changes in PD/iRBD patients are not captured
or identified in this study. However, the feature reflecting overall
EOG certainty was  supportive in the classification model, indicating
that iRBD and PD patients do not fall into the normal states found
for EMs.

Future studies should investigate whether the findings of this
study are specific to iRBD and PD patients. If the reduced amount
of the orange EEG topic (∼N3) in patients is caused by lighter sleep
and a lower frequency of delta waves than in control subjects, this
indicative feature might not be specific to iRBD and PD. Addition-
ally, lighter and more abrupted sleep could also explain the slightly
greater amounts of the dark-blue EEG topic (∼REM) in control and
PLM patients compared with iRBD and PD patients. If this is the
case, other patients suffering from apnea, or control subjects sleep-
ing poorly, might also be classified as “patients” if these features
alone were used in the classification scheme. Additionally, gender
and age affect sleep efficiency and sleep architecture, including the
amount and stability of NREM and especially N3 sleep. Although
the groups in this study were defined to be matched by age in
the training dataset, there are still dissimilarities between the con-
trol/PLM group and the iRBD/PD group, which may enhance the
observed differences. Table 6 provides performance results for the
model, which includes four EEG features when evaluating (1) sub-
jects aged less than 60 years, (2) subjects aged 60 years or more, (3)
only females and (4) only males. Some of the data subgroups were
not well matched between the two groups and this should be kept
in mind when interpreting the results. Although the model seems
to perform best in younger female subjects, the AUC measures of
the validation data indicate that the findings in this study were not
solely due to age and gender effects.

This study did not investigate which words or word com-
binations were specific to the different topics. Neither did we
investigate how much nor in which way the different topics dif-
fered from the AASM stages. An advantage of evaluating sleep
using this data-driven method is that it is fully automatic and does
not use any prior information. The method mimics manual sco-
ring as it encompasses words reflecting microsleep patterns across
different topographic sites. However, it differs from manual sco-
ring because each epoch is independent of adjacent epochs and
presented as a mixture of topics rather than discrete stages. The
features presented are to a certain degree dependent on the topic
probabilities, but additional features could be developed that take
even more advantage of the topic mixtures and topic probabili-
ties. For instance, the thresholds involved in the certainty features
and the topic amount features could be investigated in depth and
the concurrency of the different topics determined. Finally, future
studies could include an analysis of how well the features perform
if they are not computed on the basis of topics, but simply from the
manually scored hypnogram.

The data-driven approach presented here overcomes the eval-
uation of the macrostructure of sleep and gives the opportunity
to find words and topics that are not obvious to the human eye.
Although the EOG features did not discriminate the iRBD/PD and
control/PLM groups, we believe that a data-driven analysis of
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EOG could provide helpful information for evaluating sleep and
sleep-related disorders. A suggested future study may  include a
refinement of the EOG topic models and a thorough evaluation of
what the various EOG topics reflect. Ultimately, if the three EOG
topics reflect proportions of SEMs, REMs and no EMs, the temporal
distribution and mixture of slow/fast/none EMs  could be investi-
gated. We  believe that the features presented here derived from
such EOG topic diagrams could be indicative of neurodegeneration
in iRBD and PD patients. Additionally, the features could be helpful
when evaluating other patients, as EMs  may  be affected differently
in distinct NDDs. In Alzheimer’s disease (AD), for instance, the loss
of neurons and synapses occurs mainly in the cortex and certain
subcortical regions (Wenk, 2003). Given this, it can be hypothesized
that saccade initiation (reflected in the REMs), which is mainly con-
trolled by neurons located in the frontal brain areas, is more affected
in AD patients than in pre-PD patients. We  may  also speculate that
the autonomous phase of saccades (reflected in the SEMs), which
is mainly controlled by neurons located in the brain stem, is more
affected in pre-PD patients than in AD patients. In this way, dif-
ferent types of EMs are thought to be affected in different NDDs,
and as these differences could be reflected in the EOG word combi-
nation, the EOG features derived in this study could be helpful for
refining the specificity of different NDDs. However, this needs to be
confirmed in future studies.

Finally, it should be emphasized that the frequency of high prob-
abilities of either topic is reflected in the “certainty” measures. It
may  be seen in Fig. 7 that control and PLM patients display slightly
higher values of the “EEG certainty” and “EOG certainty” features
than do the iRBD and PD patients. These features can be seen as
a reflection of how well each test subject fits into the “control”
topic models, and they conclusively demonstrate that the iRBD and
PD patients reflect abnormal form and/or time distribution of both
EMs  and EEG structures during sleep. We  believe that our findings
could support the well-known lack of atonia, which is reflected in
the EMG  of these patients. Combining a variety of PSG biomarkers
would enhance the sensitivity and specificity when automatically
detecting subjects at risk of developing PD and other NDDs. Addi-
tionally, combining several specific PSG findings would give a more
detailed description of the individual subjects and could serve as
a basis for specific patient medication and potentially efficacious
treatment regimes.

In a related study (Koch et al., 2014), we took the same topic
modeling approach using the same PSG data, but for a different
purpose. We  focused on optimizing the topic model through super-
vised learning to identify and describe the standard sleep stages
through the use of EEG and EOG. In combination, the two studies
indicate that a data-driven topic modeling approach can be use-
ful for analyzing sleep – either by finding characteristics indicative
of a certain disorder, or by automatically identifying and elabo-
rately describing the standard sleep stages using only EEG and
EOG.

5. Conclusion

We  propose a data-driven approach for characterizing sleep
EEG and EOG, where topics are identified unsupervised by learn-
ing structures directly from the data. Two topic models were built
based on EEG or EOG data, both of which enabled the standard sleep
stages to be visually identified. By extracting and using features
reflecting characteristics of the topics found, unseen (validation)
patients with a diagnosis of iRBD or PD were classified with a
sensitivity of 91.4% and a specificity of 68.8%. The features we devel-
oped indicate that sleep characteristics computed from sleep topics
identified by a data-driven approach are indicative of neurodegen-
eration. Specifically, the normalized amount and stability of topics

linked to N3 and REM were found to be considerably lower for iRBD
and PD patients. Furthermore, the study suggests that the stability
of a topic linked to N1/N2 is supportive of the classification scheme.
We conclude that the amount of REM and N3, as well as the ability
to maintain NREM and REM sleep determined by data-driven topic
models can be used as potential early PD biomarkers.
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h i g h l i g h t s

� Wake and sleep stability is affected in early stages of Parkinson’s disease.
� An automated REM stability index is a potential biomarker for Parkinson’s disease.
� We discuss problems linked to micro-sleep and nocturnal sleep fragmentation.

a b s t r a c t

Objective: Patients with idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) are at high
risk of developing Parkinson’s disease (PD). As wake/sleep-regulation is thought to involve neurons
located in the brainstem and hypothalamic areas, we hypothesize that the neurodegeneration in iRBD/
PD is likely to affect wake/sleep and REM/non-REM (NREM) sleep transitions.
Methods: We determined the frequency of wake/sleep and REM/NREM sleep transitions and the stability
of wake (W), REM and NREM sleep as measured by polysomnography (PSG) in 27 patients with PD, 23
patients with iRBD, 25 patients with periodic leg movement disorder (PLMD) and 23 controls.
Measures were computed based on manual scorings and data-driven labeled sleep staging.
Results: Patients with PD showed significantly lower REM stability than controls and patients with PLMD.
Patients with iRBD had significantly lower REM stability compared with controls. Patients with PD and RBD
showed significantly lower NREM stability and significantly more REM/NREM transitions than controls.
Conclusions: We conclude that W, NREM and REM stability and transitions are progressively affected in iRBD
and PD, probably reflecting the successive involvement of brain stem areas from early on in the disease.
Significance: Sleep stability and transitions determined by a data-driven approach could support the evalua-
tion of iRBD and PD patients.
� 2015 International Federation of Clinical Neurophysiology.. Published by Elsevier Ireland Ltd. All rights

reserved.

1. Introduction

Parkinson’s disease (PD) and other synucleinopathies are debili-
tating diseases with impacts on morbidity, mortality, work, and
social and family life. The disorders have large direct and indirect
costs for society (Jennum et al., 2011). PD is the second most
common neurodegenerative disease after Alzheimer’s disease.
Treatment is purely symptomatic and does not alter underlying
disease progression (Schapira et al., 2013). When motor symptoms
are present, alterations of the substantia nigra with reduced pro-
duction or depletion of dopamine is found (Galvin et al., 2001),
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mediating the classical PD phenotype. Over the last 20 years, it has
become increasingly clear that the entire brain is affected by the
pathology, which typically starts in caudal areas of the brainstem
and progresses anteriorly (Braak et al., 2003).

Recent research has focused on early detection of PD, notably
changes in sleep–wake pattern and rapid eye movement (REM)
sleep without atonia (RSWA) coinciding with dream-enacting
behavior – REM sleep behavior disorder (RBD) (Salawu et al.,
2010). RBD is closely associated with PD (Munhoz and Teive,
2014), and patients suffering from idiopathic RBD (iRBD) are at
great risk of subsequently developing Parkinsonism or dementia
(Schenck et al., 2013, 2003, 1996). Several studies have focused
on analysis of sleep data in the search for PD biomarkers (Dos
Santos et al., 2014). These have examined measures of sleep spin-
dle densities, RSWA, slow wave characteristics (Christensen et al.,
2014b; Kempfner et al., 2014a,b; Latreille et al., 2014, 2011;
Postuma et al., 2010) and other measures of abnormalities of brain
stem function, including autonomic functions such as heart-rate
variability (Sorensen et al., 2013a, 2012) and other non-motor
symptoms (Garcia-Ruiz et al., 2014; Sakakibara et al., 2014).

Sleep is strongly regulated by groups of neurons located in the
brainstem and midbrain areas, which form reciprocal connections
(Luppi et al., 2011; Saper et al., 2010, 2001; Schwartz and Roth,
2008). These ‘‘sleep–wake switches’’ are mutually dependent and
have been referred to as the wake–sleep and REM–NREM sleep
switches, respectively. Despite the mutually inhibitory loops
involved in the two switching mechanisms, if either side of the
two loops is weakened or injured, unwanted instability can occur
in either of the states, irrespective of which side is damaged
(Schwartz and Roth, 2008). As neurons of the brain stem and basal
brain structures are affected in synucleinopathies (Braak et al.,
2003), we propose that the neurodegeneration will have a progres-
sive impact on the wake–sleep and REM–NREM transitions and
stability. Manual scoring of sleep in patients with PD is not very
reliable and prone to high inter- and intra-rater variability
(Danker-Hopfe et al., 2004; Jensen et al., 2010). Therefore, this
study analyzed wake–sleep and REM–NREM transitions as well
as W, REM and NREM stability measures based on automatically
identified as well as manually scored REM, NREM and W stages.
The automatic method used has been validated by (Koch et al.,
2014) using the same PSG data as analyzed in this study.

2. Methods

2.1. Subjects and recordings

Subjects were recruited from the Danish Center for Sleep
Medicine (DCSM) in the Department of Clinical Neurophysiology,
Glostrup University Hospital in Denmark. A total of 27 patients
with PD, 23 patients with iRBD, 25 patients with periodic leg
movement disorder (PLMD) and 23 control subjects aged 40 years
or more and with no history of movement disorder, dream-enact-
ing behavior or other previously diagnosed sleep disorders were
included. Nineteen of the patients with PD had RBD (PD+) and eight
did not (PD�), as determined by the presence of RSWA as well as
clinical complaints. All or a subset of the subjects included here
have appeared in previous studies (Christensen et al., 2014a,b;
Sorensen et al., 2013a; Zoetmulder et al., 2014a,b). Patient evalua-
tions included a comprehensive medical and medication history
and a polysomnography (PSG) analyzed according to the
American Academy of Sleep Medicine (AASM) standard (Iber
et al., 2007). A multiple sleep latency test (MSLT) was performed
in any cases where narcolepsy was suspected. The PD diagnose rely
on clinical features including motor information typically for PD
which further includes DAT scan and in some cases also MRI of

the brain. The RBD Screening Questionnaire (RBDSQ) (Stiasny-
Kolster et al., 2007) was used to screen for RBD, and the iRBD
patients were divided in two groups: (1) those with a total score
of nine or less (iRBD�) and (2) those with a total score of 10 or
more (iRBD+). The cutoff was chosen to divide the iRBD patients
into those with major self-reported dream enactments and those
with minor. All iRBD patients thus had self-reported dream enact-
ment as well as RSWA in the recorded night analyzed. Patients
treated with medication known to affect sleep stages (antidepres-
sants, antipsychotics, hypnotics) were excluded, except for dopa-
minergic treatments. We are fully aware of the potential effect
of dopaminergic drugs on vigilance (Micallef et al., 2009), but
discontinuation of dopaminergic treatment in actively treated
patients prior to PSG also risks deleterious discontinuation effects.
Furthermore, discontinuation is very difficult to achieve in clinical
settings and may have unpleasant and negative motor effects that
could interfere with the study and might even be unethical. One
patient in the PD group later developed Multiple System Atrophy
and another patient with PD developed Lewy Body Dementia.
Controls underwent at least one night of PSG as an outpatient.
Patients underwent at least one night of PSG as an outpatient or
in hospital in accordance with the AASM standard (Iber et al.,
2007). The quality of each PSG data set was individually evaluated,
and recordings were discounted if channels became disconnected
or were significantly contaminated with artifacts. Low-quality
PSGs were repeated whenever possible. Demographic data as well
as PSG variables for the six groups are summarized in Table 1.

2.2. Automatic staging of sleep

Sleep changes in both microarchitecture and macroarchitecture
have been reported in neurodegenerative disease, the former inter-
fering with sleep scoring and increasing intra- and inter-rater vari-
ability. Specifically, patients with iRBD and PD have been reported
to have EEG frequency slowing (Rodrigues Brazète et al., 2013),
changed EEG during REM sleep (Christensen et al., 2014a; Fantini
et al., 2003; Hansen et al., 2013), changed morphology or fewer
rapid or slow eye movements (Christensen et al., 2014a, 2013)
and sleep spindles (SS) (Christensen et al., 2014b; Latreille et al.,
2014), and display RSWA. The listed findings contribute to very
altered sleep and consequently, sleep stage scoring this pathology
is associated with high inter-rater variability (Danker-Hopfe et al.,
2004; Jensen et al., 2010). To overcome this, an automatic sleep
detector was used to identify REM, NREM and W for each subject
and analyses were performed using automatically scored sleep
stage data. The automatic sleep scoring technique used in this
study has been validated on the same PD, iRBD, PLMD and control
PSG data set as used in this study, and the methods are described in
detail by Koch et al. (2014). Specifically, the method is optimized
on nocturnal PSG of 50 subjects, and validated on an additional
76 subjects (a mixture of the same controls and patients included
in this study). Our automatic detector is data-driven, identifying
sleep states based on the distribution of certain EEG and elec-
trooculographic (EOG) characteristics, which can be interpreted
as specific fingerprints for each epoch. Due to the presence of
RSWA, the automatic identification approach is based on EEG and
EOG characteristics only. Briefly, for each second, EEG C3-A2 and
O1-A2 single-sided amplitude spectra in clinical frequency bands
as well as EOG power below 5 Hz and cross-correlations between
the two EOG channels are computed. Surveying these measures
simultaneously in three-second intervals with a step size of one
second, the approach identifies patterns indicative of the various
sleep stages. The method produces a mixture of probabilities for
the different sleep stages, and final identification of NREM, REM
and W is based on the highest probability when combining proba-
bilities of individual sleep stages (Koch et al., 2014). A clear
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advantage of this approach is that it takes distributions of micro-
sleep characteristics into account, and each sleep epoch is labeled
individually and independently of adjacent epochs. In spite of the
pace of the sleep-regulating loops, the sleep transitions happen
gradually, and the method used will assign an epoch a stage once
the probability of this stage becomes the dominant one, and not
when only few distinct signs of a stage is shown. It is also one of
the reasons why the manually and automatically scored stages dif-
fer. The overall mean accuracy rates for detecting NREM, REM and
W ranged from 70% for patients with PD to 77% for control subjects
when comparing with manually single-scored hypnograms.

2.3. Analysis of transitions and stability

Two transition measures and three stability measures were
defined and analyzed in this study. Wake–sleep transitions were
defined as the number of shifts from any sleep stage (N1, N2, N3,
REM) to wakefulness or vice versa. REM–NREM transitions were
defined as the number of shifts from REM sleep to any NREM sleep
stage (N1, N2, N3) or vice versa. Both measures were defined as the
frequency per minute of total time in bed. The three stability mea-
sures were defined as the number of passages/toggles 1) from a
REM stage to a REM stage (REM ? REM), 2) from any NREM stage
to any NREM stage (NREM ? NREM) or 3) from a W stage to a W
stage (W ? W). These measures were defined as the frequency of
passages between two REM, NREM or W epochs per minute of
the total time spent in these stages, respectfully. For each subject,
transition and stability measures were computed based on the
manually scored hypnogram as well as the automatic REM/
NREM/W staging technique. Wilcoxon rank-sum tests were per-
formed to compare the between-group transition and stability
measures, yielding 15 comparisons for each measure summing
up to 75 tests in total. A significance level of p < 0.05 was used.
The Benjamini–Hochberg procedure was used to correct for multi-
ple testing using a false discovery rate at level q = 0.10.

3. Results

Transition and stability measures computed from the automatic
identified NREM, REM and W are illustrated in Fig. 1, and the
results found from the manually scored hypnogram are illustrated
in Fig. 2. Mean and standard deviations are illustrated in bar plots
to the left and measures for each subject illustrated as dots to the
right.

The results obtained from the automatically identified stages
showed that patients with iRBD with a RBDSQ total score of nine
or lower had significantly lower REM stability compared with con-
trols (p = 0.0106). Patients with iRBD with a RBDSQ total score of
ten or more had significantly lower REM stability compared with
controls (p = 0.0036) and PLMD patients (p = 0.0091). PD patients
without RBD showed significantly lower REM stability compared
to the controls (p < 0.0055) and PLMD (p < 0.0052). PD patients
with RBD had significantly lower REM stability than controls
(p = 0.0003) and PLMD patients (p = 0.0004), significantly lower
NREM stability than controls (p = 0.0050), and significantly more
REM–NREM sleep transitions than controls (p = 0.0107). Finally,
iRBD patients with a RBDSQ total score of nine or lower showed
a trend towards lower REM stability compared with PLMD
patients, and iRBD patients with a RBDSQ total score of ten or more
showed a trend of more REM–NREM sleep transitions than con-
trols. However, these trends were not statistically significant after
correction for multiple testing. No significant differences were
found between any of the iRBD and PD groups, although PD
patients showed a trend towards lower REM stability and more
REM–NREM sleep transitions compared with iRBD patients.

No significant between-group differences were found for the
transition and stability measures computed from the manually
scored hypnograms. It is seen that the stability measures com-
puted from the manually scored hypnogram are all greater than
the measures computed from the data-driven sleep staging tech-
nique. The measures for REM–NREM sleep transitions are greater
for the automatic staging technique compared to the manually

Table 1
Demographic and PSG data for the six groups studied. Patients with Parkinson’s disease (PD) were divided in those with REM sleep behavior disorder (RBD) (PD+) and those
without (PD�), as determined by the presence of REM sleep without atonia as well as clinical complaints. The RBD Screening Questionnaire was used to divide the patients with
idiopathic RBD (iRBD) in those with a total score of 69 (iRBD�) and those with a total score of >10 (iRBD+). The patients with periodic leg movement disorder (PLMD) were
included as a secondary control group. The disease onset is stated as years from clinical diagnosis (PD patients) or self-reported subjective RBD-symptoms (iRBD patients).

Controls PLMD iRBD� iRBD+ PD� PD+

Total counts (Male/Female) 23 (7/16) 25 (13/12) 12 (9/3) 11 (10/1) 8 (5/3) 19 (13/6)
Age

[years, l ± r]
56.7 ± 9.2 56.9 ± 11.6 61.8 ± 6.8 66.3 ± 7.2 68.8 ± 8.4 63.7 ± 6.7

BMI
[kg/m2, l ± r]

23.1 ± 2.5 25.7 ± 3.8 25.1 ± 2.6 25.9 ± 3.6 24.1 ± 3.6 25.9 ± 2.9

Sleep Efficiency
[%, l ± r]

86.2 ± 10.9 86.1 ± 7.5 82.5 ± 7.4 85.8 ± 6.7 67.9 ± 15.5 80.3 ± 9.9

Time in Bed
[min, l ± r]

484 ± 81.2 431 ± 50.0 518 ± 107.3 474 ± 71.1 427 ± 53.8 461 ± 88.3

W
[%, l ± r]

13.8 ± 10.9 13.9 ± 7.5 17.5 ± 7.4 14.2 ± 6.7 32.1 ± 15.5 19.7 ± 9.9

REM
[%, l ± r]

18.9 ± 6.6 18.5 ± 6.1 17.7 ± 7.1 16.3 ± 7.1 9.3 ± 5.3 14.6 ± 10.8

N1
[%, l ± r]

8.8 ± 4.6 8.4 ± 7.2 7.5 ± 2.6 10.8 ± 5.4 7.3 ± 6.0 12.6 ± 9.9

N2
[%, l ± r]

44.7 ± 9.4 44.7 ± 10.9 40.0 ± 10.9 43.0 ± 10.3 39.2 ± 12.9 39.3 ± 15.1

N3
[%, l ± r]

13.8 ± 7.3 14.5 ± 9.1 17.3 ± 9.9 15.7 ± 11.2 12.1 ± 9.1 13.9 ± 17.6

LM index
[no/hour, l ± r]

18.1 ± 13.1 56.5 ± 36.8 49.9 ± 32.0 31.6 ± 22.9 39.2 ± 40.1 42.7 ± 44.4

PLM index
[no/hour, l ± r]

7.7 ± 7.4 36.5 ± 24.6 14.9 ± 16.3 23.0 ± 17.1 11.2 ± 11.5 10.8 ± 10.3

Disease duration
[years, l ± r]

NA NA 5.3 ± 9.8 11.3 ± 12.0 7.7 ± 5.7 4.6 ± 3.3

RBD score
[l ± r]

NA NA 7.7 ± 1.6 11.1 ± 1.0 2.5 ± 1.1 9.7 ± 2.3
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scored sleep stages, and the differences between the REM stability
measures are thought to be the main cause hereof.

4. Discussion

This study is the first to analyze wake–sleep and REM–NREM
transitions and the stability of REM, NREM and W in PD, iRBD
and PLMD patients compared with controls. Furthermore, we
divided the PD patients into those with and those without RBD,
and the iRBD patients were divided in those with a high total score
on the RBDSQ and those with a low score. Our main findings are:
(1) REM sleep is less stable in iRBD and PD patients than in
PLMD patients and control subjects, regardless of the RBDSQ total
score and the presence of RBD. A non-significant trend was seen for
a lower REM sleep stability in PD compared to iRBD patients. (2) PD
patients with RBD showed significantly lower NREM stability and
significantly more REM–NREM shifts than controls. Same trend,
however non-significant, was seen for iRBD with high scores in
the RBDSQ compared with control subjects. Overall, trends were
seen for lower REM stability and more REM/NREM transitions in
both groups of iRBD and PD patients. These results indicate that

the ability to maintain REM and NREM sleep is a biomarker for
iRBD and PD, regardless of the presence of clinical symptoms.

The sub-division of iRBD and PD patients might not be optimal,
as it does not reflect the actual RBD severity in the recording ana-
lyzed. The PD patients without RBD might have RSWA to a certain
degree but no RBD diagnosis as they lack to report subjective
symptoms. Contradictory, the iRBD patients with major self-
reported dream enactments might show just sufficient RSWA to
be diagnosed. Analyzing trends for the stability and transitional
measures as a function of clinical RBD severity could give a better
insight in how correlated the features are with RBD severity. The
clinical RBD severity scale reported in (Sixel-Döring et al., 2011)
analyzes RBD on an event-to-event basis, including both vocaliza-
tion and movements, and could be used in future studies to look
for such trends and correlations.

Wake–sleep and REM–NREM shifts as well as stability measures
were computed based on the manually scored hypnogram as well as
a data-driven identification of REM, NREM and W stages. A data-
driven model recognizes the underlying structure of the data and
automatically identifies wake and sleep stages. Using a data-driven
sleep staging approach has several advantages over manual scoring.

Fig. 1. The frequencies of wake–sleep and REM–NREM shifts and the stability measures for REM sleep, NREM sleep and wake for the six groups based on the automatically
scored REM, NREM and W epochs. Left, bar charts with heights indicating means, and error bars indicating one standard deviation of the observations above and below the
mean. Right, results from each subject indicated as dots. Dark blue, control subjects; light blue, PLMD patients; light red, iRBD patients; dark red, patients with Parkinson’s
disease (PD). Asterisks indicate a significant between-group difference, determined by Wilcoxon rank-sum tests: ⁄p < 0.05; ⁄⁄p < 0.01; ⁄⁄⁄p < 0.001. The Benjamini–Hochberg
procedure was used to control the false discovery rate (FDR) at level q = 0.10. Fifteen between-group comparisons were made of five measures, giving a total of 75 tests. Only
the results for the comparisons that remained significant after FDR correction are presented. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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First, automatic staging encompasses micro-sleep characteristics
delineated over time intervals as short as one second; the dynamics
over such short intervals are not captured by manual scoring, which
is of a much lower resolution. The model looks deeper into each
sleep epoch and can survey and identify many more sleep character-
istics than the human eye can assess. Although final identification is
made for 30-s intervals in the automatic detection as well, decisions
are based on changes or transitions occurring at a much faster rate.
Second, using an automatic, data-driven approach, sleep stages
across the night as well as across subjects are more comparable as
they are obtained using exactly the same algorithm. Third, using
the automatic model, identification of each epoch is based solely
on micro-sleep characteristics and changes within the epoch in
question, rather than on the scoring of adjacent epochs. As the
model features the analysis of short time intervals, it enables a
highly detailed description of each sleep epoch, which reduces
variation in inter- and intra-subject scoring. Consistent with this,
manual scorings for patients with PD have low inter-rater agree-
ment rates (Danker-Hopfe et al., 2004; Jensen et al., 2010).

No significant differences between groups were found for the
manually scored hypnograms, whereas the data-driven labeling

indicated many between-group differences. The reason for these
contradictory results are suggested to be caused by the two differ-
ent sleep scorings strategies. The fact that the data-driven method
makes the labeling solely based on the characteristics of the epoch
in question and not the labeling of the prior epoch allows in
specific REM sleep to be terminated when no clear EEG and EOG
structures supporting REM sleep are present. Contrarily, manually
scorings terminate REM sleep only when a clear NREM or W
structure is present (Iber et al., 2007). Specifically, REM sleep is
besides the characteristic eye movements identified by atonia
and EEG similar to that during wakefulness. In periods where eye
movements are not present, but the atonia as well as the aroused
EEG is maintained, the manual scoring of REM sleep is continued.
Relating this to EMG with lack of atonia and EEG with altered
characteristics or lack of clear micro-sleep structures as seen in
patients with PD or iRBD (Christensen et al., 2014a,b; Dauvilliers
et al., 2007; Fantini et al., 2003; Kempfner et al., 2014a,b; Petit
et al., 2004), termination of REM sleep is harder to confirm for a
manual scorer. As a result, the manually scorings lack to illustrate
differences in the REM stability measure, as well as in the
REM–NREM sleep transitions.

Fig. 2. The frequencies of wake–sleep and REM–NREM shifts and the stability measures for REM sleep, NREM sleep and wake for the six groups based on the manually scored
REM, NREM and W epochs. Left, bar charts with heights indicating means, and error bars indicating one standard deviation of the observations above and below the mean.
Right, results from each subject indicated as dots. Dark blue, control subjects; light blue, PLMD patients; light red, iRBD patients; dark red, patients with Parkinson’s disease
(PD). Asterisks indicate a significant between-group difference, determined by Wilcoxon rank-sum tests: ⁄p < 0.05; ⁄⁄p < 0.01; ⁄⁄⁄p < 0.001. The Benjamini–Hochberg
procedure was used to control the false discovery rate (FDR) at level q = 0.10. Fifteen between-group comparisons were made of five measures, giving a total of 75 tests. No
comparisons remained significant after FDR correction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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The sleep regulating mechanisms involve several neurons,
which are mainly located in the basal brain regions (Luppi et al.,
2011; Saper et al., 2001). Our findings suggest that these mecha-
nisms are affected in patients with iRBD and specifically in patients
with PD, suggesting iRBD as an intermediate stage between con-
trols and patients with PD, consistent with Braak’s staging theory
(Braak et al., 2003). Specifically, REM stability was affected, which
involves the neurological networks controlling REM–NREM sleep
transitions presented as consisting of REM-on and REM-off areas
located in the brainstem (Lu et al., 2006; Luppi et al., 2011). The
REM-on area is thought to contain two populations of neurons,
where one set projects into the basal forebrain and regulates EEG
components of REM sleep, and the other projects into the medulla
and spinal cord and regulates atonia during REM sleep (Lu et al.,
2006). As a diagnostic criterion of RBD is loss of atonia during
REM sleep, the neurons regulating atonia must be affected to some
degree in these patients. The REM staging and thereby the REM
stability measures in this study were only based on EEG and EOG
characteristics, suggesting that the neurons regulating the cortical
components of REM sleep are also affected, agreeing with previous
findings (Fantini et al., 2003). Specifically, it is proposed that the
REM-specific EEG structures are signified to a lesser degree in
iRBD and PD patients than in controls and PLMD patients. The rea-
son for this could be neurodegeneration of the ascending branch of
the SLD neurons themselves or the heavy innervation between the
REM-on and REM-off areas. As the descending branch of the SLD
neurons are destroyed in iRBD patients (Luppi et al., 2013, 2011),
it is very likely that the ascending branch are affected as well, as
these neurons are physically adjacent to each other. In addition,
the reported changes in dream enactment in these patients support
the hypothesis that the medullo-cortical branch is affected as well.

Another reason for the lower stability of REM sleep in iRBD and
PD patients could simply be neurodegeneration affecting pre-
thalamic fibers located in the brain stem. This would cause changes
in the patterns, density and/or circadian rhythm of thalamic-
induced EEG features such as K-complexes, SS and alpha-activity,
etc. Impairment of thalamic control would affect not only the over-
all sleep rhythm, but also the stability of the different sleep stages.

In a former study we showed that sleep transitions are affected
in hypocretin-deficient narcolepsy (Sorensen et al., 2013b). This
delineates the role of the hypocretin system in wake–sleep reg-
ulation and in NREM–REM regulation. Cerebrospinal hypocretin
levels are often normal or subnormal but there are fewer hypocre-
tinergic neurons in hypothalamus in PD (Wienecke et al., 2012).
Surprisingly, one study found high a level of hypocretin-1
(orexin-A) (Bridoux et al., 2013), but the small number of patients
limited further conclusions. There are limited data from iRBD and
PD patients concerning the involvement of hypocretin level.
However the spinal hypocretinergic level does not need to fully
represent the factual loss of hypocretinergic neurons (Compta
et al., 2009), and its involvement in RSWA and the role of the
SLD are not fully understood, even in hypocretin-deficient
narcolepsy (Knudsen et al., 2010).

It has to be noted that the lower REM sleep stability in PD
patients can be due to comorbidities, such as e.g. comorbid insom-
nia; a common symptom in PD. Riemann et al. (Riemann et al.,
2012) reports REM sleep instability as an objective measure for pri-
mary insomnia patients compared to good sleeper controls.
Although they measure REM sleep instability differently than us
(number of manually scored micro-arousals and awakenings per
hour of REM sleep compared to our fully data-driven method),
we cannot rule out insomnia as causative for the lower REM sleep
stability. Insomnia is a diagnosis highly based on subjective mea-
surements, and as we focused on electrophysiological measure-
ments alone, we lack a comparison of the presence and degree of
comorbid insomnia to the stability and transitional measurements.

Future studies have to address this issue, also including a group of
patients with primary insomnia.

A major limitation of this study is that we have not fully inves-
tigated the disagreement between the manual and automatic scor-
ing. A weakness of the automatic detector is that it depends on the
ability to capture micro-sleep events within the different disease
groups. Our ‘‘words-in-a-bag’’ assumption introduces considerable
adaptability (each epoch is described by the use of 1192 different
‘‘words’’), which we believe makes our model capable of better
recognizing altered micro-sleep architecture events, such as abnor-
mal SS, K-complexes and eye movements. Optimally, micro-sleep
events should be validated and compared in the different groups.
However, we do not have a suitable measure of how well the dif-
ferent micro-sleep events are captured. In the case of the control
subjects, the manual scores might be a suitable gold standard,
although the mean inter-rater agreement rate has been reported
to be as low as 76% (Norman et al., 2000). In the patients’ case,
the inter-rater agreement rates are lower, and in particularly in
patients with PD, where the agreement rate has been reported to
be only ‘‘fair’’ in more than 25% of sleep recordings (Danker-
Hopfe et al., 2004). These results all imply some difficulties with
the standard sleep scoring method, whether it be stated as the
R&K or the AASM standard. The standards are based on micro-
and macro-sleep structures in healthy, young subjects, and it forces
the sleep rhythm to be explained by five or six discrete stages
defined in 30-s windows. Transitions between sleep stages and
from sleep to wakefulness might happen faster than is captured
by manual scoring. The fixed period of 30 s is not a physiological
parameter, as the brain does not work to a specific or consistent
timescale. Analyzing sleep in sleep and/or neurological disorders
has proved to be difficult due to disruptions in the sleep transition
mechanisms in the brain. Therefore, changes and differences in the
micro- and macrostructure of sleep might not be captured by man-
ual scoring with the principles as defined today. The appearance of
sleep simply cannot be fitted to the scoring standard.

5. Conclusions

In conclusion, our study suggests that patients with iRBD and
PD suffer from instability in the wake–sleep and NREM–REM tran-
sitions and instability of wake and sleep. These findings are in
accordance with the initial hypothesis that iRBD is an early form
of PD and that the basal brain is involved in these diseases in early
disease stages. Our results further argue for the problems that
these patients suffer from micro-sleep and nocturnal sleep frag-
mentation. Further studies should be conducted to examine these
findings in other neurodegenerative diseases affecting wake and
sleep regulation.
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h i g h l i g h t s

! During non-REM sleep, the sleep spindle density is reduced in idiopathic REM sleep behavior disorder
(iRBD) and Parkinson’s disease (PD) patients, inducing sleep spindles as a potentially PD biomarker.

! This study raises questions on how to validate abnormal sleep spindels in patients with neurodegen-
erative diseases.

! The introduced new method for automatic sleep spindle detection showed acceptable performance
when validated on middle-aged subjects.

a b s t r a c t

Objective: To determine whether sleep spindles (SS) are potentially a biomarker for Parkinson’s disease
(PD).
Methods: Fifteen PD patients with REM sleep behavior disorder (PD + RBD), 15 PD patients without RBD
(PD " RBD), 15 idiopathic RBD (iRBD) patients and 15 age-matched controls underwent polysomnogra-
phy (PSG). SS were scored in an extract of data from control subjects. An automatic SS detector using a
Matching Pursuit (MP) algorithm and a Support Vector Machine (SVM) was developed and applied to
the PSG recordings. The SS densities in N1, N2, N3, all NREM combined and REM sleep were obtained
and evaluated across the groups.
Results: The SS detector achieved a sensitivity of 84.7% and a specificity of 84.5%. At a significance level of
a = 1%, the iRBD and PD + RBD patients had a significantly lower SS density than the control group in N2,
N3 and all NREM stages combined. At a significance level of a = 5%, PD " RBD had a significantly lower SS
density in N2 and all NREM stages combined.
Conclusions: The lower SS density suggests involvement in pre-thalamic fibers involved in SS generation.
SS density is a potential early PD biomarker.
Significance: It is likely that an automatic SS detector could be a supportive diagnostic tool in the evalu-
ation of iRBD and PD patients.
! 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.

1. Introduction

Sleep spindles (SSS) and K-complexes are EEG hallmarks of non-
REM (NREM) sleep. SS are generated by a complex interaction be-

tween thalamic, limbic and cortical areas and are probably in-
volved in sleep maintenance and memory consolidation (Caporro
et al., 2012). These structures are sensitive to involvement in neu-
rodegenerative disorders and it has recently been suggested that
changes in SS have the potential to be biomarkers of neurodegen-
erative disease (NDD) (Ktonas et al., 2009), through the reduced SS
activity in patients with Parkinson’s disease (PD) (Puca et al., 1973;
Myslobodsky et al., 1982; Comella et al., 1993). REM sleep behavior
disorder (RBD) is closely associated with PD and is a marker of later
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development of synucleinopathies (Postuma and Montplaisir,
2009; Kempfner et al., 2010). We hypothesize that SS activity is
progressively reduced in RBD and PD patients, which would be
consistent with the progressive nature of these disorders. SS activ-
ity has not previously been evaluated in idiopathic RBD (iRBD). It
has been suggested that these patients have a higher risk of devel-
oping PD (Schenck et al., 1996), and that this patient group there-
fore offers an opportunity for detecting early markers of PD before
the onset of clinical disease.

Manual scoring of SS is a tedious and time-consuming task. It
requires sleep experts and the degree of agreement among experts
has been reported as being relatively low: 70 ± 8% (Zygierewicz
et al., 1999). Therefore, an automatic SS detector would be valuable
for standardizing the SS scores. If SS are potential biomarkers of PD,
it could also be a supportive diagnostic tool.

The aims of the study were twofold: firstly, to develop an auto-
matic SS detector based on Matching Pursuit (MP) for feature
extraction and a Support Vector Machine (SVM) for classification;
secondly, to measure the SS densities found automatically in nor-
mal controls, patients with iRBD and PD patients with or without
RBD.

2. Methods

2.1. Subjects

Subjects were recruited from patients evaluated at the Danish
Center for Sleep Medicine (DCSM) in the Department of Clinical
Neurophysiology, Glostrup University Hospital. All patient evalua-
tions included a comprehensive medical and medication history.
All patients were assessed by polysomnography (PSG) and with a
multiple sleep latency test (MSLT). Patients taking any benzodiaze-
pines, antipsychotic or anti-depressant drug, including hypnotics,
were excluded, though dopaminergic treatments were continued.
A total of 15 PD patients without RBD (PD " RBD), 15 PD patients
with RBD (PD + RBD) and 15 iRBD patients were included. Fifteen
age-matched control subjects with no history of movement disor-
der, dream-enacting behavior or other previously diagnosed sleep
disorders were included. Patients using any type of medication
known to affect sleep were also excluded.

The demographic data for the three patient groups and the con-
trol group are summarized in Table 1.

2.2. Polysomnograph recordings

Polysomnograph (PSG) data were collected in this study. All
controls underwent at least one night of PSG recording as outpa-
tients, and all patients underwent at least one night of PSG record-
ing either as outpatients or in hospital in accordance with the
AASM standard (Iber et al., 2007). Two or more PSG routines were
performed if and only if the prior recording(s) did not meet the
technical needs required to make an assessment of acceptable
quality. When manually scoring the SS, only the F3-A2, C3-A2
and O1-A2 EEG derivations were visible for the SS scorer, and for

13 control subject a number of randomly selected sleep epochs,
each of a duration of 30 s, were chosen for SS scoring. The selection
of sleep epochs was carried out by the SS scorer, who aimed at
selecting approximately 30 sleep epochs containing one or more
visible SS randomly distributed across the sleep cycles. It was en-
sured that every SS within a chosen sleep epoch was marked. Filter
conditions were as stated in the AASM standard, and the AASM
standard SS definition was used, whereby SS have frequencies in
the range 11–16 Hz, last for 0.5–3 s and have no amplitude criteria.
The left EEG derivations were chosen as these are known to exhibit
an overall higher spindle density (Bódizs et al., 2009). In order to
reproduce realistic conditions, sleep epochs with moderate noise
contamination were allowed and no artifacts were removed man-
ually. The scoring yielded a total of 375 sleep epochs with 882
manually scored SS. The distribution of the chosen sleep epochs
across the different sleep stages is seen in Table 2. All the scored
SS within these sleep epochs were confirmed by an expert.

The raw sleep data, hypnograms and sleep events were ex-
tracted from Somnologica Studio (V5.1, Embla, Broomfield, CO
80021, USA) or Nervus (V5.5, Cephalon DK, Nørresundby, Den-
mark), using the built-in export data tool. For further analysis,
the data were imported into MATLAB (R2010b, MathWorks, Inc.,
Natick, MA, USA).

2.3. Development of SS detector

The steps in the method for developing the automatic detector
are shown in Fig. 1. Firstly, appropriate features were extracted
from the C3-A2 and F3-A2 EEG derivations. These are variables that
represent characteristics of the classes and may therefore reflect
differences between them. These were sent through a classifier
that determines the class (‘SS’ or ‘background EEG’) to which the
data segment belongs.

2.3.1. Feature extraction
Before feature extraction, the polysomnograph C3-A2 and F3-

A2 EEG derivations were band pass-filtered from 2 to 35 Hz. The
lower cutoff frequency at 2 Hz was chosen to avoid the influence
of the high-energy contents at the very low frequencies, and the
cutoff at 35 Hz was chosen to reflect the AASM standard.

In this study, the Matching Pursuit (MP) method (Mallat and
Zhang, 1993) was chosen for feature extraction in the classification
of SS. In the MP signal processing algorithm a given signal is repre-
sented by a weighted sum of known basic waveforms, known as
Gabor atoms, gc(t), which in continuous time are expressed as:

gcðtÞ ¼ KðcÞe"p t"u
sð Þ

2

cosðxðt " uÞ þ /Þ ð1Þ

Table 1
Demographic data for the control and the patient groups.

Patient
group

Frequency Male/
female
frequency

Age
(years)

BMI (kg/
m2)

Sleep
efficiency
(%)

Bed times
(min)

Controls 15 6/9 58.3 ± 9.5 23.2 ± 2.8 88.9 ± 8.4 480 ± 47.5
iRBD 15 12/3 60.1 ± 7.4 24.4 ± 3.1 85.6 ± 8.3 489 ± 95.3
PD " RBD 15 8/7 61.9 ± 6.1 24.7 ± 2.2 82.8 ± 7.9 443 ± 67.2
PD + RBD 15 11/4 62.4 ± 5.2 26.0 ± 3.2 85.4 ± 9.7 445 ± 71.8

Table 2
The distribution of the different sleep stages within the four groups evaluated and for
use in the development of the SS detector.

Sleep
stage

For use in the
development of SS
detector

Controls iRBD PD " RBD PD + RBD

Wake
(%)

0 (0) 1606
(11)

2220
(15)

2387 (18) 1889
(14)

REM
(%)

4 (1) 2710
(19)

2893
(20)

1808 (13) 1761
(13)

N1 (%) 13 (4) 1205
(8)

1238
(8)

1191 (9) 1623
(12)

N2 (%) 330 (88) 6491
(45)

5909
(40)

5817 (44) 5957
(45)

N3 (%) 28 (7) 2388
(17)

2423
(17)

2097 (16) 2128
(16)

Sum
(%)

375 (100) 14400
(100)

14683
(100)

13300
(100)

13358
(100)
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Here, c ¼ fu; s; x; /g represents time-shift u and width s in sec-
onds, frequency x in rad/s and the phase / in rad. K(c) is a normal-
ization scaling factor. By making a redundant dictionary of Gabor
atoms, the signal was decomposed iteratively, whereby the Gabor
atom most highly correlated with the signal or its residual was cho-
sen at each step. As the iterative process continues, the residual de-
cays exponentially (Mallat and Zhang, 1993), and the process stops
when the residual is below a given threshold. The MP algorithm
projects a function f(t) on Gabor atoms:

f ðtÞ ¼
XM"1

n¼0
hRnf ðtÞ; gcn

ðtÞigcn
ðtÞ þ RMf ðtÞ ð2Þ

where gc0
denotes the first selected atom, hRnf(t), gcn

(t)i is the inner
product of the atom and the signal Rnf(t) and RMf(t) denotes the
residual signal after approximating f(t) by using M Gabor atoms.

The time–frequency distribution of the signal energy is derived
by adding Wigner–Ville distributions of selected atoms (Mallat and
Zhang, 1993), which yields:

WVf ðt;xÞ ¼
XM"1

n¼0
jhRnf ðtÞ; gcn

ðtÞij2WVgcn
ðt;xÞ

þ
XM"1

n¼0

XM"1

k¼1;k–n
hRnf ðtÞ; gcn

ðtÞi

' hRkf ðtÞ; gck
ðtÞiWVgcn ;gck

ðt;xÞ; ð3Þ

where WVf and WVgcn
indicate the Wigner–Ville distribution of the

signal f and the given Gabor atom g0cn
, respectively. The first sum

corresponds to the auto-terms and the double sum corresponds to
the cross-terms of the Wigner–Ville transform. By removing the
cross-terms, the energy density of the signal f (t) is found:

Ef ðt;xÞ ¼
XM"1

n¼0

jhRnf ðtÞ; gcn
ðtÞij2WVgcn

ðt;xÞ: ð4Þ

The features were all calculated from the energy densities de-
rived from the Wigner–Ville transform. They were obtained from
signal windows of 2 s with a 1-s overlap. For each EEG derivation,
the features included:

(1) Three energy features reflecting energy parts in the fre-
quency bands f < 11 Hz, 11 Hz 6 f 6 16 Hz and f > 16 Hz,
defining frequencies below, within and above the SS fre-
quency band, respectively.

(2) The logarithm of the energy contribution of the first Gabor
atom with a frequency of 11 Hz 6 f 6 16 Hz.

(3) The logarithm of the maximum energy point in the energy
density found by Eq. (4) and the corresponding frequency.

The six feature values were calculated for the C3-A2 and F3-A2
EEG derivations, yielding a total of 12 feature values for each 2-s
segment. The features were normalized with respect to the 95th
percentile of the features, since this was the normalization method
found to perform best.

Further information about the MP algorithm and details about
the implementation of the original software written in C into MAT-
LAB, which is used in this study, can be found in Mallat and Zhang
(1993) and Mallat et al. (2008).

2.3.2. Classification
In this study, the Support Vector Machine (SVM) algorithm (Bo-

ser et al., 1992; Cortes and Vapnik, 1995) was chosen to classify the
SS. SVM is a binary supervised learning method, and has proved to
be efficient when dealing with datasets of unequal size. Clearly, the
essential goal in all machine learning techniques is to optimize the
generalized classification properties of the model, i.e. to categorize
correctly as many data points of an unseen dataset as possible. This
optimization process is employed in the training phase, and the es-
sence of SVM is to find optimal separating hyperplanes in a high-
dimensional feature space (Cristianini and Shawe-Taylor, 2000).
The optimization in SVM consists of maximizing the margin be-
tween classes in the feature space, which is sometimes referred
to as ‘‘the maximal margin classifier’’ (Cristianini and Shawe-
Taylor, 2000).

A training dataset can mathematically be described as:

fxi; yig
L
i¼1 yi 2 f"1;1g xi 2 RD; ð5Þ

where each of the L training samples xi is a vector with D feature
values and yi takes the value of "1 or 1, indicating the group to
which each training sample i belongs. In the case of the two classes
being linearly separable, they can be classified by a hyperplane de-
scribed as:

hðxiÞ ¼ hxi;wiþ b ¼ 0; ð6Þ

where w is the normal to the hyperplane and b is a shifting con-
stant. The finding of the hyperplane is based on the positive and
negative samples of x (yl in Fig. 1) that are most strongly indicative
of the slope of the resulting separating hyperplane. These are the
support vectors, and they all satisfy the constraint:

yi ( ðhxi;wiþ bÞ " 1þ ni P 0 8i; ð7Þ

where ni P 0 "i is a slack variable introducing a cost or penalty to
misclassified samples, relaxing the constraints of the fully linearly
separable case. The penalty increases with the distance to the sep-
arating hyperplane.

To describe the separating hyperplane, the values for w and b
are found by solving the problem summarized to:

minð12 kwk
2 þ C

XL

i¼1

niÞ

yiðhxi;wiþ bÞ " 1þ ni P 0 8i
ni P 0 8i

8
>>>><

>>>>:

ð8Þ

where the cost parameter C is a user-defined parameter indicating
the penalty for misclassification. The problem is solved by introduc-

Fig. 1. Method for developing the SS detector. The F3-A2 and C3-A2 EEG derivations are used for feature extraction, divided into L segments of 2 s with 1-s overlap. Before
Matching Pursuit and feature extraction, the segments are filtered from 2 to 35 Hz. For each of the L segments, six feature values for each EEG derivation are computed. The
feature matrix F of L ' 12 features is used as the input for the classification step, which applies a Support Vector Machine and outputs a scalar value yl for each L segment. The
sign of yl indicates whether the segment corresponds to an SS or not.

514 J.A.E. Christensen et al. / Clinical Neurophysiology 125 (2014) 512–519



ing Lagrange multipliers, and knowing the values for w and b de-
fines the optimal orientation of the separating hyperplane, and
the SVM classifier is defined. The classification of a new unknown
data point x0 = [f1 . . . f12] indicated by the 12 features described
above merely requires the sign of the function:

hðx0Þ ¼ hx0;wiþ b ð9Þ

to be evaluated. The sign indicates on which side of the separating
hyperplane the data point x0 lies.

The SVM classification can easily be extended to work on non-
linear separable classes by using kernels K(xi,xj), mapping the data
into a Euclidean space H where they can be linearly separated. In
this study, a Radial Basis Function (RBF) kernel was used for the
SVM, and a parameter optimization study was performed by doing
a grid search on the cost parameter C and the kernel-specific
parameter c ¼ 1

2r2 0, which controls the flexibility of the decision
boundaries with higher c values allowing greater flexibility. The
evaluated values were c = {0.125,0.25,0.5,1,2,3} and
C = {1,4,16,64,256,1024}. The optimal pair for the final model
was found to be (C, c) = (256,1).

As in other studies, only the data with manually scored SS was
used in the development of the automatic SS detector (Schönwald
et al., 2006; Causa et al., 2010). Hence, the feature vectors from the
sleep epochs with manual scores of SS were used to train and test
the classifier in this study. Each second of EEG data was labeled
either SS (1) or background EEG ("1). The training and testing
phases employed the leave-one-subject-out strategy. As illustrated
in Fig. 2, the test data set in each of the 13 runs were of unequal
size, as the number of available scored sleep epochs differed be-
tween the control subjects. Overall performance measures were
calculated as the mean of the 13 runs.

The SVMperf algorithm developed by Thorsten Joachims at Cor-
nell University was used in this study (Joachims, 2005, 2006;
Joachims and Yu, 2009). This can be found at (Joachims, 2009).

3. Results

3.1. Performance of automatic SS detector

To validate the performance of the algorithm, different statisti-
cal measures were defined on the basis of four variables: True Pos-
itives (TP), False Positives (FP), True Negatives (TN) and False

Fig. 2. Illustration of the leave-one-subject-out strategy used in this study. Each
small rectangle represents a sleep epoch. Blue and white rectangles are used for
testing and training, respectively. The numbers N0001–N0013 are the IDs for the
control subjects. Different numbers of sleep epochs were available from each
subject, so different amounts of data were held out in each run.

Fig. 3. Definition of the four variables, True Positive (TP), False Positive (FP), True Negative (TN) and False Negative (FN), based on seconds.

Fig. 4. The overall ROC curve for a mean AUC measure of 91.0%, based on the leave-
one-subject-out method.
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Negatives (FN). These were found by comparing the SS detected by
the algorithm and those manually scored, as illustrated in Fig. 3.

The values obtained were used to calculate the sensitivity and
specificity, and by using these, a Receiver Operating Characteristics
(ROC) curve was derived (Fawcett, 2006) (Fig. 4). These values
were obtained using the data with manually scored SS, i.e. the
epochs stated under ‘‘For use in the development of SS detector’’
in Table 2.

The area under the ROC curve (AUC) reached 91.0% based on the
leave-one-subject-out strategy. By choosing the (FP, TP) pair as the
point on the ROC curve, where the sign of the function described in
Eq. (10) determined the class, the mean sensitivity reached 84.7%
and the mean specificity reached 84.5%. These were considered
satisfactory for the purpose of this study.

3.2. SS densities

To determine whether the SS density varied between the three
groups of patients and the control group, the automatic detector
was applied to the all-night recordings from lights-off until
lights-on. The total number and the distribution of the different
sleep stages within the four groups are provided in Table 2. SS den-
sity was defined as SS/min and measured for the different sleep
stages. Specifically, sleep epochs of N1, N2, N3, all NREM and
REM were evaluated separately. The values of the means and stan-
dard deviations of the various sleep stages and groups are shown in
Table 3.

To establish whether there was a significant difference between
the means of SS density in the four groups, unpaired two-sample t-
tests were performed. The variances within each group were as-
sumed to be unequal. Comparisons of the control group with a dis-
eased group used one-sided t-tests in order to establish whether
the mean of the control group was higher than those of each of
the diseased groups. Comparisons of pairs of diseased groups used
two-sided t-tests in order to establish whether the means of the
diseased groups differed from one another. The significant differ-
ences are illustrated in Fig. 5.

At a significance level of a = 1%, the iRBD and PD patients with
RBD had a significantly lower mean SS density than the control
group in N2, N3 and all NREM combined. At a significance level
of a = 5%, the PD patients without RBD had a significantly lower
mean SS density than the control group in N2 and all NREM com-
bined. No significant differences were found for the results ob-
tained in REM sleep for either group.

4. Discussion

We describe a new method for automatic SS detection combin-
ing MP for feature extraction and SVM for classification with
acceptable performance. There were three main findings in this
study. First, the group of PD patients with RBD had a significantly
lower SS density than the control group in N2, N3 and all NREM
combined. Also, iRBD patients had a significantly lower SS density
than controls in N2, N3 and all NREM combined. These results were
significant at the level of a = 1%, but by relaxing this to a value of

a = 5%, the PD patients without RBD also showed a significantly
lower SS density compared with controls in N2 and all NREM
combined.

The automatically obtained SS densities for the four groups lie
slightly above the interval expected on the basis of previous find-
ings (Emser et al., 1988; Happe et al., 2004; Durka et al., 2005b).
(Emser et al., 1988) reported only SS densities obtained by manual
scorings in N2, and for the control subjects they found values of
5.8 ± 1.2 SS/min, compared with 6.2 ± 1.5 SS/min obtained in the
present study. They included 12 control subjects with an average
age of 53.4 ± 8.6 years, compared with the 15 control subjects with
an average age of 58.3 ± 9.5 years included in this study. In a more
recent study, however, the manually found SS densities were re-
ported to be 100.2 ± 52.3 SS in one hour of N2 sleep obtained from
10 controls with an average age of 65.2 ± 10.7 years (Happe et al.,
2004). Again, although the mean ages slightly differ, the founda-
tions of the studies are comparable, and in this case, the results
were much lower than those in the present study. We therefore
conclude that it is indeed difficult to define a normal range for SS
density, and while the results obtained in the present study are
within the range found by some studies, they are outside the range
reported in others.

The significant differences in SS densities between the PD pa-
tients and the control subjects are consistent with the findings of
(Emser et al., 1988), but contradict those of (Happe et al., 2004).
However, both these studies only included findings from N2 sleep
and did not separate the PD patients into those with and without
RBD. To the best of our knowledge, no other studies of SS density
in PD patients divide the patients in this way. Furthermore, no
studies detecting SS densities in iRBD patients are known. These
key points make this study unique, because all sleep stages and
the influence of RBD are investigated. The patient groups involved
in our study provide the best basis for investigating whether the SS
density is a possible biomarker for PD.

The results obtained in this study suggest that the more dis-
eased a subject is, the lower is their SS density. Considering PD pa-
tients with RBD to belong to the most diseased group, it is
hypothesized that the iRBD group and the PD group without RBD
are intermediate stages between the control group and the most
diseased group. More specifically, our results do not contradict
the general theory that iRBD is an intermediate stage between
healthy subjects and PD patients.

There are two hypotheses that could explain the results of the
present study. The first originated from a study performed by (Bra-
ak et al., 2003), who studied how PD was related to the intraneu-
ronal pathology progress and, on this basis, proposed a staging
procedure of incidental and symptomatic PD cases. They argued
that the disease process in the brain stem follows an ascending
course with little interindividual variation, starting with the
involvement of basal brain structures (Braak stage 1 and 2) and
spreading to the other brain structures (Braak stage 3 and 4) (Braak
et al., 2003). This indicates that the progressive course of the neu-
rodegeneration in PD at some point reaches the SS generator (in
the thalamus) located above the ‘‘start point’’ of the disease.

Patients with iRBD had a lower SS density than control subjects
in both N2, N3 and all NREM sleep combined. For all cases, the
iRBD group had a lower p-value than the PD group without RBD.
The neurodegeneration probably did not yet involve the SS gener-
ator in the thalamus, but influenced the prethalamic afferent fibers
(PRE) arising from the brainstem and posterior hypothalamus.
These fibers interacted with the thalamocortical pyramidal cells
(TC), which are thought to generate SS by interacting with the tha-
lamic reticular neurons (RE). This suggests that the lower SS densi-
ties seen in stages intermediate to PD might be due to affected or
defective PRE fibers, indicating a PD in very early stages (Braak
stage 1 and 2). This also suggests that the SS density might be more

Table 3
Means and standard deviations of the SS densities of the four groups in the respective
sleep stages. SS density was defined as SS/min.

Sleep stage N1 N2 N3 All NREM REM

Controls 4.4 ± 1.6 6.2 ± 1.5 5.6 ± 1.3 6.0 ± 1.3 2.2 ± 1.4
iRBD 4.4 ± 1.7 4.7 ± 1.9 4.1 ± 2.4 4.5 ± 1.8 2.8 ± 1.4
PD " RBD 4.4 ± 1.7 5.1 ± 1.8 4.9 ± 2.3 5.0 ± 1.5 2.4 ± 1.4
PD + RBD 4.4 ± 2.1 4.2 ± 1.9 3.6 ± 2.1 4.2 ± 1.8 3.6 ± 2.2

516 J.A.E. Christensen et al. / Clinical Neurophysiology 125 (2014) 512–519



affected by RBD as a disease than by PD as a disease. Following this
hypothesis, this could explain why other studies investigating SS
densities in neurodegenerative diseases do not find significant
changes (Happe et al., 2004; Rauchs et al., 2008). In the study by
Rauchs et al., 2008, significant differences in spindle types, but
no differences in mean SS intensity could be found when

comparing patients with Alzheimer’s Disease (AD) to an age-
matched unmedicated control group.

Several studies have reported links between consolidation of
memory and increases of SS density during sleep that followed
learning (Steriade and Timofeev, 2003; Schmid et al., 2012). Also,
the influence of different pharmacological interventions on SS den-

Fig. 5. Results for N2, N3 and all NREM combined. The figures on the left illustrate the mean and standard deviation of the individuals in the four groups, while the individual
measures for each subject and patient are seen in the figures on the right. A single asterisk indicates significant changes with p < 0.05. Double asterisks indicate significant
changes with p < 0.01.
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sity has been investigated (Puca et al., 1973; Myslobodsky et al.,
1982). Puca et al., 1973 reported no differences in SS density be-
tween L-dopa treated PD patients and control subjects, suggesting
that dopamine has a positive effect on the amount of SS. All PD pa-
tients in this study were treated in accordance to clinical standards
as optimally as possible, and dopaminergic treatment was not dis-
continued in treated patients. Consequently a dose response was
not possible to obtain in these patients. However, we doubt
whether this would show a causal effect as the spindle activity is
dependent on prethalamic innervation and thalamic function. Ef-
fect of dopaminergic drugs depends on the clinical DOPA response,
which decreases with disease advancement and potentially also
with reduced spindle activity. This will call for further studies
including patients with different disease severities. Additionally,
the study of (Happe et al., 2004) concluded that the number of
SS did not correlate with the dopamine transporter binding in
the striatum or the serotonin binding in the thalamic/hypotha-
lamic region. Supplementary, the present study finds significant
decreased amount of SS in the group of untreated iRBD patient
compared to control subjects. The various dopaminergic treat-
ments of the PD patients enrolled in the present study were contin-
ued, and no information of the activities prior to sleeping is
included in this study. However, the sleep efficiency and the total
recording time (TRT) is noted for the four groups in Table 1, and
although the PSG parameters differ, there was no association be-
tween the SS densities and the PSG parameters. Finally, it should
be pointed out that besides the reported changes in different SS
parameters caused by age, pre-PSG parameters, disease, medica-
tions etc., the great inter-individual variability makes it difficult
to investigate or state the effect of the different influences.

The automatic SS detector developed in this study performs
similarly to other detectors described in the literature (Devuyst
et al., 2006; Schönwald et al., 2006; Causa et al., 2010). These stud-
ies used other definitions of SS. We used the AASM standard, and to
our knowledge, no other studies have evaluated SS detection using
this definition. Furthermore, previous studies used younger sub-
jects who tended to have SS with a more prominent amplitude
and density (Guazzeli et al., 1986; Nicolas et al., 2001; Happe
et al., 2004). We used older subjects and applied the method on
PSG obtained from iRBD an PD patients. In developing the detector,
we used a very limited extract of data and the training was carried
out primarily with N2 and to a lesser degree with N1, N3 and REM
sleep. As seen in Table 2, the distribution of sleep stages with man-
ual SS scorings is not comparative with the distribution of sleep
stages from the complete nights of sleep for the four groups. How-
ever, the SS densities were drawn from complete nights of sleep,
including all epochs from lights-off to lights-on, and it is therefore
a possible concern that not enough data was available to train with
this algorithm, in general and within the different sleep epochs.

To refine the algorithm further, more manually SS scorings are
clearly needed, and additional diseased PSG should be included.
This could also provide an insight into how well the detector per-
forms for the diseased groups, which could be worse than for the
control subjects. A major issue is how to validate abnormal SS in
patients with neurodegenerative diseases. Two questions arise:
(1) should these be compared with normal, age-standardized SS,
or (2) should validation be against a separate SS score in EEG with
SS of abnormal configuration?

A key matter emerging from this study is whether it is reason-
able to conclude on the basis of results obtained by an automatic
detector with a sensitivity of 84.5% and a specificity of 84.7%. In
the worst case, the significant differences in the present study
could have arisen from this underlying uncertainty in the SS
results.

Several studies have considered the accuracy of manually
scored SS (Zygierewicz et al., 1999; Durka et al., 2005a,b). Also,

some studies have shown that their performance measures im-
prove when raising an amplitude threshold (Durka et al., 2005a;
Causa et al., 2010). Additionally, the rate of agreement of two inde-
pendent sleep scorers has been found to be as low as 70 ± 8% (Zy-
gierewicz et al., 1999). Considering these points together does
indeed call into question the validity of human judgement when
scoring SS. A feature extraction algorithm such as MP makes it pos-
sible to identify SS buried in noise or very closed spaced in time or
frequency. Other algorithms based on MP or other feature extrac-
tion algorithms have shown that many of the erroneous detections
are mostly confined to the epochs containing artifacts (Durka et al.,
2005b; Causa et al., 2010). It can be debated whether training an
algorithm to perform ‘‘as well’’ as a human sleep scorer really does
produce a better SS detector or forces it to miss the buried or atyp-
ical SS. When relating this problem to EEGs from diseased subjects,
these atypical SS could be of great interest as they might contain
information that would never be spotted by the human eye.

5. Conclusion

The study develops a novel approach for designing an automatic
SS detector that was considered a satisfactory method for stan-
dardizing the SS scorings. Applying this detector to data from iRBD
and PD patients as well as age-matched controls, SS densities were
obtained from different sleep stages and proved to be significantly
lower for the iRBD group and the PD groups with and without RBD
compared with the controls in NREM sleep. The lower SS density
suggests involvement in pre-thalamic fibers involved in SS gener-
ation. We conclude that SS is a potential biomarker for PD, and it
is likely that an automatic SS detector could be a supportive diag-
nostic tool. Further research is needed into both the automatic
detection of SS and the evaluation of the SS changes in early RBD
and PD detection.
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The aim of this study was to identify changes of sleep spindles (SS) in the EEG of patients

with Parkinson’s disease (PD). Five sleep experts manually identified SS at a central

scalp location (C3-A2) in 15 PD and 15 age- and sex-matched control subjects. Each

SS was given a confidence score, and by using a group consensus rule, 901 SS were

identified and characterized by their (1) duration, (2) oscillation frequency, (3) maximum

peak-to-peak amplitude, (4) percent-to-peak amplitude, and (5) density. Between-group

comparisons were made for all SS characteristics computed, and significant changes for

PD patients vs. control subjects were found for duration, oscillation frequency, maximum

peak-to-peak amplitude and density. Specifically, SS density was lower, duration was

longer, oscillation frequency slower and maximum peak-to-peak amplitude higher in

patients vs. controls. We also computed inter-expert reliability in SS scoring and found a

significantly lower reliability in scoring definite SS in patients when compared to controls.

How neurodegeneration in PD could influence SS characteristics is discussed. We also

note that the SS morphological changes observed here may affect automatic detection

of SS in patients with PD or other neurodegenerative disorders (NDDs).

Keywords: Parkinson’s disease, sleep spindle morphology, EEG, neurodegeneration, biomarker

Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder (NDD) characterized primarily by motor
symptoms, including bradykinesia, rigidity, postural instability, and tremor. Although the disease
process in PD is not restricted to a specific brain area, these symptoms are mostly caused by the
loss of dopaminergic neurons in the substantia nigra pars compacta resulting in a reduction or
depletion of dopamine (Galvin et al., 2001). Lewy body aggregations of alpha-synuclein in the
brain are a central feature of PD pathology (Galvin et al., 2001). These inclusions typically start
in caudal areas of the brain and progress anteriorly (Braak et al., 2003), and may take place years
prior to involvement of the substantia nigra and associated development of motor symptoms.

Abbreviations: AASM, American Academy of Sleep Medicine; EEG, electroencephalography; iRBD, idiopathic REM sleep

behavior disorder; MSA, Multiple System Atrophy; NDD, Neurodegenerative disorders; PD, Parkinson’s disease; PSG,

polysomnographic; REM, Rapid eye movements; SS, Sleep spindles.
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Specifically, Braak et al.’s PD staging is based on Lewy-body
distribution, which rise from the dorsal motor nucleus of the
vague nerve in the medulla and in the olfactory bulb (stage
1) emerging through the subceruleus-ceruleus complex and
the magnocellularis reticular nucleus (stage 2), the substantia
nigra, the pedenculopontine nucleus and the amygdala (stage
3), the temporal mesocortex (stage 4), and finally reaching the
neocortex (stage 5 and 6). Stage 1 and 2 were considered as pre-
Parkinsonian states, stage 3 and 4 as Parkinsonian states and 5
and 6 as late-Parkinsonian states (Braak et al., 2003).

In addition to the motor manifestations that define PD, non-
motor symptoms such as sleep problems, depression, dementia
and attention deficit (Chaudhuri et al., 2011, 2006), autonomic
symptoms as abnormal heart rate variability (Sorensen et al.,
2012, 2013) and gastrointestinal symptoms such as nausea and
constipation (Garcia-Ruiz et al., 2014) are all well known in
patients with PD. Stating the presence of at least two of the
four motor symptoms resting tremor, bradykinesia, rigidity, and
postural imbalance typically makes the clinical diagnosis of PD,
although it has been indicated that the pathological changes in
the striatal dopaminergic system develop several years before the
clinical appearance of PD. Further development of the pathology
may result in Lewy Body Dementia.

Twenty years ago, it was discovered that idiopathic rapid
eye movement (REM) sleep behavior disorder (iRBD) is closely
related to Parkinsonism (Schenck et al., 1996, 2013a; Salawu et al.,
2010). Indeed, the presence of iRBD, even without the presence
of motor or cognitive complaints, confers a significant risk of
conversion into synnucleinopathies including PD (Iranzo, 2011;
Schenck et al., 2013b). The diagnosis of RBD requires complaints
or an anamnesis describing dream enactment behaviors as well
as a manifestation of REM sleep without atonia (RSWA) as
measured by polysomnography (PSG) (Stevens and Comella,
2013; American Academy of Sleep Medicine, 2014). The
idiopathic form of RBD (iRBD) is diagnosed when no concurrent
neurological disease is found, and International classification of
Sleep Disorders criteria for RBD are met (Stevens and Comella,
2013; American Academy of Sleep Medicine, 2014). Specifically,
measures of RSWA (Postuma et al., 2010; Kempfner et al.,
2013), slow wave characteristics (Latreille et al., 2011), sleep
stability and differences in electroencephalographic (EEG) or
electrooculographic micro- and macro-sleep patterns have been
investigated in patients with iRBD and/or PD (Christensen et al.,
2012, 2013, 2014b).

Reduced sleep spindle (SS) density and activity have been
identified in patients with PD and iRBD (Puca et al., 1973;
Myslobodsky et al., 1982; Emser et al., 1988; Comella et al., 1993;
Christensen et al., 2014a; Latreille et al., 2015). SS are generated
by a complex interaction involving thalamic, limbic, and cortical
areas. A di-synaptic circuit between thalamic reticular neurons
and thalamocortical relay cells, both located in the thalamus,
can spontaneously generate spindle-like oscillations, which are
conveyed to the cortex by the axons of the thalamocortical relay
cells. These cells receive feedback from cortical pyramidal cells
as well as input from pre-thalamic fibers originating from the
brainstem and posterior hypothalamus (Steriade et al., 1993;
Steriade and Timofeev, 2003). As such the thalamus holds a

primary role in generating and controlling SS. SS have been
reported to have a gating role with regard to the flow of thalamic
sensory input, and thus may have a sleep-preserving role (De
Gennaro and Ferrara, 2003). Also, several studies have reported
SS to have an important role in memory consolidation, synaptic
plasticity and cognition (Steriade and Timofeev, 2003; Schabus
et al., 2006; Fogel and Smith, 2011; Fogel et al., 2012; Latreille
et al., 2015). The formation of SS begins in the infant brain (De
Gennaro and Ferrara, 2003), but SS characteristics such as density
and amplitude change with age (Nicolas et al., 2001; De Gennaro
and Ferrara, 2003), suggesting that SS play an important role in
normal cognitive functioning.

Although a reduction in SS density is not specific to PD, SS
and other EEG features may be potential useful as biomarkers
of disease progression or therapeutic efficacy in PD and other
NDDs (Nguyen et al., 2010; Leiser et al., 2011; Micanovic and Pal,
2014). However, the identification of SS is a difficult task; studies
assessing inter-scorer variance in normal sleep have shown
significant variance in SS identification, both between human
experts and between automated SS detectors (Warby et al., 2014;
Wendt et al., 2014). SS identification and characterization in
pathological sleep is not well studied, but previous evidence
suggests that SS may have different characteristics in PD
patients (Latreille et al., 2015), and therefore may interfere with
traditional sleep staging in patients (Comella et al., 1993; Jensen
et al., 2010; Christensen et al., 2014b; Koch et al., 2014).

In this study, we aimed to identify changes in SS density and
specific morphological characteristics of SS in patients with PD.
Since five sleep experts identified SS independently, we were also
able to assess inter-expert variation of SS identification in EEG
of patients and controls. By identifying specific changes in SS
characteristics, we aimed to better understand the mechanism
and to what extent the neurodegenerative progress influences SS
characteristics, also identifying specific spindle features that may
be useful as prognostic biomarkers of disease. A secondary aim
was to help guide the specialized development of automatic SS
detectors to be used on EEG from patients with NDDs.

Materials and Methods

Subjects and Recordings
Polysomnographic (PSG) EEG data from 15 patients with
PD and 15 sex- and age-matched control subjects with no
history of movement disorder, dream-enacting behavior or other
previously diagnosed sleep disorders were included in this
study. The subjects were all recruited from the Danish Center
for Sleep Medicine (DCSM) in the Department of Clinical
Neurophysiology, Glostrup University Hospital in Denmark.
All patients were evaluated by a movement specialist with
a comprehensive medical and medication history and a PSG
analyzed according to the American Academy of Sleep Medicine
(AASM) standard (Iber et al., 2007). The diagnostic certainty
for PD at Danish neurological departments has been reported
to be 82% (Wermuth et al., 2012). None of the PD patients had
dementia at inclusion, but one of the patients with PD later
developed Multiple System Atrophy (MSA), indicated as the
Parkinsonian type (MSA-P) as the patient had predominating
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PD-like symptoms. Subjects were excluded from the study if they
were taking medications known to effect sleep (antidepressants,
antipsychotics, hypnotics). However, dopaminergic treatments
were permitted despite their potential effect on vigilance and SS
characteristics (Puca et al., 1973; Micallef et al., 2009). In addition
to ethical concerns regarding discontinuing dopaminergic
treatment in these subjects, we wanted to avoid deleterious
discontinuation effects on the PSG, as well as unpleasant and
negative motor effects that could interfere with the study. The
quality of each PSG recording was individually examined, and
recordings with disconnections or significant amounts of signal
artifact were not included. Demographic data and PSG variables
for the two groups are seen in Table 1.

Manual Labeling of Sleep Spindles
For each subject, eight blocks of five consecutive epochs of non-
REM sleep stage 2 (N2) of 30-s duration were selected randomly
from the PSG recording in between lights off and lights on. The
blocks were randomly chosen and ranked by use of Matlab’s
randsample-function. One-by-one and in the prioritized order,
the blocks were visually checked for major movements or other
contaminating artifacts. The first eight artifact-free blocks were
chosen as the ones to be scored for SS. A total of five independent
sleep experts identified SS in these blocks, where only the C3-
A2 EEG derivation was visible. The signals were filtered with a
notch filter at 50Hz and a band-pass filter with cutoff frequencies
at 0.3Hz and 35Hz, as indicated by AASM standards (Iber
et al., 2007). All analyzed signals had a sampling frequency of
256Hz. The experts assigned a confidence score to each identified
spindle, to indicate the amount of confidence in the identification
(as described previously in Warby et al., 2014). In this way, each
SS was given a confidence weighting of 1 for “definitely SS,” 0.75
for “probably a SS” and 0.5 for “maybe a SS.”

The scoring procedure was performed in a Matlab-based
software program “EEG viewer” developed byMN at DCSM. The
program mimics a standard sleep scoring program in a clinical

TABLE 1 | Demographic and PSG data for the two groups studied.

Characteristics PD patients Controls P

Total counts (Male/Female) 15 (7/8) 15 (7/8) –

Age (Years) 62.7 ± 5.8 62.9 ± 5.9 0.90

BMI (kg/m2) 25.3 ± 3.5 22.1 ± 2.5 0.02

Disease duration (years) 6.7 ± 4.5 NA –

Hoehn and Yahr stage 2.0 ± 1.2 NA –

UPDRS part III “on” 20.9 ± 7.0 NA –

ACE 90.2 ± 4.8 NA –

Levodopa equivalent dosage (mg) 621.1 ± 301.5 NA –

Levodopa use [n ( %)] 10 (67) NA –

Dopamine agonist use [n (%)] 14 (93) NA –

Sleep efficiency (%) 79.7 ± 14.1 87.1 ± 8.4 0.09

Time in bed (min) 448.1 ± 82.0 499.6 ± 63.7 0.07

LM index (number/hour) 31.8 ± 34.8 30.4 ± 35.3 0.91

BMI, Body Mass Index; UPDRS, Unified Parkinson’s disease rating scale; ACE,

Addenbrooke’s cognitive examination; LM, Leg movements.

setting, and includes the standard features so the experts have the
same opportunities to view and navigate the PSG data as they are
used to when analyzing sleep in the clinic. The program ensures
that if an epoch to be scored does not have any marked SS, the
expert is required to click a box saying “no spindles in current
epoch.” This ensures that the total of 40 epochs of N2 sleep per
subject was analyzed by each expert. The experts were blinded for
which group the subjects belong to.

The final SS identifications used for morphology measures
were defined using the group consensus rule described in Warby
et al. (2014). Spindle identifications from five different experts
with weighted confidence scores for each SS were averaged at
each sample point and aggregated into a single consensus. Sample
points that had an average score of higher than the group
consensus threshold Tgc = 0.25 were included in the final group
consensus, and the morphology measures were computed on
these group consensus SS. It was decided to use Tgc = 0.25 as
this was found to be the best in Warby et al. (2014).

Spindle Characteristics and between Group
Comparisons
The morphology of the identified SS was characterized by
their (1) duration, (2) oscillation frequency, (3) maximum
peak-to-peak amplitude, (4) percent-to-peak amplitude, and
(5) SS density per minute; all of which are well-evaluated
elsewhere (Warby et al., 2014). The morphology measures were
all computed using Matlab 2013b. Before any of the measures
were computed, the central EEG signal was filtered forward
and reverse with (1) a notching filter with the notch at 50Hz
and a bandwidth of 50/35Hz (at −3 dB) and (2) a 4th order
Butterworth band-pass filter with cut off frequencies (−3 dB) at
0.3Hz and 35Hz.

For each SS the duration was computed in seconds as

dur =
# samples

fs
,

where fs = 256Hz is the sampling frequency and # samples
defines the number of samples. The samples were consecutive
and obeyed the consensus rule. The oscillation frequency was
defined in Hz and was for each SS estimated as

fosc =
K

2 · dur
,

where K defines the total number of extrema points detected
using Matlab’s findpeaks-function applied on a 5-point moving
average smoothed version of the SS signal and with a minimum
peak-to-peak distance of 11 samples. The maximum points
were found by applying the findpeaks-function directly, and the
minima points were found by applying the function on the
flipped signal, and the total number of extrema points was set
as the sum of the two. These settings were chosen, as they were
considered best for estimating the fosc when visually investigating
numerous randomly selected examples of SS. The maximum
peak-to-peak amplitude was for each SS estimated as

Ap2p = max
(∣

∣Ae

(

k + 1
)

− Ae(k)
∣

∣

)

, k = 1, 2, . . . ,K − 1,
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where Ae is a vector holding the amplitude values for each of
the K detected extrema points. To investigate the influence on
SS from K-complexes or delta waves, the maximum peak-to-
peak amplitude was estimated twice for each SS; once without
any further frequency filtering of the data, and once where the
data was forward and reverse filtered with a 10th order high-
pass filter with cut off frequency (−3 dB) at 4Hz to remove low
frequency, high amplitude waves that may interfere with the
peak-to-peak calculation. The percent-to-peak amplitude gives a
simple measure between 0 and 1 of the symmetry of the spindle
and it was computed for each SS as

Sym =
# samples before point of Ap2p

# samples
,

where the point of Ap2p is defined as the point between the
maxima and minima delineating Ap2p. Finally, the density was
computed for each subject as the number of SS per minute of
investigated data, described as

Density =
2 · # SS

# epochs reviewed
.

The morphology measures were computed for the SS
identifications for each expert, as well as for the spindles
included in the group consensus. For the SS included in the
group consensus, a minimum duration threshold durth = 0.2 s
was used, and resulted in the exclusion of only three spindles.
This threshold is less that the minimum duration stated by the
AASM scoring (0.5 s). However, others have shown that apparent
spindles <0.5 s are clearly recognizable by sleep experts, and
have similar characteristics to spindles >0.5 s (Warby et al.,
2014). We used a minimum duration threshold of 0.2 s because
we wanted to determine whether PD patients and controls have
specific differences in these shorter spindles. When computing
the measures for the SS identifications for each expert, all the SS
were included, regardless of their confidence score and duration.
Two-sided Wilcoxon rank sum tests with a significance level of
α = 0.05 were used for each of the measures to test for significant
differences between the two groups.

Inter-Expert Reliability When Scoring SS
Inter-expert reliability measures were computed for each of the
10 available expert-pairs. True positives (TP) define the number
of samples where both experts have marked SS, true negatives
(TN) define the number of samples where both experts have not
marked SS, false positives (FP) define the number of samples
where the reference-expert has not marked SS, and the other
expert has and false negatives (FN) define the number of samples
where the reference-expert has marked SS, but the other expert
has not. For each comparison, the reliability measures were
indicated as the F1-score and the Cohen’s Kappa coefficient (κ).
The F1-score is the harmonic mean of precision (P) and recall (R)
and reaches its best value at 1 (perfect agreement) and the worst

at 0 (no agreement). It is computed as

F1-score =
2 · R · P

R+ P
,where

R =
TP

TP + FN
and P =

TP

TP + FP
.

The κ is often used to measure inter-annotator reliability as
it takes the agreement occurring by chance into account. It
reached its best value at 1 (perfect agreement) and worst at -1
(no agreement). It reaches 0 when accuracy is equal to what is
expected by chance. It is computed as

κ =

TP+TN
N − Pr

1− Pr
,where

Pr =
TP + FN

N
·
TP + FP

N
+

(

1−
TP + FN

N

)

·

(

1−
TP + FP

N

)

,

where N = TP + TN + FP + FN defines the total number of
samples reviewed. The relative strength of agreement associated
with κ can been described by the labels “poor” (κ <0.00), “slight”
(0.00 ≤ κ ≤ 0.20), “fair” (0.21 ≤ κ ≤ 0.40), “moderate”
(0.41 ≤ κ ≤ 0.60), “substantial” (0.61 ≤ κ ≤ 0.80) and “almost
perfect” (0.81 ≤ κ ≤ 1.00) (Landis and Koch, 1977). The F1-
score and κ are symmetric regarding false detections and will
therefore both yield the same regardless of which expert were
used as the reference.

Results

For the SS included in the group consensus, it was found
that patients with PD show SS that are significantly different
from controls in terms of duration, oscillation frequency and
max peak-to-peak amplitude. Additionally, patients with PD
have significantly different SS density compared to controls.
Specifically, it was found that patients with PD have decreased
SS density (−38.17%/−0.71 SS/min), and that their SS are longer
(+11.69%/+0.09 s), have a lower frequency (−2.27%/−0.29Hz)
and higher max peak-to-peak amplitude (+19.61%/9.45µV)
compared to controls (Table 2). No significant differences were
identified for the symmetry measure. The maximum peak-to-
peak amplitude estimated after removal of frequencies below
4Hz was still significantly different between groups. Of note,
patients with PD still showed a higher max peak-to-peak
amplitude (+20.95%/9.49µV) compared to controls. The five
SS morphology measures are illustrated in Figure 1. From left
to right, the eight first ID numbers in both groups are females
ranging from the youngest to the oldest. The last seven IDs in
both groups are males, also ranging from the youngest to the
oldest. One of the patients later developed MSA and is illustrated
with black.

The patients had significantly fewer spindles than the controls
(p-value < 0.05). Ten patients and only four controls had less
than 10 SS in the 40 epochs of N2 sleep that were assessed; four
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patients and 0 controls had no SS. Only 3 patients compared to
10 controls had more than 20 SS in the group consensus.

As a supplementary check, the significance tests were
performed on SS identifications from each of the five experts
individually. The maximum peak-to-peak amplitude was, for
all five experts, both before and after removal of frequencies
below 4Hz, significantly different in patients with PD compared
to controls. The duration and oscillation frequency were also
significantly different between the two groups for 4/5 of the
experts, and density significantly different between the two
groups for 3/5 of the experts. The mean and standard deviations
of the SS morphology measures and the results from the
significance tests are summarized in Table 2.

Figure 2 illustrates the relation between the SS measures and
disease duration for the patients, and Figure 3 illustrates the
relation between the SS measures and Addenbrooke’s Cognitive
Examination (ACE) score for the patients. Note that the x-
axes are not continuous, but denote disease duration in years
(Figure 2) and ACE score (Figure 3) for 15/15 and 13/15
of the patients, respectively. The three subjects with highest
SS density are all females, and the one with the highest
SS density is a patient with PD later diagnosed with MSA-
P (indicated as PD+MSA in the figures). She is illustrated
with black in Figures 1, 2, 3. No clear visual tendency
between SS characteristics and disease duration or ACE score
was seen for any of the measures. Supplementary Figure 1

illustrates the relation between SS measures and Hoehn and
Yahr (H and Y) stage and Supplementary Figure 2 illustrates
the relation between SS measures and the Unified Parkinson’s
Disease Rating Scale (UPDRS) Part III. No clear visual trends
were seen.

Considering that the outlier PD patient with a very high
spindle density (highest of all subjects in the study) later
developed MSA, we reanalyzed the SS included in the group
consensus when results from this outlier patient were left out,
and found the same measures to be as significant different
between the groups. Specifically, patients now have an even
bigger decrease in SS density (−61.29%/−1.14 SS/min), a
longer SS duration (+11.69%/+0.09 s), a slower frequency
(−4.14%/−0.53Hz) and a higher max peak-to-peak amplitude,
both before (+16.93%/8.16µV) and after (+17.95%/8.13µV)
removal of low frequencies when compared to controls. The
results for this analysis are summarized in Table 3.

Figure 4 shows scatterplots for the individual SS, where
the maximum peak-to-peak amplitude (before removal of low
frequencies) defines the y-axis and the oscillation frequency and
duration defines the x-axis, respectfully. Linear trend lines are
added on top of the scatterplots in order to see differences
between groups. We found a trend of a positive correlation
between the duration and maximum peak-to-peak amplitude.
Interestingly, SS from patients showed this tendency to a lesser
degree (slope of +11.74µV/s) compared to SS from controls
(slope of +18.09µV/s). Also, we found a negative correlation
of oscillation frequency and maximum peak-to-peak amplitude,
and found this tendency to be less apparent for SS from
patients (slope of −1.02µV/Hz) compared to SS from controls
(slope of−4.10µV/Hz).
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FIGURE 1 | Distributions of the morphology measures for the

spindles included in the group consensus. From left to right, the

first eight IDs in both groups are females ranging from the youngest

to the oldest, and the following seven IDs are males also ranging

from the youngest to the oldest. One patient with Parkinson’s disease

(PD) later developed Multiple System Atrophy (MSA) and is indicated

with black. The cyan horizontal lines indicate the group median for

each of the measures.

Table 4 summarizes the fraction of SS included in the group
consensus that do not strictly pass AASM criteria for a spindle
(11–16Hz, 0.5–3.0 s). Overall, 25.3% of the SS identified by
experts and included in the group consensus did not meet AASM
criteria. Most of these “abnormal” SS would have been excluded
because their duration is too short (16.9%) or have an oscillation
frequency that is too slow (9.7%).

In order to determine if there was a difference between
PD and controls in the frequency of “abnormal” spindles not
meeting AASM criteria, we compared the groups. All 15/15
control subjects had SS, whereas only 11/15 patients with PD had
some SS. It was found that control subjects show significantly
more “abnormal” spindles not meeting AASM criteria, i.e., more
spindles with a too short duration compared to patients with PD
(Table 4). No significant difference was however found between
groups when the outlier patient with PD + MSA was left out of
the analysis.

When computing the SS characteristic based on AASM
criteria, the same SS characteristics were found to be significantly
different between PD patients and controls (Table 5). Analysis
of these SS showed that patients with PD have a decreased
density (−32.84%/−0.44 SS/min), and their SS are longer

(+9.41%/+0.08 s), have a lower frequency (−2.69%/−0.35Hz)
and higher max peak-to-peak amplitude before removal of low
frequencies (+21.34%/+10.37µV) and after (+22.51%/+10.30)
compared to controls. These differences are similar to those
found based on all SS in the group consensus.

Table 6 summarizes inter-expert reliabilities of SS scoring,
where the SS are grouped according to their confidence
score. The mean inter-expert reliability of scoring “definite SS”
computed by κ was found to be significant lower for patients
compared to controls. Although not significant, a trend for
a lower κ was found for “probable/definite SS” in patients
compared to controls (P = 0.054). In all cases, the inter-expert
reliability is lower for scoring SS in patients compared to controls.

Discussion

Based on a group consensus of manually scored SS from five
independent sleep experts, this study investigates morphological
changes of SS in a central EEG lead of patients with PD compared
to age- and sex-matched control subjects. The main findings of
this study are that patients with PD have a decreased SS density,
and that their SS have a longer duration, a slower oscillation
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FIGURE 2 | Distribution of the morphology measures for the spindles from patients with Parkinson’s disease (PD), where the patients are sorted

according to their disease duration. PD+MSA indicates a patient with PD, that later developed Multiple System Atrophy (MSA).

frequency and higher maximum peak-to-peak amplitude. These
results suggest that not only SS density but also specific
morphological changes in SS have potential clinical utility when
diagnosing PD. Further, the data suggests that the disease process
affect directly or indirectly the brain regions responsible for
the generation of SS. Future studies including more subtypes
of PD and NDDs in general are however needed to investigate
whether the specific morphological changes in SS can be used to
differentiate different PD subtypes as well as different NDDs.

The results illustrate the fact that there are fewer SS in
patients with PD, and that the few that are remaining are more
pronounced when compared to those seen in controls. There
could be several explanations for this. First, patients with PD
have a more “blurred” EEG in general with either a lack of or
an abnormal mixture of micro- and macro-sleep structures (Petit
et al., 2004; Christensen et al., 2014b). This pattern may make
it more difficult to identify distinct SS, as they would be buried
within other undefined EEG microstructural changes. In this
case, only the obvious SS would rise over background and be
marked. Second, it could be that the neurodegenerative process
has affected the thalamic neurons responsible for generating
and controlling SS in such a way, that SS are only generated
when very strong signals from pre-thalamic fibers reaches the
thalamus resulting in more pronounced SS. Third, we cannot

rule out that these SS changes could be the result of treatment
with dopaminergic agents affecting the morphology of SS,
although a previous report suggests that these drugs should
increase spindle density (Puca et al., 1973), which is not what
we observed.

It was found that patients with PD have a lower SS density
compared to age and sex-matched controls. This finding is
consistent with our and other groups’ prior findings (Emser
et al., 1988; Christensen et al., 2014a; Latreille et al., 2015), but
contradicts those of other studies (Happe et al., 2004). According
to Braak et al. (2003), the neurodegenarative progress in PD
shows a progressive ascending course starting from the brain
stem and spreading to additional brain structures. At some point,
the neurodegeneration may affect or destroy the SS generator
of the thalamus, resulting in fewer or no spindles. Interestingly,
(Roth et al., 2000) found that medial thalamotomy abolishes
spindle activity in N2 sleep systematically, but that pallido-
thalamic tractotomy attenuate spindle activity only to a varying
degree, with spindles reemerging after 3 months. It is therefore
likely that neurodegenerative involvement of prethalamic fibers
from the brain stemmay affect spindle activity to a certain degree.
In Figure 1, it is apparent that for four of the patients, no SS are
included in the group consensus, and that for six other patients,
less than 10 spindles were identified.
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Surprisingly, a PD patient showing an abnormally high SS
density was later diagnosed with MSA-P. Although only a single
case, it is an interesting finding which support the hypothesis that
spindles can be used as a marker of diagnostic subgroups of PD.
Latreille et al. (2015) reported a decline in SS activity paralleling
cognitive decline in patients with PD, suggesting that SS activity
could be used as an early marker of Dementia. The number
of patients included in present study is, however, too small to
perform further subgroup analysis. Additionally, in both groups,
younger subjects and females trend in showing slightly higher
spindle densities when compared to older and male subjects. The
three oldest male control subjects have negligible SS densities.
These observations suggest that reduced SS density is not specific
for PD, in agreement with the fact that many conditions such
as cognitive function, memory consolidation, pharmacological
interventions and pre-PSG conditions have been reported to
influence SS density (De Gennaro and Ferrara, 2003; Caporro
et al., 2012). Further analysis including more PD and iRBD
patients, together with a more in-depth investigation of cognitive
decline and disease severity would be needed to evaluate the
relation of abnormalities in SS development in the disease
process, and the use of SS as a prognostic marker. Additionally,
SS density has also been reported decreased for other conditions
such as Dementia, Alzheimer’s disease (AD) and mild cognitive
impairment (Rauchs et al., 2008; Westerberg et al., 2012; Latreille

et al., 2015), and is also a sign of normal aging (Wauquier, 1993;
De Gennaro and Ferrara, 2003; Ktonas et al., 2009).

To our knowledge, no studies have investigated the impact of
L-DOPA on SS morphology. Previous studies have reported that

TABLE 3 | Mean (µ) and standard deviation (σ) for characteristics of

spindles in patients with Parkinson’s disease (PD) compared to

controls (C).

Spindle characteristic Group consensus (759SS) P

PD(-MSA) C

Duration [sec, µ ± σ] 0.86 ± 0.35 0.77 ± 0.36 <0.001

Frequency [Hz, µ ± σ] 12.27 ± 1.07 12.80 ± 1.23 <0.001

Max peak-to-peak amplitude

[µV, µ ± σ]

56.35 ± 18.97 48.19 ± 15.55 <0.001

Max peak-to-peak amplitude

After removal of frequencies <

4Hz [µV, µ ± σ]

53.42 ± 17.84 45.29 ± 14.41 <0.001

Percent-to-peak amplitude

[µ ± σ]

0.47 ± 0.23 0.46 ± 0.23 NS

Density [per min, µ ± σ] 0.72 ± 1.28 1.86 ± 1.57 <0.007

In this case, the patient that later was diagnosed with Multiple System Atrophy (MSA)

was excluded from the PD group [PD (-MSA)]. P-values for the Wilcoxon rank sum tests

between the two groups are shown. Only spindles in the group consensus are included

in the comparison.

FIGURE 3 | Distribution of the morphology measures for the

spindles from 13/15 patients with Parkinson’s disease (PD),

where the patients are sorted according to their

Addenbrookse’s cognitive examination (ACE) scores. PD +

MSA indicates a patient with PD, that later developed Multiple

System Atrophy (MSA).
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SS density is increased in patients with PD taking dopaminergic
treatment compared to non-treated patients, but the study
lacks a comparison to controls, and evaluation of spindle
morphology (Puca et al., 1973). As dopaminergic treatments
were not discontinued in this study, we cannot rule out that the
changes in SS morphology observed are due to the dopaminergic
interactions from the treatments, although we do not believe so,
as we did not see increases in SS density in these subjects. Future
studies will have to investigate this further including a potential

association between amount and duration of L-DOPA and/or
dopamine agonist treatment and SS morphological changes.

Surprisingly, SS in patients with PD had a longer duration and
a higher maximum peak-to-peak amplitude. To our knowledge,
no other studies have reported differences in SS duration in
patients with PD when compared to controls. The maximum
peak-to-peak amplitude significantly differ for SS identifications
in the group consensus as well as for each of the individual
expert’s identifications. This finding was also significant after we

FIGURE 4 | Two scatterplots for individual SS characteristics. The plot illustrates the maximum peak-to-peak amplitude (without removal of frequencies below

4Hz) as a function of (1) duration (top plot) and (2) oscillation frequency (lower plot), respectively. Trend lines are added for each group.

TABLE 4 | Percent of sleep spindles (SS) identified in the group consensus that do not strictly meet AASM criteria Iber et al. (2007).

AASM criteria Total PD SS PD-MSA Control P-value P-value

SS SS SS PD vs. controls PD-MSA vs. controls

Duration too short (<0.5 s) 0.169 0.128 0.134 0.194 0.010 NS

Duration too long (>3 s) 0.001 0 0 0.002 NS NS

Oscillation frequency too slow (<11Hz) 0.097 0.090 0.099 0.101 NS NS

Oscillation frequency too high (>16Hz) 0.002 0.003 0.005 0.002 NS NS

At least one criteria not met 0.253 0.212 0.228 0.278 0.027 NS

There were a total of 344SS from 11 patients with Parkinson’s disease (PD) and 557SS from 15 control subjects. There were 202 SS from 10 patients when one patient with PD, who

later was diagnosed with Multiple System Atrophy (MSA) [PD(-MSA)] was left out. X2-tests were used to test for significance between spindles from PD patients (including and excluding

the one with MSA) and control subjects.
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filtered the data to eliminate the impact of low frequency, high
amplitude waves. This was surprising, and contradicts the idea
that polygraphic features such as SS and K-complexes are less well
formed in various NDDs (Petit et al., 2004; Ktonas et al., 2009).
By computing maximum peak-to-peak amplitude both without
any further filtration and after elimination of low frequencies, our
data show that patients with PD show SS with higher amplitudes,
regardless of the EEG patterns surrounding them. Margis et al.
(2015) reports increased sigma power in N2 sleep of patients
with PD vs. controls. Increased sigma power is consistent with
our findings of increased duration and amplitude of spindles,
which would overpower the decrease in spindle density we and
others have reported in PD. Interestingly, SS morphology was
unchanged in schizophrenia patients compared to controls, even
though they had a significant decrease in SS density (Wamsley
et al., 2012).

Enhanced maximum peak-to-peak amplitude is also not
consistent with the findings of Latreille et al. (2015), who reports
no significant differences of SS amplitude between PD patients

TABLE 5 | Mean (µ) and standard deviation (σ) for the spindle

characteristics found for the spindles in the group consensus meeting the

AASM criteria.

Spindle characteristic Group consensus (673SS) P

PD C

Duration [sec, µ ± σ] 0.93 ± 0.33 0.85 ± 0.31 1.95 .10−4

Frequency [Hz, µ ± σ] 12.65 ± 1.01 13.00 ± 0.96 9.04 .10−6

Max peak-to-peak amplitude

[µV, µ ± σ]

58.97 ± 16.64 48.60 ± 14.92 3.90 .10−16

Max peak-to-peak amplitude

After removal of frequencies <

4Hz [µV, µ ± σ]

56.06 ± 15.75 45.76 ± 13.89 5.27 .10−18

Percent-to-peak amplitude

[µ ± σ]

0.47 ± 0.23 0.45 ± 0.23 NS

Density [per min, µ ± σ] 0.90 ± 1.71 1.34 ± 1.25 4.50 .10−2

Wilcoxon rank sum tests were used to test for significance between patients with PD and

control subjects (C).

and controls, and significantly reduced SS amplitude in patients
with PD, who later developed Dementia when compared with
controls. The SS in Latreille et al. (2015) were found automatically
and mandated a duration criteria of least 0.5 s to be included.
Also, the spindle detection method includes a filtration of the
signal (11–15Hz) and a threshold determined based on root-
mean-square (RMS) values of the background NREM activity
(Martin et al., 2013). Lastly, the SS in Latreille et al. (2015) were
detected in all NREM stages, and the individual SS characteristics
(amplitude and frequency) were computed as the mean of
both hemispheres, as they found no significant hemispheric
interaction. The definition of SS is thus not the same in the two
studies, and the different results could be due to the fact that
automatic detectors detect SS that humans cannot see. Another
explanation could be that the detector in Latreille et al. (2015)
lack to identify the smaller SS in controls, thereby enlarging
the mean spindle amplitude in controls. If the threshold used is
based on values across all NREM sleep stages, different amount
of NREM stages between controls and patients influences the
threshold, maybe resulting in harder thresholds to cross for
control spindles. Lastly, taking into account the fact that PD
patients show more mixed sleep patterns making sleep stages
more difficult to distinguish (Danker-Hopfe et al., 2004; Jensen
et al., 2010), it could also be that more N3 sleep is present in the
annotated data of patients compared to controls, although we did
select data fromN2 sleep according to each hypnogram.Whether
the contradicting findings are due to methodological reasons
only, have to be investigated in future studies, e.g., by applying
different automatic spindle detectors on the same dataset and
on data from different derivations, and see if the morphological
alterations are consistent across detectors, manually scorings and
derivations.

EEG slowing has been frequently reported in PD (Petit
et al., 2004; Rodrigues Brazète et al., 2013), including slowing
in occipital, temporo-occipital and frontal regions (Sirakov and
Mezan, 1963; Soikkeli et al., 1991; Primavera and Novello, 1992).
It is therefore not surprising that we found slower SS oscillation
frequencies in PD patients. Whether or not this is specific for PD
or generalizable to other NDDs will need further investigations.

TABLE 6 | Mean (µ) and standard deviation (σ) for the inter-expert reliability measure F1-scores and Cohen’s Kappa (κ) for scoring sleep spindles (SS).

SS group definition F1-score κ P

PD C PD C

Low confidence “maybe” 0.12 ± 0.11 0.17 ± 0.12 0.14 ± 0.11

“slight”

0.16 ± 0.12

“slight”

NS

Medium confidence “probably” 0.13 ± 0.10 0.19 ± 0.11 0.15 ± 0.10

“slight”

0.18 ± 0.11

“slight”

NS

High confidence “definitely” 0.24 ± 0.13 0.32 ± 0.13 0.21 ± 0.13

“fair”

0.32 ± 0.13

“fair”

4.76 .10−2κ

Medium or high confidence “probably/definitely” 0.34 ± 0.15 0.39 ± 0.17 0.28 ± 0.15

“fair”

0.39 ± 0.17

“fair”

NS

All SS 0.41 ± 0.16 0.45 ± 0.15 0.32 ± 0.17

“fair”

0.43 ± 0.15

“moderate”

NS

The mean and standard deviations are taken across the ten expert-pairs available. Wilcoxon rank sum tests were used to test for significantly lower inter-expert reliability for scoring SS

in patients with Parkinson’s disease (PD) compared to control subjects (C). κ indicates significance for κ and F indicates significance for F1-score.
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In AD, Rauchs et al. (2008) found no change in spindle density
but found that fast spindles (defined as having frequencies of
13–15Hz) were significantly reduced when compared to age-
matched controls. Consistently, Westerberg et al. (2012) found
that patients with amnestic mild cognitive impairment had fewer
N2 spindles compared to age-matched controls, and that the
reduction was seen in fast spindles (13–15Hz) and not in slow
spindles (11–13Hz). Latreille et al. (2015) found significant lower
SS frequency in patients with PD who later developed Dementia
compared to controls, but not in Dementia-free patients with PD
compared to controls. This last study might however suffer from
a selection bias as they automatically defined SS within a certain
frequency range, as stated by the AASM. Nonetheless, as in this
study, we found that PD patients had a slower SS frequency, both
when looking at SS included in the group consensus, but also
when looking at SS strictly meeting AASM criteria.

Figures 2, 3 and Supplementary Figures 1, 2 report on SS
measures for the PD group consensus, but with subjects sorted
according to their disease duration (Figure 2), their ACE score
(Figure 3), their H and Y stage (Supplementary Figure 1) and
UPDRS part III score (Supplementary Figure 2). Although no
clear tendency was seen for any of the SS measures for disease
duration, ACE score, H and Y stage or UPDRS part III score,
longitudinal studies are likely needed to determine whether SS
morphology measures can provide prognostic value. Indeed,
the patients included here may have had a PD diagnosis
for various amounts of time, and inter-subject variation of
disease progression and severity makes such a relationship very
complicated to analyze. ACE is a brief assessment of cognitive
functions and is in this study used as a screening tool to
determine Dementia, which none of the patients had at inclusion.
A more in-depth examination of cognitive functions as well as
a follow-up study of the patients is needed to determine the
subject-specific progression and severity rate. These rates can
be compared to the SS morphology measures to investigate the
prognostic value.

A biomarker does not have to be specific to a disease to have
clinical utility, and combining the different SS measures may
reveal that different diseases show different trends or different
combinations of changes in SS morphology measures. If a trend
is found, it is important to also look at SS that might fall out of
the stated AASM criteria, as not doing that may misrepresent
the data. Table 4 shows that a rather high proportion of SS in
both groups do not meet AASM criteria. Additionally, when
looking at inter-expert reliability, it was found that experts are
less likely to agree on definite SS in patients when compared to
controls. Considering that automatic SS detectors are likely to
be used in patients with NDDs, it is highly encouraged to build
detectors capable of detecting atypical SS as well. Such atypical
SS could be spindles with abnormal duration or frequency or
spindles surrounded by EEG that is not typically seen in N2
sleep. Because of this, detectors should not be constrained or
designed to perform well only in the context of a single expert
or for normal EEG. Ideally, automatic detectors should give
a confidence score for each detected SS and group subtypes
of SS using specific parameters describing their morphology.
Specifically, description of “probable SS” in different patient

groups may give a better idea of the specific morphological
changes that can be observed for each disease. Also, such studies
should investigate how disease duration and/or severity impact
morphology. Such in-depth studies would be beneficial to better
understand the pathological differences between the NDDs and
also see if any of the morphology measures hold potential for
separating diseases or subtypes of them.

In conclusion, we investigated SS in an objective way and
found that the oscillation frequency and duration of SS manually
scored in clinical settings are not necessarily bound to the limits
given by AASM. The shorter or slower SS must have had an
ability to stand out from the background EEG, and we believe
that these per-definition-not-SS should be included in studies
analyzing SS morphology changes, particularly when searching
for disease biomarkers.

Based on a group consensus of five individual experts’
identification of SS in N2 sleep, we compared 15 patients
with PD with 15 age-matched control subjects and found that
patients show a lower SS density and that their SS have a
longer duration, a higher maximum peak-to-peak amplitude and
a slower oscillation frequency. All the included patients were
taking dopaminergic treatment, and we can therefore not rule out
that the significant differences found could be due to treatment
effects. We conclude that SS are significantly altered in patients
with PD, but that due to high inter-subject variability in disease
progression and severity, future longitudinal studies are needed
to investigate the clinical utility of the SS morphology changes as
well as their value as prognostic biomarkers.
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Supplementary Figure 1 | Distribution of the morphology measures for the

spindles from 11/15 patients with Parkinson’s disease (PD), where the

patients are sorted according to their Hoehn and Yahr (H and Y) stage.
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