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Abstract

We consider the polling problem in a social network: participants express support for a given option and expect an outcome

reflecting the opinion of the majority. Individuals in a social network care about their reputation: they do not want their vote to be

disclosed or any potential misbehavior to be publicly exposed. We exploit this social aspect of users to model dishonest behavior,

and show that a simple secret sharing scheme, combined with lightweight verification procedures, enables private and accurate

polling without requiring any central authority or cryptography.

We present DPol, a simple and scalable distributed polling protocol in which misbehaving nodes are exposed with positive

probability and in which the probability of honest participants having their privacy violated is traded off with the impact of dishonest

participants on the accuracy of the polling result. The trade-off is captured by a generic parameter of the protocol, an integer k called

the privacy parameter. In a system of N nodes with B dishonest participants, the probability of disclosing a participant’s vote is

bounded by (B/N)k+1, whereas the impact on the score of each polling option is at most (3k+ 2)B with high probability when

dishonest users are a minority (i.e., B < N/2), assuming nodes are uniformly spread across groups used by the system. When

dishonest users are few (i.e., B <
√

N), the impact bound holds deterministically and our protocol is asymptotically accurate: there

is negligible difference between the true result score of the poll and the outcome of our protocol.

To demonstrate the practicality of DPol, we report on its deployment on 400 PlanetLab nodes. The relative error of the polling

result is less than 10% when faced with the message loss, crashes and delays inherent in PlanetLab. Our experiments show that the

impact on the score of each polling option by dishonest nodes is (2k+1)B on average, consistently lower that the theoretical bound

of (3k+2)B.

Keywords: Distributed polling; Social networks; Overlay networks; Fault tolerance; Security.

1. Introduction

The past few years have seen explosive interest in on-line so-

cial networks and the number of users of such networks is still

growing regularly by the day, with Facebook alone currently

boasting more than 750 million active users. Many of these

users regularly share images and videos as well as discuss vari-

ous social and political matters. They do so with close friends,

but also with people they hardly know.

A particularly useful task in social networks is polling, and
often people would want their responses to be private. For in-

stance, Facebook recently conducted a system-wide poll about

their terms of service [25]. Or as a hypothetical example, the
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organizers of a Saturday night party may also want to ask guests

whether partners should be invited too. In general, a poll seeks

to determine which of d ≥ 2 options is preferred by the greatest

number of participants, typically by allowing each participant

to submit a single vote to indicate her preference. To be mean-

ingful, a polling protocol should tolerate dishonest participants

trying to bias the outcome or discover other participants’ votes.

One can consider different approaches to conduct a polling

in a social network.

Centralized. A straightforward solution for polling is to use

a central server (e.g., Facebook Poll [19] and Doodle [9]). Each

participant sends its vote to a central entity, which subsequently

aggregates all votes and computes the outcome. Besides not be-

ing scalable, this solution does not ensure privacy because par-

ticipants might generally not want their vote (and maybe even

the subject of the poll and the result) to be known by a central

entity, be it trusted or not [33].

Distributed Aggregation. Performing the polling through a

distributed aggregation is a simple, yet naïve, alternative to

avoid a central server. Participants aggregate votes in such a

way that it is impossible to know the vote of a specific par-

ticipant. Such an aggregation scheme, however, is vulnerable

to attacks. First, participants may significantly bias the result
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by corrupting intermediate results. Second, even with aggre-

gation, the initial votes needed for bootstrapping are revealed.

To prevent the initial bootstrapping votes to be known, each

vote could be split according to a homomorphic secret sharing

scheme. However, a dishonest participant can still create an in-

valid initial set of shares, for instance by voting for an arbitrary

large value, and thus bias the result.

Secure Multi-Party Computation. Assuming a minority of

dishonest users, the distributed polling problem may be solved

with complete privacy and no bias on the outcome by using

heavy machinery from cryptography using protocols for secure

multi-party computation (MPC) between N mutually distrust-

ful users [24]. Following two decades of theoretical advances,

MPC protocols to address efficiency and scalability concerns

have only recently been proposed [6, 5]. The line of work is

promising, but even the time and communication complexity

of the state-of-the-art protocol (a polynomial in N) [5] are too

large to be practical.

Our solution to the polling problem does not rely on cryp-

tography for ensuring privacy or accuracy. This is for three

reasons. First, we are concerned that the practicality and scal-

ability of the protocol will be impacted by the complexity of

cryptographic techniques. Accordingly, we wish to explore

the space of protocols where we give up some bounded degree

of privacy and accuracy without compromising scalability and

performance. Second, there is a small risk that the unproven

assumptions underlying modern cryptography techniques (e.g.,

impracticality of factoring large numbers or inverting higher

mathematical functions) may be broken. To avoid a full de-

pendence on such techniques, it is prudent to study alterna-

tives. Third, as advocated in [20] and [26], there is scientific

value in determining if traditional problems in distributed com-

puting (e.g., computation in general and polling in particular)

can be solved without cryptography and if so, how efficiently.

These investigations help us understand the crux of the individ-

ual problems.

Instead of using cryptography, we exploit the social nature

of the participants involved in the polling protocol, specifically

the one-to-one correspondence between social network identi-

ties and real ones. The key insight is that participants in social

networks care about their reputation: information related to a

user ultimately reflects on the associated real person. There-

fore, their misbehavior is rather restricted and not fully Byzan-

tine. We leverage this concern and propose an approach which

dissuades dishonest behaviors instead of masking their impact

(e.g., as in BFT [4]) or preventing them (e.g., by using cryptog-

raphy [1]). In addition to running a polling algorithm based on a

simple secret sharing scheme, we execute a distributed verifica-

tion protocol which tags the profiles of the participants based on

collected testimonies. A reputation system like EigenTrust [18]

can be used to manage the blames in a robust manner. Social

relationships between users further help preventing colluding

users from submitting wrongful reports.

To illustrate the idea behind tagging, consider a situation

where the testimonies of Alice and Bob demonstrate that Mal-

lory misbehaved. In this situation, Alice’s and Bob’s profiles

are then tagged with “Alice and Bob jointly accused Mallory”

and the profile of Mallory is tagged with “Mallory has been ac-

cused by Alice and Bob”. In a social network, no participant

would like to be tagged as dishonest by a protocol that does not

wrongly accuse participants, as we will describe below. Our

protocol does not wrongfully blame participants, but dishonest

participants may [36].

Assuming a system with a large majority of honest partic-

ipants, the risk for a participant to be caught when wrongly

accusing others is high. For instance, if a participant is ac-

cused only by users that are related in the social network (i.e.,

friends forming a coalition), the allegation would be suspicious

and thus not taken into account and the claim would eventually

backfire on the accuser. It is important to note that Sybil iden-

tities can be detected by analyzing the specific characteristics

of social graph (e.g., SybilGuard [39], SybilLimit [38]). With-

out Sybil identities, the problem of dishonesty boils down to

the case where a coalition of real users try to affect an honest

user’s profile by wrongfully blaming her, attempt to spam the

system with a large number of blames, or blame one another

as a smokescreen. By leveraging the acquaintanceship between

users (e.g., the social graph – be it explicit or inferred), several

practical systems have been proposed and successfully applied

to on-line massively multi-player games [12, 17], spam miti-

gation [22, 32] and recommendation systems [35, 8]. Most of

these techniques require a consensus of an unaffiliated jury to

expel a user and renounce blames originating from friends that

are considered suspicious.

In devising our protocol, we have considered a system with

both honest and dishonest participants. The honest ones follow

the protocol assigned to them whereas the dishonest ones might

not, in order to promote their opinion beyond what is allowed.

Should dishonest nodes deviate from the protocol, we assume

that they never do anything that will jeopardize their reputa-

tion with certainty (i.e., with probability 1). We believe that

our model for dishonest users is more reflective of real human

behavior than e.g. Byzantine users as it accounts for social as-

pects of the participants, and is interesting in its own right. It is

an intriguing direction to consider how to solve problems under

this model.

Contributions
We present DPol, a scalable polling protocol that leverages

special properties of social networks. In a nutshell, DPol works

as follows. Participants, clustered in fully connected groups

known as offices, make use of a simple secret sharing scheme

to encode their vote. Then they send the shares of their vote

to proxies that belong to another group (an office). In the con-

text of polling, the shares of a vote are referred to as ballots.
The key idea is that participants can retain privacy by submit-

ting ballots for their chosen candidate as well as ballots for the

candidates they didn’t vote for, making sure to send one more

ballot for the true choice than the other ones. Each office com-

putes a partial tally that is further broadcast to all other groups.

Each participant eventually outputs the same tally. DPol is fully
decentralized and does not assign specific roles to any partici-

pant. Our scheme results in a simple and scalable protocol that

is easy to deploy.
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Complexity. The time complexity of DPol is O(
√

Nk), the
spatial complexity isO(

√
Nk) and the number of messages sent

is O(
√

Nk), where k is the privacy parameter and N the num-

ber of participants. We point out that other decentralized pro-

tocols have explored the O(
√

N) trade-off between time and

message complexity (e.g., Kelips [14] and [11]).

Privacy and accuracy. The trade-off between privacy and

accuracy arises naturally in our settings: improving accuracy

means verifying the participant’s actions, which in turn com-

promises privacy. We bound the impact on the polling result

by dishonest participants and balance this with the level of pri-

vacy ensured. More specifically, in a system of N participants

with B colluding dishonest participants (assuming a social net-

work with a limited number of Sybil identities), we can choose

any integer k such that the probability for a given participant

to have its vote recovered by dishonest participants is bounded

by (B/N)k+1 and their impact on the outcome of each of the

d options is bounded by (3k+ 2)B with high probability when

B < N/2 for large N, assuming that dishonest nodes have no

control over the assignment of nodes to groups (more specifi-

cally that nodes are assigned to groups uniformly at random).

For B <
√

N, the accuracy guarantee of (3k+2)B always holds

for any value of N and for any assignment of nodes to groups,

and the relative error on the poll outcome is negligible when N
is large. This is due to the ability of our underlying simple se-

cret sharing scheme to expose, with certainty, dishonest partici-

pants that affect the outcome bymore than 3k+2 with only pub-

lic verifications, i.e., without requiring the participants’ votes

to be revealed. We also show that private verifications expose,

with positive probability, dishonest participants who try to af-

fect the outcome below the limit (i.e., even if their impact on

each option is less than 3k + 2), but require inspection of the

contents of a subset of ballots. Our results also imply that a

coalition of a minority of the nodes cannot influence the out-

come of a poll if the most popular option has a lead of more

than (6k+4)B votes over the runner up.

For illustration, consider a poll with two options, Yes and No
(a binary poll), in a system of 10,000 participants. Further, as-

sume there are 99 colluding dishonest participants (�√N�−1),

and assume that a fraction α of the participants vote Yes. By

setting k = 1, for instance, we ensure privacy with probabil-

ity 99.99% and when α > 0.54, every participant computes the

right decision (i.e., Yes). While e-voting requires stronger guar-

antees, this amply fits polling applications requirements.

Practicality. DPol is easy to deploy and we report on its de-

ployment on 400 PlanetLab nodes. The result of a binary poll

suffers an average relative error of less than 10% in the face of

message losses, crashes and asynchrony inherent in PlanetLab.

In the presence of dishonest participants, our experiments show

that the impact on the polling result is (4k + 1)B on average,

consistently lower that the theoretical bound of (6k+4)B. Fur-
ther, we back up various theoretical results with experimental

evaluation throughout the paper.

Roadmap
The rest of the paper is organized as follows. Section 2

presents the model and introduces the terms and notation used

throughout the paper. We present DPol in Section 3 and we re-

port on the deployment of its binary version on PlanetLab. We

analyze the correctness and complexity of the protocol. We de-

rive upper and lower bounds on the impact of dishonest nodes

in Section 4 by considering worst case scenarios. Section 5 re-

visits these bounds in practical scenarios. Probabilistic results

are illustrated with simulations and experiments on PlanetLab.

Section 6 reviews related work and we conclude in Section 7.

2. System Model

We consider a system of N uniquely identified nodes that rep-

resent participants of a social network. Each node p votes for a

value vp ∈ V and the expected output of the polling algorithm

is a vector containing the proportions of nodes voting for each

value in V . The set of possible votes V is {1, . . . ,d} where d is

the number of options. Each participant in the social network

has an assigned profile which may be tagged by DPol.
We assume that nodes are able to communicate by message-

passing, specifically that they can receive messages from any

other node in the system. To make this assumption work

in the real world, the communication takes place using UDP

and efficient NAT traversal techniques (“hole punching”) such

as STUN [29]. Other complementary techniques, for in-

stance the Internet Gateway Device Protocol (through Universal

Plug’n’Play), are supported by modern routers and can be used

to let devices behind the NAT to dynamically add translation

rules thus allowing them to receive incoming messages. We

used UDP communication in our implementation and deploy-

ment on PlanetLab.

In our model, nodes are either honest or dishonest. Honest

nodes strictly follow the protocol and contribute to the veri-

fications as long as their privacy is not compromised. More

specifically, honest nodes always collaborate with verification

procedures that do not require them to reveal their ballots (i.e.,

public verifications). However, they may refuse to reveal their

ballots for a verification procedure (i.e., private verification).

Dishonest nodes may misbehave either to promote their opin-

ion or reveal the opinion of honest nodes. They are, however,

rational in the sense that they never behave in such a way that

their reputation is tarnished with certainty, i.e., they do not per-

form attacks that are guaranteed to be detected by public verifi-

cation procedures. As such they are less powerful than Byzan-

tine users. As motivated in the introduction, dishonest nodes do

not wrongfully blame honest nodes since it is rather easy for a

human reader or an automatic tool aware of social relationship

between users, to distinguish between legitimate and wrongful

accusations. Consider, for example, a single participant who

blames a large number of nodes and the case where a group of

related participants all blame an identical set of nodes. Several

existing systems manage to filter wrongful blames or at least

limit their impact. For instance Digg [8] does not allow related

users to rate each other’s articles. SumUp [35] allows nodes

to vote only over the edges of the social network thus limiting

the impact of coalitions of connected users. Ostra [22] bounds

the emission rate of a node by the number of trust relationships

it has. SocialFilter [32] complements trustworthiness by the
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notion of credibility which weights the reports nodes send. Fi-

nally, EigenTrust [18] uses an iterative algorithm inspired by

PageRank to determine node reputation in a robust way.

We consider participants who collude to form a single coali-

tion B (|B|= B). When dishonest nodes collaborate to bias the

outcome of the poll, they are assumed to share the same opin-

ion. While honest nodes vote for one option, dishonest nodes

may want to promote a set of options. Still, they act selfishly in

the sense that they prefer to protect their own reputation to cov-

ering up their suspected accomplices. A single coalition repre-

sents the worst case scenario for both discovering a node’s vote

and for biasing the result of the polling.

DPol relies on a structured overlay, independent of the so-

cial graph, which provides scalable dissemination and facili-

tates verifications. This overlay could be provided by the so-

cial network infrastructure or be built in a decentralized fash-

ion. The N nodes are clustered into r ordered groups, from g0

to gr−1. A node p in group gi maintains two sets of nodes: a set

Po of officemates containing all nodes belonging to the same

group (Po = gi\{p}) and a fixed-size set Pp of proxies, con-
taining nodes in the next group (Pp ⊆ gi+1 mod r). Therefore,

all groups virtually form a ring with g0 being the successor of

gr−1. Each group gi is a clique. We define the client of a node p
to be a node for which p acts as a proxy. Every node maintains

a list of its clients in the previous group (Pc ⊆ gi−1). Each

node discards messages that originates in nodes which are not

in the set Pc ∪Po. Figure 1 depicts the overlay used by DPol.
Several prominent overlay construction protocols make use of

group-based overlays using gossip, the most commonly known

of which is Kelips [14]. These protocols can further be made

robust to dishonest nodes and provide mechanisms that we will

extend for polling. Fireflies [16], for instance, builds a random-

ized intrusion-tolerant overlay on which Byzantine nodes have

only a limited control, and is resilient to the eclipse attack (i.e.,

no node has only Byzantine neighbors [36]). Brahms [3] pro-

vides unbiased uniform random peer-sampling in the presence

of Byzantine nodes. Finally, AVMON [23] builds a pseudo-

random overlay based on the hashes of the nodes’ IP addresses

(on which malicious nodes have very little, if any, control) thus

reducing the chances of colluding nodes being connected. We

further discuss the overlay construction and how to make it re-

silient to dishonest nodes in our probabilistic analysis which

assumes a uniform random distribution of nodes among groups

(Section 5).

3. The Polling Protocol

In this section, we present DPol and prove that the protocol

is correct; we then analyze its spatial and message complexity

and present experimental results of a binary poll on PlanetLab.

We complement these experiments with an analysis of DPol in
the presence of crashes and message losses.

3.1. Polling in a nutshell

DPol is composed of three phases: (i) voting, (ii) count-

ing and (iii) broadcasting. A node’s vote goes to one option

p’s clients (Pc)

p’s proxies (Pp)

p’s officemates (Po)
p

gi

gi+1

group

gi−1

Figure 1: The structure of DPol. Node p in gi acts as a proxy for its clients in

the preceding group gi−1, and has proxies of its own in the successive group

gi+1. It also communicates with its officemates – the nodes in gi.

vp ∈ {1, . . . ,d}. During the voting phase, a node generates a set

of ballots in the form of binary vectors of size d,�b ∈ {0,1}d re-

flecting its vote (when aggregated) and sends each ballot to one

of its proxies. A ballot with only the first two bits set equally

promotes the first two options over the d − 2 other options. In

the counting phase, each node in a group computes the sum of

the votes of the nodes in the previous group (local tally). This

is achieved by having each proxy summing up the ballots it

has received and broadcasting the result to its officemates. Fi-

nally, the local tallies are forwarded along the ring so that all

nodes eventually compute the final outcome. Tallies are natural

numbers vectors of size d,�t ∈ N
d and the component with the

maximum value in the final tally vector determines the winner

of the poll.

3.2. Description

We now give the algorithm details of each phase of the DPol
protocol.

Voting. The ballot generation method is inspired by the sim-

ple secret sharing scheme introduced in [7] and shares simi-

larities with the Vote/Anti-Vote/Vote system [27]. To vote for

a given value v ∈ {1, . . . ,d}, a node generates 2k + 1 ballots
b1, . . . ,b2k+1 ∈ {0,1}d representing its vote, where k is an in-

teger called the privacy parameter. To be valid, a ballot must

contain at least one 1 and at least one 0.

In the binary case, a valid ballot is (1,0) or (0,1). In this

case, the intuition is to create k+1 ballots towards a given target

(first or second option) and k ballots for the other option, such

that when the ballots are summed they result in a vote for the

chosen option vp. In general, we assign the i-th option with a

vector ci = (0, . . . ,0,1,0 . . . ,0) with 1 in the i-th position and

its complementary vector ci = (1, . . . ,1,0,1, . . . ,1) with a 0 at

the i-th position. In the case where a node is allowed to vote for

a single option, a valid vote therefore equals ci + k · (1, . . . ,1)
where k is the privacy parameter. The ballots emitted by a node

must sum to a valid vote. For instance, in the case d = 3 and

k = 1 the set of ballots {(1,0,0),(0,1,1),(1,0,0)} is valid and

promotes the first option.
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Algorithm 1 DPol at node p in group gi, i ∈ {0, . . . ,r−1}
Input: a vote v ∈ {1, . . . ,d}
Variables: an individual tally t′′ = 0

a local tally t′ = 0

an array of local tally sets S [{0, . . . ,r−1}→∅]
a local tally array T [{0, . . . ,r−1}→⊥]
Output: the global tally t̂

Polling Algorithm
1: vote(v, Pp)
2: local_count(t′′, Pp)
3: t′ = t′+ t′′
4: local_tally_broadcast(i, t′, Pp)
5: t̂ = ∑i T [i]

Voting phase
procedure vote(v,Pp) is
6: {b1, . . . ,b2k+1}= share(v)
7: for each proxy ∈ Pp do
8: send [Ballot, bi] (proxy)
9: end for

upon event 〈 receive | [Ballot, b] 〉 do
10: t′′ = t′′+b
function share(v) returns a set of ballot B is
11: B = {cv}
12: for each i ∈ {1, . . . ,k} do
13: w = random number in {1, . . . ,d}
14: B = B∪{cw}∪{cw}
15: end for
16: return B

Intermediate Counting phase
procedure local_count(t′′,Po) is
17: for each officemate ∈ Po do
18: send [IndividualTally, t′′] (officemate)
19: end for
upon event 〈 receive | [IndividualTally, t] 〉 do
20: t′ = t′+ t

Local Tally Broadcasting & Forwarding phase
procedure local_tally_broadcast(i, t′′, Pp) is
21: for each proxy ∈ Pp do
22: send [LocalTally, i, t′] (proxy)
23: end for
upon event 〈 receive | [LocalTally, igroup, t] 〉 do
24: S [igroup] = S [igroup]∪{t}
25: if (

∣∣S [igroup]
∣∣= |Pc|) then

26: T [igroup] = choose(S [igroup])
27: if (igroup � (i+1) mod r) then
28: local_tally_broadcast(igroup,T [igroup])
29: end if
30: end if
function choose(A ) returns local tally is
31: return the most represented local tally in A

In DPol, a node generates k ballots associated to k ran-

dom candidates and their complementary ballots and a single

ballot for the candidate v it wants to promote (lines 11–16

in Algorithm 1). Such a set of ballots is valid and sums to

cv + k · (1, . . . ,1). Once a node has generated its 2k + 1 bal-

lots, it sends each of them to a different proxy. The number of

proxies is to be chosen accordingly,
∣∣Pp

∣∣ = 2k+ 1. Lines 6–

9 in Algorithm 1 detail the voting phase. Figure 2(a) depicts a

node sending its 2k+1 ballots (e.g., {(0,1),(1,0),(1,0)}) to its

assigned proxies. Once every node in the system has received

one ballot from each of its clients, the voting round is over.

Intermediate Counting. A group acts as a voting office for the

preceding group on the ring. The officemates collect ballots

from their clients (Figure 2(b)) and share intermediate results

(Figure 2(c)). To this end, a proxy sums the ballots it received

into an individual tally t′′ (line 10 in Algorithm 1). Once a node

has received the expected number of ballots from its clients, it

broadcasts the computed individual tally to its officemates, as

depicted in Figure 2(b) (lines 17–19 in Algorithm 1). The of-

ficemates aggregate the received data, i.e., they sum each oth-

ers’ individual tallies (line 14 in Algorithm 1) and store the re-

sult summed with their individual tally into a local tally t′ as
shown in Figure 2(c) (line 3 in Algorithm 1).

Local Tally Forwarding. Once the intermediate counting phase

is over, i.e., all the officemates have computed a local tally, each

node sends the local tally of its group to its proxies (lines 21–

23 in Algorithm 1). Upon reception of a message containing

a local tally, a proxy adds it to the set S [i] of possible values

for gi (line 18 in Algorithm 1). When a proxy has received the

expected number |Pc| of local tallies for a given group gi, it

decides on a local tally by choosing the most represented value

in S [i] and stores it in T [i]. When a local tally T [i] is as-

signed, it is further forwarded (Figure 2(d)) to the next group

using the proxies (lines 25–30 in Algorithm 1). Local tallies

are then forwarded in the system along the ring. When a node

receives the local tally corresponding to its own group, the tally

is no longer forwarded (lines 27–29). The global tally is com-

puted at each node by simply summing the local tallies of all

groups: t̂ = ∑r−1
i=0 T [i] (line 5 of Algorithm 1).

The nodes in group gi assume a special role for the members

of the preceding group gi−1: they collect and count ballots from

gi−1 and initiate the dissemination of the resulting local tally

over the ring. Each group has a special role for the preceding

one, and all nodes execute the exact same protocol.

3.3. Analysis

In this section, we analyze the correctness and complexity of

DPol assuming an ideal setting (i.e., reliable channels and non-

faulty nodes) and only honest nodes. We later revisit these as-

sumptions by measuring the impact of message loss and crashes

both analytically and experimentally in Section 3.4. We will

consider the impact of dishonest nodes on privacy and accuracy

in the worst case in Section 4 and on average in Section 5.

Theorem 1 (Correctness). Consider a system of size N where
each node p votes for the vp-th option. The polling algorithm
terminates and each node eventually outputs N · k(1, . . . ,1) +
∑p cvp .
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Figure 2: Key phases of DPol with d = 2. (a) A node in gi−1 generates 3 (k = 1) ballots {(1,0),(1,0),(0,1)} and sends them to its proxies in gi. (b) A node in

gi collects its received ballots {(1,0),(1,0),(1,0)} and sums them to (3,0) (individual tally) and shares the tally with its officemates in gi as depicted in (c). (c) A

node receives all expected individual tallies {(3,0),(2,1),(1,2)}, then computes and sends the local tally ((9,3)) to its proxies in the next group gi+1 as depicted in

(d). (d) The proxies in gi+1 forward the local tally to their proxies in gi+2.

Proof. (Accuracy) We first prove that the local tally computed

in every group gi reflects the vote of all nodes in gi−1. The local

tally computed in a group is the sum of the ballots received

by its members. Each node p in gi−1 sends each of its ballots

b1,p, . . . ,b2k+1,p to distinct proxies in gi. Similarly, each proxy

p′ in gi receives a set of ballots Bp′ from its clients. Since all

nodes are honest by assumption, the set of ballots sent by the

nodes in gi−1 equals the set of ballots received in gi. Therefore,

each member of gi computes the local tally to be:

t′ = ∑
p′∈gi

∑
b∈Bp′

b

= ∑
p∈gi−1

2k+1

∑
j=1

b j,p

= ∑
p∈gi−1

[
k · (1, . . . ,1)+ cvp

]
= |gi−1| · k · (1, . . . ,1)+ ∑

p∈gi−1

cvp

Note that this follows from the homomorphic property of the

simple secret sharing scheme. Since nodes do honestly forward

the local tallies along the ring and the messages are eventually

received, each node ends up with the correct values for the local

tallies of every group, and thus the correct global tally.

(Termination) A node knows the number of messages it is

supposed to receive in each phase. Since every node sends the

required number of messages and every message eventually ar-

rives, each phase completes. Because the algorithm has a finite

number of phases, it is guaranteed to eventually terminate.

Proposition 1 (Spatial complexity). The size S of the state
maintained at each node in group gi is O(r · k+ |gi|).
Proof. A node maintains the set of proxies (2k+ 1), the set of

its officemates (|gi|) and the list of its clients (at most |gi−1|).
Additionally, a node stores a set of 2k + 1 possible values (a

node has 2k+ 1 clients on average) for each of the r local tal-

lies to perform global counting, that is S = O(k) +O(|gi|) +
O(|gi−1|)+O(r · k) = O(r · k+ |gi|).

Proposition 2 (Message complexity). The average number of
messages M sent by a node in group gi is O(r · k+ |gi|).

Proof. A node sends messages during the voting phase (2k+1

ballots), the intermediate counting phase (|gi|−1 individual tal-

lies), and the global counting phase which involves the dissem-

ination of r local tallies along the ring using its 2k+1 proxies,

that is M = O(k)+O(|gi|)+O(r · k) = O(r · k+ |gi|).

Note that the parameters are not independent: the sizes of the

groups are related and bound to the number of groups by the re-

lation ∑r−1
i=0 |gi|= N. The two quantities M and S are minimized

when r =
√

N/k and |gi|=
√

Nk, and thus M = S =O(
√

Nk).

Proposition 3 (Time complexity). Under the assumption of a
synchronous system where time evolves in rounds, DPol oper-
ates in O(max |gi|+ rk) rounds.

Proof. The voting phase operates in 2k+1 rounds. The count-

ing phase requires each node to send its individual tally to its

|gi|− 1 officemates. All the nodes in the system send their in-

dividual tally in parallel, therefore the time complexity of this

phase is O(|gi|). The local tally broadcast phase operates in

O(kr) rounds as it requires 2k + 1 rounds for a local tally to

be forwarded from one group to the next one and the ring is

composed of r groups.

Using the values of the parameters r and {gi}r
i=1 specified

above, the time complexity of DPol is O(
√

Nk).

3.4. Evaluation

We report on the deployment of DPol, in the case of binary

polling, on a PlanetLab testbed of 400 nodes and analyze the

practical performance of DPol. The message loss rates, crashes

and asynchrony inherent to PlanetLab allow us to experiment

with the algorithm in tough real-world settings. We evaluate

our algorithm with two different privacy parameter values k = 1

and k = 2.
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Overlay. The cluster-ring-based overlay is built using a cen-

tralized bootstrapping entity which keeps track of the whole

set of nodes, assigning each node to a random group. Nodes

have exactly 2k+1 proxies in the next group and the number of

clients of a node is (2k+1) |gi−1|/ |gi| on average.

Communication and Asynchrony. Nodes communicate by

UDP which may suffer message loss on the communication

channels. For instance, we observed loss rates on PlanetLab

ranging from 5% to 15%. In addition, PlanetLab nodes are un-

reliable, causing expected messages to be lost due to sender

crashes. Therefore, phase terminations cannot be detected by

simply counting the number of received messages. In the local

tally forwarding phase, when the number of possible values for

a local tally grows beyond a given threshold γ · |Pc|, the node

gets Δt seconds to make the decision for this particular local

tally. The two other phases are simply bounded in time. In our

implementation, γ is set to 0.5 and Δt to 5 seconds.

Experimental results. Figure 3 shows the accuracy of DPol
among 400 PlanetLab nodes with k = 2. Figure 3(a) considers

the value of the outcome while Figure 3(b) considers the sign of

the outcome. By outcome we mean the difference between the

number of votes for the first option (i.e., corresponding to the

first component of the tally) and the number of votes for the sec-

ond option. More specifically, the outcome equals (1,−1)T · t′′.
Without loss of generality, we vary the proportion α of node

voting for the first option between 0.5 and 1. In Figure 3(a), we

plot the standard deviation on the computed outcome for α in

that range. For each run, we compute the average of the error

when computing the outcome (this is the difference between the

outcome on each node and the real one) over all nodes. Each

point represents the average of this value over 20 independent

runs. Note that the accuracy increases when α is close to 0.5.
This is because the closer the tally is to 0.5, the lower the impact

of message losses on the outcome. Effectively, the two compo-

nents of the individual and local tallies are close and therefore

their impact on the outcome is close to zero.

Figure 3(b) displays the fraction of nodes deciding on the

winning option (among the nodes that were able to decide on

a global tally) as a function of α . Effectively, even if the stan-

dard deviation is relatively small, some nodes may decide in-

correctly on the winning option. Consider the organizers of

a Saturday night party asking their friends in a social network

whether partners should be excluded or not. As depicted in Fig-

ure 3(b), for α = 52.5%, some nodes would compute a different

answer than the majority. This means that a minority of partic-

ipants who compute negative outcome would come with their

partners. Figure 3(b) (solid line) also shows the proportion of

nodes that are unable to decide on a global tally (because their

set of possible values never reach the threshold γ). We observe

that this fraction remains very low (less than 4%) and is inde-

pendent of α .

Analysis. Crashes and message loss do arise and affect the cor-

rectness and termination of the protocol. Crashes can impact

the system in two different ways. First, nodes may crash in-

dependently before sending unique information. The infor-

mation refers to data they received that did not yet get repli-

cated, typically initial shares of votes (i.e., ballots). Losing

such data affects the global tally. Second, several nodes may

be crashed at given time. This may result in other nodes be-

ing unable to decide on a local tally and thus on the global

tally from a lack of corroborating pieces of information. In the

following, we analyze the impact of the first type of crashes

on the outcome. Finally, by relaxing the decision condition

from
∣∣S [igroup]

∣∣= |Pc| to
∣∣S [igroup]

∣∣≥ γ · |Pc| (as described
above), we compute the probability of a node failing to decide

on the global tally.

Proposition 4 (Impact of crashes on accuracy). An individual
crash can affect the score of an option up to 3k+2.

Proof. Consider a node that crashes before broadcasting its in-

dividual tally to its officemates. This individual tally is lost,

and represents the sum of the |Pc| = 2k + 1 ballots sent by

its clients. The impact of such a crash on each option score is

bounded by 2k+ 1 since ballots are binary vectors. Moreover,

if a node crashes while sending its ballots, it affects each option

score by up to k + 1. The maximum impact of an individual

crash is thus 2k+1+ k+1= 3k+2.

We assume that nodes crash with probability c and never re-

cover from a crash. There is a probability di for a node p ∈ gi
not to decide on the local tally of group r. This can happen if

more than (1− γ) |Pc|= (1− γ)(2k+1) clients fail to forward

the local tally because they either crashed or have themselves

not decided on the local tally. We define ei as the probabil-

ity for a node in gi to fail to forward a local tally. We have

ei = c+(1− c)di where

di =
γ(2k+1)−1

∑
j=0

(
2k+1

j

)
(1− ei−1)

j e2k+1− j
i−1 and d0 = 0

A node does not decide on the global tally if it has not has

decided on at least one local tally, that is dr.

Discussion. DPol is a decentralized peer-to-peer protocol de-

ployed on the Internet, where nodes may leave and join the sys-

tem dynamically. This behavior, referred to as churn, is both

common and widespread, and may further disrupt the func-

tion of the protocol beyond message loss and node crashes.

Fortunately, because our protocol is lightweight and executes

quickly, the impact of churn is at the same manageable level

as we observed in our PlanetLab experiments (i.e., only a few

nodes among the 400 nodes participating in the poll crashed or

left during the course of the protocol) as we detail below.

As we explained at the beginning of this Section, the phases

of DPol are bounded in time for fault-tolerance. During our

experiments with 400 nodes, we set the time-out δ to 5 sec-

onds, thus giving an execution time of less than 20 seconds.

Using Proposition 3, which states that the time complexity of

DPol grows as
√

N, we can make a projection for a poll involv-

ing 100,000 participants (recall that DPol targets polls within
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Figure 3: Accuracy of the algorithm in presence of asynchrony, message loss and failures (N = 400 and k = 2). [400 nodes PlanetLab tested]

groups rather than in the entire social network): the algorithm

is expected to complete in approximately five minutes.

To put this duration in perspective, several trace-driven anal-

ysis of churn in various peer-to-peer systems and applications,

including file-sharing (BitTorrent, eDonkey [34]), Voice over

IP (Skype [37]) and on-line social networks (Facebook, Hi-

Five [30]), report an average session time of at least a few min-

utes. They further show that this duration is significantly in-

creased when considering peers who already spent some time

in the system, and initial duration of 5 minutes are typical for

social networks. For instance, it is shown in [34] that more than

95% of the peers who already spent an hour in the system stay

at least one more hour in the system. Therefore, by assuming

(or even requiring) that peers have spent a reasonable time on-

line to participate to the poll, the impact of churn is brought

down to a level in which we ensure stability for a correct exe-

cution of the protocol. This corresponds to the outcome of our

experiments, in which only a handful of nodes were unable to

determine the outcome of the poll due to crashes.

4. Impact of dishonest nodes

In this section, we analyze the maximum impact of dishon-

est nodes on DPol. For the sake of the analysis, we assume an

overlay with
√

N groups of size
√

N (
√

N ∈N), such as Kelips

[14], and that each node has exactly the same number (2k+ 1)

of clients and proxies. We consider a polling scheme based on

secret sharing to preserve privacy and we assume auxiliary ver-

ification schemes to detect attacks and identify dishonest nodes.

We distinguish between two types of verifications: (i) pub-

lic verifications that leverage only information which does not

compromise the nodes’ privacy (i.e., the content of the ballots),

such as the individual tallies received from their officemates,

and (ii) private verifications that may leverage all information

including the content of the ballots.

To dissuade nodes from misbehaving, verifications affect the

user profiles of the involved nodes. When an attack is detected

and reported, the neighbors of the accused nodes, i.e., the nodes

it communicates with (typically clients and proxies), are asked

for the messages they exchanged. If the testimonies of p1 and

p2 demonstrate that p0 misbehaved, their profiles are tagged

with “p1 and p2 jointly accused p0” and the profile of p0 is

tagged with “p0 has been accused by p1 and p2”. These tags

can then be used to determine abnormal behaviors.

4.1. Preserving privacy in the presence of dishonest nodes

We derive a theoretical upper bound on the impact of a coali-

tion of dishonest nodes on the nodes’ privacy, that is the maxi-

mum number of votes the dishonest coalition can disclose.

Theorem 2. A coalition of B malicious nodes can disclose the
votes of at most �B · 2k+1

k+1 � ≤ 2B honest users.

Proof. This theorem follows from the secret sharing scheme

used in DPol, which is to divide a node’s vote into 2k+ 1 bal-

lots. Among them, k+ 1 ballots have the bit corresponding to

the node’s vote set and only k ballots have the bit correspond-

ing to each competing candidate set. We first prove that a node’s

vote is disclosed by dishonest nodes if and only if its k+1 prox-

ies that received the ballots corresponding to its vote (i.e., the

ballots in which the vp-th bit is set) belong to the coalition. It is

clear that if k+1 ballots received by the dishonest have a bit set

at the vp-position, the vote is recovered with certainty. We now

prove the contrapositive statement by contradiction. Let �b be

the sum of the ballots sent by p to dishonest proxies. We sup-

pose that all the components of�b are strictly lower than k+ 1

and assume that the dishonest coalition recovers the client’s

vote. Not all of the 2k+1 proxies can be dishonest, otherwise,�b
would simply have been the vote of p, that is cvp + k · (1, . . . ,1)
(whose vp-th component is equal to k+1). The best case (from

the standpoint of the coalition) is when 2k proxies are dishon-

est. In that case, the components of�b are either equal to k− 1

or k. The vote of p is recovered with certainty if and only if a

single component of�b is equal to k. This implies that the miss-

ing ballot contains only ones, which is in contradiction with the

definition of a valid ballot.

Since all nodes, including dishonest ones, have exactly 2k+1

clients, the dishonest coalition collects a total of B · (2k + 1)
ballots which in turn may recover at most �B · 2k+1

k+1 � votes.
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4.2. Confining the impact of dishonest nodes

First, we assume that honest nodes do not want to disclose

any of the ballots they sent or received (i.e., public verifica-

tions). In this context, we study the impact of colluding dishon-

est nodes.

Next, we assume that honest nodes are willing to sacrifice

privacy for accuracy by revealing some of their ballots (i.e., pri-

vate verification) and we explore how this information can be

used to catch dishonest nodes that cheat without being detected

by public verifications.

4.2.1. Impact of a dishonest coalition under public verifica-
tions

To anthropomorphize the discussion, suppose that votes are

being cast for d distinct candidates representing the different

options of the poll. Recall that the global tally is the d-ary vec-

tor ∑p cvp +N · k · (1, . . . ,1), whose components correspond to

the tallies for each candidate in the poll.

Theorem 3. For B <
√

N, every member of a dishonest coali-
tion may affect each candidate score up to 3k+2 without being
detected by public verifications.

Proof (structure). The proof relies on the facts that (i) honest

nodes always tell the truth and strictly follow the protocol (in-

cluding verifications), and (ii) dishonest nodes do not behave in

such a way that their reputation is tarnished with certainty. Ef-

fectively, showing that the attacks with an impact greater than

3k+ 2 are detected by the honest nodes with certainty proves

the theorem. A dishonest node may bias the protocol at all three

phases. Lemmas 4-7 encompass all possible attacks, propose a

detection scheme relying on honest nodes, and bound the im-

pact of those that cannot be detected with certainty. In addition,

if an attack is detected, we prove that the dishonest node is ex-

posed by the public verification. Summing the impacts of all

these attacks (Lemmas 4 and 5) for each dishonest node gives a

maximum impact of k+1+(2k+1) = 3k+2 on each compo-

nent of the global tally.

Note that the proof relies on the assumption B <
√

N , where

N is the size of the system and the size of a group is
√

N, to

ensure that the dishonest coalition can neither “control” (there

is at least one honest node to report a misbehavior inside each

group) nor “fool” an entire group without being detected (there

are not enough dishonest nodes to both perform and cover dis-

honest actions). This security property holds deterministically

under the assumption B <
√

N irrespective of how dishonest

nodes are distributed among the groups. Indeed, in the worst

case scenario where all dishonest nodes are concentrated in one

or two consecutive groups, the fact that the number of dishonest

nodes is strictly smaller than the size of a group guarantees that

there is at least one honest node in each group and that there is

a majority of honest node in every pair of successive groups.

The weakest assumption needed is that two consecutive

groups contain less than
√

N dishonest nodes, formally that

|gi ∩B|+ |gi+1∩B| < √
N for all i. In Section 5, we provide

probabilistic analysis of this bound in a setting where dishon-

est nodes are distributed randomly among the groups and prove

that the system is not compromised (dishonest nodes do not

form a majority in any pair of consecutive groups) with high

probability when N tends to infinity for B < N/2.

Corollary 1. When the margin of the leading candidate over
the next candidate is more than (6k+ 4)B, a coalition of B <√

N dishonest nodes cannot influence the outcome of the poll.

Proof. By Theorem 3, colluding dishonest users may decrease

the score of the leading candidate by at most (3k + 2)B and

boost the score of some other candidates by at most (3k+2)B.
This decreases the lead of the top candidate over the runner

up by at most (6k+ 4)B, which is not sufficient to change the

outcome of the poll.

Note that one can infer a relation between the margin by

which the leading candidate wins and the maximum number

of dishonest nodes the system can tolerate (i.e., to output the

correct winner). Consider the binary case for instance where a

proportion α > 0.5 of nodes promote the first candidate. Then

the margin is N(2α−1) and the maximum number of dishonest

nodes the system can tolerate is N(2α −1)/(6k+4).

Corollary 2. If the proportions of nodes voting for each can-
didates are nonzero, DPol is asymptotically accurate for B =
o(N) dishonest nodes.

Proof. Let (α1, . . . ,αd) be the proportions of nodes voting for

the respective candidates. It can be inferred from Theorem 3

that the relative error on the score of the i-th candidate is

bounded by (3k + 2)B/(αiN). Using the fact that B is a sub-

linear function of N proves that the relative error on the vector

of scores computed by DPol tends to 0 when N tends to infinity,

which concludes the proof.

Lemma 4 (Voting). When voting, a dishonest node can affect
each candidate score by at most k+1.

Proof. Due to the overlay structure, a node can only send bal-

lots to the proxies it is assigned (otherwise the ballots are dis-

carded), which is a maximum of 2k + 1 ballots. Therefore a

dishonest node may affect each component of the global tally

by either (i) sending less ballots than it is supposed to or (ii)
by sending less than k or more than k + 1 positive ballots for

a given candidate (i.e., the bit corresponding to that candidate

is set in the considered ballot). In the worst case, the dishon-

est node sends either 2k + 1 or 0 positive ballots for a candi-

date. Since the node should send either k or k+1 positive bal-

lots for that candidate, the maximum impact is |(2k+1)− k|=
|0− (k+1)|= k+1. Note that if the node sends 2k+1 positive

ballots for the candidate it is voting for, or 0 positive ballots for

a candidate that it is not voting for, the impact is k.

Lemma 5 (Computing individual tallies). Assuming B <
√

N,
there exists a public verification scheme such that if a dishonest
node modifies the individual tally for a candidate by more than
2k+ 1, then the attack is detected with certainty and the node
is exposed.
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Proof. The overlay structure we consider ensures that any node

has exactly 2k+ 1 clients and thus receives 2k+ 1 ballots dur-

ing the voting phase. A dishonest node can modify the can-

didate score by pretending that it received some other number

of positive ballots for that candidate, thus affecting the candi-

date score in its individual tally. If the dishonest node tries to

forge too many ballots, specifically by reporting a candidate

score outside the range [0,2k+ 1], then the attack is identified

by its honest officemates (the assumption B <
√

N ensures that

at least one such node exists in each voting office). Therefore,

in order to not to be publicly detected with certainty, a node

that corrupts or forges ballots must output an individual tally

in that range. Consequently, the worst case occurs when a dis-

honest node receives 2k+1 positive ballots for a candidate and

discards them all while summing them, leading to a maximum

impact of 2k+1 on that candidate’s score.

We stress that the verification schemes described in the proof

succeed to detect misbehavior even in case of collusion. Con-

sider the following situation: a client sends an erroneous ballot

(e.g., with value 2 for the first candidate) to a colluding proxy

who will aggregate it with its individual tally without report-

ing the misbehavior. If the dishonest proxy has received only

positive ballots for the first candidate (or already turned all the

negative ballots into positive ones), the first component in its

individual tally will become 2k+2 which is larger than 2k+1.

This range violation will be detected with certainty. If the dis-

honest proxy received at least one ballot negative for the first

candidate, then covering up for its co-conspirator comes down

to turning this negative ballot into a positive one, and the impact

will therefore be bounded by 2k + 1. Finally, the assumption

that at most
√

N−1 nodes are dishonest ensures that there is at

least one honest node in each group to report individual tallies

outside the range [0,2k+1].

Lemma 6 (Broadcasting individual tallies). There exists a pub-
lic verification scheme so that a dishonest node that broadcasts
inconsistent copies of its individual tally to honest nodes, i.e.,
sending different values to its honest officemates, is detected
with certainty and the node is exposed.

Proof. Before deciding on a local tally, every node broadcasts

the set of individual tallies it received to its officemates. This

way, an honest officemate will trivially detect the inconsistency.

Dishonest nodes are exposed when their neighbors are asked for

the individual tallies they received from these nodes.

Note that broadcasting different individual tallies can help a

dishonest node to impose an arbitrary value for the local tally.

For instance, suppose that k = 2 and that some proxy has 2k+
1= 5 clients of which only two are dishonest. In this case, there

is a majority of honest nodes. Consequently, if the honest nodes

send the same local tally, it will be the one chosen by the proxy.

However, if the dishonest nodes send different values as their

individual tallies then honest nodes will compute different local

tallies. The proxy will then decide on the arbitrary local tally

sent by the dishonest nodes because it is the most represented.

Lemma 7 (Forwarding local tallies). There exists a public ver-
ification scheme to detect with certainty if a group forwards
inconsistent copies of a local tally, i.e., nodes sending different
values to their proxies, and to expose the dishonest nodes.

Proof. Inconsistency in local tally forwarding is detected as-

suming the following: before deciding on a local tally, a node

broadcasts the set of received local tallies to its officemates. An

inconsistency is detected if at least one of the following condi-

tions is satisfied: (C1) an honest node received different local

tallies from its clients, (C2) an honest node received different

local tallies than its officemates. Consider j dishonest nodes

concentrated in a group gi forwarding an incorrect local tally

to their proxies. Because of (C1), the clients of an honest node

in gi+1 must all be dishonest. Since the number of clients of

all nodes equals their number of proxies (2k+ 1), j colluding

dishonest nodes can corrupt a maximum of j proxies. There-

fore, the
√

N − j remaining proxies in gi+1 must collude with

the coalition in gi to circumvent (C2). This is illustrated in Fig-

ure 4. To conclude, in order not to be detected, such an attack

requires j dishonest nodes in gi and
√

N − j dishonest nodes

in gi+1, that is a minimum number of
√

N dishonest nodes in

gi ∪ gi+1. Assuming B <
√

N, either a dishonest node in gi
is exposed by a public verification scheme (since it broadcast

a local tally that does not correspond to the sum of individual

tallies it received) or a dishonest node in gi+1 is exposed by a

public verification scheme (since it has broadcast a different lo-

cal tally from the one it received). The proof holds for every

hop of the forwarding, including the initial hop which is con-

ducted by the nodes who actually computed the local tally being

forwarded.

gi gi+1

Figure 4: Corrupted local tally that remains undetected.

4.2.2. Leveraging private verifications
So far we have only considered public verifications in which

the contents of the ballots are never disclosed. Now assume that

the nodes accept, with nonzero probability, to relax privacy for

the sake of verifications and reveal a subset of the ballots they

sent or received or both. This partial information can then be

leveraged to detect the dishonest behaviors described in Lem-

mas 4 and 5.

Consider as a first step, for the sake of simplicity, the case

of binary polling. During the voting phase, a dishonest node
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that sent k + 1+ j ballots (1,0) and only k − j ballots (0,1)
(1≤ j ≤ k) is unable to provide the identifier of k− j+1 proxies

to which it sent a (0,1) ballot. Therefore, a simple verification

is to ask the suspected node to provide a list of proxies who can

testify that the node sent at least j′ ballots of each kind, for a

random value j′ ranging from 1 to k. Note that an inspected

node can disclose up to j′ = k ballots without revealing its vote.

For d > 2, the components of an inspected node’s vote may be

verified independently. Effectively, to check that the vote of

a node for the i-th candidate is in [ j′,2k + 1− j′] ( j′ ranging
from 1 to k), the verifier asks the inspected node to provide the

address of j′ proxies to which it sent a ballot with a 0 at the i-th
position and k proxies to which it sent a ballot with a bit set in

the i-th position.

During a ballot corruption attack (Lemma 5), partial infor-

mation about the ballots received by the inspected node can be

leveraged to refine the bound on its individual tally: suppose

the inspected node received nb ballots (i.e., under the perfect

client-proxy matching assumption nb = 2k + 1), if we further

know that it received at least n+b ballots (1,0) and n−b ballots

(0,1), then the bound on the score of the first candidate can be

refined from [0,nb] to [n+b ,nb −n−b ]. Similarly, the score of the

second candidate in the individual tally must be in the range

[n−b ,nb −n+b ]. This verification scheme extends naturally to the

cases where d > 2.

p1

p2

(1, 0)

(1, 0)

(1, 0)

(1, 0)

(1, 0)

(3, 0)

(a)

p1

p2

(1, 0)

(1, 0)

(0, 1)

(1, 0)

(1, 0)

(3, 0)

(b)

Figure 5: Dishonest nodes (p1 and p2) do not benefit from covering up for each

other (illustrated in the binary case).

In both of the aforementioned verification schemes, dishon-

est nodes have no interest in covering up for one another. Con-

sider the examples depicted in Figure 5 where a dishonest node

p1 is the client of a dishonest node p2. In Figure 5(a), if p1’s

vote is verified and p2 covers p1 up, i.e., it testifies that p1 sent

a ballot (0,1), then it exposes itself to a private verification on

its individual tally. Note that a node’s statement has to be con-

sistent across different verifications, thus if the vote of p2 is fur-

ther verified, p2 must stick to its first version about the ballots it

received. The same situation occurs in Figure 5(b): if p2’s indi-

vidual tally is verified and p2 covers up for p1, i.e., it testifies it

sent a ballot (0,1) to p2, it puts itself at risk should it be subject

to a private verification on its vote. Since we assume that dis-

honest nodes are selfish, they never cover each other up when

privately verified. In conclusion, relaxing privacy ensures that

every dishonest node has nonzero probability to be exposed. A

lower bound on this probability is given in Section 5.5.

5. Polling in practice

So far we evaluated the impact of a coalition of dishonest

nodes in a worst case scenario. In this section, we revisit the

results and assumptions of the previous section for the average

case. More specifically, we assume a random uniform distri-

bution of nodes across the r groups and that nodes in the next

groups are distributed uniformly at random as proxies in the

preceding groups. We justify this assumption by sketching an

overlay construction protocol, inspired by various techniques

found in the literature, which guarantees a uniform pseudo-

random distribution of nodes in groups on which nodes will

have no or very little control (§5.1). We then study the aver-

age impact of dishonest nodes on privacy (§5.2) and accuracy

(§5.3). Then we refine the security condition that prevents dis-

honest nodes from biasing local tallies in an unbounded way

during forwarding (i.e., controlling two consecutive groups as

explained in Lemma 7) (§5.4). Finally, we give a lower bound

on the probability of detecting a dishonest node who cheats

within the bounds (i.e., 3k + 2) by means of private verifica-

tions as function of the willingness of honest nodes to compro-

mise their privacy (i.e., disclose their vote) (§5.5). The results

presented in this section are consistent with simulations and ex-

periments on a 400-node PlanetLab testbed.

5.1. Overlay construction

The overlay driving DPol organizes the nodes in
√

N groups

arranged on a ring. Each node is connected to all the nodes in

its group (i.e., its officemates), as well as exactly 2k+ 1 proxy
nodes in the next group on the ring, and to 2k+1 client nodes in
the previous group on the ring. A node is assigned to the group

hash(IP) mod
√

N. Note that this assignment may be verified

locally by any node. Nodes can discover the nodes in their own

group (and thus connect to their officemates) and in the next

one using a (robust) peer sampling service. By making each

node sort the list of the nodes in its own group and in the next

one by increasing hashes and making the j-th node in group i
choose node number j+ 1, . . . , j+ k in group i+ 1 as proxies,

we obtain the overlay required by DPol, with the desired uni-

formity property, in a scalable and decentralized fashion. The

overlay construction protocol, while being deterministic in its

initial design, can be randomized by concatenating a random

value shared by all nodes to the nodes’ IP addresses when com-

puting the hashes.

5.2. Privacy

We now assess the privacy guarantees provided by DPol
when the dishonest nodes are placed (i.e., the groups they be-

long to and their set of clients and proxies) uniformly at ran-

dom.

Theorem 8 (Privacy). The probability for a given node to
have its vote recovered by a coalition of B dishonest nodes is
bounded by (B/N)k+1.
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Proof. We proved in Theorem 2 that the vote of a node is re-

covered with certainty by the dishonest nodes if and only if

the k + 1 proxies who received the k + 1 ballots containing a

vote for the chosen candidate collude. This event occurs with

probability
( B

k+1

)
/
( N

k+1

)
when nodes are randomly distributed

in the overlay. For all k,B and N, this probability is bounded by

(B/N)k+1.

In order to link the average level of privacy guaranteed by

the protocol to the parameter k, the system administrator needs

to estimate the proportion of dishonest nodes. However, it is

important to note that DPol is oblivious of this proportion: be

the proportion of dishonest nodes higher than the estimation,

the level of privacy offered would be lower than expected but

DPol would still function properly.

5.3. Accuracy

We now report on the evaluation of DPol in the binary case

over the PlanetLab testbed. The goal of the evaluation is to

compare DPol against the presented theoretical bounds. Our

experiments focus on binary polling. These experiments show

that, in a practical setting, DPol suffers an average impact of

dishonest nodes of around (4k+2)B on the outcome of the poll

(i.e., the score of the first candidate minus the score of the sec-

ond candidate). With a proportion α of nodes voting for the

first candidate, the outcome is αN − (1−α)N = N(2α −1).
We consider the worst case: dishonest nodes perform every

possible attack that does not compromise their reputation with

probability 1 to promote the second candidate, i.e., each dis-

honest node (i) sends 2k+1 ballots (0,1), and (ii) inverts every
ballot (1,0) it receives into a ballot (0,1). Figure 6 displays for

k = 1 and k = 2 the resulting tally (sign on the upper part of the

figure and value on the lower part), compared to the real one

(dashed line), for B = 19 dishonest nodes (B = �√N�−1) in a

system of N = 400 nodes.

We observe that the dishonest coalition affects the outcome

of the poll within the theoretical bound derived in the analysis

(dotted lines in Figure 6). Since a dishonest node can impact the

score of each candidate by up to 3k+ 2, its maximum impact

on the outcome is 6k+ 4. However, the average impact of the

coalition is less than 6k+ 4 (considering the worst case where

the dishonest proxy receives only ballots (1,0) and inverts them

all). The theoretical bound is never reached as the average im-

pact of a dishonest node depends on the actual number of ballots

it can invert; this, in turn, depends on the proportion α of nodes

voting for the first candidate.

Effectively, a voting node sends k + 1 ballots (1,0) out

of 2k + 1 if it votes for the first candidate and k otherwise.

Therefore, the number of ballots (1,0) received by a proxy is

(2k+ 1)
[
α k+1

2k+1 +(1−α) k
2k+1

]
= k+α on average. The im-

pact of a dishonest user who turns ballots (1,0) into ballots

(0,1) is 2(k+α) on average. In addition, dishonest nodes im-

pact the outcome by another 2k by sending 2k+1 ballots (0,1)
during the voting phase. Their total impact is therefore around

4k+1.

Considering a system with B such dishonest users, the biased

outcome can be expressed as N(2α −1)−B(4k+2α) = 2(N−

B)(α − 1
2 )− B(4k + 1). For k = 2, fitting our 55-data point

cloud with a least-squares regression line (plain line in Figure 6)

a(α − 1
2 ) + b gives a = 791 and b = −163. This is close to

the expected parameter values a = 2(N − B) = 760 and b =
−B(4k+1) =−180. We use this analysis to make a projection

on larger scale systems. For k = 1 (Figure 6(a)), every node of

the poll outputs a valid binary results when α > 0.62, which is

to be compared to α > 0.55 observed in Figure 3(b) (without

dishonest nodes). On average, we can derive analytically that

with N = 10,000 and B = 99, the proportion α for which all

nodes decide correctly is α > 0.52.

5.4. Security

Assuming that dishonest nodes are able to choose their prox-

ies and clients, we have shown in Lemma 7 that they can both

perform and cover dishonest actions as soon as the number of

dishonest nodes in two consecutive groups is greater than
√

N.

In other words, the protocol is secure against this attack when

the condition ∀i, |gi ∩B|+ |gi+1∩B|< √
N holds. If B<

√
N,

this condition holds with certainty, regardless of the distribution

of dishonest nodes among groups. Otherwise, there is a nonzero

probability that the condition is violated.

Theorem 9 (Tolerance to dishonest nodes). The probability
that B dishonest nodes compromise the system (i.e., control two
consecutive groups as defined in Lemma 7) is 1 when B ≥ N

2 ,
and converges to 0 exponentially fast in

√
N when B < N

2 .

Proof. As defined in Lemma 7, groups i and i+ 1 have been

compromised if |gi ∩B|+ |gi+1∩B| ≥ √
N. Since gi and gi+1

are disjoint, this event is equivalent to |Gi ∩B| ≥ √
N where

Gi = gi ∪gi+1 for all i.
We first show that if B ≥ N

2 then dishonest nodes will com-

promise the system regardless of their allocation to groups.

We prove the contrapositive statement, so suppose no groups

are compromised. Then |gi ∩ B| < √
N for all groups i.

Summing the inequalities up for all the
√

N groups, we get

∑i |gi ∩B|+ |gi+1∩B| < N, that is, 2∑i |gi ∩B| < N, which

implies that 2B < N and finally B < N/2. Thus if B ≥ N
2 , then

some pair of consecutive groups is compromised.

We now consider the case where B < N
2 . Let β = B

N < 1
2 be

the proportion of dishonest nodes in the system. By the stan-

dard Hoeffding bounds for sampling from a finite population

without replacement, the probability that groups i and i+1 are

compromised is:

pi = P

[
|Gi ∩B| ≥

√
N
]

= P

[
|Gi ∩B|−2

√
Nβ ≥ 2

√
N
(
1

2
−β

)]

≤ exp

(
−4

√
N
(
1

2
−β

)2
)
.

The right-hand function converges to zero exponentially fast in√
N since β < 1

2 . Using the union bound, the probability that
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Figure 6: Accuracy of the poll in the presence of dishonest nodes: with N = 400 and B = 19, dishonest nodes manage to confuse the majority of the nodes for (a)
α < 0.62 when k = 1, and (b) α < 0.73 when k = 2. [400 nodes PlanetLab tested]

some pair of consecutive groups have been compromised is:

p = P

[⋃
i

{|Gi ∩B| ≥
√

N}
]

≤
√

N

∑
i=1

P

[
|Gi ∩B| ≥

√
N
]

≤
√

N exp
(
−
√

N (1−2β )2
)
,

which also converges to zero as N grows to infinity if β < 1
2 .

We can conclude that the probability of a compromise incurs

a phase transition when half of the nodes in the system are dis-

honest. The asymptotic number of dishonest nodes that DPol
can tolerate is therefore N/2.

We now evaluate the probability of the system being compro-

mised by simulation. We first assume that dishonest nodes are

randomly distributed among the groups. For example, groups

could be built consecutively, i.e., the first group is built by pick-

ing
√

N nodes uniformly at random, the second is built by pick-

ing uniformly at random
√

N nodes from the remaining nodes,

and so forth. Under this assumption, the probability of vio-

lating the condition of consecutive groups being compromised

can easily be computed. In Figure 7(a), we plot this probability

as a function of B in a 10,000-node network. It can be seen

that for B < 2,900 the probability is less than 1%. Therefore,

if the deterministic bound is relaxed by using a probabilistic

bound instead, the number of dishonest nodes that the system

can tolerate is consistently higher. In Figure 7(b), we plot the

maximum number of dishonest nodes that the system can toler-

ate, that is the maximum number of dishonest nodes tolerated

to keep the probability of violating the above condition below

1%).

5.5. Detecting dishonest nodes with private verifications

We now evaluate the probability of detecting a dishon-

est node cheating within the bounds derived in Section 4.2

when honest nodes agree to disclose private information with

a nonzero probability.

Theorem 10. There is nonzero probability of detecting a dis-
honest node which misbehaves, even if its impact on each can-
didate score is less than 3k+2.

Proof. Consider as a first step the binary case (as shown in Sec-

tion 4.2.2, the results obtained in the binary case can be easily

extended to for d > 2). Assume that each node is willing to

disclose each of the ballots it sent or received with probability

pd > 0. Now suppose a dishonest node sends k′ > k+1 ballots

of the same kind, say k′ ballots (0,1). This node is detected

by a private verification if at least k+ 2 of its proxies who re-

ceived a ballot (0,1) disclose it. Therefore, the probability for

the dishonest node to be detected is:

k′

∑
j=k+2

(
k′

j

)
p j

d(1− pd)
k′− j .

Similarly, consider a dishonest node that receives n+b ballots

(1,0) and turns n of them into ballots (0,1). The dishonest

node is detected by a private verification if at least n+b − n+ 1

of its clients disclose the ballots they sent to it. Therefore, the

probability for the dishonest node to be detected is:

n+b

∑
j=n+b −n+1

(
n+b
j

)
p j

d(1− pd)
n+b − j .

6. Related Work

We now discuss related distributed voting protocols with par-

ticular attention on those that do not depend on intractability

of mathematical computations. Like most non-cryptographic

voting protocols, DPol ensures privacy via secret sharing tech-

niques. DPol distinguishes itself from related work in the sense
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Figure 7: Average tolerance to dishonest nodes.

that no participant has a special role, following the peer-to-peer

paradigm, which results in increased scalability and robustness.

A large amount of work on secret sharing schemes (intro-

duced by Rivest et al. in [31]) has been published in the late

80’s. Benaloh [2] proposed a scheme for privately sharing se-

crets based on polynomials. Since this scheme is homomorphic

with respect to addition, it may be used for polling. However,

a dishonest participant can easily corrupt the initial shares in

the protocol, thus potentially impacting the final outcome to a

significant degree.

Assuming a majority of honest participants, Rabin and Ben-

Or extended Benaloh’s secret sharing and proposed verifiable
secret sharing scheme (VSS) [24]. Based on VSS, they pro-

posed a secure multi-party computation (MPC) protocol to pri-

vately compute the sum of the participants’ inputs with an ex-

ponentially small error on the output. Beyond the fact that these

techniques assume a fully connected network, synchronous

links and broadcast channels, they involve higher mathematics.

Moreover, since there is no control over the input itself (in con-

trast to DPol where the ballots are in {0,1} for each candidate

and therefore the vote is at most ±(2k+ 1)), a dishonest par-

ticipant may still share an arbitrarily high value and thus affect

the outcome in a potentially unbounded way. Series of follow-

up work on MPC have improved various aspects of the scheme,

but only recently begun thinking about making it scalable and

usable in practice [6, 5]. The appeal of this class of protocols

lies in strong privacy guarantees to participants, including the

dishonest ones, but also makes such schemes less suitable for

polling applications. Note that the same issues also apply to

complex secret sharing scheme and private multiparty compu-

tation such as AMPC [21].

In [20], Malkhi et al. proposed an e-voting protocol based on

AMPC and enhanced check vectors. While powerful, partici-

pants of this protocol have distinct and predefined roles (deal-

ers, talliers, and receivers). This may result in decreased scala-

bility as the load of distributing initial ballots to voters falls on

a small set of nodes that are not part of the system (i.e., deal-

ers) and robustness if specific nodes fail. Nonetheless, these

design choices are fully justified by the requirements inherent

in e-voting applications, such as democracy, verifiability, and

unconditional accuracy. Instead, polling applications can re-

lax such constraints for the sake of simplicity. Another related

distributed voting protocol is the one proposed by Baudron et
al. [1] but it uses asymmetric cryptography.

At a high level, DPol also relates to distributed ranking

schemes. The principle of ranking is similar to polling, in that

a participant evaluates the quality of one of her peers by (i)
locally grading its behavior (input value), and (ii) collecting

the local grades assigned by the rest of the system. However,

to the best of our knowledge, most published work [15, 28]

has focused on designing accurate grading mechanism rather

than providing efficient polling schemes. Dutta et al. [10] con-
sider grading free riders and take into account potential collu-

sion. Nevertheless, none of the proposed ranking schemes pro-

vide a global polling mechanism, as grading generally relies on

polling only a subset of nodes (peers usually collaborate with a

small part of the network). In addition, privacy is generally not

addressed in these schemes.

7. Conclusion

We considered the distributed polling problem in a social net-

work where participants are concerned about their reputation.

To address it, we presented DPol, a simple fully decentralized

polling protocol and proved that it can ensure privacy and accu-

racy, despite the presence of dishonest participants, by means of

verification procedures. Our contribution is therefore twofold.

First, we define a new model of faulty nodes in distributed sys-

tems which incorporates the human and social nature of partici-

pants through privacy and reputation concerns. Second, we pro-

vide a combination of secret sharing and verification techniques

to ensure privacy and accuracy under this model. We find our

model of adversaries to be compelling for various non-critical

(i.e., not sensitive to small deviations on their outcome) private

and secure distributed computation problems in social settings

and that DPol thus paves the way for a new area of research in

distributed computing. In this spirit, a natural extension of our

protocol is to support arbitrary aggregation functions and revisit
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traditional problems of distributed computing. For instance, can

distributed consensus be reached under this model?

Turning our model and DPol into a solution that can be

adopted in practice will require some effort. First, our model

of adversaries in social networks asserts that honest participants

will always report misbehaviors, and that dishonest participants

do not blame honest participants because this may eventually

be detected, thus tarnishing the reputation of the dishonest par-

ticipants. To make these assumptions more realistic in practice,

the challenge is to design an automated tool to help users of

a social network evaluate and quantify the reputation of a par-

ticipant by cross-checking information such as tags and social

connectivity. Given the selectivity and specificity of such a tool,

it would be interesting, within the framework of game theory, to

study equilibria and optimal strategies for non-cooperating par-

ticipants who attach different values to their privacy, their repu-

tation, the outcome of the poll and the accuracy of the tally. Sec-

ond, DPol relies on a number of assumptions to provide privacy

and accuracy guarantees, including the uniform assignment of

nodes to groups, synchronization between different phases of

the protocol, a limited rate of churn, and that the number of

nodes is a perfect square. We intend to address each of these

assumptions to make DPol a practical peer-to-peer protocol.
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