17 research outputs found

    What proof do we prefer? Variants of verifiability in voting

    Get PDF
    In this paper, we discuss one particular feature of Internet voting, verifiability, against the background of scientific literature and experiments in the Netherlands. In order to conceptually clarify what verifiability is about, we distinguish classical verifiability from constructive veriability in both individual and universal verification. In classical individual verifiability, a proof that a vote has been counted can be given without revealing the vote. In constructive individual verifiability, a proof is only accepted if the witness (i.e. the vote) can be reconstructed. Analogous concepts are de- fined for universal veriability of the tally. The RIES system used in the Netherlands establishes constructive individual verifiability and constructive universal verifiability, whereas many advanced cryptographic systems described in the scientific literature establish classical individual verifiability and classical universal verifiability. If systems with a particular kind of verifiability continue to be used successfully in practice, this may influence the way in which people are involved in elections, and their image of democracy. Thus, the choice for a particular kind of verifiability in an experiment may have political consequences. We recommend making a well-informed democratic choice for the way in which both individual and universal verifiability should be realised in Internet voting, in order to avoid these unconscious political side-effects of the technology used. The safest choice in this respect, which maintains most properties of current elections, is classical individual verifiability combined with constructive universal verifiability. We would like to encourage discussion about the feasibility of this direction in scientific research

    E-Voting in an ubicomp world: trust, privacy, and social implications

    Get PDF
    The advances made in technology have unchained the user from the desktop into interactions where access is anywhere, anytime. In addition, the introduction of ubiquitous computing (ubicomp) will see further changes in how we interact with technology and also socially. Ubicomp evokes a near future in which humans will be surrounded by “always-on,” unobtrusive, interconnected intelligent objects where information is exchanged seamlessly. This seamless exchange of information has vast social implications, in particular the protection and management of personal information. This research project investigates the concepts of trust and privacy issues specifically related to the exchange of e-voting information when using a ubicomp type system

    Amenazas y vulnerabilidades de los sistemas de voto electrónico remoto

    Get PDF
    The remote electronic voting systems offer significant advantages for voters. These systems must require, like any voting system used, some safety features that ensure the integrity of an election. Covering these features is not always easy because even when techniques and robust security mechanisms are available. These factors are often derived from, accidental or intentional, human actions. This paper describes the safety requirements to be met by a system of remote electronic voting; then it features the main threats and vulnerabilities associated with these systems, which should be considered prior to implementation of remote electronic voting in any election.Los sistemas de voto electrónico remoto ofrecen ventajas importantes para los votantes. Estos deben satisfacer, al igual que cualquier sistema de votación empleado, algunas características de seguridad que garanticen la integridad de una elección. El cubrir dichas características no siempre es fácil, ya que aun cuando se dispone de técnicas y mecanismos robustos de seguridad, existen factores que pueden poner en riesgo una elección. Estos factores frecuentemente son derivados de acciones humanas, accidentales o intencionadas. Este trabajo describe los requisitos de seguridad que debería cumplir un sistema de voto electrónico remoto. Posteriormente, se presenta las principales amenazas y vulnerabilidades asociadas a este tipo de sistemas, las cuales deben ser consideradas antes de implementarse el voto electrónico remoto en cualquier elección

    Voting: What Has Changed, What Hasn't, & Why: Research Bibliography

    Get PDF
    Since the origins of the Caltech/MIT Voting Technology Project in the fall of 2000, there has been an explosion of research and analysis on election administration and voting technology. As we worked throughout 2012 on our most recent study, Voting: What Has Changed, What Hasn’t, & What Needs Improvement, we found many more research studies. In this research bibliography, we present the research literature that we have found; future revisions of this research bibliography will update this list.Carnegie Corporation of New Yor

    Decentralized Polling with Respectable Participants

    Get PDF
    International audienceWe consider the polling problem in a social network: participants express support for a given option and expect an outcome reflecting the opinion of the majority. Individuals in a social network care about their reputation: they do not want their vote to be disclosed or any potential misbehavior to be publicly exposed. We exploit this social aspect of users to model dishonest behavior, and show that a simple secret sharing scheme, combined with lightweight verification procedures, enables private and accurate polling without requiring any central authority or cryptography. We present DPol, a simple and scalable distributed polling protocol in which misbehaving nodes are exposed with positive probability and in which the probability of honest participants having their privacy violated is traded off with the impact of dishonest participants on the accuracy of the polling result. The trade-off is captured by a generic parameter of the protocol, an integer k called the privacy parameter. In a system of N nodes with B dishonest participants, the probability of disclosing a participant's vote is bounded by (B/N)^{k+1}, whereas the impact on the score of each polling option is at most (3k+2) B with high probability when dishonest users are a minority (i.e., B < N/2), assuming nodes are uniformly spread across groups used by the system. When dishonest users are few (i.e., B < sqrt{N}), the impact bound holds deterministically and our protocol is asymptotically accurate: there is negligible difference between the true result score of the poll and the outcome of our protocol. To demonstrate the practicality of DPol, we report on its deployment on 400 PlanetLab nodes. The relative error of the polling result is less than 10% when faced with the message loss, crashes and delays inherent in PlanetLab. Our experiments show that the impact on the score of each polling option by dishonest nodes is (2k+1) B on average, consistently lower that the theoretical bound of (3k+2) B

    Système de vote électronique

    Get PDF
    Système de vote électroniqu

    Individual verifiability in electronic voting

    Get PDF
    This PhD Thesis is the fruit of the job of the author as a researcher at Scytl Secure Electronic Voting, as well as the collaboration with Paz Morillo, from the Department of Applied Mathematics at UPC and Alex Escala, PhD student. In her job at Scytl, the author has participated in several electronic voting projects for national-level binding elections in different countries. The participation of the author covered from the protocol design phase, to the implementation phase by providing support to the development teams. The thesis focuses on studying the mechanisms that can be provided to the voters, in order to examine and verify the processes executed in a remote electronic voting system. This work has been done as part of the tasks of the author at the electronic voting company Scytl. Although this thesis does not talk about system implementations, which are interesting by themselves, it is indeed focused on protocols which have had, or may have, an application in the real world. Therefore, it may surprise the reader by not using state of the art cryptography such as pairings or lattices, which still, although providing very interesting properties, cannot be efficiently implemented and used in a real system. Otherwise, the protocols presented in this thesis use standard and well-known cryptographic primitives, while providing new functionalities that can be applied in nowadays electronic voting systems. The thesis has the following contents: A survey on electronic voting systems which provide voter verification functionalities. Among these systems we can find the one used in the Municipal and Parliamentary Norwegian elections of 2011 and 2013, and the system used in the Australian State of New South Wales for the General State Elections in 2015, in which the author has had an active participation in the design of their electronic voting protocols. A syntax which can be used for modeling electronic voting systems providing voter verifiability. This syntax is focused on systems characterized by the voter confirming the casting of her vote, after verifying some evidences provided by the protocol. Along with this syntax, definitions for the security properties required for such schemes are provided. A description of the electronic voting protocol and system which has been used in 2014 and 2015 elections in the Swiss Canton of Neuchâtel, which has individual verification functionalities, is also provided in this thesis, together with a formal analysis of the security properties of the scheme and further extensions of the protocol. Finally, two new protocols which provide new functionalities respect to those from the state of the art are proposed: A new protocol providing individual verifiability which allows voters to defend against coertion by generating fake proofs, and a protocol which makes a twist to individual verifiability by ensuring that all the processes executed by the voting device and the remote server are correct, without requiring an active verification from the voter. A formal analysis of the security properties of both protocols is provided, together with examples of implementation in real systems.Aquesta tesi és fruit de la feina de l'autora com a personal de recerca a la empresa Scytl Secure Electtronic Voting, així com de la col·laboració amb la Paz Morillo, del departament de matemàtica aplicada a la UPC, i el Alex Escala, estudiant de doctorat. A la feina a Scytl, l'autora ha participat a varis projectes de vot electrònic per a eleccions vinculants a nivell nacional, que s'han efectuat a varis països. La participació de la autora ha cobert tant la fase de disseny del protocol, com la fase de implementació, on ha proveït suport als equips de desenvolupament. La tesi estudia els mecanismes que es poden proporcionar als votants per a poder examinar i verificar els processos que s'executen en sistemes de vot electrònic. Tot i que la tesi no parla de la implementació dels sistemes de vot electrònic, sí que s'enfoca en protocols que han tingut, o poden tenir, una aplicació pràctica actualment. La tesi té els continguts següents: Un estudi en sistemes de vot electrònic que proporcionen funcionalitats per a que els votants verifiquin els processos. Entre aquests sistemes, trobem el que es va utilitzar a les eleccions municipals i parlamentàries a Noruega als anys 2011 i 2013, així com el sistema utilitzat a l'estat Australià de New South Wales, per a les eleccions generals de 2015, sistemes en els que l'autora ha participat directament en el diseny dels seus protocols criptogràfics. La tesi també conté una sintaxi que es pot utilizar per modelar sistemes de vot electrònic que proporcionen verificabilitat individual (on verifica el votant). Aquesta sintaxi s'enfoca en sistemes caracteritzats pel fet de que el votant confirma la emissió del seu vot un cop ha verificat unes evidències sobre ell, proporcionades pel protocol. A més de la sintaxi, es proporcionen definicions de les propietats de seguretat d'aquestts sistemes. La tesi també conté una descripció del sistema i protocol de vot electrònic que s'utilitza al cantó Suís de Neuchâtel a partir del 2014, el qual té funcionalitats per a que els votants verifiquin certs processos del sistema. La tesi a més conté un anàlisi de la seguretat de l'esquema, així com possibles extensions del protocol. Finalment, la tesi inclou dos protocols nous que proporcionen noves característiques i funcionalitats respecte als existents a l'estat de l'art de la tècnica. El primer permet a un votant defendre's de un coaccionador generant proves falses, i el segon fa un canvi de paradigma de la verificabilitat individual, de forma que el votant no ha de verificar certs processos per a saber que s'han efectuant correctament. La tesi inclou un anàlisi formal de les propietats de seguretat dels dos protocols, així com exemples de com podrien ser implementats en un escenari real.Postprint (published version
    corecore