354 research outputs found

    Mobile optical wireless system using fast beam Angle, delay and power adaptation with angle diversity receivers

    Get PDF
    In this paper, we introduce a novel fast angle and power adaptation method in optical wireless (OW) systems. The fast angle and power adaptive line strip multibeam system (FAPA-LSMS) can identify the optimum spots distribution based on a divide and conquer (D&C) algorithm and can achieve a signal-to-noise ratio (SNR) performance comparable to that obtained using the normal APA-LSMS. This results in a significant reduction in the system adaptation time by a factor of 20. The proposed FAPA system makes use of delay adaptation to minimize the delay spread at the receiver. A significant reduction in the delay spread by a factor of 50 can be achieved compared to the non-adaptive LSMS. The proposed system improves the SNR by 50 dB over a conventional diffuse system

    Optimisation of transmission bandwidth for indoor cellular OWC system using a dynamic handover decision-making algorithm

    Get PDF
    In this paper, we propose a novel cellular optical wireless communications (COWC) system with four diffused cells. A dynamic handover scheme is proposed to make the link more flexible by the way of adaptive channel allocation in different environments. The simulation results show that the proposed algorithm offers almost five times of the maximum dynamic transmission bandwidth and energy efficiency compared to the worst scenarios when all base stations (BS)s are active

    Reinforcement Learning for Resource Allocation in Steerable Laser-based Optical Wireless Systems

    Full text link
    Vertical Cavity Surface Emitting Lasers (VCSELs) have demonstrated suitability for data transmission in indoor optical wireless communication (OWC) systems due to the high modulation bandwidth and low manufacturing cost of these sources. Specifically, resource allocation is one of the major challenges that can affect the performance of multi-user optical wireless systems. In this paper, an optimisation problem is formulated to optimally assign each user to an optical access point (AP) composed of multiple VCSELs within a VCSEL array at a certain time to maximise the signal to interference plus noise ratio (SINR). In this context, a mixed-integer linear programming (MILP) model is introduced to solve this optimisation problem. Despite the optimality of the MILP model, it is considered impractical due to its high complexity, high memory and full system information requirements. Therefore, reinforcement Learning (RL) is considered, which recently has been widely investigated as a practical solution for various optimization problems in cellular networks due to its ability to interact with environments with no previous experience. In particular, a Q-learning (QL) algorithm is investigated to perform resource management in a steerable VCSEL-based OWC systems. The results demonstrate the ability of the QL algorithm to achieve optimal solutions close to the MILP model. Moreover, the adoption of beam steering, using holograms implemented by exploiting liquid crystal devices, results in further enhancement in the performance of the network considered

    Hologram selection in realistic indoor optical wireless systems with angle diversity receivers

    Get PDF
    In this paper, we introduce a new adaptive optical wireless system that employs a finite vocabulary of stored holograms. We propose a fast delay, angle, and power adaptive holograms (FDAPA-Holograms) approach based on a divide and conquer (DandC) methodology and evaluate it with angle diversity receivers in a mobile optical wireless system. The ultimate goal is to increase the signal-to-noise ratio (SNR), reduce the effect of intersymbol interference, and eliminate the need to calculate the hologram at each transmitter and receiver location. A significant improvement is achieved in the presence of demanding background illumination noise, receiver noise, multipath propagation, mobility, and shadowing typical in a realistic indoor environment. The combination of beam delay, angle, and power adaptation offers additional degrees of freedom in the link design, resulting in a system that is able to achieve higher data rates (5 Gb/s). At a higher data rate of 5 Gb/s and under eye safety regulations, the proposed FDAPA-Holograms system offers around 13 dB SNR with full mobility in a realistic environment where shadowing exists. The fast search algorithm introduced that is based on a D&C algorithm reduces the computation time required to identify the optimum hologram. Simulation results show that the proposed system, FDAPA-Holograms, can reduce the time required to identify the optimum hologram position from 64 ms taken by a classic adaptive hologram to about 14 ms

    Collaborative Adaptive Optical Wireless System in Realistic Indoor Environment

    Get PDF
    In this paper, we propose and evaluate a collaborative mobile optical wireless (OW) system that employs a collaborative adaptive beam clustering method (CABCM) in conjunction with an imaging receiver. Three cases involving two, three and five receivers are considered. A collaborative maximum ratio combining scheme is used to collaboratively distribute the transmit power among the diffusing spots. Our ultimate goal is to increase the received optical power and improve the signal-to-noise ratio (SNR) at each coexisting receiver when the system operates in a multiuser scenario under the constraints of background noise, multipath dispersion, mobility and shadowing typical in a real indoor environment. Our proposed system (collaborative adaptive beam clustering method) is evaluated at 30 Mbit/s to enable comparison with previous work, and is also assessed at higher bit rates: 2.5 Gbit/s and 5 Gbit/s. Simulation results show that the mobile CABCM system offers a significant performance improvement including a reduction in the background noise (BN) effect, a strong received power, reduction in delay spread, and improvement in the SNR over multiuser line strip multibeam system (LSMS). However, the performance degrades gradually with increase in the number of users

    MIMO MC-CDMA systems over indoor optical wireless communication channels

    Get PDF
    Optical wireless communication systems offer a number of advantages over their radio frequency counterparts. The advantages include freedom from fading, freedom from spectrum regulations and abundant bandwidth. The main limitations of optical wireless systems include background noise attributed to natural and artificial light sources and multipath propagation. The former degrades the signal to noise ratio while the latter limits the maximum achievable data rate. This thesis investigates the use of transmit power adaptation in the design of optical wireless spot-diffusing systems to increase the power associated with the main impulse response components, resulting in a compact impulse response and a system that is able to achieve higher data rates. The work also investigates the use of imaging diversity receivers that can reject the background noise components received in directions not associated with the signal. The two techniques help improve the optical wireless system performance. The multibeam transmitter and the multi-detector angle diversity receiver or imaging receiver form a multiple input multiple output (MIMO) system. The work also investigates additional methods that can improve the performance such as transmitter beam angle adaptation, and improved modulation and coding in the form of multi-carrier code division multiple access (MC-CDMA). Furthermore, the work investigates the robustness of a link design that adopts the combination of these methods in a realistic environment with full mobility.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Q-learning algorithm for resource allocation in WDMA-based optical wireless communication networks

    Get PDF
    Visible Light Communication (VLC) has been widely investigated during the last decade due to its ability to provide high data rates with low power consumption. In general, resource management is an important issue in cellular networks that can highly effect their performance. In this paper, an optimisation problem is formulated to assign each user to an optimal access point and a wavelength at a given time. This problem can be solved using mixed integer linear programming (MILP). However, using MILP is not considered a practical solution due to its complexity and memory requirements. In addition, accurate information must be provided to perform the resource allocation. Therefore, the optimisation problem is reformulated using reinforcement learning (RL), which has recently received tremendous interest due to its ability to interact with any environment without prior knowledge. In this paper, the resource allocation optimisation problem in VLC systems is investigated using the basic Q-learning algorithm. Two scenarios are simulated to compare the results with the previously proposed MILP model. The results demonstrate the ability of the Q-learning algorithm to provide optimal solutions close to the MILP model without prior knowledge of the system

    Optical Wireless Data Center Networks

    Get PDF
    Bandwidth and computation-intensive Big Data applications in disciplines like social media, bio- and nano-informatics, Internet-of-Things (IoT), and real-time analytics, are pushing existing access and core (backbone) networks as well as Data Center Networks (DCNs) to their limits. Next generation DCNs must support continuously increasing network traffic while satisfying minimum performance requirements of latency, reliability, flexibility and scalability. Therefore, a larger number of cables (i.e., copper-cables and fiber optics) may be required in conventional wired DCNs. In addition to limiting the possible topologies, large number of cables may result into design and development problems related to wire ducting and maintenance, heat dissipation, and power consumption. To address the cabling complexity in wired DCNs, we propose OWCells, a class of optical wireless cellular data center network architectures in which fixed line of sight (LOS) optical wireless communication (OWC) links are used to connect the racks arranged in regular polygonal topologies. We present the OWCell DCN architecture, develop its theoretical underpinnings, and investigate routing protocols and OWC transceiver design. To realize a fully wireless DCN, servers in racks must also be connected using OWC links. There is, however, a difficulty of connecting multiple adjacent network components, such as servers in a rack, using point-to-point LOS links. To overcome this problem, we propose and validate the feasibility of an FSO-Bus to connect multiple adjacent network components using NLOS point-to-point OWC links. Finally, to complete the design of the OWC transceiver, we develop a new class of strictly and rearrangeably non-blocking multicast optical switches in which multicast is performed efficiently at the physical optical (lower) layer rather than upper layers (e.g., application layer). Advisors: Jitender S. Deogun and Dennis R. Alexande

    Collaborative Multibeam Transmitter and Imaging Receiver in Realistic Environment

    Get PDF
    In this paper, we propose a collaborative mobile optical wireless (OW) system that employs a collaborative adaptive beam clustering method (CABCM) in conjunction with an imaging receiver. Collaborative maximum ratio combining (MRCColl) scheme is used to collaboratively distribute the transmit power among diffusing spots. The main goal is to increase the received optical power and improve the signal-to-noise ratio (SNR) at each coexisting receiver when the system operates in a multiuser scenario under the constraints of background noise, multipath dispersion and mobility. Our proposed system (collaborative adaptive beam clustering method) is evaluated at 30 Mbit/s to enable comparison with previous work, and is also assessed at higher bit rates: 2.5 Gbit/s and 5 Gbit/s. Simulation results show that at a bit rate of 30 Mbit/s, a significant SNR improvement of 39 dB is achieved when a CABCM system replaces a multiuser line strip multibeam system (LSMS) at a 6 m transmitter-receiver horizontal separation. The results also show that the proposed system can achieve a 22 dB SNR when the system operates at 2.5 Gbit/s in a two-user scenario

    Adaptation techniques in optical wireless communications

    Get PDF
    The need for high-speed local area networks to meet the recent developments in multimedia and video transmission applications has recently focused interest on optical wireless communication. Optical wireless systems boast some advantages over radio frequency (RF) systems, including a large unregulated spectrum, freedom from fading, confidentiality and immunity against interference from electrical devices. They can satisfy the dual need for mobility and broadband networking. However, optical wireless links are not without flaws. They are affected by background noise (artificial and natural light sources) and suffer from multipath dispersion. The former can degrade the signal-to-noise ratio, while the latter restricts the maximum transmission rate available. The aim of this thesis is to investigate a number of techniques to overcome these drawbacks and design a robust high-speed indoor optical wireless system with full mobility. Beam delay and power adaptation in a multi-spot diffusing system is proposed in order to increase the received optical signal, reduce the delay spread and enable the system to operate at higher data rates. The thesis proposes employing angle diversity receivers and imaging diversity receivers as in order to reduce background noise components. Moreover, the work introduces and designs a high-speed fully adaptive optical wireless system that employs beam delay, angle and power adaptation in a multi-spot diffusing configuration and investigates the robustness of the link design in a realistic indoor office. Furthermore, a new adaptive optical wireless system based on a finite vocabulary of stored holograms is introduced. This method can effectively optimise the spots’ locations and reduce the design complexity of an adaptive optical wireless system. A fast adaptation approach based on a divide-andconquer methodology is proposed and integrated with the system to reduce the time required to identify the optimum hologram. The trade-off between complexity and performance enhancement of the adaptive finite holograms methods compared with the original beam power and angle adaptation is investigated
    • …
    corecore