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Abstract 

Brain-computer interface (BCI) is a 
communication system that translates brain activity 
into commands for a computer or other digital 
device.  

The majority of BCI systems work by reading and 
interpreting cortically-evoked electro-potentials 
(“brain waves”) via an electroencephalogram (EEG) 
data. The EEG data is inherently complex. The 
signals are non-linear, non-stationary and therefore 
difficult to analyze. After acquisition, pre-processing, 
feature extraction and dimensionality reduction is 
performed, after witch machine learning algorithms 
can be applied to classify the signals into classes, 
where each class corresponds to a specific intention 
of the user. BCI systems require correct classification 
of signals interpreted from the brain for useful 
operation. 

This paper reviews our proposed methods for 
EEG signal processing and classification, which 
include Wave Atom transform, use of nonlinear 
operators, class-adaptive denoising using Shrinkage 
Functions and real time training of Voted 
Perceptron artificial neural networks. 

1. Introduction 

BCI technology is a radically new communication 
option for those with neuromuscular impairments 
that prevent them from using conventional 
communication methods. BCI’s provide these users 
with communication channels that do not depend on 
peripheral nerves and muscles. Other applications 
for BCI systems include multimedia communication, 
augmented reality applications and game 
development. 

BCI systems use EEG data received from 
electrodes placed onto the head of the subject, which 
record the electrical activity of neurons in the brain. 
The frequencies of these brain waves range from 0.5 
to 100 Hz, and their characteristics change 
dynamically depending on the activity of the human 
brain [1]. 

2. Experiment Data 

For direct result comparison a standard EEG 
dataset was used in the experiments. Data set Ia 
(Tübingen, ‹self-regulation of SCPs›, subject 1) [2] 
from the BBCI competition datasets 
(http://bbci.de/competition/) was used. Datasets 
were taken from a healthy subject. The subject was 
asked to move a cursor up and down on a computer 
screen, while his cortical potentials were taken. 
During the recording, the subject received visual 
feedback of his slow cortical potentials (SCPs). The 
dataset consists of 135 trials belonging to class 0 and 
133 trials belonging to class 1. Each trial consists of 
896 samples from each of 6 channels. The sampling 
rate of 256 Hz and the recording length is 3.5s.  

3. Wave Atom Transform 

The efficiency (accuracy and speed) of a BCI 
system depends upon the feature dimensionality of 
the EEG signal and the number of mental states 
required for control. Therefore classifying EEG data 
requires the reduction of its high-dimensional feature 
space to identify fewer intrinsic feature dimensions 
relevant to specific mental states of a subject. 

Feature reduction can help improve system 
learning speed and, in some cases, classification 
accuracy. We consider Wave Atom Transform 
(WAT) of the EEG data as a feature reduction 
method [3]. 

WAT has been recently proposed by Demanet 
and Ying [4]. This new transform performs a multi-
resolutional analysis of a signal, i.e., decomposes a 
signal into different frequency sub-bands. Wave 
atoms are a variant of wavelets that have a sharp 
frequency localization and offer a sparser expansion 
for oscillatory functions than wavelets. WAT has 
been previously used mainly in image processing for 
denoising, watermarking, hashing, fingerprint 
recognition, signal analysis, as well as dimensionality 
reduction and numerical analysis.  

WAT is a promising approach for EEG 
processing because of its denoising and feature 
extraction capabilities, and is particularly useful when 
the signal has discontinuities and sharp spikes as is in 
case of EEG.  

In this experiment, data classification was 
performed using artificial neural networks (ANN) 
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due to their ability to generalize and work well with 
noisy data. Strictly feed-forward ANNs with one 
input layer, one output layer and one hidden neuron 
layer were used, initialized with random values. A 
tangent sigmoid threshold function was used both in 
hidden and output layers. A 15-fold cross validation 
was performed for every ANN hidden layer. Raw 
(unprocessed) EEG data was used for result 
comparison. 

Various hidden layer sizes were chosen and 3 
network training functions were tested:  

• Levenberg-Marquardt training function (LM),  
• Fletcher-Powell Conjugate Gradient 

Backpropagation training (CGF)  
• Bayesian Regularization training function 

(BR).  
Results of the experiment are presented in Tab.1. 

Best results are shown in bold. 
Tab.1. 

Classification accuracy and network training time 
using WAT 
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LM 
RAW 10 0.78 79 234.4 
WAT 2 0.88 87 0.49 

CGF 
RAW 10 0.87 87 0.93 
WAT 1 0.88 88 0.79 

BR 
RAW 5 0.84 84 11906 
WAT 2 0.90 90 1.1 

 
As shown in Tab. 1, WAT coefficients extracted 

from EEG data samples had retained enough 
information to permit correct classification, while 
feature reduction dramatically decreased system 
training and classification time. Classification using 
WAT transform was more accurate with all training 
functions. All classification quality results were in 
line with the best results obtained in the BBCI 
competition II. Best accuracy of 90% is achieved 
using Bayesian Regularization training, however it is 
the slowest. The use of the Levenberg-Marquardt 
training reduces ANN training time by half, with a 
negligible accuracy loss.  

This speed improvement would mostly benefit 
real-time BCI applications. 

4. Teager-Kaiser Energy Operator 

This section describes a nonlinear operator based 
on the generalization of the Teager-Kaiser Energy 
Operator, called Homogeneous Multivariate 
Polynomial Operator (HMPO).  

Recently, the non-linear operators such as the 
Teager-Kaiser energy operator (TKEO) [5] have 
attracted the attention of researchers in the BCI 
domain.  

The Teager-Kaiser Energy Operator (TKEO) is a 
special case of nonlinear models. For a continuous 
real-valued signal ( )tx , the ( )[ ]txΨ  is defined as 
follows: 
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An approximation of the derivatives by one-sample 
differences provides the definition of the TKEO for 
the discrete-time signal 

 ( )[ ] ( ) ( ) ( ).112 +−−=Ψ nxnxnxnx  (2) 

Moore et al. [6] proposed a generalization of the 
Teager operator as 1-D Volterra filter  

( )[ ] ( )[ ] ( ) ( )[ ] .11 /1/2 mmm nxnxnxnx +−−=Ψ  (3) 

Tomar et al. [7] introduced two generalizations of 
TKEO. A variable length TKEO (VTEO) is defined 
as: 

 ( )[ ] ( ) ( ) ( ).112 +−−=Ψ nxnxnxnxi  (4) 

The Summed-over Variable length Teager Energy 
Operator (S-VTEO) is defined as 
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A generalization of the continuous TKEO as the 
higher-order energy operator (HOEO) kΨ  is prosed 
in [8] 
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For discrete-time series, the HOEO can be rewritten 
as the discrete energy operator (DEO) [8]: 
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The advantage of the TKEO family of operators 
over the traditional DSP analysis methods such as 
Fourier Transform or wavelet analysis is the ability 
of the TKEO to discover high-frequency low-
amplitude components in analyzed data. The TKEO 
unlike conventional energy takes into account the 
frequency component of the signal as well as the 
signal amplitude. 

In a general case, the TKEO operator can be 
generalized to the Homogeneous Multivariate 

Polynomial Operator (HMPO) ( )[ ]nxm
2Ψ  where the 

2nd order HMPO is defined as: 
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where [ ]2/mz  and A is the coefficient matrix.  

The properties of the ( )[ ]nxk
mΦ  operator are as 

follows:  
• Symmetry. Reversing the signal in time does not 

change the resulting value;  
• Robustness. The operator is robust even if the 

signal passes through zero, i.e. ( ) 0=nx  i.e. 
there is no division operation; 

• Complexity. Complexity of the operator is  

( )kmΘ  
A Support Vector Machine (SVM) was used for 

classification. To evaluate the precision of 
classification the metrics of Accuracy, F-measure and 
Area Under Curve (AUC) were used. Experimental 
results are presented in Tab.2. Best results are shown 
in bold. 

Tab.2. 

Classification accuracy using nonlinear operators 

Operator applied Classification metric 

Acc F AUC 

None 0.7800 0.7891 0.9018 
TKEO 0.4740 0.5849 0.4670 
TKEO-Volterra 0.5931 0.6583 0.5428 
VTEO 0.5635 0.6466 0.6500 
VTEO-Volterra 0.4813 0.4214 0.1381 
DEO 0.5262 0.6063 0.5851 
HMPO 0.8283 0.8349 0.8450 

 
Experimental results obtained demonstrate an 

improvement of the classification results. The 
proposed operator can be used for developing new 
EEG signal processing algorithms, which can be 
used in Brain-Computer Interface applications, e.g., 
for robot control. 

5. Class-Adaptive Denoising  

In this section a Class-Adaptive denoising 
method is used for selecting optimal parameter 
values of a standard shrinkage function by 
maximizing the class distance between frequency 
domain components of the positive and negative 
data classes [9]. The denoised data was classified 
using SVM and quality of classification was evaluated 
using standard metrics (F-measure, Area Under 
Curve, Accuracy). 

There are many types of shrinkage function 
proposed in the signal denoising domain. For our 
analysis, we classify shrinkage functions depending 
upon the dimensionality of their parameter space as: 
single-parameter, two-parameter, three-parameter 
and multi-parameter shrinkage functions. 
Dimensionality of the parameter space is important 
for the selection of an optimization method to find 
best parameter values. Below we provide a short 
description and analysis of some of these functions. 

5.1 Single-parameter shrinkage functions 

Donoho and Johnston [10] propose hard (Eq. 1) 
and soft (Eq. 2) shrinkage functions: 
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where y is the noisy value, ŷ is the shrunken value, 

and λ  is universal threshold. 
Norouzzadeh and Jampour [11] propose the 

following shrinkage function: 
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Poornachandra and Kumaravel [12] propose a hyper 
trim shrinkage function: 
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5.2 Two-parameter shrinkage functions 

Poornachandra and Kumaravel also propose a 
hyper shrinkage function: 
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Another two-parameter shrinkage function is 
proposed by Mrazek et al. [13]: 
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where ρ , 1λ and 2λ  are the parameters of the 
functions. 

5.3 Three-parameter shrinkage functions 

Yang and Wei [14] propose a generalization of 
soft, firm and Yasser shrinkage function: 
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where γ , Lλ and Hλ are the parameters of the 
functions. 

Atto et al. [15] propose the smooth sigmoid 
based shrinkage function: 
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where λτ,t, are the parameters of the function. 

5.4 Multi-parameter shrinkage functions 

Poornachandra and Kumaravel [16] propose a 
sub-band dependent adaptive shrinkage function 
that generalizes the hard and soft shrinkage 
functions: 
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where jλ are parameters for each sub-band j . 

Signal denoising by thresholding is based on the 
observation that a limited numbers of the DSP 
transform coefficients in the lower bands are 
sufficient to reconstruct the original signal. The key 
steps of signal denoising using DSP transforms are 
the selection of shrinkage function and its 
parameter(s). The goal of the shrinkage function is to 
remove noise so that separability of positive class 
and negative class in a binary classification problem 
is increased. 

Assume that the observed data 
( ) ( ) ( )tN+tS=tX  contains the true signal ( )tS  

corrupted with additive noise ( )tN  in time t . Let 

( )⋅T  and ( )⋅−1T  be the forward and inverse 

transform operators. Let ( )ΛY,H  be the denoising 

operator with a set of parameters ( )kλ,λ,λ=Λ ...21 . 
Then the denoising algorithm is defined as follows: 

Compute the DSP transform for a noisy 
signal ( )tX : Y = ( )XT ; 

Perform frequency shrinkage in the frequency 

domain: ( )ΛY,H=Ŷ ; 
Compute the inverse DSP transform to obtain a 

denoised signal ( )tŜ  as an estimate of ( )tS : 

( )YT=S ˆˆ 1− . 
This can be generalized into a single equation as 

follows: 

 ( )( )( )Λ,XTHT=S 1ˆ −  . (18) 

5.5 Proposed class-adaptive shrinkage 

method  

The scheme described in subsection 5.4 might 
not work well in case where signal ( )tS  and noise 

( )tN  have many different components as is the case 
with the EEG data. Also the selection of the 
shrinkage function and its parameters is problematic 
due to a large number of shrinkage functions 
proposed in the literature and large variability in 
signal data. Therefore, some adaptivity must be 
introduced when selecting shrinkage function and its 
parameters. Below, we provide a description of the 
proposed Class-Adaptive (CA) shrinkage method. 

Let P and Q  be the positive and negative classes 

of data. Let ( )QP X,XD  be a distance function 

between datasets PX  and QX  belonging to P  and 

Q , respectively. We improve the denoising 
algorithm by optimizing shrinkage function 
parameters for each frequency component f  of 

PX  and QX . Fisher distance was used to calculate 

a distance between data classes,. 
The proposed CA shrinkage algorithm is as 

follows:  
Convert the time domain signals to frequency 

domain signals using a standard DSP transform.  
For each frequency f :  

1. Maximize distance between frequency 
components of positive class and negative class 
with respect to a set of shrinkage function 
parameters Λ ; 

2. Retain Λ  for maximal distance as maxΛ . 
3. Perform shrinkage of the DSP transform 

coefficients using maxΛ . 
4. Convert the shrunken frequency domain signal 

to the time domain using an inverse DSP 
transform. 

The dataset was randomly partitioned into 5 
parts, and 5-fold cross-validation was used to 
evaluate the classification results.  

On each channel data, a FFT was applied and the 
shrinkage function parameters were optimized to 
obtain maximal distance between positive and 
negative classes. To achieve maximal separation 
between positive and negative classes, distance 
metric values are maximized using Nelder-Mead 
(downhill simplex) optimization method. The 
optimized shrinkage function is then used for EEG 
data denoising. 

Tab.3. 

Classification accuracy using Shrinkage functions 
operators 

CA shrinkage 
function 
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Not applied - 80.36 90.06 91.45 
Hard  1 83.84 91.53 92.60 
Soft  1 78.18 88.60 89.97 
Norouzzadeh 1 79.16 87.76 90.07 
Hyperbolic 1 81.42 88.60 91.26 
Hyper 2 85.37 90.87 91.44 
Mrazek 2 74.65 87.23 89.71 
Yang 3 88.79 94.45 94.64 
Atto 3 88.16 94.38 94.67 

 
The experimental results show that CA denoising 

can improve the classification results as compared 
with the case were no signal denoising is used. Best 
denoising is achieved using three-parameter 
shrinkage functions with their parameter values 
optimized for each frequency component of the 
frequency domain representation of the EEG signal, 
while soft denoising has failed due to large bias of 
the denoised signal.  

6. Real-time training of Voted 

Perceptron  

BCI applications have strict time constraints for 
signal processing. Therefore, BCI systems and parts 
thereof must be considered as real-time systems 
subject to the requirements for correctness and 
guaranteed response. The classifier is the most 
computationally expensive part of these systems. 
Most of the modern classification methods produce 
good results on the benchmark EEG datasets; 
however their training and classification times are 
unacceptable for real-time applications. 

To make the BCI response fast, the classifier 
should output control signals to external electronic 
devices at least every 0.5 s, though up to 10 s of data 
may be used for classifier training. A Voted 
Perceptron is an algorithm for linear classification, 
which combines the Rosenblatt's perceptron 
algorithm with Helmbold and Warmuth's leave-one-
out method [17]. All weight vectors encountered 
during the learning process vote on a prediction. A 
measure of correctness of a weight vector, based 
upon the number of successive trials in which it 
correctly classified instances, can be used as the 
number of votes given to the weight vector. The 
output of the Voted Perceptron is calculated as 
follows: 

 ( )
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ninni xwcy
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where nix , are inputs, nw  are weights, iy  is the 

predicted class label. 
The result of training is a collection of linear 

separators nwww ,, 21 K along with the nw  survival 

time nc , which is a measure of the reliability of nw . 

The shortcoming of the Voted Perceptron is that 
its training time is usually unbounded and depends 
on the size and complexity of training data. If the 
data is linearly separable, the number of iterations is 
finite. Otherwise, the algorithm will loop infinitely; 
therefore, a maximum number of iterations must be 
specified. To make Voted Perceptron suitable for 
real-time BCI applications, we propose the following 
modification of the training algorithm [18]: the 
algorithm measures the time elapsed from the 
beginning of the training and cuts the training 
procedure as soon as the time bound is reached. Fig. 
1 shows the quality of classification evaluated using 
the Kappa statistic (inter-annotator agreement)[19] 
Higher values are better. 

 

 
Fig.1. Classification quality (Kappa statistic) after 

down-sampling 

The experimental results show that the size of 
data can be reduced significantly using signal down-
sampling without significant loss of classification 
quality (measured using Kappa statistic) while 
satisfying the real-time constraints for NN training. 

7. Conclusions and future work  

In this paper, we have described several EEG 
signal processing methods for use in the BCI 
domain.  

The use of Wave Atom transform allows for data 
size reduction without the loss of important signal 
information. Data classification was performed using 
artificial neural networks with various hidden layer 
sizes and training functions. Results show improved 
training speed and classification quality. 

The use of higher order non-linear operators, 
such as the proposed Homogeneous Multivariate 
Polynomial Operator (HMPO) allows for improved 
classification result with an SVM. This operator can 
be used to develop new EEG signal processing 
algorithms. 

Class-adaptive denoising uses Fisher distance 
metric to evaluate distances between frequency 
components belonging to positive and negative 
dataset classes. To achieve maximal separation 
between positive and negative classes, distance 
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metric values are maximized using Nelder-Mead 
(downhill simplex) optimization method. The 
optimized shrinkage function is used for EEG data 
denoising. The denoised data is classified using an 
SVM with linear kernel. Experimental results show 
that CA denoising can improve classification results.  

Real-Time Voted Perceptron is a time-aware 
training algorithm for the Voted Perceptron. To 
cope with large amounts of the EEG data BCI 
applications must handle to make real-time training 
feasible. Experimental results show no significant 
loss of classification quality with reduction in data 
size with down-sampling, while satisfying the real-
time constraints for NN training.  

Future work will focus on the use of these 
algorithms on self-recorded data for use in a 
personal portable BCI system rather than publicly 
available datasets.  

Bibliography 

[1] Zhang, J., Wang, Y., Wang, R. :Application of KIII 
Model to EEG Classification Based on Nonlinear 
Dynamic Methods, International Journal of 
Artificial Intelligence, Vol. 7, No. A11. 2011 

[2] Birbaumer, N.,Ghanayim, N., Hinterberger, T., 
Iversen, I., Kotchoubey, B., Kübler, A., 
Perelmouter, J., Taub, E., Flor, H.: A spelling 
device for the paralysed. Nature, 398:297–298. 1999 

[3] Ignas Martisius, Darius Birvinskas, Robertas 
Damasevicius, Vacius Jusas: EEG Dataset 
Reduction and Classification Using Wave Atom 
Transform, 23rd International Conference on 
Artificial Neural Networks ICANN2013, Sofia, 
Bulgaria. 2013 

[4] L. Demanet, L. Ying: Wave atoms and sparsity of 
oscillatory patterns, Appl. Comput. Harmon. Anal., 
23(3), 368387, 2007. 

[5] Kaiser J. F: On a simple algorithm to calculate the 
'energy' of a signal, Int. Conf. on Acoustics, 
Speech, and Signal Processing (ICASSP’90), 
1990. – Vol. 1. – P. 381–384. 

[6] Moore M., Mitra S., Bernstein R.A Generalization 
of the Teager Algorithm, IEEE Workshop on 
Nonlinear Signal Porcessing. – Ann Arbor, 
Michigan, 1997. 

[7] Tomar V., Patil H. A.: On the development of 
variable length Teager energy operator (VTEO), 9th 
Annual Conf. of the Int. Speech 
Communication Association (ISCA’08), 2008. – 
P. 1056–1059. 

[8] Maragos Potamianos: A. Higher order differential 
energy operators, IEEE Signal Processing Lett., 
1995. Vol. 2. – No. 8. – P. 152–154. 

[9] I. Martišius, R. Damaševičius, Class-Adaptive 
Denoising for EEG Data Classification, Artificial 
Intelligence and Soft Computing (ICAISC). 
Lecture Notes in Computer Science (LNCS), 
2012 

[10] Donoho, D.L.: Johnston, I.M.: Ideal spatial 
adaptive via wavelet shrinkage. Biometrika, (81), 
425–455. (1994) 

[11] Norouzzadeh, Y., Jampour, M.: A novel curvelet 
thresholding function for additive gaussian noise removal. 
Int. Journal of Computer Theory and 
Engineering, (3-4). (2011) 

[12] Poornachandra, S., Kumaravel, N.: Hyper-trim 
shrinkage for denoising of ECG signal. Digital Signal 
Processing (15), 317–327. (2005) 

[13] Mrazek, P., Weickert, J., Steidl, G.: Diffusion-
inspired shrinkage functions and stability results for 
wavelet denoising. Int. J. Comput. Vision 64, (2-3), 
171-186. (2005) 

[14] Yang, Y., Wei, Y.: New Threshold and Shrinkage 
Function for ECG Signal Denoising Based on Wavelet 
Transform. Proc. of 3rd Int. Conf. on 
Bioinformatics and Biomedical Engineering, 
ICBBE 2009, 1-4. (2009) 

[15] Atto, A.M., Pastor, D., Mercier, G.: Smooth 
Sigmoid Wavelet Shrinkage For Non-Parametric 
Estimation. IEEE Int. Conf. on Acoustics, 
Speech, and Signal Processing ICASSP’08, Las 
Vegas, Nevada, USA, 3265-3268. (2008) 

[16] Poornachandra, S., Kumaravel N.: Subband-
adaptive shrinkage for denoising of ECG signals, 
EURASIP J. Appl. Signal Process., 42-42 (2006) 

[17] Freund, Y., Schapire, R.E., Large Margin 
Classification Using the Perceptron Algorithm. 
Machine Learning, 1999, 37(3), 277-296. 

[18] I. Martišius, K. Šidlauskas, R. Damaševičius. 
Real-Time Training of Voted Perceptron for 
Classification of EEG Data, International Journal 
of Artificial Intelligence (IJAI), Vol. 10, Nr. S13, 
2013. 

[19] Carletta, J: Assessing agreement on classification tasks: 
The kappa statistic, Computational Linguistics, 
22(2), 249–254. 1996 

Author: 

Ignas Martisius 
Kaunas University of  
Technology 
Studentu str. 50 
Kaunas, Lithuania 

email:ignas.martisius@ktu.lt 


