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Bandwidth and computation-intensive Big Data applications in disciplines like so-

cial media, bio- and nano-informatics, Internet-of-Things (IoT), and real-time analyt-

ics, are pushing existing access and core (backbone) networks as well as Data Center

Networks (DCNs) to their limits. Next generation DCNs must support continuously

increasing network traffic while satisfying minimum performance requirements of la-

tency, reliability, flexibility and scalability. Therefore, a larger number of cables (i.e.,

copper-cables and fiber optics) may be required in conventional wired DCNs. In addi-

tion to limiting the possible topologies, large number of cables may result into design

and development problems related to wire ducting and maintenance, heat dissipation,

and power consumption.

To address the cabling complexity in wired DCNs, we propose OWCells, a class of

optical wireless cellular data center network architectures in which fixed line of sight

(LOS) optical wireless communication (OWC) links are used to connect the racks

arranged in regular polygonal topologies. We present the OWCell DCN architecture,

develop its theoretical underpinnings, and investigate routing protocols and OWC

transceiver design. To realize a fully wireless DCN, servers in racks must also be

connected using OWC links. There is, however, a difficulty of connecting multiple

adjacent network components, such as servers in a rack, using point-to-point LOS

links. To overcome this problem, we propose and validate the feasibility of an FSO-

Bus to connect multiple adjacent network components using NLOS point-to-point



OWC links.

To complete the design of the OWC transceiver, we develop a new class of strictly

and rearrangeably non-blocking multicast optical switches in which multicast is per-

formed efficiently at the physical optical (lower) layer rather than upper layers (e.g.,

application layer).
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Chapter 1

Introduction

Big Data is a term used to describe high volume, high velocity, and/or high variety

data sets [17]. Big Data applications can be found in disciplines like, Internet-of-

Things (IoT) [18], Bioinformatics [19], Social media [20], and Nanoinformatics [21].

For example, it is expected that the Large Synoptic Survey Telescope (LSST), which

will be deployed in Chile in 2016, will acquire around 10 Gbps for ten years resulting in

a final disk storage and database size of 400 Exabytes and 15 Petabytes, respectively

[22]. According to the International Data Corporation (IDC), the IoT market is

expected to grow from 9.1 billion devices and objects connected to the Internet in

2013 to 28.1 billion by 2020 [23]. As the portfolio of bandwidth and computation

intensive Big Data applications continues to grow, so does the demand for efficient

Data Centers (DCs) that support 100,000 servers and beyond [24].

A DC Network (DCN) is the networking infrastructure that provides the intra-

and inter-DC networking services. It is, therefore, essential to design an efficient

high-speed/high-bandwidth DCN to meet the high computing and communication

demands in DC. The design of a DCN must also satisfy several requirements such

as scalability, low latency, availability, and cost effectiveness. Other practical con-
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cerns, including cabling complexity, power consumption, and cooling, must also be

considered in the design [9, 25].

The design space of DCNs is witnessing an accelerated evolution vis-à-vis academia

and industry are advancing new technologies for DCNs as the portfolio of bandwidth

and computation-intensive Big Data applications continues to expand. Thus, the de-

sign and development of highly efficient high-speed/high-bandwidth DCNs is critical

to maximize total aggregated computing and communication capacities of future DCs.

For the rest of this chapter, we use Figure 1.1 to pictorially depict our understanding

of how the design space of DCNs is reshaping. Each box in Figure 1.1 represents a

design philosophy. Links between boxes represent the challenges faced by each design

and the arrow points to the proposed solution.

Figure 1.1: DCN design space roadmap.

In a widely used conventional hierarchical tree-based DCN architecture, servers

are stacked in racks that are arranged in rows. A Top-of-Rack (ToR) switch is used

to perform intra- and inter-rack communications [see Figure 1.2]. A gateway router

is used to connect the front end of the content and load balancing switches with the

internet. At the back end, the content and load balancing switches are connected

to servers using two (core-ToR) or three (core-aggregate-ToR) layers of switches.
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Electrical cables are mostly used for intra- and inter-rack communication links [Box

1 in Fig. 1.1]. As we move up in the tree, more powerful links and switches must be

used with over-subscription factors of 1:2 or more at higher levels in the tree. High

oversubscription ratios, however, adversely impact inter-rack communications [26].

Figure 1.2: Conventional hierarchical tree-based DCN architecture.

Analysis of real world DC traffic statistics shows that some applications do have

unpredictable traffic patterns and unbalanced traffic distributions [27–32] that can

lead to temporary hotspots . It is difficult for hierarchical DCN architectures to sup-

port or adapt to unpredictable changes in traffic patterns. Therefor, the performance

of the network may degrade due to inadequate network capacity and flow conges-

tions [31, 32]. Current trends in high-speed/high-bandwidth DC applications show

that the hotspot problem is likely to worsen in the future [6, 33, 34]. Moreover, hi-

erarchical DCN architecture may have low scalability and performance [35–39], and

may also require expensive switches for supporting large number of servers [29].

To appease the oversubscription problem encountered by hierarchical DCNs, re-
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searchers improved existing hierarchical topologies (e.g., Fat-Tree [40], VL2 [41], and

PortLand [42]), and developed new non-hierarchical, mostly recursive, topologies

(e.g., BCube [35], DCell [36], FiConn [39], DPillar [37], and BCN [38]). In non-

hierarchical DCNs [Box 2 in Fig. 1.1], large number of links and switches with

variants of multipath routing are used such that the core of the network is not over-

subscribed [27]. At any point in the network, full bisection bandwidth is available to

forward all incoming traffic. Non-hierarchical DCN architectures demonstrate better

scalability and fault tolerance attributes as compared to the conventional hierarchi-

cal architectures [27], however, the performance improvement is achieved at the cost

of larger number of wires leading to increased cabling complexity problems (e.g.,

cable management, maintenance, and heat dissipation).

Electrical interconnects used by most existing DCNs (hierarchical/non-hierarchical

are increasingly becoming a bottleneck as optical-electrical-optical (O-E-O) conver-

sion is required at every port. Moreover, recent real world DC traffic traces show that

more than 95% of the data are being transferred by the top 10% largest flows. Thus,

interconnects that can support elephant flows (i.e., flows with large amount of data)

may be more favorable than guaranteeing full bisection bandwidth between large

number of pairs of servers across the DCN. This in turn has motivated researchers

to investigate the use of optical interconnects in DCNs [18, 19, 21-28], especially for

transferring the elephant flows.

Another approach to tackle the hotspot problem is to realize a “flexible” network

to establish on-demand links between nodes that are susceptible to the hotspot prob-

lem. The on-demand links can be based on a wired [Box 3 and 4 in Fig. 1.1] or a

wireless [Box 5 in Fig. 1.1] technology. In case of wired technologies, commodity

switches are deployed to connect a subset of nodes and provide on-demand wired

links when needed. The advantage of the wired solution is that the flexible wired
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network realized is consistent with the original DCN especially that most DCNs de-

ployed today can be classified as wired DCNs that use copper-cables and fiber optics

for communication. For the wired flexible network to operate efficiently, the network

must interconnect the nodes that are susceptible to the hotspot problem. However,

prediction of such nodes is a difficult problem. Thus, a wired solution may not be

able to provide the required flexibility. Moreover, a wired flexible network requires

the deployment of a larger number of cables escalating problems related to cabling

complexity.

The potential capability of establishing flexible on-demand wireless links have

motivated the researchers to investigate wireless communication as a possible solution

for hotspot and cabling-complexity problems, simultaneously. A wireless technology

can be used either to augment a wired DCN; leading to hybrid DCN [Box 5 in Fig. 1.1]

or to develop a pure wireless DCN [Box 6 in Fig. 1.1]. There are two candidate wireless

technologies, radio frequency (RF) and optical wireless communication (OWC), also

known as free space optics (FSO). The difference between the two terms will be

explained in detail in Chapter 2. For the sake of brevity, we use the terms OWC and

FSO interchangeably in this dissertation. In case of RF, researchers focus on 60 GHz

RF technology since it stands out from other RF technologies due to its short range

and high bandwidth. In FSO communication, a modulated light beam propagates in

free space with no fibers involved. Therefore, FSO combines the flexibility of wireless

communication and the high-speed/high-bandwidth of the optical communication.

Ramachandran et al. propagated the idea of using 60 GHz RF technology in

DCN design [4]. Following their work, considerable research has been devoted to

investigating the feasibility of deploying 60 GHz RF technology in DCNs [6, 43–49].

Although promising, 60 GHz technology has its limitations as it has lower practical

bandwidth, and suffers from high attenuation and propagation loss [4,9,50]. Radiation



6

Figure 1.3: DCN design space.

patterns of 60 GHz impose additional restrictions on the activity of wireless modules

in close proximity because of interference. This increases the complexity of routing

and network management, and reduces the throughput [6].

Recent advances in FSO/OWC technology have narrowed the gap between FSO

and RF technologies to the point that FSO is now seen as a complement technology

for RF in next-generation communication systems, such as 5G wireless networks. RF

technology can offer high data rates when high carrier frequencies are used, however,

RF propagation becomes more LOS dependent. Thus, key features of RF technolo-

gies, such as, mobility, coverage, and receiver sensitivity, become unclear [51]. Both

60 GHz and FSO technologies are comparable as they operate in an unregulated, yet



7

standardized band of the spectrum. Moreover, both technologies have short range

and potentially low cost making them strong candidates for networking in DCNs. In

case of FSO, the very high carrier frequency and the relatively large detector area

provide spatial diversity that averts multipath fading. On the other hand, RF links

experience signal magnitude and phase fluctuations. Therefore, the design of FSO

links can be simpler than that of RF [1].

The advantages of FSO technology and its successful deployment in a wide range

of applications has motivated researchers to investigate the use of FSO in the design

of DCNs [9, 11,50,52]. Examples of applications in which FSO has already found its

place are, mobile networks backhaul, space communications, and underwater sensing.

The notable increasing use of FSO technology in different applications is due to the

advantages presented by FSO technology, such as, high data rate, low interference,

and high speed of light that is approximately 1.5 times faster than that of fiber optics,

which mean less latency.

Figure 1.1 is an evident that DCN design space is reshaping and there is a current

need to rethink the design philosophy of DCNs [52, 53]. There are four technologies

that can be used for communication in DCNs, wired electrical cables, wired optical

fiber, wireless RF technology, and wireless FSO technology. Figure 1.3 depicts the

resulting DCN design space. Each of these four technologies can be used individually,

leading to a pure (electrical/optical/RF/FSO) DCN. On the other hand, different

technologies can be integrated leading to wired (electrical + optical), wireless (FSO

+ RF), or a hybrid DCN; (FSO + wired) or (RF + wired).

Since the deployment of 60 GHz and FSO technologies in DCNs has not yet been

fully investigated, we focus our research on pure FSO, and hybrid (FSO + wired)

DCN designs. It is not yet known which of these two types of DCNs provides a better

solution. In this dissertation, we address the problem of cabling complexity in wired
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DCNs. To this end, we propose OWCells, a class of optical wireless cellular data

center network architectures in which fixed line of sight (LOS) optical wireless com-

munication (OWC) links are used to connect the racks arranged in regular polygonal

topologies. We present the OWCell DCN architecture, develop its theoretical under-

pinnings, and investigate routing protocols and OWC transceiver design. To realize a

fully wireless DCN, servers in racks must also be connected using OWC links. There

is, however, a difficulty of connecting multiple adjacent network components, such as

servers in a rack, using point-to-point LOS links. To overcome this problem, we pro-

pose and validate the feasibility of an FSO-Bus to connect multiple adjacent network

components using NLOS point-to-point OWC links.

In DCNs, a rack requires a combination of local (intra-rack) and remote (inter-

rack) data access to complete a task. Therefore, applications hosted by DCNs gener-

ate large demands for bandwidth with different communication patterns involving a

combination of unicast, multicast, in-cast, and all-to-all-cast traffics [24,54].

For example, Hadoop is one of the widely used implementations of MapReduce

[55], which is a distributed processing framework for large datasets. Distributed sys-

tems use data replication to offer scalability and availability of data. For example,

a file written to Hadoop Distributed File System (HDFS) is split into smaller data

blocks that have configurable size. To ensure availability and scalability, Hadoop

randomly distributes three replicas of each data block among distinct nodes housed

in different servers, in the network [56], two of which are on the same rack to reduce

inter-rack communication. Therefore, Hadoop requires in-cast traffic delivery during

the shuffle stage of MapReduce, and requires multicast for data replication, parallel

database join operation, as well as data dissemination in virtual machine (VM) provi-

sioning [54]. As part of the design of the OWC transceiver, we develop a new class of

strictly and rearrangeably non-blocking multicast optical switches in which multicast
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is performed efficiently at the physical optical (lower) layer rather than upper layers

(e.g., application layer).

The main contributions of this dissertation are as following.

1. We present a multi-level classification for FSO technology applications in four

different communication environments, namely: indoor, atmospheric, space, and

underwater. To the best of our knowledge, there exists no classification/survey

that addresses the variety of the FSO technology applications in all four envi-

ronments.

2. We propose a classification that can be used to classify existing and emerging

wired and wireless DCNs. The proposed classification leads to a nearly com-

plete picture of the design space for DCNs. This help us to identify potential

unexplored solutions for next-generation DCNs.

3. We present, OWC-Bus, a communication scheme used to connect multiple ad-

jacent network components using OWC links..

4. We develop, OWCells, a family of cellular optical wireless DCN architectures.

OWCells utilize line-of-sight (LOS) OWC links to connect racks that are ar-

ranged in regular polygonal shapes.

5. We propose a new class of strictly non-blocking (SNB) and rearrangeably non-

blocking (RNB) FSO multicast switches that utilizes tri-state switching ele-

ments (T-SEs) and is optimal with respect to hardware complexity.

1.1 Dissertation Outline

In this section, we give an outline of the dissertation organization.
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In Chapter 2, we present a classification scheme for FSO technology and use the

classification to review both; the research and standardization literature of the FSO

technology. In Chapter 3, we propose a classification that can be used to classify any

DC, including existing wired and emerging wireless DCs. We use the classification to

review and highlight the challenges faced by DCNs in the literature which motivates

to our work. In Chapter 4, we present an OWC-DC that is based on OWC-Bus.

Although the design proposed in Chapter 4 present a useful design for OWC rack

of servers, the conventional row-based DCN arrangement forms a great impairment

for wireless connectivity in DCNs. We dedicate Chapter 5 to discuss the proposed

cellular optical wireless DCN architectures, OWCells, that can overcome the problems

encountered by conventional row-based DCNs.

In Chapters 6 and Chapter 7, we propose a new class of strictly non-blocking

(SNB) and rearrangeable non-blocking (RNB) FSO multicast switches using tri-state

switching elements (T-SEs).

Finally, Conclusions and Future Research directions are presented in Chapter 12.
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Chapter 2

Optical Wireless Communication

(OWC) Technology

Free Space Optical (FSO) communication technology, also known as Optical Wireless

Communications (OWC), has regained a great interest over the last few years. In

some cases, FSO is seen as an alternative to existing technologies, such as radio fre-

quency. In other cases, FSO is considered as a strong candidate to complement and

integrate with next-generation technologies, such as 5G wireless networks. Accord-

ingly, FSO technology is being widely deployed in various indoor (e.g., data centers),

terrestrial (e.g., mobile networks), space (e.g., inter-satellite and deep space com-

munication), and underwater systems (e.g., underwater sensing). As the application

portfolio of FSO technology grows, so does the need for a clear classification for FSO

link configurations. Most existing surveys and classifications are single-level classifi-

cations, and thus not inclusive enough to accommodate recent and emerging changes

and developments of different FSO link configurations and systems. In this chapter,

we propose a multi-level classification framework to classify existing and future in-

door, terrestrial, space, underwater, and heterogenous FSO links and systems using
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common and simple unified notation. We use the proposed classification to review

and summarize major experimental work and systems in the area until 2017. Using

the proposed classification and survey, we aim to give researchers a jump-start to tap

into the growing and expanding realm of the FSO technology in different environ-

ments. The proposed classification can also help organize and systematically present

the progress in the research on FSO technology. This makes the identification of the

market needs for standards an easier task. Moreover, different entities involved in

the standardization process including academic, industry, and regulatory organiza-

tions can use the proposed classification as a unified language to communicate during

the early stages of standard development which require ambiguity-free discussions

and exchange of ideas between different standardization entities. We use the pro-

posed classification to review existing standards and recommendations in the field of

FSO. It is also envisioned that the proposed classification can be used as a unified

framework to define different FSO channel models for simulation tools.

2.1 Introduction

Emerging Big Data applications and systems found in disciplines like social media

and Internet-of-Things (IoT), are characterized by being bandwidth-intensive and

performance-sensitive. The IoT market is expected to grow from 9.1 billion devices

and objects connected to the Internet in 2013 to 28.1 billion by 2020 [23], that is

more than three times the global population expected by 2020. As such applications

and systems rapidly move closer to end users, wireless communication systems, are

the favored communication technologies as they allow for user mobility. Moreover,

wireless technologies avoid most of the inherent complexity that wired technologies

suffer from, such as, long setup time, right of the way for digging, and the sunk cost
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once the cables are laid [57]. It is expected that two-thirds of total IP traffic by 2020

will be generated by wireless and mobile devices [58].

Figure 2.1: Part of the electromagnetic (EM) spectrum showing the frequency (and
wavelength) ranges for each band.

Figure 2.1 depicts part of the electromagnetic (EM) spectrum and the frequency

(and wavelength) ranges for each band of the spectrum. As the frequency increases,

the wavelength and effective area of an antenna decrease. The carrier frequency is

selected based on the application. For example, ground-to-submarine communications

utilize audio waves due to its very long wavelengths (i.e., very low frequency and

very large antenna) and the limited propagation capability of RF signals in electrical

conductors such as salt water due to absorption. On the other hand, radio frequencies

in the Ultra High Frequency (UHF) and Super High Frequency (SHF) band range are

capable of penetrating windows, walls, and ceils. Therefore, the IEEE 802.11b/g/n

(WiFi) networks utilize the unlicensed 2.4 GHz UHF and 5 GHz SHF radio bands.

RF is a mature technology and is being widely deployed in many indoor, terres-

trial, and space communication systems. However, the propagation nature of the

RF communication systems raises a problem of interference, which in turn affects

the usability of frequencies, and hence, the capacity. Therefore, the RF spectrum

is regulated by the local and international authorities to limit the interference, and

guarantee proper operation and coexistence of systems relying on RF. As the appli-
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cations of RF communication are progressively increasing, the RF spectrum becomes

more congested, scarce and thus expensive to acquire. Several efforts are put from

research and industry to stretch the capability of existing wireless technologies (e.g.,

alleviating interference) and to develop new ones to fulfill the emerging needs [59,60].

Free Space Optical (FSO) communication, also known as Optical Wireless Commu-

nication (OWC) as discussed later in Section 2.2.1, is being extensively investigated

over the last few decades as an attractive alternative technology to RF. Similar to

fiber optics, data are used to modulate a light beam in FSO. The light beam then

propagates from one point to another, however, in a wireless manner. The recent spike

in interest in FSO technology stems from the fact that FSO combines high-bandwidth

of optical communication systems and the flexibility of wireless technologies.

FSO technology operates in a broad spectrum (see Figure 2.1) including Near

Infrared (NIR), Visible Light (VL), and Ultraviolet (UV) bands. Conventionally,

terrestrial and space FSO links operate in the NIR band similar to fibre-optic sys-

tems [61]. As will be shown in subsequent sections, terrestrial systems can also

operate in the VL [62] and UV [63] bands. On the other hand, Indoor FSO links

commonly operate in the NIR [64] and VL [65] bands, whereas, underwater OWC

systems operate in the NIR [66] and VL [67] bands. The extremely short wavelengths

(i.e., high frequencies) at which FSO systems operate make FSO detectors immune

to multipath fading (i.e., large fluctuations in received signal magnitude and phase)

as opposed to RF links, which are highly susceptible to multipath fading. This can

be attributed to the spatial diversity resulting from the fact that FSO detector areas

are extremely large compared to the wavelengths [1]. In addition to the unregulated

spectrum, most of the optical components used in FSO links are cheaper, smaller,

lighter and have lower power consumption as compared to that of RF components

leading to cost and energy saving [3, 68–71]. Although most of the FSO components
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are cheaper, lighter, and smaller than that of RF links, one must keep in mind that

FSO networking solutions are not as mature and commercially available as their RF

counterpart. We believe that this is a main contributor to the fact that FSO com-

mercial solutions can be sometimes more expensive and bulkier especially in the case

of terrestrial FSO links [72]. As the technology becomes more popular and with the

expected increase in the market competition, the price of FSO solutions is expected

to drop. On the other hand, as the technology matures, designer of FSO solutions

will be able to develop the best design practices which will influence the size of the

modules used in the FSO systems.

FSO technology has also been considered as a complementary technology to ex-

isting RF systems since FSO and RFs do not interfere [2]. This property is very

important for applications in which interference with RF systems must be avoided

such as in hospitals and in personal entertainment systems on commercial aircrafts

to mitigate the interference with the RF-sensitive navigation and avionics electronic

systems [73]. Moreover, the next generations of wireless communication systems (e.g.,

5G) incorporate several complementary access technologies along with the RF tech-

nology, including FSO [74,75].

A preliminary optical communication experiment was among the secondary ob-

jectives of the mission Gemini 7 conducted by NASA in 1965 [76]. The experiment

was only partially completed due to the cloud obscuration and the spacecraft alti-

tude restrictions [77]. Three years later, Erhard Kube published the original FSO

communications white paper ”Information transmission by light beams through the

atmosphere” [78]. In this chapter, E. Kube explained the possibility of transmitting

data through the atmosphere using green (0.6 µm) and red (0.8 µm) laser sources.

Continued development of lasers led to the development of a small and continuous-

beam semiconductor light sources that work at room temperature by Zhores Alferov
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in 1970. This invention opened new horizons for the development of OWC systems.

In 1979, Gfeller and Bapst introduced the first indoor OWC system in which the dif-

fuse emissions in the infrared (IR) band were used [79]. The continued research and

development by academic institutions, industry and military organizations, enabled

the FSO communication to find its place in many applications, such as, mobile net-

works backhaul [80,81], space communication [82], underwater (UW) sensing [83,84],

wireless sensor networks (WSNs) [63], indoor local area networks [85,86], data center

networks (DCNs) [64] and many other applications.

2.1.1 Motivation and Contribution

Advantages of the FSO technology have been known for a long time. However, utiliza-

tion of these advantages was facilitated by recent development and advances in FSO

enabling technologies. As a result, a large number of research papers on new FSO

applications has been published recently. Given that most of the FSO technology

classification efforts were made in the late 90s, we believe that existing classifications

of FSO technologies are outdated [1, 2, 87].

Most of the old classification efforts simply review and differentiate FSO systems

without taking into consideration development of new/future FSO links. Therefore, it

may be difficult, if not impossible, to fit some of the emerging and future configuration

classes into existing single-level classification schemes. Accordingly, many survey

papers have to introduce additional classes, which makes the overall classification

scheme inconsistent and nonsystematic in its expansion. For an example, consider

the quasi (multi-spot) diffuse system [88, 89] propagated as a sperate class despite

its similarities to diffuse systems [1, 73, 90, 91]. Furthermore, a large number of new

developments in FSO result in several inconsistencies, and sometimes, contradictions

between various classifications and definitions such as in their naming conventions
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or operational principles. For example, the three notations LOS/Directed, LOS, and

Point-to-Point all refer to the same FSO link configuration [1, 2, 73,87,90–95].

We believe that there is a need for a classification that can express the existing,

emerging, and future FSO link configurations and applications in a systematic way.

Accordingly, in this chapter, we have the following three major objectives.

• Develop a rigorous multi-level classification based on a set of notation that can

be systematically used to express various present and emerging FSO link con-

figurations to help reduce ambiguity. To show the effectiveness of the proposed

classification, we use it to classify different link configurations listed in vari-

ous existing classifications. We also use the proposed classification to classify

FSO link configurations that could not be classified before. Furthermore, we

show how the proposed classification can evolve to include any future FSO link

configurations.

• Survey FSO technology applications in different communication environments,

namely: indoor, atmospheric, space, underwater, and heterogenous. To the best

of our knowledge, there exists no classification/survey that addresses the variety

of the FSO technology applications in all environments. For each environment

type, we summarize recent research efforts and provide a list of selected refer-

ences for applications on each link configuration. We also discuss the typical

impairments encountered by each link configuration and possible solutions for

these impairments. Finally, we classify and review existing standards and rec-

ommendations for FSO technology in each environment.

• Put the proposed classification into action and use it to describe different exist-

ing FSO systems. We review heterogenous FSO systems in which different types

of FSO links are combined to realize an efficient system. We also review hybrid
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FSO systems in which FSO is combined with a different technology (e.g., RF).

In addition to classifying FSO systems, we envision that the unified framework

presented here can also be used to develop modular and consistent FSO channel

models for FSO simulation tools.

It should be noted that the development of FSO in each of the four environments (or a

subfield thereof) represents a broad research area in its own right. Thus developing a

single comprehensive survey to cover all the developments, impairments, and solutions

in detail is infeasible. That being said, in this chapter, we aim to give researchers a

jump-start to tap into the growing and expanding realm of the FSO technology in

different environments. To this end, we present a novel classification scheme for FSO

links. To demonstrate the effectiveness of the proposed classification, we bring recent

advances in all fields of FSO in a single place saving researchers the time and effort

to capture the big picture. Therefore, our contribution is a comprehensive breadth-

focused survey and we acknowledge that, focused and dedicated survey papers based

on our proposed classification may be needed to cover a particular domain in detail

in the future.

2.1.2 Chapter Organization

The remainder of this chapter is organized as follows. In Section 2.2, we discuss the

generic FSO link components, including light sources, photodetectors, and modula-

tion schemes. We dedicate Section 2.3 to discuss related work. In Section 2.4, the

proposed classification of FSO link configurations is presented and various schemes

are explained. Sections 2.5 - 2.9 demonstrate the use of the proposed classification

scheme to classify FSO applications and related standards/recommendations in in-

door, terrestrial, space, underwater, and heterogenous environments, respectively. We

then use the proposed classification to review different FSO systems in Section 2.10.
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Research directions and open problems for FSO systems are discussed in Section 8.1.1.

Summary is given in Section 2.11.

2.2 Preliminaries and Basic Concepts

In this section, we discuss preliminaries and basic concepts related to optical wireless

communication. We discuss the naming convention of the optical wireless technology

since it has been observed that researchers use different names to refer to the optical

wireless technology in the literature. We also briefly discuss the preliminaries and

basic components of a generic FSO link, such as light sources, photodetectors, and

modulation schemes. The details of the components used in optical communication

systems and the advances in the research related to these components are, however,

beyond the scope of this chapter. Interested readers can refer to the papers and books

discussing the theory of operation, variations and advancement of different types of

light sources and photodetectors [96–104]. Discussion on eye safety and existing

regulations can be found in [105–108]. Moreover, excellent summaries and taxonomy

of modulation schemes in OWC are available in [51,81,90].

2.2.1 Naming Convention - FSO vis-à-vis OWC

Optical wireless and fiber-optic communication systems operate in the same band of

the spectrum and have similar transmission bandwidth capabilities, therefore, optical

wireless communication is used to be referred to as fiber-less optics. As the fiber-

less optics technology continued to advance and used in new domains, new names

for the technology emerged in the literature, such as; Lasercom, Optical Wireless

Communication (OWC), and Free Space Optics (FSO). Over the last few decades,

the notations “OWC” and “FSO” became widely used whereas “fiber-less optics” and
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“lasercom” are considered archaic [109].

It has been noticed that the term OWC is used in the literature to refer to indoor

and outdoor fiber-less optical systems, whereas, the term FSO is mostly used to refer

to outdoor fiber-less optical systems. In a recent classification and survey [3], Kaushal

and Kaddoum use the notation OWC to refer to the fiber-less optics technology. The

authors then classify OWC technology into Indoor Systems and Outdoor Systems

(FSO). The FSO system is further classified into Terrestrial Links and Space Links.

The use of FSO to refer to outdoor links is because the technology utilizes an unguided

channel in both the terrestrial atmosphere and the vacuum (outer space). However,

this is also true for indoor and underwater environments where the fiber-less optical

systems are utilizing unguided channels. This led many researchers to refer to the

fiber-less optical systems using the notation FSO in indoor [71, 110] and underwater

[111–113] environments.

Since FSO and OWC refer to the fiber-less communication with unconfined medium

disregard the environment in which the link is established, and taking into consider-

ation the fact that both terms have been widely used in the literature, we use both

terms interchangeably in this chapter to refer to the fiber-less technology in any en-

vironment. It is found that the OWC in the underwater (UW) environment is widely

referred to as Underwater Optical Wireless Communication (UOWC). Therefore, for

research related to UW OWC, we use the term UOWC to maintain the consistency

with the literature.

2.2.2 Light Sources

The most commonly used light sources in FSO systems are Laser Diodes (LDs) and

Light Emitting Diodes (LEDs). LDs are preferred in applications with high data

rate requirements due to their high optical power outputs and broader modulation
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bandwidths. There are, however, standards and power restrictions controlling the

usage of the LDs to mitigate potential eye and skin safety hazard [51].

LEDs, on the other hand, are preferred in low/medium data rate indoor appli-

cations. This is because LEDs are cheaper than LDs and more reliable. Moreover,

LEDs are extended sources with large-area emitters. Therefore, LEDs can be oper-

ated safely even at relatively high powers. Compared to LDs, LEDs support lower

data rates [93,114]. However, data rates up to 1 Gpbs using LEDs and rate-adaptive

discrete multitone modulation are achieved [115]. In [116], Tsonev et al. present a 3

Gbps FSO link operating in the visible light band using a single 50-µm gallium nitride

LED and Orthogonal frequency division multiplexing (OFDM) modulation scheme.

2.2.3 Photodetectors

Positive-Intrinsic-Negative (PIN) photodetectors and Avalanche Photodetectors (APDs)

are the most commonly used types of photodetectors in FSO systems [1, 51]. PIN

photodetectors are preferred in low cost and low data rates FSO links. This is because

they are cheap, can operate at low-bias, and have tolerance to wide temperature fluc-

tuations [1, 93]. APDs are PIN photodetectors operating at very high reverse bias.

This leads to high internal electrical gain that increases the SNR at the receiver [1,2].

Compared to PIN photodetectors, APDs have superior performance especially in sys-

tems with limited ambient light noise. Therefore, APDs are favored in high data rates

and high-performance FSO systems. On the other hand, APDs are more expensive

and their gain is temperature-dependent. Analysis of different noise sources related

to PINs and APDs are discussed in [51].

Recent advances in the field of graphene, two-dimensional materials, and nano-

materials, such as plasmonic nanoparticles, semiconductors, quantum dots have paved

the way to the development of ultrafast photodetectors that work over a broad range



22

of wavelengths [117–119]. These photodetectors facilitate ultrahigh bandwidth optical

communication systems supporting higher data rates.

2.2.4 Modulation

Different modulation schemes have different transmission reliability, energy, and spec-

tral efficiencies. A modulation scheme is selected based on the type of the application.

For example, the simplicity of On-Off keying (OOK) modulation makes it the most

commonly used modulation scheme in FSO systems. However, OOK can be inefficient

in more complex systems that require high data rate such as deep space communica-

tion. For such applications, Pulse Position Modulation (PPM) or one of its variations,

e.g., Variable-PPM (VPM), is usually preferred [51,84,120].

Both OOK and PPM are considered as single-carrier pulsed modulation. As the

data rate increases, single-carrier modulation schemes become inefficient due to the

increase ISI [121]. Moreover, PPM requires complex time-domain equalization which

can be problematic for FSO links with severe channel conditions and impairments [90].

In this case, Subcarrier Intensity Modulation (MSIM) and Multiple SIM (MSIM) such

as Orthogonal Frequency-Division Multiplexing (OFDM) are used. In SIM-based

approaches, an optical source is driven by a pre-modulated RF signal carrying the

data. A DC bias is added to the signal before it is used to drive the optical source

to maintain an all positive amplitude because the input of the LD must be non-

negative [122]. Compared to single-carrier modulation schemes, SIM techniques help

mitigate channel impairments and provide a simpler and cost-effective implementation

[123]. Moreover, SIM improves bandwidth efficiency as compared to that of PPM

techniques [124].

The addition of the DC bias (non-information signal) to the pre-modulated RF

signal to avoid non-negative amplitudes leads to poor power efficiency. As the number
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of carriers increase, such as in MSIM techniques, the DC bias required may become

very large to prevent clipping and nonlinear distortion in the optical domain. This,

in turn, leads to high peak-to-average power ratio (PAPR) and worsens the power

efficiency [124]. The nonlinearity of light source is another challenge in MSIM tech-

niques [122, 125]. The nonlinearity at the light source leads to interference among

the subcarriers and broadening of the signal spectrum resulting in mixed signals and

Inter-Modulation Distortion (IMD). To limit the transmit power and reduce the IMD,

MSIM techniques need to employ small number of carriers. However, this limits the

transmission data rate. Another approach to eliminate the IMD is to transmit each

subcarrier using a separate optical source [126].

To improve the performance of the MSIM techniques, a PAPR reduction technique

can be used to make the signal less vulnerable to the nonlinear distortion [127].

Another approach is to have the nonlinearities compensated for by predistortion or

postdistortion [128, 129]. In [124], Hassan et al. present a detailed survey of SIM

techniques. They discuss the advantages and challenges of SIM/MSIM.

Figure 2.2: Classification of Indoor FSO communication links by Kahn and Barry [1].
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2.3 Existing Classifications and Surveys of FSO

Links

We briefly review main classifications of FSO communication technology. FSO tech-

nology can be deployed in four different environments: indoor, atmospheric, space,

and UW. Out of the four different scenarios, indoor FSO has the largest share of

surveys and classifications [1, 2, 73, 87, 90–95]. The last few decades have witnessed

the development of various FSO communication schemes. Therefore, it is important

to develop a classification that accommodates current and future FSO link configu-

rations in different environments.

In [1], Kahn and Barry proposed one of the most popular and widely used classi-

fications of indoor FSO communication systems in the literature to date. Therefore,

it is reasonable to present a little-detailed discussion of this classification.

The classification by Kahn and Barry is based on two criteria: the directionality

of the transmitter and receiver (i.e., directed, non-directed or hybrid), and whether

the link is a line-of-sight (LOS) or non-line-of-sight (NLOS) link. These two criteria

result in a total of six different FSO link configurations (see Figure 2.2).

Figure 2.3: Tracked systems (a) steerable optics. (b) arrays of emitters and detectors.

In directed links, transmitted beam is directional and the receiver has a narrow
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field of view (FOV). Directed links maximize power efficiency since it experiences

low path loss and ambient light noise. However, this comes at the expense of the

added complexity of aligning the transmitter and receiver due to their directionality.

Contrary to directed links, undirected links utilize wide transmitters and receivers

with wide FOV. This rules out the aligning constraint allowing a degree of receiver

mobility. However, the performance of the undirected link is reduced due to the

distribution of the source power on a large beam spot size. In hybrid links, the

transmitter and receiver have a different degree of directionality.

LOS links are realized using an uninterrupted path between the transmitter and

receiver. This maximizes the power efficiency and minimizes multipath distortion.

On the other hand, NLOS links utilize the reflection of light from diffusely reflecting

surface such as ceiling or walls, which improves the robustness of the FSO link es-

pecially with the existence of barriers. Apart from increasing robustness and ease of

use, Nondirected/NLOS link, which is often referred to as a diffuse link, allows user’s

mobility.

During the same year (1997), Street et al. presented a tutorial review of in-

door FSO systems [87]. Four different link configurations were used to classify FSO

links, namely: LOS, wide-LOS (WLOS or cellular), diffuse and tracked. It might be

noted that LOS, cellular and diffuse links are similar to the Directed/LOS, Nondi-

rected/LOS and Nondirected/NLOS links presented by Kahn and Barry in [1], re-

spectively.

In a tracked system, a narrow down-beam (spotlight) from the base station is

used to illuminate only a single user station. A base station produces several narrow

spotlights simultaneously. Each spotlight establishes a LOS link with one of several

user stations, offering high bit rate links to multiple users within the same cell. More-

over, the spotlights produced by the base station are steerable [see Figure 2.3-(a)],
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therefore, they can track the mobile user stations as they move around and between

cells. Similarly, for a high data rate uplink (from user to base stations), the steerable

spotlight at the mobile user station would be required. In addition to supporting

high bit rates, tracked systems integrate the high power flux densities and low losses

inherent in LOS links with the extended coverage provided by the WLOS (cellular)

systems.

Figure 2.4: Classification of OWC systems by Heatley et al. [2].

In [130, 131], Wisely et al. proposed tracked FSO links in which spotlights are

steered using mechanically steerable optics. The authors also discussed realizing

solid-state tracking functionality using multi-element transmitter and receiver arrays.

Using a tracking algorithm, appropriate array element depending on the position and

user station is activated. As the user station moves within the cell, the activated

beams would migrate from one PIN to the adjacent one in the array such that the

LOS link is maintained [see Figure 2.3-(b)]. This process continues until the user

station becomes again stationary or leaves the cell.

In 1998, Heatley et al. (including Wisely), published a paper which can be con-

sidered as the first attempt to present a classification that is not limited to the indoor

FSO communication systems [2]. In this classification, FSO systems are classified as

long distance systems and short distance systems.
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Long distance systems are outdoor point-to-point links, whereas, short distance

systems are further classified into four categories, namely, point-to-point, telepoint

(similar to Nondirected/LOS in [1] or cellular in [87]) and diffuse. The point-to-point

class includes short distance point-to-point outdoor links, and indoor point-to-point

links. Moreover, Heatley et al. discussed the tracking architecture for indoor systems

in a separate section, however, they showed no attempt to classify it. We summarize

the classification presented by Heatley et al. in Figure 2.4.

In [81], Khalighi and Uysal classify an FSO link based on its range into five

categories, ultra-short, short, medium, long and ultra-long range OWC. The authors

focus on long-range links used in outdoor terrestrial OWC links. The paper is divided

into two parts. In the first part of the paper, the authors describe the channel model of

an FSO terrestrial link. In the second part, the authors discuss information theoretical

limits of FSO channels. Moreover, they review system design research to approach

these limits.

In [132], Ghassemlooy et al. (including Khalighi and Uysal) extend their previous

work [81] and present an overview of FSO applications in the four environments using

the link distance as a classification attribute. It is worth pointing that, classifying FSO

links merely based on distance overlooks several crucial factors and attributes such

as environment properties, LOS/NLOS nature of the link, coverage, and mobility.

The remaining survey papers can be divided into two groups: one group directly

refers to one of the three main classifications [70,92–95], the other group [73,91] uses a

subset of previous classifications which best indicate the most practical types of FSO

links according to the authors point of view. For example, in [91], Elgala et al. chose

Directed/LOS, Nondirected/LOS, and diffuse links from previous classifications and

added the quasi diffuse links as a separate, fourth class, whereas, Borah et al. picked

point-to-point and diffuse links from previous classifications and added multi-spot
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Figure 2.5: Quasi (multispot) diffuse FSO links.

diffuse as separate class [73].

In [88,89], Yun and Kavehard proposed the quasi (multi-spot) diffuse indoor opti-

cal wireless link. In multi-spot diffusing links, a transmitter sends more than one IR

narrow beams to geographically separated diffusing spots. The use of narrow beams

in quasi-diffuse FSO links help to reduce the channel power loss as compared to that

of indoor diffuse systems, in which the transmitted power is distributed over a single

wide beam.

At the receiver, multiple receivers aimed at different diffusing spots can be used.

The added redundancy promotes the robustness of the system as compared to a single

wide diffusing spot in diffuse systems.

Figure 2.5 depicts a quasi diffuse link. The transmitter is creating three diffusing

spots. Receiver R1 is capable of receiving two out of the three diffusely reflected

beams, whereas R2 can be illuminated by one of the beams. More diffusing spots can

be created and their positions can be changed by steering the beams [89].

It might be noted that quasi-diffuse links can be considered as a set of Di-

rected/NLOS communication links, however, the function performed is very similar

to the Nondirected/NLOS links. Even though Kahn and Barry have mentioned multi-

spot diffusing systems in [1], they showed no attempt at classifying the multi-spot
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diffusing system using their proposed classification in that paper. Moreover, recent

classification attempts result in considering quasi/multi-spot diffuse as a separate

class of indoor FSO links [1, 73,90,91].

In [133], Johnson et al. present a brief survey and classification of UOWC. Similar

to [90,91], Johnson et al. classify UOWC links into four link configurations, namely;

LOS, non-directed LOS, non-LOS, and retro-reflector. More recent and comprehen-

sive surveys on UOWC are presented in [67,134]. The authors survey the progress in

the field of UOWC and present detailed discussions on the impairments of UOWC.

However, similar to the work by Johnson et al. in [133], Kaushal et al. [134] and Zeng

et al. [67] also use the classification with four configurations; LOS, non-directed LOS,

non-LOS, and retro-reflector.

Figure 2.6: Classification of OWC systems by Kaushal and Kaddoum [3].

In [3], Kaushal and Kaddoum present a comprehensive survey of FSO in space

environment. The authors adopt the classification depicted in Figure 2.6. In this

classification, the notation OWC is used to refer to the optical wireless technology

in general. The authors then classify OWC technology into Indoor Systems and
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Outdoor Systems (FSO). Similar to existing surveys on indoor OWC, Kaushal and

Kaddoum use the classification of Street et al. [87]. On the other hand, Kaushal and

Kaddoum classify the Outdoor System (FSO) into Terrestrial Links and Space Links

(see Figure 2.6). According to their classification, Space Links include Inter-Orbital,

Inter-Satellite, and Deep Space links. It is noted, however, that the classification

by Kaushal and Kaddoum completely disregards the classification of OWC in the

Underwater environment.

In [135], Chowdhury et al. present a general overview and a comparative survey

of OWC-based technologies. The survey, however, adopts the distance-based classifi-

cation developed by Khalighi and Uysal [81].

Table 2.1 summarizes the classifications of FSO communication systems appeared

in the literature. We use the notation used in [1] as a reference in the literature sum-

mary. A check mark indicates the presence of a certain FSO link configuration in the

classification of the referenced paper. We also include the name of the configuration

if it is different from that of in [1]. A closer look at Table 2.1 reveals the following:

• In [1], Kahn and Barry present an interesting classification, however, we notice

the following:

1. The classification limits NLOS links to diffusely reflected links, and thus

Directed/NLOS link configuration is not used by any practical system

in the literature. However, as we will discuss later in Section 2.4, some

applications use FSO link configurations similar to the Directed/NLOS

FSO links by replacing the diffuse reflecting surfaces, such as walls and

ceils, with specularly reflecting surfaces such as mirrors.

2. Out of the six possible FSO link configuration classes presented based on

their classification, only three classes are used to describe configurations



31

T
ab

le
2.

1:
S
u
m

m
ar

y
of

O
W

C
/F

S
O

L
in

k
C

la
ss

ifi
ca

ti
on

s
in

L
it

er
at

u
re

.

L
in

k
C

o
n

fi
g
u

ra
ti

o
n

[1
,9

2
,

9
3
,9

5
]

[8
7
,9

4
]

[2
]

[9
0
,9

1
]

[7
3
]

[8
1
]

[6
7
,1

3
3
,

1
3
4
,1

3
6
]

[3
]

E
n
v
ir

o
n

m
e
n
t

In
d

o
or

In
d

o
or

In
d

o
or

/
T

er
re

s-
tr

ia
l

In
d

o
or

In
d

o
or

T
er

re
st

ri
al

U
n

d
er

w
at

er
In

d
o
or

/
T

er
re

st
ri

al
/

S
p

ac
e

D
ir

e
ct

e
d

/
L

O
S

X
X

X
X

X
X

X
X

L
O

S
P

oi
n
t-

to
-

P
oi

n
t

P
oi

n
t-

to
-

P
oi

n
t

L
O

S

H
y
b

ri
d

/
L

O
S

X
7

7
7

7
7

7
7

N
o
n

d
ir

e
ct

e
d

/
L

O
S

X
X

X
X

7
7

X
X

W
id

e-
L

O
S

or
C

el
lu

la
r

T
el

ep
oi

n
t

D
ir

e
ct

e
d

/
N

L
O

S
X

7
7

7
7

7
7

7

H
y
b

ri
d

/
N

L
O

S
X

7
7

7
7

7
7

7

N
o
n

d
ir

e
ct

e
d

/
N

L
O

S
(D

iff
u

se
)

X
X

X
X

X
7

X
X

A
d

d
it

io
n

a
l

C
la

ss
e
s

7
T

ra
ck

ed
Q

u
as

i/
M

u
lt

i-
sp

ot
D

iff
u

se
7

R
et

ro
-

R
efl

ec
to

r

O
u

td
o
or

(T
er

re
st

ri
al

an
d

S
p

ac
e)



32

reported during the period 1997-2017. Therefore, there is a need for a

more inclusive classification that can accommodate existing and emerging

classes of FSO link configurations.

• A limited number of surveys show an attempt to classify terrestrial FSO systems

in addition to the typical indoor systems. However, most of the existing classifi-

cations consider only Directed/LOS link configuration and thus is not sufficient

for accommodating other configurations that have been recently developed.

• Several existing classifications refer to the same FSO link configuration using dif-

ferent names. This leads to more confusion in the FSO community and hinders

the integration of knowledge reported in the various survey and classification

papers reported in the literature.

• Most of the classifications reported are developed to simply review and differ-

entiate existing FSO systems without taking into consideration future develop-

ment of new FSO links. Therefore, it may be difficult, if not impossible, to fit

some of the emerging and future configuration classes into existing classifica-

tion schemes. Accordingly, many survey papers needed to introduce additional

separate classes, which makes the overall classification scheme inconsistent and

nonsystematic in its expansion.

2.4 Proposed Framework for FSO Link Classifica-

tion

After analyzing various existing classification schemes for OWC link configurations

discussed in Section 2.3, we observe that one of the main issues that led to ambiguity

in previous classifications is that OWC link configurations are classified based on the
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nature of their implementation rather than their functionalities. To this end, in this

section, we develop and introduce a new function-based (scenario-oriented) classifi-

cation model for OWC link configurations. The proposed classification abstracts the

implementation details of various configurations, such that configurations with differ-

ent implementation details but perform the same function are combined into a single

class. For example, using the proposed classification, it is now possible to combine

diffuse and quasi (multi-spot) diffuse systems under the same link configuration since

they are similar in function, but different in implementation as pointed earlier.

2.4.1 Elements of the Proposed Classification

In our proposed classification, we use five criteria, namely: Environment, Coverage

Type, LOS Availability, Mobility, and Link Distance, in order to classify any OWC

link. In the following, we first discuss the five criteria, their variations, and used

notation, and then we present the general structure of the proposed classification.

• Environment (ε): OWC technology can be used in four different environ-

ments, namely: Indoor (I), Terrestrial (T), Space (S) and Underwater (UW).

An indoor OWC link established in a confined space such as a chip, room or

building. On the other hand, Terrestrial (T) OWC link is used to refer to OWC

links realized in the outdoor environment where atmospheric factors affect the

quality of the link. Contrary to Terrestrial OWC link, a Space link refers to

the outdoor links that do not experience atmospheric effects such as in outer

space inter-satellite communication. Finally, an Underwater OWC link is the

link that is realized under any water surface. An FSO link may traverse a set

of environments in some applications. We refer to this link as a heterogenous

FSO link.
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• Coverage Type (κ): An OWC link can be either a Point Coverage (PC) or a

Cellular Coverage (CC) link. In PC configuration, an OWC link is established

between a single transmitter and a single receiver such that the data transmit-

ted cannot be received except by the intended receiver. A PC system usually

deploys a narrow transmitter (NT), whereas, the receiver can be either a narrow

receiver (NR), or wide receiver (WR). On the other hand, a CC link utilizes a

wide transmitter (WT) or an array of NTs. This allows multiple receivers (NRs

or WRs) to simultaneously receive the beam of the transmitter. WTs spread

the transmitted light over a large coverage area, reducing the density of the

light per unit area. Using a single NR is not practical since it may not collect

enough light, and thus, WR or angle-diversity receiver which utilizes multiple

NR elements is preferred.

• LOS Availability (α): An OWC link can be achieved using LOS or NLOS

link configuration. In case of LOS, an uninterrupted line between the trans-

mitter and receiver exists. LOS systems do not suffer the negative effects of a

multipath. Also, the receiver in a LOS system does not require a large FOV or a

concentrator. Therefore, LOS links are used for higher data rates. NLOS links,

on the other hand, are used when a direct view of the transmitter and receiver

does not exist or blocked by obstacles. In NLOS links, an active repeater or a

passive reflector is used to connect the transmitter and the receiver. An active

repeater receives a signal from the transmitter and retransmits the signal to the

intended receiver. This is similar to relays used in wireless communication to

extend the coverage or to boost the performance. On the other hand, a passive

reflector can be a diffuse surface (e.g., walls, ceils, etc.) or a specular surface

(e.g., mirrors, beam splitters, etc.). In our classification, we consider links with

passive reflectors as the NLOS links. On the other hand, a NLOS system with
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active repeater is discussed as a relayed system in Section 8.1.1 since there is a

discontinuity in the propagation of the original light beam and a different link

budget calculation is used each time the link is regenerated at one of the active

repeaters used.

• Mobility (µ): An OWC link can be either a fixed (F) or mobile (M) link.

For the F links, once installed, both transmitter and receiver remain fixed

and aligned. If mobility is required, a mobile link is used, where transmitter

and receiver are configured such that the link is maintained at the expense

of complexity. Mobility can be realized using mechanically steerable optics or

solid-state multi-element transmitter and receiver arrays.

By mobility, we strictly mean the intended motion of the transmitter/receiver.

As we will discuss later, it is possible that FSO links undergo unintentional

displacements that may affect the link existence and quality. For example, an

FSO link on top of a building can be affected by the continuous sway of the

buildings. Another example is a UOWC that may be affected by the unstable

hovering of two terminals due to water streams.

• Link Distance (δ): For the distance criterion, we adopt the classes proposed

by Khalighi et al. [81]. Depending on the environment and the application,

OWC links can be one of five different link distances (ranges): Ultra-short range

[e.g., chip-to-chip communications], Short range [e.g., underwater communica-

tions], Medium range [e.g., indoor wireless local area networks (WLANs)], Long

range [e.g., terrestrial connections], and Ultra-long range [e.g., deep space links].
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2.4.2 The Proposed Classification

Based on the above discussion, an OWC link configuration can be expressed using

the tuple (ε/κ/α/µ/δ), where:

ε ∈ P
(
{ I, T, S, UW }

)
r {∅}, where P(.) is the power set.

κ ∈ { PC,CC }

α ∈ { LOS,NLOS }

µ ∈ { F,M }

δ ∈ { UShort, Short,Medium,Long, ULong }

Combinations of first four criteria are more cohesive than any combination that in-

cludes the fifth criterion. Therefore, in our proposed classification, we divide the five

criteria into two dimensions (groups). First four criteria form the first dimension, and

link distance represents the second dimension.

Any combination of criteria in the first dimension yields an OWC link configu-

ration. A total of 32 different OWC link configurations can be expressed. However,

there are clear dependencies and relations among the various criteria in the first di-

mension. In the following, we highlight these dependencies and discuss various link

configurations and their implications.

A CC link differs from a PC link in that a CC link inherently supports mobility.

This is because, in a CC link, the transmitter has a large coverage area (cell), and

hence, a receiver can be either fixed or mobile within the cell. Since, CC OWC links

inherently support mobility, we do not use F or M in our notation in case of CC

systems. Therefore, the number of possible OWC link combinations expressed using

the first four criteria becomes 24 different configurations.
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Table 2.2: Proposed classification framework and notation of FSO communication
link configurations. Grayed cells indicate infeasible link environment-range combina-
tions. We use No Application (NA) to indicate that an application for the specific
environment-range combination has not been reported in the literature yet.

Link Distance

UShort Short Medium Long ULong

≤ 5 cm 5 cm - 50 m 50 m - 500 m 500 m - 500 km ≥ 500 km

Indoor

Point

LOS

F I / PC / LOS / F [137–140] [141–
146]

[85,86,147,148]

(I)

Coverage

(PC)

M I / PC / LOS / M NA NA
[130,131,149,
150,150–157]

NLOS

F I / PC / NLOS / F
[16,53,158–

165]
[52] [9, 50,166]

M I / PC / NLOS / M NA NA NA

Cellular LOS I / CC / LOS NA [167] [10,168]

Coverage

(CC)
NLOS I / CC / NLOS NA NA

[10,51,65,79,
88,89,169–171]

Terrestrial

Point

LOS

F T / PC / LOS / F NA NA
[81,106,108,

172–176]

(T )

Coverage

(PC)

M T / PC / LOS / M NA NA [177–185]

NLOS

F T / PC / NLOS / F NA [186] [186]

M T / PC / NLOS / M NA NA NA

Cellular LOS T / CC / LOS [62] [187] [187–190]

Coverage

(CC) NLOS T / CC / NLOS NA NA
[63,191–

213]

Space

Point

LOS

F S / PC / LOS / F NA

(S)

Coverage

(PC)

M S / PC / LOS / M
[214–
217]

NLOS

F S / PC / NLOS / F NA

M S / PC / NLOS / M [217]

Cellular LOS S / CC / LOS NA
Coverage

(CC) NLOS S / CC / NLOS NA

Underwater

Point

LOS

F UW / PC / LOS / F [66] [218–
232]

[233–238]

(UW )

Coverage

(PC)

M UW / PC / LOS / M NA [239–
242]

NA

NLOS

F UW / PC / NLOS / F NA NA NA

M UW / PC / NLOS / M NA NA NA

Cellular LOS UW / CC / LOS NA [243] [244]

Coverage

(CC) NLOS UW / CC / NLOS NA [245–
247]

[248]

Heterogenous

{S-T} / PC / LOS / F
[82,109,

249–262]

FSO Links
{S-T} / PC / LOS / M [109,251]

{I-T} / PC / LOS / F NA NA [263]
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It is possible that few of these link configurations are not populated with practi-

cal OWC systems today, however, the main aim of the proposed classification is to

accommodate any new OWC link configuration that can be developed as the OWC

technology continues to develop and advance.

In (x/PC/LOS/F) link, transmitter and receiver are connected using a LOS,

fixed link forming a point coverage form of communication. This class refer to Di-

rected/LOS [1], LOS [87] and point-to-point [2] in indoor environment, while it is

equivalent to long distance systems [81] in atmospheric environment. On the other

hand, an (x/PC/LOS/M) is similar to (x/PC/LOS/F) except that the receiver is

mobile. This class describes all kinds of tracked systems (i.e., systems based on

mechanical steerable or solid multi-element transmitters) [2, 87,130,131].

A NLOS FSO link can be realized using relayed systems utilizing active repeaters,

or a passive reflector that diffusely/specularly reflects light beams. Both, relays and

passive reflectors can be used to realize (x/PC/NLOS/F) links since the link does

not change once aligned and established. To establish NLOS link with mobility, relay

systems can be used such that the uplink and/or the downlink are (x/PC/LOS/M).

On the other hand, realizing an (x/PC/LOS/M) link using a specular passive reflector

can be very difficult. This is because both transmitter and receiver will need a

synchronized motion to maintain the link, which in turn adds to the complexity of

the link.

An (x/CC/LOS/x) link is similar to the (x/PC/LOS/F/x) except that the narrow

beam used in the (x/PC/LOS/F/x) is replaced with a wide diverging beam. A

common configuration used as (x/CC/LOS/x) is a base station with a wide beam

forming a cell, which is the coverage area of the base station. Any user outside this

cell cannot receive the data transmitted by this base station. Depending on the area

that must be covered, single or multiple cells can be used, and inter-cell mobility via
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handover means can be supported. Nondirected/LOS [1], Wide-LOS (cellular) [87]

and telepoint [2] refer to the same class (I/CC/LOS).

Figure 2.7: Different FSO link configurations in the proposed classification. The link
configurations are consistent across different environments, and therefore we use the
cloud symbol to represent the environment (ε).

Unlike specular reflection, NLOS links with mobility can be easily realized using

diffuse passive reflectors. In (x/CC/NLOS) links, wide beams or a set of narrow beams

are diffusely reflected off of surrounding surfaces such as the ceiling, walls, floor, and

furniture. Receivers deployed have a wide FOV or multiple receivers with narrow FOV

in order to capture the reflected beams from the different angles in addition to the

LOS (if existed). Compared to previous classifications, the proposed (I/CC/NLOS)

link configuration captures both diffuse and quasi-diffuse systems since both of them

allow cellular coverage using NLOS links, yet using a different implementation.

Figure 2.7 shows the different link configurations in our proposed classification.

We use the proposed classification in the following five sections to briefly review FSO

applications in the different environments (indoor, terrestrial, space, underwater, and

any combination of these environments). We also discuss the typical impairments

encountered by each link configuration and review related standards and recommen-
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Figure 2.8: Classification of existing FSO standards and recommendations using the
proposed FSO classification scheme.
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dations. We focus on the physical layer of the standards and recommendations since

the physical layer is directly related to the classification of different FSO link con-

figurations. Table 2.2 summarizes the proposed classification with its 24 FSO link

configurations in addition to few examples of heterogenous FSO links and a list of

selected references for each. Figure 2.8 depicts a classification of existing standards

and recommendations using the proposed classification.

As mentioned earlier, it is possible that few of the link configurations in the

proposed classification may not be populated with practical OWC systems today.

One of the possible reasons is that the environment-range combination of an OWC

link is infeasible. For example, an ultrashort OWC link can only be realized in

an indoor environment, whereas an ultra long link can only be realized in space

communication. Infeasible environment-range combinations are grayed out in both

Table 2.2 and Figure 2.8.

2.5 Indoor FSO Links

In this section, we discuss different indoor FSO link configurations and their recent

research efforts.

2.5.1 Indoor FSO Link Configurations

I/PC/LOS/F/x

The I/PC/LOS/F/x FSO links deploy highly directional transmitters and receivers

with narrow FOVs. The highly directional transmitters help eliminate the multipath

dispersion effect and the receivers with narrow FOVs reject the majority of the am-

bient light. Therefore, I/PC/LOS/F/x links are capable of rejecting the majority of

noise, and thus preferred in high data rate applications.
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In [137], Rachmani and Arnon investigate the use of I/PC/LOS/F/UShort FSO

link for card-to-card communication in a computer backplane. The authors study

the impact of temperature and air turbulence caused by cooling air flow on the link.

Wavelength-diversity is proposed to mitigate the scintillation and fading caused by

the temperature and turbulence. A link using dual-wavelength transmitter (1550 and

670 nm) is deployed. Results indicate that wavelength-diversity can help reduce the

link outage caused by temperature and turbulence. Following the work by Rachmani

and Arnon multiple recent papers investigated the use of I/PC/LOS/F/UShort FSO

links in computer backplanes [138–140].

I/PC/LOS/F/Short links have been used in low data rate remote control appli-

cations [141–143]. In 1998, Matsuda et al. demonstrated an IR multimedia home

network based on the IEEE 1394 standard (FireWire) [144].

Since 1993, the Infrared Data Association (IrDA) group, has been using the

I/PC/LOS/F/Short link configuration (≤ 1m) in its standards for applications that

use the concept of point and shoot [145]. The links in IrDA standards provide data

rates from 9.6 kbps to 512 Mbps [94, 145], and are mainly used to connect portable

devices such as laptops, smart phones, and digital cameras. The details of different

IrDA standards are discussed in Section 2.5.3.

In [147], Glushko et al. demonstrate a 1-10 Gbps I/PC/LOS/F/Medium (2-6

m) bidirectional FSO link with bit error rate better than 10−9. The Person Area

Network (PAN) system developed by Glushko et al. consists of a central station that

serves up to 8 subscribers. On the other hand, Chowdhury et al. demonstrate an

experiment involving a I/PC/LOS/F/Medium (15 m) link in the 1550-nm wavelength

range directly modulated by the Cable Television (CATV) signal with data rates of 1

and 10 Gbps [85,86]. In [148], we propose OWCells, a class of optical wireless cellular

data center network architectures in which I/PC/LOS/F/Medium links are used to
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connect racks of servers arranged in regular polygonal topologies.

I/PC/LOS/M/x

As pointed our earlier, I/PC/LOS/F/x link is the preferred link configuration for

high data rate applications. In some applications, it is desirable to provide a high

data rate link for a mobile user. In I/PC/LOS/M/x links, narrow beams are steered

to create high data rate FSO links with mobile terminals. The steering can be done

using mechanical or passive solid state tracking systems [130,131,149,150,150–157].

Tracked systems presented by McCullagh et al. in [130, 149], and discussed in

Section 2.3, can be classified as I/PC/LOS/M/Medium FSO links.

In [154, 155], Jungnickel et al. demonstrated electronic tracking system using

I/PC/LOS/M/Short FSO links over a distance of 2 m and data rate of 155 Mbps. A

transmitter with an array of LDs and a receiver with an array of wide FOV PDs are

used. Tracking is achieved by activating the appropriate receiving element based on

the location of the receiver with respect to the transmitter.

Despite the added complexity for tracking and handover, I/PC/LOS/M/x links

have many advantages. Using I/PC/LOS/M/x links guarantees point coverage and

LOS link, which means that reduced eye-safe power levels can be used for transmission

to realize high data rate while covering large areas. Moreover, the use of a narrow

FOV receiver means smaller transceiver which is suitable for mobile devices.

It is worth pointing, however, that I/PC/LOS/M/x links are not usually utilized

independently. Instead, other FSO links are used for tracking the mobile terminal

and pointing the I/PC/LOS/M/x links. We refer to the systems in which multiple

FSO link configurations are used together as Heterogenous FSO Systems which we

discuss in detail in Section .
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I/PC/NLOS/F/x

This link configuration is widely used in applications where the delivery of point-

to-point high bit rates are required between spatially distributed transmitters and

receivers. Usually, the connecting terminals are distributed over the same plane, and

thus any-to-any LOS links are unfeasible.

In 1988, Feldman et al. proposed the first intra- and inter-chip optical intercon-

nect. The interconnect uses integrated optical signal transmitters, detectors, and a

hologram to establish I/PC/NLOS/F/UShort links [158]. The authors presented a

power and switching delay comparisons between the FSO interconnect and the con-

ventional electrical interconnects. Results showed that the FSO intra-chip intercon-

nects proposed by the authors are promising in high data rates and/or large fan-outs

large area VLSI circuits.

Following the work by Feldman et al., many papers on the topic of intra- and inter-

chip FSO interconnects using the I/PC/NLOS/F/UShort link model are published

[159, 160, 162–164]. In [162], a 3D FSO interconnect (FSOI) that enables all-to-all

direct communication links between processor cores with varying topological distances

is introduced by Xue et al.

In [16,53,165,264], we propose a new class of non-blocking multicast FSO intercon-

nect using non-moveable tri-state switching elements (T-SEs). A T-SE is a switching

element that can be reconfigured in one of three states (Figure 2.9): Reflective, Trans-

missive, or Splitting state (half reflective/half transmissive). Any material similar to

the one used in SMs can be used to realize T-SEs. Using the splitting state, a beam

can split into any number of copies enabling multicast using I/PC/NLOS/F/UShort.

An FSO data bus for nanosatellites developed by NASA is proposed in [161]. The

system model consists of multiple adjacent transceivers that are normally connected

using a wired bus topology. Replacing the wired bus topology with a reflector surface
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and FSO transceivers to establish I/PC/NLOS/F/UShort FSO links, the authors

demonstrate a lighter communication system as well as significant power savings.

In [52], we propose a fully connected FSO rack of servers for FSO Data Center

networks using what we refer to as FSO bus topology. The full connectivity is realized

by steering I/PC/NLOS/F/Short FSO beams emitted by transmitters on one side of

the rack, using mirrors, to the other side of the rack where beam splitters are used

to distribute the optical beam to different servers.

Using a similar approach to the one used in [162] by Xue et al., however, at a

different scale, Hamedazimi et al. develop FireFly, a configurable DC utilizing the

FSO I/PC/NLOS/F/Medium links [9, 50]. In FireFly, the I/PC/NLOS/F/Medium

FSO links are used for inter-rack communications, where top-of-rack (ToR) switches

are connected using pre-configured FSO links that reflects off a reflector (mirror)

mounted to the ceil.

Figure 2.9: T-SE (a) R-State. (b) T-State. (c) S-State.

In [166], Bao et al. propose FlyCast FSO DCN. FlyCast is essentially a modi-

fication of FireFly using the concept of T-SEs used in our interconnects to provide

multicast. In FlyCast, the authors utilize the splitting (referred to as mixed) state of

the SMs to enable multicast without the need for a switch.

I/CC/LOS/x

The I/CC/LOS/x configuration represents three link types mentioned in the litera-

ture, namely; nondirected/LOS [1], Wide-LOS (cellular) [87], and Telepoint [2]. This
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link configuration can be thought of as an I/PC/LOS/F/x link with wide angle trans-

mitter. To realize the wide angle at the transmitter, I/CC/LOS/x links utilize LEDs,

or LDs with diffusers. The I/CC/LOS/x link is designed such that the receiver de-

tects the light from the LOS beam. It is possible, however, that the receiver will also

collect beams that are reflected from walls which can be negligible as compared to

the LOS component of the link [149,265,266].s

Visible Light Communication (VLC) is a form of OWC in which LEDs are utilized

to transmit data. The main OWC link configuration used in VLC is I/CC/LOS/x.

VLC represents an emerging mainstream research in its own right and has been well-

surveyed in several recent survey papers [10, 75, 267]. VLC has also received great

attention and wide range of standardization efforts as we will discuss in detail in Sec-

tion 2.5.3. Although LEDs are usually used as transmitters in VLC, LEDs are limited

in modulation bandwidth and efficiency. Therefore, researchers are investigating VLC

systems that deploy LDs instead of LEDs [268].

One of the VLC applications that utilizes I/CC/LOS/Short FSO links is the

passengers’ entertainment systems in different vehicles such as cars and airplanes. The

overhead light units associated with each passenger is used as a BS to transmit/receive

entertainment and communication contents. In [167], Tagliaferri and Capsoni present

an in-flight VLC I/CC/LOS/Short downlink that can provide each user a 10 Mbps

link with uncoded BER of 10−6 along with an IR uplink. The downlink proposed

takes into consideration the terminal misalignment due to the random movements of

the passenger.

I/CC/LOS/Medium FSO links can be found in Light fidelity (Li-Fi) networks.

Li-Fi is a high-speed bidirectional network in which mobile wireless communications

using VLC is implemented. The LEDs in a network are used for illumination and

data communication [10].
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It should also be noted that VLC links can be deployed in outdoor terrestrial links

as will be discuss in Section 2.6.

I/CC/NLOS/x

An I/CC/NLOS/Medium link configuration is realized by diffusely reflecting a sin-

gle (diffuse) [79] or a set of narrow (quasi-diffuse) light beams [88, 89] off of diffuse

reflecting surface, such as, a wall or a ceil. As pointed out in Section 2.3, in diffuse

systems, the transmitted light is distributed over a single wide beam spot leading to

reduced power and weaker received signal. On the other hand, using multiple narrow

beams in quasi-diffuse links can help reduce the channel power loss, and hence the

transmitted power. Moreover, quasi-diffuse links enables user mobility by covering

the same area the single wide beam in a diffuse link would cover while reducing re-

flections and multipaths [91]. It is worth pointing that the advantages quasi-diffuse

systems provide come at the expense of increased system complexity [91]. Multiple

receivers can receive the diffusely reflected beams with different angles and positions.

This type of links may appear even when I/CC/LOS/Medium links are used due to

unintended reflection off of walls. In this case, each of the two channels will have its

own model.

Depending on how the system is designed, it is possible to utilize the I/CC/NLOS

links especially in case of shadowing during which an object or a human blocks the

LOS link. In that case, it is important for the system to exploit the diffused light in

a timely manner [65].

The estimation of the I/CC/NLOS channel has been investigated by Hashemi et

al. in [170]. The performance and analysis of the I/CC/NLOS link has been well-

investigated [51, 171]. Moreover, I/CC/NLOS can also be used in VLC as discussed

by Bao et al. in [10]. On the other hand, an I/CC/NLOS link using multiple light
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beams that can achieve a data rate of 70 Mbps has been reported by Carruther and

Kahn in [169].

Optical Camera Communications (OCC) is another form of OWC in which flash,

displays, and image sensor transceivers (or cameras) are used for data transmission,

positioning/localization, and message broadcasting. Information is modulated in the

pixels of the LED array at the transmitter. At the receiver, an image sensor or

a camera captures the images of the LED array of the transmitter. The receiver

then analyzes the intensity variation and extracts the transmitted signal [269, 270].

A camera can be operating in one of two modes; global-shutter and rolling-shutter

modes [271].

The wide spread of smart devices with embedded LED flash lights and ever de-

veloping high quality cameras makes OCC a pragmatic form of OWC communica-

tion. Compared to other OWC technologies such as VLC, OCC operates at a wider

spectrum that extends from IR to UV and including VL [269, 270]. Unlike conven-

tional OWC link deploying a single PD at the receiver, a camera can be modeled

as a 2D array of PDs [272]. The use of an image sensor allows the receiver in an

OCC system to separate light signals both spatially and based on their wavelengths.

Therefore, OCC system is convenient for spatial-division multiplexing (SDM), imag-

ing Multiple-Input-Multiple-Output (MIMO), and Wavelength Division Multiplexing

(WDM) modulation [270,272].

Similar to I/CC/LOS, MIMO system can be used to improve the performance of

the system, however, optical MIMO for I/CC/NLOS links has received little atten-

tion [65,273,274] and thus, optimizing MIMO performance for I/CC/NLOS channels

should be investigated further [65].
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2.5.2 Impairments of Indoor FSO Links

The most dominant noise source in indoor FSO systems is the shot noise due to

ambient light from natural and artificial light sources [1, 51]. Natural light sources

are classified as point sources (e.g., the Sun) and extended (e.g., the sky). Artificial

Light sources are incandescent (tungsten), fluorescent lamps, and LEDs..

Although, optical filters can be used to minimize received background light, shot

noise due to the background noise will still be existent. Shot noise is signal-independent

and can be modeled as white Gaussian noise due to its high intensity [1]. On the

other hand, in the absence of the ambient light, receiver preamplifier noise becomes

the dominant noise source.

Sunlight and skylight represent unmodulated sources that have higher average

power as compared to that of the desired signal [1]. In particular, sunlight extends

over a broad spectral width with a background current that can reach 5 mA [51].

Artificial ambient light sources, on the other hand, are modulated.

Multipath induced dispersion (distortion) is another impairment for indoor FSO

links. In particular, I/CC/NLOS/x in which a beam is allowed to diffusely reflect off

of diffusing surfaces such as ceils and walls is the highly susceptible link configura-

tion to the multipath induced dispersion. Multipath induced dispersion depends on

the size of the room and the reflection coefficients of the reflecting surfaces. More-

over, the severity of the dispersion depends on the I/CC/NLOS/x implementation.

For example, in diffuse (single-spot) I/CC/NLOS/x the transmitted wide beam can

experience multiple reflections. Using a single wide FOV receiver will collect large

number of reflections. This, in turn, leads to intersymbol interference (ISI), and thus,

data rate reduction [73]. To overcome the multipath induced dispersion in diffuse sys-

tems, quasi-diffuse (multi-spot) I/CC/NLOS/x is used. Although quasi-diffuse links

has the same theory of operation as diffuse systems, quasi-diffuse implementation has
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the advantage of the spatial-diversity which helps limiting the ISI [73]. The use of

multiple spots allows for a controlled projection of spots both in numbers and direc-

tions. Moreover, since the reflections are narrower, multiple narrow FOV receivers

can be used. The narrow FOVs blocks most of the ambient light and rejects large

number of undesired reflections. The main challenge of quasi-diffuse implementation

is the complexity of the transmitter and the receiver with diversity combining [155].

For example, projecting multiple spots can lead to a complex and bulky transmitter

with multiple sources. This can be avoided by using holograms [1, 73].

There are several challenges facing OCC systems. For example, the frame rate of

the camera used as a receiver is an important factor to determine the achievable data

rate of the system. Since the frame rate of a commercial camera is usually low, around

30 and 60 frames per second (fps), the total achievable data rate in an OCC system

is usually low [269]. Using cameras with high fps can help improve the data rate

[270,271]. Such high speed cameras supporting hundreds of fps are already developed

[270]. Furthermore, it is expected that the frame rates of commercial cameras will

continue to increase as the image sensor nanotechnology continues to advance. Symbol

synchronization is another challenge facing OCC systems. Since OCC is mostly used

for broadcasting systems, a feedback channel is not available. With the absence

of the feedback channel, the variable sampling rates, and the randomness of the

sampling, it is possible to sample during a symbol and thus losing it. To solve the

synchronization problem, reference signal or code embedded in the image can be used

is most cases [269]. Detailed discussions on the advantages, limitations/challenges,

and applications of OCC can be found in [269–272].

A summary of indoor FSO impairments, their causes, effects and solutions is

tabulated in Table 2.3



51

T
ab

le
2.

3:
In

d
o
or

F
S
O

L
in

k
Im

p
ai

rm
en

ts
.

Im
p
a
ir

m
e
n
t

C
a
u
se

s
E

ff
e
ct

s
S
o
lu

ti
o
n
s

A
m

b
ie

n
t

li
g
h
t

S
u
n
li
gh

t
R

ed
u
ce

d
S
N

R
-

H
ig

h
tr

an
sm

it
te

d
p

ow
er

S
k
y
li
gh

t
-

H
ig

h
ly

d
ir

ec
ti

on
al

li
n
k
s.

In
ca

n
d
es

ce
n
t

la
m

p
s

-
U

si
n
g

L
E

D
s

ou
t-

of
-b

an
d

of
th

e

F
lu

or
es

ce
n
t

la
m

p
s

li
gh

t
so

u
rc

es
u
se

d
in

th
e

F
S
O

li
n
k
.

L
E

D
s

M
u
lt

ip
a
th

in
d
u
ce

d
R

efl
ec

ti
on

off
of

d
iff

u
si

n
g

su
rf

ac
es

-R
ed

u
ce

d
S
N

R
-

H
ig

h
tr

an
sm

it
te

d
p

ow
er

d
is

p
e
rs

io
n

-
In

te
rs

y
m

b
ol

In
te

rf
er

en
ce

(I
S
I)

-
M

u
lt

i-
sp

ot
d
iff

u
si

n
g

-
S
p
at

ia
l

D
iv

er
si

ty

-
E

q
u
al

iz
at

io
n

-
F

E
C



52

2.5.3 Indoor FSO Standards and Recommendations

IrDA

Infrared Data Association (IrDA) developed several layer-based standards for low cost

half-duplex I/PC/LOS/F/Short FSO links ranging from 6 cm to 1 m and operating

at wavelengths of 850-900 nm. Protocols are then implemented on different layers for

applications such as contact information exchanges to ultra-fast file transfers. Table

2.4 summarizes different IrDA standards and data rates supported.

The next version of Giga-IR standard is expected to support data rate up to

10 Gbps. However, as the data rate increases so do the restrictions on the beam

alignment. For example, in case of Giga-IR, a docking station is used which limits

the link length to 6 cm.

JEITA VLC Standards

The recent development of highly-efficient LEDs, in addition to the inherent advan-

tages of VLC over RF communications are the reasons that motivated academic and

industrial communities to investigate the deployment of VLC in a broad spectrum of

applications. In response to the advances in the VLC technology and its deployment

in many applications, several standardization organizations, such as Japan Electronics

and Information Technology Industries Association (JEITA) and IEEE, are develop-

ing standards for VLC technology. In the following, we discuss the efforts by JEITA

and IEEE to standardize the VLC technology.

In November 2003, the Visible Light Communications Consortium (VLCC) [the

predecessor of the Visible Light Communications Association (VLCA)] was estab-

lished in Japan to explore different applications of VLC. In 2006, members of VLCC

proposed the standards, CP-1221 (VLC System), and CP-1222 (Visible Light ID
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Table 2.4: Summary of IrDA Standards.

Standard Data Rates

Serial Infrared (SIR) 2.4-115.2 kbps

Medium Infrared (MIR) 0.576 and 1.152 Mbps

Fast Infrared (FIR) 4 Mbps

Very Fast Infrared (VFIR) 16 Mbps

Ultra Fast Infrared (UFIR) 96 Mbps

Gigabit Infrared (Giga-IR) 512 Mbps and 1.024 Gbps

System) [275] to avoid fragmentation and proprietary protocols, and to prevent in-

terference between different optical communication equipments.

Light in the range of 380-750 nm is used for communication. Sub-carrier modu-

lation is used instead of single-carrier modulation schemes to avoid ISI. Three major

frequency ranges are defined in CP-1221 and CP-1222:

• Range 1 (15 kHz-40 kHz): Communication purposes and used by JEITA Visible

Light ID System.

• Range 2 (40 kHz-1 MHz): In this range, the noise radiated from the inverter

fluorescent lamp is fairly large, and thus fluorescent lights cannot use this range.

• Range 3 (>1 MHz): Dedicated to vast data transmission using special LEDs.

More recommendations regarding the PHY are proposed by JEITA CP-1222. The

transmission frame consists of an ID (fixed data) and arbitrary data (non-fixed). It is

recommended to use SC frequency of 28.8 kHz and SC-4PPM modulation scheme to

avoid flickering. The transmission rate of 4.8 kbps is achieved using cyclic redundancy

checks (CRC) for error detection/correction.

In 2013, JEITA proposed the CP-1223 (Visible Light Beacon System) to TC-100 of

the International Electrotechnical Commission (IEC) and was approved as IEC 62943
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in 2014 [276]. The standard CP-1223, which is a simplified and improved version of

CP-1222, is designed to support single directional visible light beacon system. This

type of links is particularly useful in applications such as identification of objects,

providing positional information for localization, and the establishment of various

guiding systems by transmitting simple identification (ID) information unique to the

visible light source. Similar to CP-1222, visible light of peak wavelength in the range

of 380 nm to 750 nm is used. Visible light is intensity modulated by 4PPM signals

at 4.8 kbps. A data frame of 158 bits is used with a start of frame (SOF) and end of

frame (EOF) data of 14 and 16 bits, respectively, and payload of 128 bits.

IEEE Standards

IEEE has demonstrated early efforts to standardize the FSO technology. However, as

mentioned earlier, only recent development in FSO enabling technology has allowed

the realization of products and systems that can be efficiently used. In the light of

these recent advances, IEEE proceeds with developing new standards for emerging

systems. In this section, we will discuss old and recent efforts by IEEE in the domain

of standardizing the FSO technology.

IEEE 802.11

In 1997, IEEE released the standard IEEE 802.11 in which two data rates of 1 and 2

Mbps are specified. Transmission is specified to be using IR signals and the 2.4 GHz

frequency in the Industrial, Scientific and Medical (ISM) band [146,277].

The IEEE 802.11 specification was developed for I/CC/NLOS/Medium links (i.e.,

diffuse link) with a link range of 10 m and transmitting in the range of 850-950

nm [277]. Two modulation schemes, 16 and 4 PPM are used for the two data rates 1

and 2 Mbps, respectively.
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Despite the advantages of the communication in the IR band, the drawbacks

exhibited by indoor IR communications, discussed in Section 2.5.2, prevented the

implementation of the infrared channels of IEEE 802.11. Therefore, IR channels

remains a part of the standard IEEE 802.11, but has no actual implementations.

IEEE 802.15.7-2011

In 2011, the IEEE 802.15.7 standard for VLC was released defining the PHY and

medium access control (MAC) layers for {I,T}/CC/LOS/{Short,Medium} links. Three

classes of VLC devices are defined in IEEE 802.15.7:

• Infrastructure: Also called coordinator is a stationary device that has uncon-

strained form factor and power supply.

• Mobile: Movable devices with limited power supply and constrained form factor.

Mobile VLC devices use weak light sources, and thus operates at short ranges

and can transmit at high data rates.

• Vehicle: Mobile devices with unconstrained form factor and moderate power

supply. Employs intense light source to communicate over long distances at low

data rates.

The above VLC devices can be arranged in one of three network topologies; star,

peer-to-peer, or broadcast.

• Star: Supports communication between several mobile devices and one coordi-

nator.

• Peer-to-peer: Supports communication between two close devices, one of which

acts as the coordinator.
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• Broadcast: Uni-directional transmission from a coordinator to one or more

devices.

The IEEE 802.15.7 standard supports three PHY operation mode [146,278]:

• PHY I: Low data rate outdoor applications (11.6 to 266.6 kbps). Employs On-

Off Keying (OOK) and variable pulse-position modulation (VPPM). Also sup-

ports concatenated coding with Reed-Solomon (RS) and convolutional codes.

• PHY II: High data rate outdoor/indoor applications (1.25-96 Mbps). Similar

to PHY I, PHY II employs OOK, VPPM and supports RS coding, but does not

support convolutional codes.

• PHY III: Designed to support systems with multiple light sources/detectors at

different frequencies (colors). Employs Color-Shift Keying (CSK) and Reed-

Solomon coding to achieve 12-96 Mbps.

The three physical layers supported by IEEE 802.15.7 are designed to co-exist but

not to interoperate [146]. A VLC device compliant with IEEE 802.15.7 must imple-

ment PHY I and/or PHY II. Moreover, for co-existence purposes, PHY II must be

implemented along with PHY III [146].

IEEE 802.15.7r1

In 2014, the IEEE 802.15 has formed a Short-Range Optical Wireless Communications

Task Group to write a revision for IEEE 802.15.7-2011. The aim is to accommodate

wider spectrum, IR and near UV in addition to VLC, [279] as well as developing

new communication links and modes of operation such as Multiple Input/Multiple

Output (MIMO). In particular, the task group works on accommodating the following

communication techniques and networks:
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• Optical Camera Communications (OCC)

• LED-ID: Wireless light Identification system.

• LiFi: LiFi is a high-speed bidirectional network in which mobile wireless com-

munications using light is implemented.

In [269], Saha et al. present a survey discussing the key technology consideration

in IEEE 802.15.7r1, impairments, and enhancements in application scenarios of the

OCC systems. A detailed discussion on the reference channel models endorsed by the

IEEE 802.15.7r1 Task Group for evaluation of VLC system proposals are discussed

by Uysal et al. [280].

2.6 Terrestrial FSO Links

Terrestrial FSO link is finding its place in several applications including, metropolitan

network extensions, last-mile access, enterprise connectivity, fiber backup, cellular

network backhaul, service acceleration and network disaster recovery [263]. It is

also expected that FSO links will have a great potential for applications in the fifth

generation (5G) wireless systems and beyond [74,75]. Future wireless networks will be

hybrid and will incorporate complementary access technologies with higher channel

capacities, multiple antennas, and Gbps data rates [74]. For example, FSO links can

be used to carry cellular traffic from base stations to the base station controller [263].

Terrestrial FSO links can also be used in wireless sensor networks where a large

number of nodes are distributed over a wide area and need to communicate using

NLOS links.
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2.6.1 Terrestrial FSO Link Configurations

T/PC/LOS/F/x

The T/PC/LOS/F/x is the most commonly used configuration to realize a high data

rate terrestrial FSO link. The performance of T/PC/LOS/F/x links has been in-

vestigated thoroughly in the literature [106, 172–176]. In [81], Khalighi and Uysal

focus on the modeling and performance of the T/PC/LOS/F/x link configuration.

T/PC/LOS/F/x FSO links are now a commercial reality [72] that is deployed in a

wide range of applications. A list of 29 companies with T/PC/LOS/F/Long FSO

link products can be found in [108].

T/PC/LOS/M/x

FSO T/PC/LOS/M/x link configurations are used for applications in which the strin-

gent acquisition, pointing, and tracking requirements need to be relaxed due to the

mobility of one (or both) communicating terminal such as in aircraft to ground com-

munication [281]. In [177], Ortiz et al. present an experiment in which an Unmanned-

Aerial-Vehicle (UAV), named Altair, is used to collect data and fly in a predefined

circle around a ground station. Altair was designed to receive an optical beacon

from the ground station, and using tracking systems, it sends the collected data

using an T/PC/LOS/M/Long downlink to the ground station. In November 2013,

the first experiment of an OWC link using jet platform was performed. A 60 km

T/PC/LOS/M/Long link was established between a jet platform (i.e., Tornado) fly-

ing at 800 km/h and the ground. Data is transmitted at a rate of 1 Gbps using a

ViaLight Communications laser terminal [184,185].

During the late 1990s, the U.S. Naval Research Laboratory (NRL) started con-

ducting experiments on modulating retroreflector (MRR) FSO communication links.
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An MRR link provides a mean for limited duplex communication link with an in-

terrogator at one end and a small passive optical retroreflector at the other end.

The source housing the interrogator is assumed to have high power. The retroreflec-

tor can be corner cube or a cat’s eye and is coupled to an optical modulator. The

interrogator transmits a continuous wave beam towards the retroreflector which pas-

sively reflects the beam back after the optical modulator has imposed a signal on it.

Shore-to-shore, boat-to-shore and sky-to-ground MRR FSO links were successfully

realized [178, 179, 182, 183, 282]. In [181], Rabinovich et al. establish a 1 km MRR

FSO link with a robot at data rate of 1.5 Mbps. A bidirectional 16 km MRR FSO

link is established in [180]. One of the most recent experiments in the domain of

T/PC/LOS/x/x was performed by Li et al. [282]. In their experiment, Li et al. test a

T/PC/LOS/x/Medium link between a ground station that is used as an interrogator

and a UAV equipped with a retro-reflector. The distance between the ground station

and the UAV is 100 m roundtrip and thus we classify the link as terrestrial (T) and

medium range (Medium). Two PC/LOS links are established with the UAV. The

first link is established while the UAV is hovering (T/PC/LOS/F/Medium) and the

other is with the UAV moving (T/PC/LOS/M/Medium). Using two Orbital Angular

Momentum (OAM) multiplexed beams, Li et al. realize 80 Gbps with each beam

carrying a 40-Gbps Quadrature Phase Shift Keying (QPSK) signal. As expected,

the T/PC/LOS/F/Medium link provides better performance as compared to that of

T/PC/LOS/M/Medium in terms of the power fluctuation of the on the desired mode

and the crosstalk to the other mode.

T/PC/NLOS/F/x

As mentioned earlier, T/PC/LOS/F/x link configuration is used to establish point-to-

point high bit rate communication link. However, finding a LOS between two points



60

may become infeasible, especially in urban cities with varying building heights, and

thus T/PC/NLOS/F/x link is needed. In [186], Rahman et al. discuss FSONet, an

FSO backhaul for multi-gigabit picocells using T/PC/LOS/F/Medium,Long steerable

links. In FSONet, links are steered using reconfigurable mirrors. This is very similar

to the FireFly Data Center Network developed by the same lab.

Due to beam divergence, which can be relatively big for long distance terrestrial

links, using passive reflectors (mirrors or walls) may become impractical. Therefore,

to establish T/PC/NLOS/F/x links, relay systems utilizing active repeaters with two

or more T/PC/LOS/F/x link segments can be used. Such systems will be discussed

in detail in Section 8.1.1.

T/CC/LOS/x

In addition to indoor deployment (discussed in Section 2.5.1), VLC communication

deployment in Intelligent Transportation Systems (ITS) is being investigated [62].

This model aims to utilize the LEDs that are widely deployed for traffic lights, vehic-

ular (head, tail, and brake) lights and street lights as transmitters. Traffic lights and

vehicles are equipped with receivers such as high-speed cameras [62] in case of OCC

(discussed in Section 2.5.1) to establish vehicle-to-infrastructure (V2I) and vehicle-

to-vehicle (V2V) T/CC/LOS/Short OWC links. Traffic safety-related information

along with infotainment applications are broadcasted using the LED array at the

transmitter and the data captured by receiver’s camera interacts with the computers

in vehicles to enhance traffic flow and reduce accidents and fatalities.

Data Communications (Data Comm) is an essential module of the Next Gen-

eration (NextGen) framework being developed by Federal Aviation Administration

(FAA). Data Comm aims to enable the exchange of digital information that can be

visually displayed and interpreted between air traffic controllers (ATCs) and pilots.
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Compared to the conventional audio communication currently used in the aviation

field [283], Data Comm messages will require significantly less bandwidth. Moreover,

Data Comm is expected to lead to safer operation as it will help improve the visual,

auditory, and cognitive workload for controllers and pilots. Moreover, future versions

of Data Comm will be designed such that the digital messages exchanged between

the ATCs and aircrafts can interact with the computers on-board enforcing rules and

safety measures [284,285].

Delivering Data Comm traffic between ATCs and pilots requires a data communi-

cation networking infrastructure. Similar to the application of OWC in vehicular com-

munications, we envision that aircraft-to-aircraft (A2A) and aircraft-to-infrastructure

(A2I) can be achieved using T/CC/LOS/{Medium,Long} links serving as the infras-

tructure for Data Comm [187]. We envision that the airport’s infrastructure of lights

and signages along the taxiways and runways for Data Comm can be utilized for this

purpose. Furthermore, OWC links can be used for aircrafts localization on the airport

ground and help raise pilots’ situational awareness.

High-speed trains (HSTs) traveling at speeds between 250 and 575 km/h are gain-

ing popularity across the world especially in China, France, Germany, Japan, Spain,

and potentially the United States [286]. Maintaining a reliable ground-to-train com-

munication link is essential for delivering the signaling traffic of the train operation

control system which is the system responsible for the safety of the HSR [286]. In

addition to the train operation control system, there is an increasing demand by users

aboard HSTs for high data rate internet access [188]. However, providing high data

rate access to users aboard HSTs is another application that is testing the bound-

aries of RF-based communication systems. RF-based communication networks are

not capable of meeting the high data rate demand on HSTs due to several technol-

ogy limitations such as Doppler frequency shifts, penetration losses, and the frequent
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handovers.

Initially, a dedicated narrow-band Global System for Mobile communications for

railway (GSM-R) network was realized. GSM-R, however, utilizes the same frequency

band used by the public land GSM network [286]. This poses a risk on the safety of

the HSR’s operation due to the potential co-channel interference. Moreover, GSM-R

network is incapable of meeting the demands for the high data rate. To overcome the

challenges facing GSM-R, the broadband Long Term Evolution for Railways (LTE-

R) was developed to achieve high capacity, low latency, and high reliability. LTE-R

networks features fast synchronization, channel estimation and equalization, Doppler

shift estimation and correction, and MIMO technique. LTE-R, however, experiences

frequent handovers which may lead to interrupted transmission of critical train control

signals as well as call drops and spotty internet access. In addition to GSM-R and

LTE-R, IEEE 802.11p and IEEE 802.15.4p are also being utilized for ground-to-train

communication links.

Despite the recent advances in RF-based technologies for HST systems, the data

rates RF-based technologies provide is limited and does not meet the increasing de-

mands by HSTs and their passengers [287, 288]. This makes HST an application

in which the FSO technology can be utilized [71]. In [188–190], the authors utilize

T/CC/LOS/Long links to create overlapping coverage cells along the railroad of HSTs

such that the an HST travels within the coverage area of the FSO beam eliminating

the need for tracking systems. FSO transceivers mounted on top of the trains and

directed towards the source of the FSO beams along the railroad are used to main-

tain a permanent communication link with handovers performed in the overlapping

regions of adjacent base stations (BSs).



63

T/CC/NLOS/x

PC/LOS FSO communication links are usually preferred to achieve high data rate

communication links between two points. This is notably true in the terrestrial envi-

ronment due to the atmospheric impairments that can limit the performance of the

FSO link. However, contrary to what was widely believed, FSO in the atmospheric

scenario does not require PC/LOS setup for operation [289].

The solar radiation in the deep UV spectral region (i.e., 200-280 nm) is absorbed

and scattered by ozone in the upper atmosphere (about 40 km away from the Earth’s

surface). This means that FSO links transmitting in this region do not encounter

background noise, and thus this band is referred to as solar-blind ultraviolet [191].

Although the scattering of light by particles and aerosols is considered an impair-

ment for most of the FSO links as it degrades the link quality, the unique propagation

attributes of the solar blind ultraviolet wavelengths, such as being strongly scattered

by particles and aerosols, facilitate the realization of T/CC/NLOS/Long FSO links.

This type of communication is referred to as optical scattering communication (OSC)

which can be very useful when a LOS link between the transmitter and the receiver

is infeasible. In OSC, a transmitter emits a light beam with preselected divergence

and elevation angels forming a cone. A receiver with large FOV pointing towards the

formed cone of transmitted beam detects the scattered light from the atmosphere.

To collect more backscattered optic power from the transmitter, receivers with large

FOVs are needed. A possible application for OSC is to establish T/CC/NLOS/Long

links between nodes in energy-constrained distributed WSNs [290].

In 1970, Lerner and Holland [291], and Kennedy [292] analyzed the characteristics

of atmospheric optical scattering channel laying the foundation for OSC. In [293],

Reilly proposes the single scattering model and investigates the pulse broadening

effect of T/CC/NLOS/Long OSC. In [290], Shaw et al. develop a simulation model
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to analyze the performance of the T/CC/NLOS/Long UV link and compare it to

conventional RF links.

The last two decades have witnessed an upsurge of research on T/CC/NLOS/Long

OSC [63,191–213]. Modeling T/CC/NLOS/x OSC channel is more challenging than

modeling traditional LOS links [194]. Therefore, most of the research in OSC is

directed towards the modeling of OSC channels assuming single-scatter [210,212,294],

multiple scattering [199,202,203] which is essential when the transmitter’s beam axis

and the receiver’s FOV axis are not coplanar, and most recently, considering the

inhomogeneity of the atmosphere to achieve a more accurate model [213]. Other

researchers focus on deploying new modulation schemes to improve the performance

and the bit rate of the link such as M-ary Spectral-Amplitude-Coding [207], and

frequency-shift keying modulation scheme [211]. As a result of the evident interest

in the OSC systems, recent survey papers [70,295–297] summarize and survey major

experimental and modeling research on OSC.

2.6.2 Impairments of Terrestrial FSO Links

The exposure of the terrestrial FSO links to the turbulence caused by atmospheric

variations can lead to severe link performance degradation. Several publications have

discussed the impairments of terrestrial FSO links in detail [3,81,106,298], therefore,

in this subsection, we only briefly discuss the different impairments, causes, and

mitigation techniques.

A terrestrial FSO link can be affected by sunlight, beam misalignment due to

building sway, attenuation (due to fog, rain, and snow) and atmospheric turbu-

lence [263]. Fog, rain, snow, dust, or any various combination of them can lead to

absorption, refraction, and scattering resulting in signal attenuation and link perfor-

mance degradation [74, 106]. Atmospheric turbulence can be caused by scintillation,
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beam wanders and beam spreading. Atmospheric scintillation is the spatiotemporal

change of light intensities at the receiver due to variations of air index of refraction.

There is a wide range of atmospheric turbulence impairment techniques that can

be applied at the physical layer, such as; aperture averaging, adaptive optics, diversity,

relay transmission, and hybrid systems. Other recent approaches explore atmospheric

turbulence mitigation at higher layers including retransmission and Reconfiguration

and re-routing [3].

Aperture averaging relies on the idea that more light can be collected by a receiver

with wider aperture and thus, it is possible to average out relatively fast fluctuations.

However, increasing the aperture of the receiver has its limitations in terms the avail-

able real-state. Similar to RF wireless communication, space, spatial, and temporal

diversity techniques can improve the link availability and help mitigate atmospheric

impairments. In adaptive optics, the conjugate of atmospheric turbulence that is

estimated to impact the beam to be transmitted is added before the transmission.

Relay transmission is another form of spatial diversity in which the transmitters are

distributed over a network instead of being co-located at the sending node location.

This can help utilize links that are not undergoing the same impairments as the di-

rect link between the source and destination nodes. Another approach to mitigate

atmospheric turbulence is to switch to a technology that is not affected with such

impairment (e.g., RF). Such a system is referred to as hybrid FSO/x system and we

discuss it in detail in Section 2.10.2. Since RF is the most mature wireless technology

in the terrestrial setting, FSO/RF hybrid systems are usually used. To overcome

atmospheric turbulence, retransmission of data can also be used. In this approach,

protocols that guarantees reliable delivery of messages, such as; automatic repeat re-

quest (ARQ), go-back-N ARQ, and selective repeat ARQ (SR-ARQ) are used. In case

of FSO networks, reconfiguration and rerouting of the path that a signal takes can be
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very useful to avoid links that are affected by severe atmospheric turbulence. This ap-

proach is also useful for avoiding node failures and building robust and fault-tolerant

networks.

A possible approach to overcome the atmospheric scintillation is to operate at a

higher wavelength (e.g., 2000-2200 nm) [299]. However, the development of optical

components operating in this range are not as widely commercially available since

this range is unsuitable for fiber optic technology which is more mature than the

FSO technology. Recent attention, however, has been directed towards this band

due to its advantages when used in FSO technology. Currently, sources operating

in this range are available using Fabry-Perot and Discrete Mode Fabry-Perot (DFB)

technologies [300].

Recent advances in the domain of Quantum Cascaded Laser (QCL) [301] have

enabled the development of FSO links operating in the infrared ranges (2.5-10 µm).

Nevertheless, most of these links are experimental [302] with an exception of a very

few commercial products [303]. In [304, 305], a survey of recent advances in the

domain of QCL and its use in the development of FSO systems.

Although most terrestrial FSO links may be affected by the same impairments, link

distance, day, and time during the day may influence the severity of the impairment.

For example, an FSO link is affected by the sunlight which induces a shot noise at

the receiver reducing the SNR. This impact is the highest during the sunrise and

dawn when the Sun is co-linear with the FSO link (also called solar conjunction)

[106,306,307].

The sway of tall buildings due to wind or seismic activity can result in a link

misalignment which in turn causes a reduction of received power. The effect of build-

ing sway and deviation can be compensated for by diverging the transmitted beam

so that it covers a large area around the receiver and hence the beam is received.
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However, this technique results in a lower SNR as the beam power is distributed over

a larger beam spot size. On the other hand, for high capacity, long range links APT

systems can be used to compensate for the effect of building sway [74,263].

The major limitation of OSC is the intensity attenuation due to the scattering

of the transmitted beam. Since the performance of an OSC link is dependant on

the geometry of the transmitter and receiver beams [308], one of the approaches to

improve the received intensity in OSC is to apply beam shaping techniques using

freeform lens. In [308], Zou et al. investigate the use of elliptical and rectangular

beam reshaping instead of the conventional cone-geometry. It is found that both

shapes can significantly improve the received signal with different degrees depending

on the Tx-Rx angle pair.

Table 2.5 tabulates different impairments of terrestrial FSO links, causes, effects

and solutions.

2.6.3 Terrestrial FSO Standards and Recommendations

The standards by IrDA, IEEE (802.11 and 802.15.7), and JEITA are mainly designed

to address indoor OWC links. On the other hand, the International Telecommunica-

tion Union (ITU) is interested in standards and recommendations related to terres-

trial OWC links. In particular, the ITU has released the Recommendations ITU-R

P.1814-0 [306], ITU-R P.1817-1 [307], and ITU-R F.2106-1 [299]. Recommendations

ITU-R P.1814-0 and ITU-R P.1817-1 are related to the propagation prediction meth-

ods for planning terrestrial FSO links operating in VL and IR regions of the spectrum,

whereas ITU-R F.2106-1 is more focused on the planning of fixed service terrestrial

FSO link.
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ITU-R P.1814-0 and ITU-R P.1817-1

In [306], the power budget of generic LOS FSO link and the means of calculating

the terms forming the power budget equation. The recommendation emphasizes the

importance of the location selection taking into consideration different factors such

as the weather conditions, physical obstructions, surface type along the path, and

the transceiver mounting arrangements. Several sections are dedicated to discuss

different weather factors that must be taken into consideration as the FSO link is

planned. One of the factors to be considered while calculating the FSO link margin

is the impact of the solar conjunction which occurs when the Sun is parallel to the

optical link and the Sun projects high power inside the receiver that can can override

the transmitted signal of the link. To avoid this effect, the FSO link transceivers must

be arranged such that the sun is always off-axis. Due to the significant importance of

the weather impact and impairments on the terrestrial FSO links, the ITU discusses

different weather factors in the Recommendation ITU-R P.1814-0 and also dedicates

the Recommendation ITU-R P.1817-1 to discuss different weather impairments in

detail.

ITU-R P.1817-1

Recommendation ITU-R P.1817-1 provides a comprehensive discussion regarding the

methods for predicting the propagation parameters required for planning FSO links.

First, basic definitions and causes of atmospheric impairments such as; frequency

selective absorption, scattering, and scintillation are explained and discussed. These

basics are then followed by the a detailed discussion including equations, parameters,

and variables of different factors that must be taken into consideration during the

design of an FSO link such as; Molecular absorption and scattering, aerosol absorption

and scattering, scintillation, rain attenuation, snow (wet and dry) attenuation, and
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ambient light effect. The recommendation also discusses the visibility measurement

at the maximum intensity of the solar spectrum (i.e., around 550 nm).

Appendix 1 of the Recommendation ITU-R P.1817-1 lists available computer mod-

eling programs that can be used to determine the atmospheric transmission coeffi-

cient useful for the planning of the terrestrial FSO links such as LOWTRAN from

ONTAR [309] which contains models of optical signal attenuation by aerosols.

ITU-R F.2106-1

In [299], the ITU recommendation sector released the report number F.2106-1 (2010)

in which recommendations related to the fixed service applications using T/PC/LOS/F/x

FSO links are discussed. Link ranges can vary from a few tens of meters to several

kilometers depending on the equipment used and other factors such as weather con-

ditions; clear-sky propagation, the effect of fog, rain, snow attenuation, ambient light

attenuation, and scintillation.

Table 2.6: Space FSO Link Impairments.

Impairment Causes Effects Solutions

Ambient Light
- Sunlight Reduced SNR - Increasing transmitted power.

- Sunlight reflection from - Using optical filters.

planetary surfaces.

- Integrated starlight.

- Zodical light.

Link Misalignment
- Narrow beams Link loss - Automatic tracking system

- Moving terminals - Using optical filters.

- Terminals disorientation.

Laser diodes (LD) are used with transmission power in the order of 10 mW. Wave-

lengths in the 1300-1500 nm and 780-800 nm ranges are used for FSO applications.

These ranges are selected due to their small atmospheric absorption and the commer-

cial availability of the corresponding devices from the optical fiber technology.

The wavelength range 2000-2200 nm that is part of the Short-wavelength Infrared
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(SWIR) band is another convenient FSO transmission window due to the minimal

aerosol scattering and molecule absorption as well as the reduced sensitivity to optical

beam bending caused by atmosphere temperature variation [299]. Unlike the 1300-

1500 nm and 780-800 nm bands, transceivers in this range were not widely and

commercially available at the time this recommendation was released. This can be

attributed to the fact that the enabling technology used in FSO was mainly adopted

from the mature optical fiber technology [310]. Therefore, researchers were inclined

to use off-the-shelf and readily available components used in fiber optics. Due to

the limitations of the 2000-2200 nm band in fiber optics technology with respect to

fiber absorption, optical components operating in this band were not widely used.

However, as discussed in Section 2.6.2, recent advances in the enabling technologies

have allowed the development of FSO transceivers operating in the SWIR (2000-2200

nm), as well as MIR [310] and LWIR [311] using the QCL technology.

2.7 Space FSO Links

FSO is an attractive alternative to RF inter-satellite-link (ISL) including intra- (e.g.,

LEO-LEO) and inter-orbit (e.g., LEO-GEO) links. In addition to the wide bandwidth

and high data rate an FSO system can provide, FSO systems have lower antenna

weight and size especially in the absence of atmospheric effects in space. Most of the

space FSO links are of the type S/PC/x/x/ULong with link distances ranging from

15,000 to 85,000 km [251].
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2.7.1 Space FSO Link Configurations

S/PC/LOS/M/x

An example of an S/PC/LOS/M/ULong ISL link is the Semiconductor Inter-satellite

Link Experiment (SILEX) conducted by the European Space Agency (ESA) [214].

The development phase of an FSO system for an in-orbit demonstration started in

1991. In 1998, an Optical link between two geostationary (GEO-GEO) satellites was

established at 50 Mbps [215]. Moreover, since 2003, SILEX system has routinely used

a 50 Mbps LEO-GEO S/PC/LOS/M/ULong link twice a day [215].

Another example is the project Laser Communication Terminal on Terra-SAR-

X (LCTSX) conducted by Tesat-Spacecom with funding support from the German

Space Agency (DLR) [217]. In this experiment, a LEO-LEO coherent optical inter-

satellite link with data rate up to 5.65 Gbps was demonstrated.

S/PC/NLOS/M

A good candidate for this FSO link configuration is the deep-space communication.

Instead of transmitting the data using a direct link that goes from the probe to the

ground station, a link can be relayed from the deep space probes to the ground station

through data relay satellite system using FSO links. This allows the systems to exploit

the low mass, power consumption and volume of the FSO systems as compared to

that of RF technology which is the dominant technology [250,312].

2.7.2 Impairments of Space FSO Links

Compared to the terrestrial scenario, space FSO links experience lower noise and

impairments (Table 2.6). However, the space links are still susceptible to shot noise

due to ambient light interference. There are several sources of external light such
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as the sunlight, sunlight reflected off of planetary surfaces, integrated starlight, and

zodiacal light.

As mentioned earlier, ISL distances can vary from 15,000 km in case of LEO-LEO

links to 85,000 km in case of GEO-MEO links [251]. The ultra long range of the links

is another critical impairment for ISL FSO links. This is because the longer the range,

the higher the transmission power, size, mass, and cost. Moreover, alignment of the

transmit and receive antennas must be maintained within 1µrad despite the vibration

and the continuous movement of satellites and probes [313]. To this end, tracking

servo loop must be used at both ends of the FSO link for laser beam Acquisition,

Pointing, and Tracking (APT). Control loops maintain the alignment using optical

beacons using a dedicated laser beam or using the communication signal. In [3],

Kaushal and Kaddoum present a detailed discussion of the challenges and mitigation

techniques for OWC in space.

2.7.3 Space FSO Standards and Recommendations

IOAG.T.OLSG.2012.V1A

An Optical Link Study Group (OLSG) was established by the Interagency Operations

Advisory Group-14 (IOAG-14) to assess the viability of a cross support in the FSO

space communication domain. Various mission scenarios, including, Low Earth Orbit

(LEO), Moon, Lagrange, Mars Space-to-Earth, and Earth relay, are defined and ana-

lyzed taking into account the effect of weather (clouds, optical turbulence, and other

atmospherics) and aviation interference using 1550 nm and 1064 nm wavelengths.

The aim is to determine the requirements for the ground terminal solution that max-

imizes the data return for the mission. However, since the number of ground stations

required can be a substantial cost burden for a single agency, OLSG recommended
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the cross support among agencies.

The highest priority for standards development was given to the standards for

core services under development, core services that will lead to significant benefits

(operational and/or financial), and for capabilities or services that were planned to

be committed to flight operations or tracking networks starting September 2015.

2.8 Underwater FSO Links

Propagation of mechanical waves in the acoustic frequency band experiences less ab-

sorption in the underwater environment compared to other frequencies on the spec-

trum [314]. Consequently, acoustic technology became the dominant communication

technology for UW communication systems. Underwater acoustic (UWA) can be

used to realize long-range communication links. Recent research efforts aim to im-

prove UWA communication links [315–318]. Despite recent advances, UWA links

can experience significant latency due to the slow speed of sound in water (approx-

imately 1500 m/s) [319]. Moreover, the propagation of UWA experiences multipath

fading that leads to long delay spreads (10-100 ms). The delay spread, in turn, leads

to significant ISI and thus UWA links have very limited data rates (less than 100

Mbps).

The need for higher data rates has pushed the researchers to consider other tech-

nologies for underwater communication. Although it seems reasonable to turn to RF

communications given its maturity and advances in the terrestrial and space applica-

tions, RF propagation in the UW environment is severely limited compared to that in

air and space due to the opacity of water with respect to electromagnetic radiation.

The most popular example of UW RF communication link is the link used to commu-

nicate with naval submarines. In this system, the link operates in the extremely low
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frequency (ELF) band (30-300 Hz). Using RF in the ELF range makes it possible for

the signal to penetrate the water. However, this system has a very limited function-

ality as the data rate is very low that it cannot modulate voice, moreover, it requires

extremely high transmission power and large antenna that cannot be installed on

a submarine for a full-duplex operation. Therefore, such system is usually used to

transmit basic messages from terrestrial bases to submarines. On the other hand, for

a submarine to establish a reliable terrestrial RF communication link, the submarine

must surface to use frequencies in the High Frequency (HF), Very High Frequency

(VHF), or UHF bands.

There has been, however, a pressing need for even higher data rate UW com-

munication links to fulfill the performance requirements by emerging applications

such as UW wireless sensor network (UWSN). In UWSN, a network of distributed

sensor nodes that can perform real-time spatiotemporal sampling and monitoring of

climate change, biological, and ecological processes. The huge amount of data sam-

pled and stored by the distributed nodes are then collected using unmanned UW

vehicles [320, 321]. Data acquisition by the unmanned vehicles must be fast beyond

the capabilities of acoustic and RF communication technologies.

On the other hand, the visible spectrum is less affected by the opacity of the

water as compared to other EM frequencies. Moreover, recent advances in the OWC

enabling technologies have triggered the re-evaluation of OWC as a solution for UW

applications. This, in turn, led to the development of underwater OWC links at data

rates up to 4.8 Gbps [225, 226, 230, 231]. This technology is widely referred to as

Underwater Optical Wireless Communication (UOWC). In this section, we discuss

existing and recent research efforts in the UOWC domain.
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2.8.1 Underwater FSO Link Configurations

It is found that, different water bodies have different turbidity levels, and thus dif-

ferent characteristics and impact on the light beam. There are different water bodies

with different turbidity level. Therefore, it is crucial to investigate the properties of

the water in which an UOWC system is to be deployed. This helps in the selection of

the link parameters, including light source wavelength, modulation scheme, transmit

power and link configuration. Good overviews of the properties of UOWC channels

can be found in [134,322–326].

In the following, we discuss different UOWC link configuration and summarize

corresponding experiments. For each experiment, we highlight the type of water

used.

UW/PC/LOS/F/x

Even though visible spectrum is less affected by the opacity of the water as compared

to other EM frequencies, light penetration in the visible band is limited to a few

hundreds of meters in clear waters (e.g., deep water) and even less in turbid water.

Fixed LOS links can help overcome this limitation by avoiding losses and allowing

maximum collection of incident light by the PDs resulting in high data rate transmis-

sions. Therefore, UW/PC/LOS/F/UShort [66], UW/PC/LOS/F/Short [218–232],

and UW/PC/LOS/F/Medium [233–238] are the most common UOWC link configu-

rations.

We chronologically summarize the major UW/PC/LOS/F/x UOWC studies in

Table 2.7. We summarize the highlight for each study, the type of light source and

modulation technique used. We also list the type of water in which the experiment

is conducted and the achieved data rate and link length.
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Table 2.7: Summary of Major UW/PC/LOS/F/x UOWC Link Experiments.

Reference Year Experiment Highlights
Light

Source
Modulation Data Rate

Link
Length

(m)

Snow et
al. [233]

1992

Lab experiments to measure the
spatiotemporal properties of the
laser pulses using large freshwater
tanks, natural ponds, and coastal
seawater.

LD - 50 Mbps 18

Bales and
Chrissoto-
midis [234]

1995

Two FSO communication links in
clear dark waters. The first is be-
tween an Autonomous UW vehi-
cle (AUV) and its docking sta-
tion. The two units are me-
chanically attached facilitating an
aligned (UW/PC/LOS/F) FSO
link. The second link is estab-
lished between two AUVs in the
water.

LED
(450 nm
and 660

nm)

- 10 Mbps 20

Farr et
al. [235]

2005

A 91 m link is realized in a 15
m deep pool using mirrors. And
a dock experiment that is per-
formed at night to minimize am-
bient light in slightly turbid wa-
ter is performed to realize a 10 m
vertical link.

LD - 10 Mbps 100

Hanson
and

Radic [218]
2008

Error-free UOWC link in a labo-
ratory water pipe with up to 36
dB of extinction.

LD (532
nm)

IM/DD 1 Gbps 2

Simpson et
al. [222]

2010

A small, low-cost platform for
UWSN is used in a lab experi-
ment in which Maalox is used to
vary the turbidity of the water.

LED RS RZ 5 Mbps 3-7

Nakamura
et al. [225]

2015
A lab experiment that involves an
acrylic water tank and tap water.

LD (405
nm)

IM/DD-
OFDM

1.45 Gbps 4.8

Oubei et
al. [226]

2015

A 1m × 6cm × 6cm water tank
is used. A link of 7m is realized
using mirrors. High sensitivity Si
APD is used to realize high data
rate.

LD (520
nm)

16-QAM-
OFDM

2.3 Gbps 7

Ren et
al. [229]

2016
Orbital Angular Momentum
(OAM) is employed to spatially
multiplex optical channels.

LD (520
nm)

- 4 Gbps

Xu
et al.
[230]

2016
Orbital Angular Momentum
(OAM)

LD
(red)

128-QAM-
OFDM

1.324 Gbps
(PIN) 6

32-QAM
OFDM

4.883 Gbps
(APD)

Kong et
al. [238]

2017

WDM experiment in which RGB
LD sources are used for transmis-
sion. The RGB sources achieved
data rates of 4.17, 4.17 and 1.17
Gbps, respectively.

RGB
LDs

32-QAM 9.51 Gbps 10

Al-Halafi
et al. [232]

2017

A series of lab experiments to
stream a high-quality video using
a 5 m link in different water qual-
ities.

LD (520
nm)

PSK and
QAM

1.2 Gbps 5
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UW/PC/LOS/M/x

The success of the terrestrial modulating retro-reflectors (MRR) T/PC/LOS/M links

have motivated researchers to consider deploying the technology in the UW environ-

ment [239–242]. As mentioned earlier in Section 2.6.1, MRR can help relax the point-

ing and tracking requirements which is essential for a link with a mobile transmitter

and/or receiver. Moreover, MRR helps reduce the payload and power requirements

at one of the link ends. This can be utilized in UW applications such as UWSN where

SNs are of limited power, or in UW exploration with moving divers to communicate

with a submarine.

Similar to all UOWC links, the quality (range and capacity) of an MRR link

depends mainly on the type of water in which the link is deployed. In clear water, the

link quality depends on the number of photons collected by the detector. To maximize

the link range and capacity, relatively finer pointing and tracking is required. On the

other hand, in case of turbid water, backscattering is the major limitation of the

link quality. In [239] and [240], Mullen et al. present polarization discrimination

technique to alleviate the impact of backscatter on UW/PC/LOS/M/Short MRR

links. Experimental results show significant reduction in the backscatter component

in an MRR channel.

A MEMS-based blue/green Fabry-Perot modulator for MRR link is proposed by

Cox et al. [241]. Experiments are performed in a 7.7 meters long water tank. The

turbidity of the water is varied by adding Maalox. UW/PC/LOS/M/Short MMR

links at 1 Mbps and 500 kbps data rates are achieved at 2.7 and 5 attenuation lengths,

respectively. On the other hand, error-free MRR links are realized at 6.5 and 3.8

attenuation lengths for 500 kbps and 1 Mbps, respectively, after deploying Reed

Solomon error control code (ECC).

In [242], Rabinovich et al. present a theoretical UOWC MRR link budget in
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natural waters. The authors also perform experimental tank measurements to verify

the theoretical model.

UW/CC/LOS/x

As mentioned earlier, to achieve high data rate in UOWC, UW/PC/LOS are pre-

ferred. Therefore, less attention has been directed towards UW/CC/LOS as com-

pared to UW/PC/LOS UOWC links.

In [243], Cochenour et al. present an experiment in which a diffuser is used to

diffuse the light of a 532 nm LD to establish a UW/CC/LOS/Short link. A 20◦

full angle beam in 7.72 meters long water tank was realized and impulse response

measurement at different modulation frequencies up to 1 GHz are performed. It is

found that, in clear waters, the diffuse link requires > 30 dB more optical power than

the collimated source to achieve a similar signal level at the receiver. Although, they

used a single receiver, the experiment description suggests that other receivers can

be deployed in the coverage area of the diffused transmitted beam allowing a cellular

coverage link.

In [244], Pontbriand et al. demonstrate one-way broadcasting UW/CC/LOS/Medium

UOWC links. Two different receiver configurations are used; large omnidirectional

and small with flat window. Multiple experiments are performed in deep clear water

(in Bermuda at depths of 1-2 km) and in the shallow turbid water off a dock. For the

experiments in Bermuda, only the large receiver arrangement is used. Link distance

is varied from 75 m to 200 m. The clarity of the water resulted in a clear channel

with high SNR and a 5 Mbps is established despite the background light from biolu-

minescence and Cerenkov Radiation. Links with data rates ranging from 1 to 4 Mbps

are realized during dock tests.
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UW/CC/NLOS/x

An UW/CC/NLOS/x link can be used to establish a link in the absence of a LOS

link due to obstructions, misalignment, or random orientation of the transceivers.

In UW/CC/NLOS/x, a transmitter emits a wide beam in the upward direction. As

the light reaches the water-air surface, an annular area is illuminated and the light

partially bounces off of the water surface. A careful selection of the incidence angle

along with the fact that the refractive index of water is higher than that of air can

lead to total internal reflection. A turbulent sea surface forms a challenge for this link

model since light can reflect back to the transmitter instead of the intended receivers.

UW/CC/NLOS/x UOWC links can be used for underwater ranging and imaging

[245–247]. For example, a transmitter can detect the water quality by detecting the

backscattered light from its own transmission without the need for a back-channel

[246] enabling the transmitter to change its operating parameters such as transmit

power, data and code rates.

In [245], Alley et al. propose an UW/CC/NLOS/Short imaging system. In the

proposed system, a 7.7 m diameter water tank is used. An LD illuminator (488 nm or

530 nm) is placed close to the target object to eliminate the majority of the forward

and backscatter that occurs on the way to the target. Water turbidity is varied from

very clear water to most turbid by adding Maalox to the tank. Images from both

LDs have high contrast and SNR in case of clear water. As the turbidity increases,

the contrast and SNR degrades. In the most turbid water, images based on both

LDs maintained the resolution. However, the 530 nm images have better contract

and SNR as compared to those of 488 nm. This is because the tank water had a

higher attenuation coefficient at 488 nm. Compared to conventional LOS imaging

systems, the UW/CC/NLOS imaging system proposed by Alley et al. demonstrated

improvements with respect to the SNR.
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UW/CC/NLOS/x links can also be used to establish communication between

separate transmitters and receivers. In [248], Arnon et al. analyze the use of

UW/CC/NLOS/Medium links in the context of UWSNs. In this scenario, the LOS

links between a transmitter and a set of distributed WSN nodes are not available.

2.8.2 Impairments of UOWC Links

An UOWC link is affected by three main impairments, namely; ambient light, atten-

uation (due to intrinsic absorption and scattering), and turbulence [81,327–331]. The

impairments of UOWC links are summarized in Table 2.8. Near the surface, sunlight

can result in a strong background signal that needs to be filtered [314]. Moreover, the

amount of wave action can have significant effects on the performance of the UOWC

link.

UW environment imposes some constraints on the used wavelength. For example,

it is found that red and IR parts of the spectrum suffer higher light absorption in clear

water, whereas blue light (400-450 nm) experience minimal absorption. However, this

is not necessarily true in all cases since aquatic particles like chlorophyll, algae, or

plankton can alter the absorption patterns leading to minimal absorption at different

wavelengths. Therefore, experiments must be conducted to determine the optimal

wavelength for the given application [332].

A light beam in the UW environment suffers Attenuation when it loses its intensity

due to intrinsic absorption and scattering [328]. Attenuation in shallow water can be

severe as compared to that of deep clear ocean water. In pure seawater, attenuation

is dominated by absorption. Closer to land, scattering dominates the attenuation

coefficients due to the organic matters. Scattering is the redirection of incident pho-

tons into new directions preventing the forward on-axis transmission. This in turn,

reduces the light intensity and leads to reduced SNR and inter-symbol-interference
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(ISI) [327].

Similar to atmospheric OWC links, UOWC links require the development of effi-

cient transmission techniques to overcome environmental challenges such as turbidity.

Therefore, the physical and data link layers must be equipped with energy-efficient

modulations and powerful channel codes [81]. Moreover, localization and beam align-

ment can be challenging in the UW scenario and require careful design consideration.

From the above discussion, it is obvious that the limitation of the acoustic and

FSO technologies does not qualify any of them as an efficient standalone technology.

Therefore, and as we will discuss in Section 2.10, FSO, and acoustic communication

technologies are usually operated in a complementary (or hybrid) fashion.

2.8.3 Underwater FSO Standards and Recommendations

There are no initiatives or standardization efforts related to the FSO technology in

the underwater environment, to the best of our knowledge. In 2015, Yeong Jang,

the chairman of IEEE 802.15.7r1, presented a discussion with the title: “Current

Status of IEEE 802.15.7r1 OWC Standardization” in the “International Conference

and Exhibition on Visible Light Communications 2015” [333]. In this discussion,

Jang discusses the different aspects of the OWC Technology and different related

applications/use cases including; A5-Underwater Communication using image sen-

sor communications and C1-Underwater/Seaside Communication using low-rate PD

communications.

2.9 Heterogenous FSO Links

An FSO communication link may traverse multiple environments in some applica-

tions. In this case, we refer to this optical link as a heterogenous FSO link. In a
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heterogenous FSO link, different segments of the link experience different impair-

ments based on the environment, however, the overall link is affected by all of these

impairments. In the following, we discuss few examples of hybrid FSO Links:

2.9.1 Inter-Buildings Links ({I − T}/PC/LOS/F/x)

The transceivers of a terrestrial FSO link connecting two buildings can be mounted

either on rooftops or behind windows [263]. There are additional costs to rent or

acquire a permit to place links on top of buildings. Moreover, directing received

signals on top of the building to the desired floor can be a tedious process. However,

the small-sized and light weights of FSO system components as compared to that of

equivalent RF technology allows for housing the transceivers in buildings.

In the case of the rooftop, the link is considered purely terrestrial. On the other

hand, placing FSO transceivers behind windows means that a small segment of the

link is indoor while the main part of the link is terrestrial. Therefore, in addition

to the atmospheric impairments, the indoor part of the link may have an impact on

the overall link performance. For example, the receiver might be affected by artificial

ambient light or losses due to the propagation through the windows.

2.9.2 Space-Air/Ground Links ({S − T}/PC/LOS/x/ULong)

FSO communication links between earth stations and spacecraft or satellites in the

space is one of the most popular FSO link configurations. A chronological summary of

successful heterogenous (space-ground) FSO demonstrations between 1992 and 2016

is listed in Table 2.9.

Most existing ground-space FSO demonstrations utilize ground-based transceivers.

Therefore, a portion of the link must propagate through the atmospheric channel and

the designers of the link must take this into consideration [251]. Communication sys-



85

Table 2.9: Summary of Major Space and Heterogenous (Ground-Space) FSO Link
Experiments.

Program’s Name Year
Performing

Organization(s)
Experiment Summary

Semiconductor
Inter-satellite Link

Experiment
(SILEX)

1991
European Space
Agency (ESA).

Started the development phase of an optical
communication system for an in-orbit demon-
stration [214].

Galileo Optical
Experiment
(GOPEX)

1992

California Institute
of Technology Jet

Propulsion
Laboratory (JPL).

Uplink optical communication to Galileo space-
craft by Earth-based transmitters. A 532 nm
laser was used [257].

Laser
Communication

Experiment (LCE)
1995 CRL and JPL

A space-to-earth bi-directional link was estab-
lished from the GEO ETS-VI and a ground sta-
tion outside of Tokyo [109,258].

Semiconductor
Inter-satellite Link

Experiment
(SILEX)

1998 ESA

LEO-LEO and GEO-LEO FSO links were es-
tablished. 800-850 nm wavelength range, 2
Mbps modulation capability on forward link 50
Mbps data rate on return link [214].

Geosynchronous
Lightweight
Technology
Experiment
(GeoLITE)

2001 U.S. DoD
A successful Multi-Gbps link from GEO or-
bit [258]. GeoLlTE mission details are classi-
fied [109].

Mars Laser
Communication
Demonstration

2004

NASA’s Goddard
Space Flight

Center (GSFC),
JPL, and

Massachusetts
Institute of

Technology Lincoln
Laboratory
(MITLL)

The project demonstrated at rates in the order
of 1 to 80 Mbps [258]. This proves that FSO can
improve NASA’s ability to communicate with
astronauts and planetary sensors, in the future,
at high data rates [216].

Lunar
Reconnaissance
Orbiter (LRO)

2013 NASA

The first one-way laser planetary distance com-
munication demonstrated by NASA to beam
an image of the Mona Lisa to the LRO over a
385,000 km FSO link. The Lunar Orbiter Laser
Altimeter (LOLA) instrument on the LRO re-
ceived and reconstructed the image. Reed-
Solomon error correction code is used to over-
come the atmospheric impairments [259].

Optical PAyload
for Lasercomm

Science (OPALS)
2014 JPL

NASA transmitted ”Hello, World!” high-
definition video from the International Space
Station (ISS) using FSO on Thursday, June 5.
The transmission was at rate of 175-megabit
[261,262].

Laser
Communications

Relay
Demonstration

(LCRD)

2016
GSFC, JPL, and

MITLL

NASAs first, long-duration FSO mission. The
aim of the mission is to mature concepts and
technologies for future near-Earth and deep
space communication network missions [82]
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Figure 2.10: Difference between heterogenous FSO links and heterogenous FSO sys-
tems.

tem from low earth orbit (LEO) military satellite to mobile troops using Acquisition,

Pointing, and Tracking (APT) systems are discussed in [249].

It might be noted that there are different considerations and design requirements

for the uplink (i.e., ground-to-space) as compared to that of in downlink (i.e., space-

to-ground). For example, similar to RF systems, a power on a space terminal is

limited, whereas, a power on the ground is relatively unlimited. Another example

that is more specific to the FSO systems is that in the downlink, a beam starts in

a space environment where there are no impairments until the last 30 km where the

beam is affected by the terrestrial impairments. On the other hand, in uplink, a beam

starts in terrestrial (or atmospheric) environment which affects the beam until it cuts

the first 30 km. This distorted beam will cut the longer distance in the space to get to

the station [334]. The turbulence and the quality of the wavefront that is propagating

in the atmosphere is characterized by the atmospheric coherence length [251]. The

atmospheric coherence length depends on several factors, including, aperture area and

resolution of the telescope, location, time during the day (nighttime is preferred).
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Analysis shows that in a space-ground FSO link the satellite (uplink) experiences

large atmospheric coherence length whereas ground station receiver (downlink) has

smaller atmospheric coherence length and severe phase distortion [251]. The smaller

coherence length and severe phase distortion experienced by the downlink beam can

lead to large received signal spot size at the focal plane of the ground receiver. To be

able to capture most of the signal photons, large surface photodetector must be used.

However, using large photodetector limits the electrical bandwidth of the receiver,

and thus, the ability to detect high data rate signals. To overcome this problem,

adaptive optics or array detectors [3, 251].

Currently, many commercial airlines started to equip their fleets with real-time

high-speed Internet access using RF communication systems. Most of these ser-

vices are provided using ground-based access network. For example, US provider

GoGo [252] has built a network of 3G ground stations all across the US, and planes

communicate with these stations as they fly over. Although GOGO’s system is sim-

ple to implements, the system has a very limited bandwidth of 3.1 Mbps per plane.

Since most aircrafts have cruise altitude above the cloud layer, it is possible that FSO

links from satellites provide high-speed service avoiding severe atmospheric impair-

ments [250]. The legacy L-band technology is slow and relatively expensive. On the

other hand, higher-frequency Ku-band (12-18GHz) satellites are relatively economical

and more efficient. Lufthansa’s FlyNet system [253], for instance, claims download

speeds to the aircraft of up to 50 Mbps.
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2.10 Classification of FSO Systems Using the Pro-

posed Framework

In previous five sections, we discuss indoor, terrestrial, space, and underwater FSO

links. We also discuss “heterogenous FSO links” in Section 2.9. In this section,

we focus our discussion on two types of FSO systems, namely; Heterogenous FSO

systems, and Hybrid FSO/x Systems.

Before we discuss FSO systems in details, we need to understand the difference

between “heterogenous FSO links”, “heterogenous FSO systems”, and “hybrid FSO

systems”. We use Figure 2.10 to understand the difference between heterogenous

FSO systems and links.

In heterogenous FSO links, a single FSO link spans multiple environments. For

example, in case of Space-Air/Ground FSO links discussed in Section 2.9.2, a sin-

gle transmitted FSO beam will propagate through a terrestrial channel, and then

propagate through a space channel (or vice versa). In Figure 2.10, horizontal axis

represents the different environments an FSO link can propagate through, whereas

the vertical axis shows different configurations of FSO links in the four environments.

We can see several examples of heterogenous FSO links that span two environments.

A heterogenous FSO system is a system that operates in a single environment,

however, utilizes multiple link configurations to realize a more efficient system that

could not be achieved using only one of the link configurations. Figure 2.10 depicts

an example of a heterogenous FSO system which we will discuss in more details in

the next section. As we can see, there is a system that operates entirely in the indoor

environment. However, the system utilizes two link configurations; I/PC/LOS/F and

I/CC/LOS.

It is important to note that although the environment is consistent, and the link
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configurations are different, the heterogenous FSO system employs only FSO technol-

ogy. Unlike heterogenous FSO systems, hybrid FSO/x systems are systems in which

FSO is used with another technology (x) together to realize an improved communi-

cation system.

Table 2.10 summarizes the examples of the FSO systems to be discussed in this

section.

2.10.1 Heterogenous FSO Systems

As mentioned earlier, x/PC/LOS/F/x FSO links provide high bit rate links for fixed

users. If a high bit rate link is to be established for a mobile user x/PC/LOS/M/x

links are used. However, establishing and maintaining a PC/LOS link with a mo-

bile user can be challenging. On the other hand, x/CC/LOS/x links utilize wider

beams and can cover a wide area which can help to relax the pointing and tracking

requirements. However, this usually comes at the cost of reduced bit rate.

One of the most common examples of heterogenous FSO systems is the use of

x/PC/LOS/M/x and x/CC/LOS/x together to establish a high bit rate link with a

mobile user. This approach is one of the Acquisition, Tracking, and Pointing (ATP)

mechanisms used to establish FSO link with mobile users [71]. ATP can be used for

indoor, terrestrial, space, and can also be used for heterogenous FSO links.

In [340], Wang et al. have utilized an I/CC/LOS/Short link for user localization

and I/PC/LOS/F/Short link for high bit rate with the user. In particular, when a

user moves, localization steers the mirror and high bit rate is maintained.

In Section 2.6.1, we discuss the application high speed trains (HSTs) in which

OWC-enabled BSs along the side of the railway tracks are used to provide the cov-

erage and Internet access for passengers onboard the HST. The BSs are deploying

wide beams that cover a long distance of the railway tracks leading to a simple im-
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plementation of the system that does not require sophisticated pointing and tracking

mechanisms. A different approach to achieve the same objective is to employ ATP to

maintain the LOS link between the BSs and the transceivers on the train. In [335],

Urabe et al. present an OWC heterogenous system in which I/CC/LOS/Long and

I/PC/LOS/M/Long links are used to achieve 1 Gbps links to HSTs with a handover

time in the order of 100 ms.

In [336], Fawaz et al. present relay-assisted network using UAVs equipped with

buffers. In the proposed network, in addition to existing regular T/PC/LOS/F/Long

relayed links, a UAV that is either stationary or flying between the sender and receiver

can be used to establish T/PC/LOS/F/Long or T/PC/LOS/M/Long sender-UAV

and UAV-receiver links. The links range from 1.5 and 3 km. The results showed the

improvement in the performance with respect to packet delivery.

2.10.2 Hybrid FSO Systems

Different communication systems can be integrated together yielding an improved

system that utilizes the advantages of both integrated systems. For example, in

[341–343], Wang et al. incorporate high bandwidth I/PC/LOS/M/Short FSO links

with RF system that is mainly used for user localization within the room.

In [337], Wang et al. demonstrate a high-speed reconfigurable card-to-card optical

interconnect architecture that utilizes an I/PC/NLOS/F/UShort FSO links along

with multi-mode fiber (MMF). The authors realized 3×10 Gbps optical interconnects

despite the air turbulence from the fans cooling the board.

FSO links can be independently deployed in several terrestrial applications includ-

ing last-mile access and back-haul networks [344]. Combining FSO and RF technolo-

gies to realize heterogeneous RF/FSO links can lead to higher-rate and more reliable

communication. Single-hop RF/FSO systems consisting of two separate RF and FSO
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links are widely investigated [345,346]. In this type of systems, A T/PC/LOS/F/Long

FSO link is used for high-bit rate transmission as long as the weather permits, in case

of severe weather, RF link acts as a backup. In other cases, both links can operate

simultaneously to improve the overall performance of the system and in case of se-

vere weather, the system performance degrades to the lower-bound of single RF link

system. Similarly, multi-hop RF/FSO systems are also being investigated [347].

Acoustic communication system dominates the UW communication, therefore, it

is possible that acoustic systems are used along with FSO in order to utilize the

outreach of the acoustic system, and high bit rate of the optical systems. For ex-

ample, since acoustic signals are capable of long-range low data rate communication,

they can be used in UWSNs for localizing sensor nodes. Moreover, distance between

nodes can be accurately determined due to the slow speed of sound which leads to

accurate signal timing. Several experiments in the literature demonstrate heteroge-

neous communication systems where acoustic communication is used side by side to

FSO communication systems [348, 349]. Short-range LOS FSO link is usually used

for data transfer at high data rates, whereas, the acoustic signal is used for signalling

and transmission of short messages. In [350], Vasilescu et al. presented a heteroge-

neous system with mobility along the transmitters LOS. UW/CC/LOS/Short FSO

communication link is realized within a 90◦ cone with a range of 2-8 m. The acoustic

link used for broadcast at lower data rates of 330 kbps and distances over 400 m.

Other examples of hybrid FSO/RF systems are the Loon project by Google [351]

and Facebook’s Internet.org project [339]. The objective of both projects is to pro-

vide Internet connectivity to people having no (or limited) Internet connectivity in

unreachable and underdeveloped regions [71]. To this end, High Altitude Platforms

(HAP) located 20 km above the earth’s surface on the stratosphere are to be used.

At this altitude, LOS connections can be established. Moreover, the atmospheric
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impairments at this altitude are minimal.

In case of Loon project, the HAPs are balloons. The balloons are designed to

endure the harsh conditions in the stratosphere [338]. At the stratosphere, winds

can blow over 100 km/hr, the balloons are not protected against UV radiation and

must endure temperature swings of 150◦ and temperature going as low as -90◦ [352].

Balloons are launched using a special launcher capable of launching a balloon every

30 minutes [352]. To control the balloons movement, the altitude of the balloon is

controlled to utilize the stratified winds in the stratosphere. As the balloon enters

different strata, the balloon will be carried at different speed and direction as de-

sired and designed using specialized algorithms that can navigate the balloons. For

the communication purposes, each balloon is equipped with three modules; an LTE

module and two FSO modules. The LTE modules is used to communicate with the

terrestrial base station that is connected to the internet. The LTE module is also

used to connect with and carry the data to/from the mobile users in the unreachable

and underdeveloped regions. To relay the data to/from the balloon that is connected

to the base station, balloons utilize the FSO modules to communicate with each

other. Loon system deploys a heterogenous FSO system in which a wide beacon

beam T/CC/LOS/Long along with T/PC/LOS/M/Long are used for the realization

of ATP for the moving balloons.

Unlike Loon project, Internet.org project deploys high-altitude solar-powered drones,

LEO, and GEO satellites. All terminals are equipped with RF and FSO transceivers.

Similar to Loon project, RF modules are used to communicate with the terrestrial

base station, and communicate with the mobile users. FSO T/PC/LOS/M/Long

links are used for inter-drone links that relays the data between the base stations

and the mobile users. LEO and GEO satellite serve the same purpose of covering

unreachable regions.



94

2.10.3 Case Study: LiFi-Based Systems

Hybrid FSO system is expected to be the working model of the 5G and next-generation

wireless systems since RF is falling short in fulfilling the requirements of such next-

generation networks alone. LiFi is a network that is based on VLC communication.

LiFi offers dual-functionality to transmit data using optical sources (illumination con-

current with data communication) [168].

In [353], Ayyash et al. present general characteristics of heterogeneous (LiFi +

WiFi) network and develop a framework in which LiFi and WiFi technologies coexist.

The network consists RF macrocells, RF small cells (RF-SCs), and optical small cells

(O-SCs). The system discussed in [353] is a hybrid FSO/RF system. Each of the

LiFi luminaires (lights) is an I/CC/LOS/Short link model. It may be noted that

I/PC/LOS/F/Medium FSO links can be used to form the backhaul network and

connect different BSs in a large room instead of wires. A network of nodes equipped

with the LiFi receivers can be supported by this network which makes this network

very suitable for the IoT model.

2.11 Summary

FSO communication links can be deployed in indoor, terrestrial, space, or underwater

environments. Depending on the environment, an FSO link experiences different

impairments that impact its performance. Even for the same environment, different

link configurations can be affected differently by the noise and impairment source,

therefore, it is crucial to be able to differentiate link configurations.

This chapter presents a simple, yet powerful classification scheme of FSO technol-

ogy. In this scheme, an FSO link can be classified as a combination of four different

criteria, namely: Environment (ε), Coverage Type (κ), LOS Availability (α), Mobil-
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ity (µ), and link distance (δ). An FSO link can be deployed in an indoor, terrestrial,

space, or UW scenario. The link can be either a point or cellular coverage which can

be realized using a LOS or NLOS link. Furthermore, a link can be fixed or mobile.

Using the discussed four criteria, we were able to develop a generic classification that

can be used to categorize different FSO links including recently evolving schemes in

which other classifications in the literature fall short. In particular, the proposed

classification scheme describes any FSO link configuration as a tuple (ε/κ/α/µ/δ).

We discuss all possible FSO link configurations in the four different environments.

We provide examples for each FSO link configuration by listing selected recent ref-

erences and related research efforts. Moreover, we briefly discuss the impairments

experienced by each link type and their possible solutions.

We also discuss heterogenous FSO link that spans multiple environments. Sev-

eral examples including the earth-space communication links have been discussed. A

heterogenous FSO link experiences a combinatorial effect due to the different envi-

ronments.

Unlike heterogenous FSO link, a heterogenous FSO system might incorporate

two or more FSO link configurations in order to improve the system performance

combining different links advantages. On the other hand, a hybrid FSO system is

a system in which one or more different communication technologies are used along

with FSO systems. Examples of each type of systems are provided and discussed.

We use the proposed classification scheme to review existing FSO standards and

recommendations. IrDA has produced a set of standards aiming for high data rate

short FSO links. JEITA CP-1221, CP-1222, CP-1223, IEEE 802.15.7, and IEEE

802.15.7r1 standards are designed for short/medium range VLC supporting low data

rate links. On the other hand, limited efforts are directed towards standardizing

terrestrial, space, and underwater FSO links. For example, a single recommendation
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for terrestrial FSO links, ITU-R F.2106-1, was proposed by ITU.

We can conclude that the FSO is increasingly becoming an attractive technology

for emerging and future communication systems and applications. This holds true

for either FSO as a stand-alone technology (as envisioned by NASA in its future

space applications), or as a complementary technology (future wireless systems and

in UW applications). This chapter presents an attempt to use a simple and powerful

classification system to jump-start researchers to tap into the growing and expanding

the realm of the FSO technology in indoor, terrestrial, space and UW environments.
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Chapter 3

Wireless Data Center Networks

In this chapter, we compare the free space optical (FSO) communication and the

60 GHz radio frequency (RF), the two key candidate technologies for implementing

wireless links in DCNs. We present a generic classification scheme that can be used

to classify current and future DCNs based on the communication technology used in

the network. The proposed classification is then used to review and summarize major

research in the area of wireless DCNs.

3.0.1 Motivation and Scope

Most existing DCNs can be classified as wired DCNs in which copper and fiber cables

are used for networking. Wired DCNs received an increasing attention in the DCN

research community evident by the increasing number of papers and surveys that

discuss, analyze, and motivate new developments in wired DCNs (see for example

[34,354–356]).

As discussed earlier, the need for developing adaptive DCNs has motivated the

research community to investigate the feasibility of incorporating wireless technologies

in DCNs. As a result, several research papers on wireless DCNs have been published.
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A few recent survey papers on wired DCNs only briefly discuss the deployment of

60 GHz RF technology in DCNs [34, 354–356]. On the other hand, a recent survey

paper that exclusively focuses on the topic of wireless DCNs was published early

2015 [357]. Similar to the survey papers on wired DCNs [34, 354–356], Baccour et

al. [357] focus their discussion only on deploying the 60 GHz RF technology in DCNs.

In [358], we focus our discussion on DCNs using FSO. We analyze existing indoor

FSO standards and the challenges that may face the DCN designers. We also identify

standardization needs and opportunities to help accelerate the development of FSO

links for DCNs.

From the above discussion, we make the following observations:

1. DCN design space is reshaping as new technologies for networking are deployed,

and there is a current need to rethink the design philosophy of DCNs. Therefore,

a classification scheme that can formally express the changes in the DCN design

space is required to help identify new DCN designs.

2. Deploying 60 GHz and FSO technologies in DCNs encounter different design

requirements and challenges. However, as we will show in Section 3.1, there are

many similarities between the two wireless technologies. Therefore, we believe

that the development of DCNs using one of the technologies can significantly

benefit from the other.

In the absence of a systematic description of the DCN design space evolution, it

can be difficult for researchers to fully explore the DCN design space and identify

potential designs. This motivates us to develop a new survey to collate and present

current advances in wireless DCNs in a systematic fashion to facilitate the sharing of

knowledge among researchers using different wireless technologies to develop wireless

DCNs. We propose a classification that can be used to classify existing and emerging
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wired and wireless DCNs. Based on this classification, we survey current state of the

art of wireless DCNs. We review the requirements, challenges, and trends using 60

GHz RF and FSO technologies. The proposed classification leads to a nearly complete

picture of the design space for DCNs. This help us to identify potential unexplored

solutions for next-generation DCNs.

3.1 Potential Wireless Technologies in DCNs

In this section, we discuss two candidate wireless technologies, 60 GHz RF and FSO,

that can be used in wireless DCNs. We compare their attributes, advantages, and

disadvantages. We also compare FSO and optical fiber since they both are optical

technologies. For the sake of completeness, we first give a brief introduction on

wireless communication systems.

Figure 3.1: Electromagnetic Spectrum.

3.1.1 Basics of Wireless Communication

Wireless communication is one of the active areas of research in the communication

field today. In wireless communication, information is transferred from the trans-
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mitter to the receiver without the need for a confined medium (e.g., cable). Figure

3.1 depicts part of the electromagnetic (EM) spectrum. The wavelength of a signal

decreases as the frequency increases and different frequencies across the EM spectrum

have different propagation properties. According to Friis law, the effective area of an

antenna decreases as frequency squared.

Audio frequencies extend from 3 kHz to 20 kHz in the very low frequency (VLF)

band, whereas radio frequency (RF) occupies a very wide range of spectrum (20

kHz - 3 THz). Depending on the nature and requirements of the application, a

suitable carrier RF frequency is selected. For example, radio waves have limited

propagation capability in electrical conductors such as salt water due to absorption,

and thus very long wavelengths (i.e., very low frequency and very large antenna)

is required. Therefore, ground-to-submarine communications utilize audio waves, or

RF in the VLF band which can penetrate only up to 20 meters below sea surface.

On the other hand, IEEE 802.11b/g/n (WiFi) wireless local area networks require

worldwide compatibility and moderate capability of penetrating windows, walls, and

ceils. Therefore, the unlicensed 2.4 GHz UHF and 5 GHz SHF industrial, scientific,

and medical (ISM) radio bands are utilized to realize short and medium range links

in homes and offices.

When the term wireless communication is mentioned, conventionally, RF tech-

nology is the first to come to mind since it is a well-developed mature technology.

However, recent advances in FSO technology have narrowed the gap between FSO

and RF technologies. FSO technology can operate in a wide range of spectrum, in-

cluding invisible infrared spectrum (used by optical fiber technology), visible light,

and ultraviolet [359]. This helped FSO to be successfully used in a wide range of

applications. Examples of applications in which FSO technology has already found

its place are, mobile networks backhaul [81], space communication [82], underwater
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sensing [84], and wireless sensor networks [211]. Moreover, it is envisioned that the

5G wireless communication systems will incorporate several complementary access

technologies along with the RF technology, including FSO [75].

3.1.2 60 GHz RF Technology

Millimeter wave (mmWave) RF communications operating in the millimeter band

(30-300 GHz) is rapidly advancing. Most of the current research is focused on the

60 GHz band and the E-band (71-76 GHz and 81-86 GHz) [27, 41, 360, 361]. The

unlicensed spectrum of the mmWave communications makes it possible to launch

products world-wide. Moreover, the extremely high frequency and the large spectrum

of the mmWave band allow for high bandwidth short range links. The characteristics

of the mmWave communications urged the researchers to consider the mmWave RF

technology in the next generations of wireless communication systems (e.g., 5G) to

provide multi-gigabit communication links [362].

The 60 GHz band is a 7 GHz wide unlicensed band of spectrum (57-64 GHz).

Although unlicensed, recent standards, such as IEEE 802.11ad are developed to stan-

dardize very high data rate transmission at 60 GHz. Operating at 60 GHz has unique

characteristics compared to other RF technologies, such as the ISM band at 2.4 GHz

and ultra wide-band (UWB), for providing link connectivity in DCNs [4, 27, 41]. For

example, the bandwidth of the 60 GHz band is 88× that of the ISM band at 2.4 GHz

(80 MHz wide) which supports the IEEE 802.11b/g/n (WiFi) networks [27].

The large available spectrum in the 60 GHz range allows for a large number of

independently operating directional links. Moreover, advances in modulation and

coding techniques help improve spectral efficiency, and thus, even larger number of

links can be provided using the same bandwidth. For example, a 1 Gbps link can be

achieved using 100 MHz channel and spectral efficiency of 10, that is 70 orthogonal
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channels using the 7 GHz bandwidth of the 60 GHz technology. This large number

of channels, along with careful design can provide the level of scalability required for

wireless mega DCN.

The high frequency of 60 GHz facilitates compact antennas with high gain. For

example, a one-square inch (6.5 cm2) antenna can provide a gain of 25 dBi at 60

GHz. Moreover, short wavelength of 60 GHz enables the design of sophisticated

interfaces and the use of phase array antennas with a large number of elements of

very small form factors [4]. Increased number of antenna elements in a phased array

helps achieve highly directional beams with small footprints, thereby increasing the

number of simultaneous transmissions.

3.1.3 FSO Technology

The absence of atmospheric impairments in addition to other attractive attributes

of indoor FSO links make FSO a strong candidate wireless technology to be used in

future wireless DCNs. A simple FSO link consists of a light source at the transmitter,

and a photodetector (PD) at the receiver to detect the received light.

Light Emitting Diodes (LEDs) and Laser Diodes (LDs) are the most commonly

used light sources in FSO links [51]. LDs are highly directional sources that have

high optical power outputs and broader modulation bandwidths [114], and therefore,

can support high data rate transmission. On the other hand, LEDs are large-area

emitters and are considered as extended sources that can be operated safely even at

relatively high powers. LEDs are cheaper and more reliable as compared to LDs, and

thus, are preferred in some indoor applications. In general, LEDs support lower data

rates as compared to that of LDs [114], however, recent research demonstrations show

relatively high achievable data rate (up to 3 Gpbs) using LEDs [115,116].

Positive-intrinsic-negative (PIN) or avalanche photodetectors (APDs) are widely
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used to detect the light beam at the receiver [51]. PIN photodetectors are cheaper,

operates at low-bias, and can tolerate wide temperature fluctuations [51]. Therefore,

PIN photodetectors are used in many commercial infrared links that requires FSO

links of low cost, and low data rates. APDs are essentially PIN photodetectors that

are operated at very high reverse bias resulting in internal electrical gain [1]. APDs

are favorable and have superior performance compared to PIN PDs when the ambient

light noise is little. APDs are used in systems that require high data rates and high

performance in general. Extensive research effort is being exerted in the field of

quantum dot, Nano-particle and graphene-based PDs to develop ultrafast PDs that

operate over a broad range of wavelengths [117,363–368].

Although On-Off keying (OOK) is the most commonly used modulation scheme

due to its simplicity, wide range of digital modulation schemes can be used in FSO

systems. Pulse Position Modulation (PPM) or one of its variations, such as Variable-

PPM (VPM), is usually used in high data rate applications (e.g., deep space com-

munication) [51, 84, 120]. Both OOK and PPM are classified as single-carrier pulsed

modulation. Multiple-subcarrier modulation, such as Orthogonal frequency-division

multiplexing (OFDM), can also be used in severe channel conditions since it does not

require complex time-domain equalization as compared to PPM [90].

3.1.4 60 GHz versus FSO

A comparison of indoor 60 GHz RF and FSO technologies is presented in Table 3.1.

Both technologies occupy unregulated band of the spectrum. Therefore, operating

using FSO or 60 GHz does not require approval allowing manufacturers to develop

worldwide compatible components.

It is expected that the components of the 60 GHz technology will be inexpensive

since standard 90nm CMOS technology is used for developing components of the 60
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GHz technology with small form factors. On the other hand, most exiting commer-

cial FSO devices are developed for outdoor long range FSO links. Therefore, FSO

transceivers are housed in bulky packaging and are sophisticated to endure atmo-

spheric impairments, including rain, fog, wind, and building sway. In indoor FSO

links, however, this level of complexity is not required. It is possible to realize an

indoor FSO link by using the output light from a single-mode fiber (SMF) or multi-

mode fiber (MMF) and collimator. At the receiver, a collimator is used to couple the

received light to the receiver SMF (or MMF) [50,85,86,369].

RF technologies can offer high data rates when high carrier frequencies are used.

At high-frequencies (i.e., short wavelengths) [370], diffraction and reflection barely

apply. However, non-line of sight (NLOS) RF communications highly depend on the

diffraction and reflection of signals. Therefore, 60 GHz links become line-of-sight

(LOS) links, and the key features of RF technologies, such as coverage, ability to

penetrate obstacles, and receiver sensitivity, become less clear [51]. Although this can

be considered as a limitation for RF technologies operating at high carrier frequencies,

that is not necessarily the case for 60 GHz technology in DCNs. In fact, having

limited coverage and being unable to penetrate obstacles are among the factors that

motivated researchers to consider 60 GHz for DCNs. In DCNs, racks are arranged in

close proximity, therefore, short range links are required. Moreover, the inability to

penetrate obstacles can help reduce the complexity of dealing with interference and

security issues. Similarly, in indoor applications, FSO link is confined to the room in

which the system is installed due to the inability to penetrate physical objects so it can

not be detected outside, securing transmissions against eavesdropping. Accordingly,

the complexity of security measures and data encryption needed for using FSO and 60

GHz technologies can be reduced leading to simpler design process and less overhead.

The channels in 60 GHz technology are wider than that at 5 GHz, and thus, for
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a given link distance, the path loss is 20 dB higher than that at 5 GHz. Moreover,

the 60 GHz band includes the absorption frequency of the oxygen atom. At 60

GHz, the signal-to-noise ratio (SNR) is roughly 55 dB worse than that of links at 2.4

GHz [44]. Therefore, 60 GHz technology has lower practical bandwidth than what is

theoretically achievable. High path loss and link instability in 60 GHz technology can

be alleviated using highly directional beams which can be realized using beamforming

[4, 371]. Compared to RF, FSO inherently provide significantly higher bandwidth as

compared to that of current RF technologies due to the large band of unregulated

frequency. Moreover, FSO exhibit lower power attenuation, and thus, can offer higher

data rates at short, medium, and long distances [51].

Radiation patterns of RF communication impose additional restrictions on the

activity of wireless modules in close proximity to avoid interference [52]. Although it

is less significant in 60 GHz technology, especially if beamforming is used, interference

can increase the complexity of routing and network management schemes, and may

thus reduce the overall throughput of the network. Moreover, using 60 GHz in a

DCN full of metal structures can make the problem of interference more challenging

[41, 372]. On the other hand, interference does not form a serious problem in case of

FSO technology since point-to-point FSO links are used to achieve higher data rates

[137]. This, however, means that FSO link requires accurate and stable alignment to

maintain the link. As we will discuss in Section 3.5, vibrations due to server fans,

discs, HVAC and UPS units may cause link misalignment adding more challenges to

the design of FSO links in DCNs.

Intensity modulation with direct detection (IM/DD) is usually employed in FSO

links. The high carrier frequency and the relatively large detector area provide spatial

diversity that averts multipath fading. On the other hand, RF links experience signal

magnitude and phase fluctuations due to reflections. Therefore, the design of FSO
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links can be simpler than that of RF. However, FSO receivers have lower sensitivity as

compared to that of RF due to the speed limitations of the photo-electric conversion

mechanisms [73].

The advantages of the 60 GHz RF technology motivated Ramachandran et al. to

propagate the idea of using 60 GHz RF technology in DCN design [4]. Following

their work, considerable research has been devoted to investigating the feasibility of

deploying 60 GHz RF technology in DCNs [6, 43–49]. Similarly, the advantages of

FSO technology and its successful use in a wide range of applications has motivated

researchers to investigate the use of FSO in the design of DCNs [9–11,50,52].

3.1.5 FSO versus Fiber Optics

FSO and optical fiber are two optical technologies providing comparable transmission

bandwidth. Considering the similarities between FSO and optical fiber, we believe

that it is important to compare the two technologies.

It might be noted that the advantages (disadvantages) of a technology may be-

come less or more significant depending on the scenario in which the technology is

deployed. For example, since we focus our discussion on the indoor DCN application,

the capability of extending optical fibers for long distances becomes insignificant. On

the other hand, complexities associated with laying fiber cables in an outdoor net-

work, including permissions and digging, is absent in DCNs. Similarly, environment

impairment, that is considered a major challenge for outdoor FSO links, becomes

negligible in environmentally controlled mediums such as in DCNs.

Optical fiber technology uses a confined medium (i.e., fiber cable) for transmis-

sion, and thus optical fiber technology is immune to interference. However, according

to optics and laser physics, light beam propagating in an optical fiber can suffer from

chromatic and polarization mode dispersions, birefringence, scattering, and absorp-
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tion [373].

In an FSO link, the light propagates through an unconfined medium (i.e., air).

The absence of the confined transmission medium in FSO makes it, unlike optical

fiber, insusceptible to chromatic and polarization mode dispersions, and birefringence.

Moreover, light in fiber cables propagate by the mean of total internal reflection.

Therefore, light beam in FSO can be around 1.5 times faster than that of in optical

fiber resulting in lower propagation delay for FSO [52]. Nonetheless, unconfined

mediums lead to beam divergence and make FSO links vulnerable to interference.

Fiber cables can be extended in overhead or under raised floor between any two

racks in DCNs regardless of the physical arrangement of racks in the DC. Although

this implies that there are no restrictions on the physical layout of a DCN, extending

fiber cables require careful planning and time to ensure that installation standards

are met. Specialized manpower is needed to adhere to installation recommendations,

such as maximum bend radius and vertical rise, planning of cable routes, protection

against impacts, and maximum tensile loading during the pull of the cable [374].

Unlike fiber optics, FSO links are point-to-point LOS/NLOS links, and thus require

careful layout design to ensure feasible link alignment. This can lead to network

layout design complexity. Once designed, FSO links do not require extensive setup

planning or specialized personnel for installation as compared to fiber optics, and

thus FSO links can be installed in a shorter time [57]. However, as discussed earlier,

careful alignment and stability are required to maintain the FSO link.

In case of damage or failure, replacement or repair of a damaged fiber cable can

be time consuming since cables are usually bundled. On the other hand, if an FSO

transceiver fails it can be replaced as quickly as it was originally installed.
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3.2 Proposed Classification of DCN Architectures

DCN architectures are broadly classified into switch-centric [40, 42, 375] and server-

centric [35, 37–39] architectures. In switch-centric DCNs, servers operate only as

computing nodes and switches are used for data routing. In server-centric DCNs,

servers perform both, computation and data routing.

Wired DCNs are commonly classified based on switching schemes into three classes

(see Figure 3.2); namely, electrical (circuit or packet switching), optical (packet, cir-

cuit, or burst switching), and hybrid [34,356,376,377].

Wireless communication is a promising flexible approach that can help addressing

the nondeterministic unbalanced traffic distribution of DCN applications and help

alleviate congested hot spots [9,41]. Wireless communication technologies can be used

in DCNs by either augmenting already existing wired infrastructure with additional

inter-rack wireless links, or by completely replacing the wired infrastructure by a pure

wireless network. In the latter, wireless communication links are used to perform intra

and inter-rack communications.

Figure 3.2: Classification of conventional wired DCNs.

Augmenting wired DCNs with wireless links can solve the problem of hotspots;

however, the wiring complexity problem remains unsolved. On the other hand, real-

izing a pure wireless DCN is expected to solve the hot spot and wiring complexity
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problems.

As wireless communication is finding its place in DCNs, we believe that a new

classification is needed in order to include the emerging new DCN models. We identify

four types of communication technologies that can be used in DCNs, wired (electrical

cables and optical fiber) and wireless (RF and FSO). We classify DCNs based on the

used communication technologies. Figure 3.3 depicts the proposed classification with

all possible DCN design schemes based on the four communication technologies.

Figure 3.3: Proposed data center network (DCN) classification.

From Figure 3.3, DCNs can be broadly classified as Pure or Hybrid. Several DCN

designs can fall under the broad hybrid class. In the following we formally define

different types of DCN designs:

• Pure Wired/Wireless DCN: refers to a DCN in which a single (wired or

wireless) communication technology is used for intra and inter-rack communi-

cation. This can result in a pure electrical/optical/RF/FSO DCN.



111

• Hybrid DCN: refers to a DCN that utilizes two or more technologies.

• Hybrid Wired DCN: is a DCN that deploys two or more wired technologies.

This refers to a DCN in which electrical cables and optical fibers are used.

• Hybrid Wireless DCN: a DCN that uses two or more wireless technologies.

A hybrid wireless DCN refers to a DCN in which RF and FSO are used for

communication.

• Hybrid (wired + wireless) DCN: Refers to a DCN that deploys at least

one wired technology and augmented with at least one wireless technology. This

can lead to six types of hybrid DCNs:

1. Pure Electrical + RF

2. Pure Optical + RF

3. Hybrid wired + RF

4. Pure Electrical + FSO

5. Pure Optical + FSO

6. Hybrid wired + FSO

In Figure 3.3, for the sake of brevity, we only show Hybrid wired augmented with RF

and Hybrid wired augmented with FSO DCNs. Dashed line indicates that we can

further break it down to more categories as discussed above.

It might be noted that, using the proposed classification, an electrical/optical

DCN in conventional classification can be classified as a pure electrical/optical DCN,

respectively. On the other hand, a hybrid DCN in conventional DCN classification

falls under the hybrid wired DCN class.
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For the sake of completeness, in this section, we briefly discuss wired-based DCNs.

However, since wired DCNs are not the main focus of this chapter, we refer interested

readers to a selected list of recent comprehensive surveys that investigate research and

development in the field of wired DCNs. Figure 3.3 is also populated with selected

references.

Pure electrical DCN or simply conventional DCN is the most commonly deployed

type of DCNs [34, 356, 376, 377]. Conventional DCN was first known as server room,

which is a small room owned by a company. In a server room, a collection of servers

are co-located and connected via an electrical network to serve the computational and

storage needs of the company. Having large number of machines co-located in the

same room requires good management and operation to guarantee their functionality.

For example, it requires proper temperature and humidity control. Also, specialized

personnel are needed in order to monitor and maintain the server room.

As companies increased in size, bigger rooms were needed. Fulfilling the require-

ments of expanding the server room requires large investment to cover the replacement

of old networking components (servers, switches, etc.). A few companies were able

to perform these changes, while for others it was an overhead too big to handle. The

buildings equipped with a large network of servers in big companies started to be

known as DCs. Small companies begun to outsource their computational and storage

needs by using the DCs of big companies. This helped them avoid the huge costs of

maintaining server rooms.

As mentioned earlier, it has been widely believed that to appease the ever in-

creasing demand of high-bandwidth communication in DCs, DCN architectures must

guarantee full bisection bandwidth between a significant number of servers [378–380].

However, according to empirical studies of DC traffic, it has been shown that 80%

of the flows are mice flows (smaller than 10 KB in size) and 95% of the bytes trans-
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ferred in a DC are in the top 10% of the elephant flows (flows with large amount of

data) [28–30, 381]. Thus, full bisection bandwidth between more than a few pairs of

servers at any instant is rarely required in a DCN [266,378,380,382].

The limitations on electrical interconnects [383, 384] along with the existence of

elephant flows have motivated researchers to consider Hybrid wired DCNs, where elec-

trical and optical networks are utilized to perform inter-rack communication. In this

scenario, optical networks are used to provide high-speed, on-demand, high band-

width inter-rack communication in DCNs [266, 378–380, 382, 385]. Existing hybrid

wired DCNs (e.g., c-Through and Helios) employ Electrical Packet Switching (EPS)

and Optical Circuit Switching (OCS) technologies, respectively, for supporting bursty

and long duration large flows in DCNs [127,266,378,379,383].

The need for EPS in DCNs is driven by the high switching time involved in OCS

technologies [379]. However, the use of EPS may somewhat restrain the exploitation

of the advantages of photonics in DCNs [380]. EPS already started to become a

bottleneck in large scale DCNs, especially with the increasing demand for high-speed,

high-bandwidth links. With the recent progress in optical technologies [386–388],

Optical Burst Switching (OBS) has been propagated as a good candidate for burst

communications in data-intensive cloud applications [24, 384, 389–395]. The use of

OBS technologies in DCNs, however, has not yet received much attention.

Recent papers suggested the use of all-optical inter-rack communication instead

of combining electrical and optical components [383,385,396–400]. It might be noted,

however, that intra-rack communication is realized using electrical switching. This is

because, traditional electrical cables (e.g., 10 GigE) are viable for distances below 10

meters (i.e., intra-rack communication) [399]. Moreover, the prices of the enabling

technologies of optical communications are relatively high as compared to that of

commodity electrical networking elements. Therefore, the concept of a pure wired
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DCNs using optical fibers did not attract the designers of DCNs, yet.

In case of wireless communication, a wireless technology can be used for inter-rack

communication only (augmenting links) or to replace the whole network (pure wireless

DCN) including intra-rack communication. Therefore, we believe that it is important

to distinguish between the all-optical inter-rack communication and all-optical DCNs

(pure optical DCNs). According to this definition, pure optical DCNs do not exist,

and DCNs that use all-optical inter-rack communication can be classified as hybrid

wired DCNs.

It is also worth pointing that in most existing DCNs racks are arranged in row-

based physical topology. Therefore, research is mainly concerned with changing the

logical topology (i.e., connection of servers and switches). Using wired communica-

tion, it is possible to realize different logical topology over the standard row-based

physical topology. On the other hand, due to the requirements and constraints im-

posed by wireless communication technologies, it is possible that both physical and

logical topologies can be changed to realize new efficient DCNs.

3.3 Summary of Techniques for Adopting 60 GHz

in DCNs

In 2008, Ramachandran et al. nurtured the idea of using 60 GHz technology in

DCNs [4]. The authors identify the requirements of a DCN and the problems en-

countered due to wires. They discuss the suitability and the challenges of the use of

60 GHz inside DCNs. Ramachandran et al. envision three complementary deploy-

ment scenarios for both intra and inter-rack communications (see Figure 3.4). An

array of antennas is used in order to create directional beam with small beam width.

For intra-rack communication, Ramachandran et al. suggest using a reflector to cre-
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ate indirect LOS links, whereas for inter-rack communication, LOS, indirect LOS, or

multi-hop links can be used.

Following the proposal by Ramachandran et al., researchers have been investigat-

ing the effectiveness of 60 GHz RF links in DCNs [5,6,27,32,41,43,44,46–49,401–406].

Figure 3.4: Intra and inter-rack communications in 60 GHz wireless DCs as envisioned
by Ramachandran et al. [4].

3.3.1 Hybrid RF DCNs

In [27], Kandula et al. propose the concept of flyways to tackle the hot spot problem.

Flyways are on-demand stable multi-Gbps additional links (wired or wireless), added

to wired DCN to provide additional capacity and alleviate the problem of hot spots

at a fraction of the cost required to over-provision the DCN.

In case of wired flyways, additional switches are used to inter-connect random

subsets of the ToR switches. On the other hand, wireless flyways can be achieved
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by placing one or more wireless transceivers atop each rack in the DCN. Wireless

flyways provide more flexibility as compared to wired flyways. The authors formulate

the wireless flyways placement problem and present a suboptimal algorithm in which

a single flyway is added at a time. Preliminary results indicate that, using flyways

can achieve a substantial improvement in the performance of the DCN with respect

to the completion time of the demands (CTD). It is worth pointing that more wired

flyways are needed as compared to wireless flyways in order to achieve the same

overall improvement.

The work by Kandula et al. is preliminary and aim to understand the viability of

adding on-demand links to solve the hot spot problem. Therefore, several assumptions

made by the authors simplify the problem and overlook important aspects of the

problem. For example, it is assumed that a 60 GHz module can communicate with

other modules within its range of 10 m. Moreover, it is assumed that all flyways have

the same capacity and the impact of interference is ignored.

In [44], the work on flyways by Kandula et al. [27] is extended. In this work,

60 GHz devices prototype is used. Performance measurement and simulation for 60

GHz link hardware, signal propagation, stability, interference, and TCP throughput

are performed. Results indicate that directional 60 GHz links, are necessary for good

link stability, interference avoidance and channel reuse, and higher throughput. The

authors discuss three different models for establishing the flyways, namely, Straggler,

Transit, and Greedy. In Straggler, a link is established between the pair of ToRs

taking the longest time to complete. In transit model, indirect transit traffic is allowed

using the room spared on a flyway in the Straggler model. Greedy model improves

Transit model by picking the flyway that offloads the most traffic from bottleneck

link. The proposed design is found to speed up DCN applications with predictable

traffic workloads by 45% in 95% of the cases.
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Figure 3.5: Design by Vardhan et al. [5].

Compared to their preliminary work in [27], the authors have improved several as-

pects regarding their model and assumptions. However, the discussion still topology-

independent and it is not clear how links will be realized between racks. Moreover,

we believe that the model does not fully utilize the flexibility of the wireless commu-

nication to create configurable and agile links.

The work by Kandula et al. is classified as hybrid RF DCN since they adopt the 60

GHz wireless technology to implement wireless flyways. However, it is worth pointing

that it is one of the major motivator for researchers to investigate the feasibility of

wireless DCNs in general.

Wireless Channel Allocation

Cui et al. investigate the wireless channel allocation problem in hybrid 60 GHz

DCNs [41, 401, 402, 407]. In their analysis, Cui et al. consider a wired DCN with
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hot spots. A separate 60 GHz wireless network is used to provide additional links

and relieve the network. A rack is considered as a wireless transmission unit (WTU)

with 60 GHz transceiver mounted on top of it. A wireless link is allocated to carry

inter-rack traffic. Total transmission links form a wireless transmission graph. The

authors adopt interference range model, in which a sender causes interference on

the nodes inside its interference range. The problem of provisioning wireless links is

formulated as an optimization problem with the objective function of maximizing the

total utility of the wireless transmission. The utility of a link is defined in terms of the

contribution to the global performance made by transmitting the traffic via wireless

links. Genetic algorithm (GA) and greedy heuristic algorithm proposed by Cui et al.

are used to solve the formulated optimization problem. Results show that using the

wireless links improves the performance of the network with respect throughput and

job completion.

Figure 3.6: Rack and server design in Cayley DCN [6].
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Results by Cui et al. confirm the effectiveness of using wireless communication to

realize hybrid DCNs. However, the theoretical model used by the authors simplifies

the problem and does not give a solid sense of the wireless channel allocation problem

in real wireless DCN. For example, the model is topology-independent, in the sense

that it is assumed that a WTU can communicate with any WTU in its range. This,

however, is not true and great efforts are exerted by researchers to facilitate wireless

communication in DCNs. Moreover, the used model ignores several aspects including

the impact of reflections and metal structures on link interference.

Beamforming

Katayama et al. propose wireless packet-switching networking in DCs using steered-

beam mmWave links [403]. Wireless transceivers are placed atop racks and LOS

links between adjacent rows of racks are realized. Wireless transmission is limited

to the adjacent row. Data packets are relayed via adjacent rows of racks wirelessly

eliminating the need for long cables and additional switches, and without using long

wireless links. Each node has a local routing table that stores routing information.

The routing table is responsible of determining the next hop for the packet until the

packet reaches its destination. A preliminary prototype of a mmWave steered-beam

link combined with IEEE 802.11 control plane is demonstrated.

Katayama et al. do not carry out experiments to evaluate the proposed packet-

switching DCN. However, since the proposed DCN is a short-range multi-hope net-

work, one can expect that the DCN will show poor performance with respect to packet

delivery latency.

Even though links realized using beamforming can help reduce interference, they

still experience signal leakage. In packed small proximities such as in DCNs, this can

significantly increase interference, and thus impact throughput.
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In [43], Zhang et al. explore the feasibility of using 3D beamforming. They

propose the use of 60 GHz wireless links that reflects off of a reflector mounted to the

ceil of the DC as proposed by Ramachandran et al. [4]. The authors envision that this

design is capable of addressing both link blockage and interference, thus improving

overall transmission performance in DCNs.

A small 3D beamforming testbed is built by Zhou et al. [47] to demonstrate the

ability of 3D beamforming in addressing both link blockage and link interference.

Moreover, the authors propose a link scheduler. Using simulations, the authors show

that wireless capacity and reach of 60 GHz links can be expanded using 3D beam-

forming as compared to that of 2D beamforming. A testbed is implemented.

(a) (b) (c)

Figure 3.7: Cayley DC [6] (a) Intra-rack topology. (b) Inter-rack topology. (c)
Diagonal XYZ routing.

Measurements confirm that using 3D beamforming, it is possible to realize 60 GHz

links with zero reflection energy loss, reduced interference, and capability of avoiding

obstacle that can block the beam. However, this comes at the cost of complexity of

establishing the link. Moreover, the received signal strength (RSS) can vary with the

curvature of the reflector. For example, a convex reflector leads to a drop in the RSS,

whereas concave surface increases the RSS. Finally, careful design of the server floor

is required to avoid obstacles such as cooling and cable ducts or columns.
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3.3.2 Pure RF DCNs

In this section, we discuss the designs of pure RF DCNs. There are two main research

directions to develop pure RF DCNs, emulation of well-known topologies, and the

design of a completely new topology. In the following, we discuss these two research

directions.

Emulation of Existing Topologies

Vardhan et al. discuss the possibility of realizing a pure 60 GHz DCN [5,32,48,49,404].

The authors discuss the emulation of two well-known DCN topologies, 3-tier layered

and fat-tree architectures. In order to do that, the authors arrange the servers and

switches in racks forming a hexagonal arrangement (see Figure 3.5) to facilitate direct

LOS wireless links. Each rack is equipped with two transceivers mounted to the top

of the rack. A transceiver utilize beanforming with phased array to achieve highly

directional links. Phase rotator is utilized to steer the beam, and thus communicate

with different servers.

In wired hierarchial and Fat-tree DCNs, adding new servers may require rewiring

of a large number of existing servers. This can be time-consuming and may affect the

availability of the DCN. Vardhan et al., however, present flexible wireless hierarchial

and Fat-tree DCNs using 60 GHz technology. Therefore, adding new servers does not

interrupt the DCN operation and can be done in a short time. Nevertheless, the work

by Vardhan et al. lacks experimental analysis to fully evaluate the feasibility of the

proposed design with respect to link capacities and packet delivery latency.

Influenced by mobile networks [60], we refer to DCN physical topologies that

breaks down a network into uniform shapes as cellular DCNs. Foe example, the DCN

design proposed by Vardhan et al. can be referred to as a cellular DCN with a single

cell. Although modular and can be easily expanded, a cell in cellular DCN topologies
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encloses unused space leading to DC floor underutilization. Moreover, using a single-

cell topology leads to scalability issues.

Flexibility provided by the wireless links can be further utilized to go beyond

just emulating the already existing topologies. For example, it can be interesting

to investigate the possibility of realizing additional RF on-demand links similar to

Flyways [27]. The design by Vardhan et al. can make implementing such links very

easy. We believe that this can be an interesting merge that can lead to efficient easy

to implement small to medium Fat-tree DCNs.

Design of New Physical Topologies

Although Vardhan et al. propose a pure wireless DCN using 60 GHz technology [5],

their proposal aims to emulating well-known topologies such as hierarchial and Fat-

tree topologies using wireless links. On the other hand, Shin et al. introduce a novel

pure wireless DCN design using 60 GHz RF technology [6]. The novelty of the DCN

proposed by Shin et al. stems from the fact that the DCN utilizes the properties of the

wireless 60 GHz links to realize a physical topology that is different from the standard

row-based topology. As a result, the network logical topology is also different from

the well-known wired topologies.

The proposed design by Shin et al. features novel cylindrical rack design [see Fig-

ure 3.6]. A rack consists of S stories and each story holds C prism-shaped containers

in which servers are stored. Racks are arranged in a semi-regular mesh topology re-

sulting in a densely connected subgraph that is a member of Cayley Graphs (CG).

Two wireless transceivers are mounted on both ends of each server node. One is used

for intra-rack communication, and the other is used for inter-rack communication.

Figures 3.7-(a) and (b) depict the intra and inter-rack topology in Cayley DCN, re-

spectively. A Y-switch connects the transceivers of a server to its system bus and a
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routing protocol is used to direct packets within the Y-switch.

Figure 3.7-(c) depicts the diagonal XYZ Routing algorithm used in Cayley DCN.

The algorithm is a two-level geographical routing algorithm used to route intra and

inter-rack data exploiting the uniform topology of the Cayley DCN. A server is iden-

tified by a composition of three values: the coordinates of the rack, the story that

contains the server within the rack and the index of the server in the story. A server

uses three routing tables to forward package from source to destination using a short-

est path route.

A set of experiments is conducted to evaluate the performance (packet delivery

latency), failure tolerance, and cost of Cayley DCN. The authors assume a 10×10 grid

with S = 5 stories and C = 20 servers/story. A custom packet level simulator is used

to evaluate and measure the average and maximum packet delivery latency of Cayley

DCN. Results show that, Cayley DCN exhibits better or comparable performance as

compared to Fat-tree DCN, different oversubscription rates. Moreover, Cayley per-

form better under the assumption that the applications hosted by the DCN generate

traffic patterns with small packet numbers and hops. However, this is not always the

case in large scale DCNs.

The dense connectivity and the switch-less design leads to high fault tolerance

allowing Cayley DCN to withstand up to 59% of node failure before two nodes become

disconnected. However, since Cayley DCN relies on multi-hop communication, the

maximum latency worsen as the traffic load increases.

In [408], Camelo et al. present a low space and time complexity routing algorithm

for any interconnection network where its underlying graph is a CG of some finite

group. The proposed algorithm is based on the fact that finite groups are Automatics

and have a Shortlex Automatic Structure (SAS). In [409], Camelo et al. extend

their work to evaluates the required space to keep such structures and the several
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intermediate finite state automata that arise during the process of constructing such

AS. The authors evaluate six well-known families of CG to determine which structures

are space-efficient to implement the scheme based on the so-called k-fellow traveler

property. Results show that a CG with both low and constant k-fellow traveler

property, needs very small routing tables. This was verified in the cases of the CG

families Hypercube, Bubble-Sort and Transposition graphs. Other graph families,

such as Butterfly and Star, also have a small tables with respect to a general-purpose

algorithm for the same kind of graphs. However, the reduction of the routing table

size only is effective when the number of vertices is very large.

According to Suto et al., Cayley DCN is not fault-tolerant enough to satisfy the

requirements of hosting MapReduce. The authors attribute this limitation in Cayley

graph to the cylindrical design of the rack. In cylindrical racks, servers are stacked

on top of each other forming vertical columns and thus, servers are isolated. This

in turn limits the performance of MapReduce. A possible solution to overcome this

problem is to increase the degree of all servers in the cylindrical rack. This way, each

server can reach more servers in the rack promoting fault tolerance. Nevertheless,

this increases interference, and thus reduces spectrum efficiency and increases packet

delivery latency.

Therefore, in [7], Suto et al. attempt to design a wireless 60 GHz DCN that

satisfies the communication requirements of MapReduce (i.e., better fault-tolerance

and better spectrum efficiency). To this end, the authors propose a two-part solution.

First, the authors use bimodal degree distribution. This leads to two types of servers,

where the majority of servers are non-hub with low degree, and a few become hub

servers with higher degree. Hub servers makes the network more fault-tolerant to

mechanical faults, whereas using only two types of servers makes the network more

fault-tolerant to software faults (e.g., computer viruses).
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Figure 3.8: Design proposed by Suto et al. [7]

Hub servers are capable of connecting to multiple servers, however, as pointed out

earlier, the cylindrical rack design hinders the connectivity between servers. There-

fore, Suto et al. propose a new design of a spherical rack, in which a story forms

a disc of servers (see Figure 3.8). The advantages of the proposed rack architecture

are twofold, reduces the hop count for intra-rack communication as compared to that

of cylindrical rack and reduces the distance of the intra-rack link, and thus the path

power loss.

Results show that as the difference between the transmitter and receiver stories

increase, so does the path loss for cylindrical rack design, whereas a spherical rack

experiences reduction in path loss. Simulations also show that the spherical rack

design leads to lower delivery latency as compared to that of in cylindrical rack in case

of hardware faults. On the other hand, the performance of both racks is comparable

in case of computer viruses.

It is worth pointing out, however, that the reduction in path loss due to the

spherical rack is < 7%, whereas, the reduction in data transmission time is < 13%.

We believe that there are several design complexities associated with the spherical

rack design. For example, server containers are not homogenous. This may lead to the
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management overhead to deal with non-uniform components and parts. Moreover,

as we move towards the top, container size decreases. This could be limited by the

dimensions of the server contents. It is also not clear how inter-rack communication

links will be established or what type of challenges will be faced by racks near the

top of the rack. Given that spherical rack leads to limited improvement over the

cylindrical rack, extensive analysis and studies are needed to ensure that this is an

effective tradeoff.

3.3.3 Control Networks and Enabling Technologies

It is worth pointing that the research on wireless DCNs using 60 GHz started to

branch out and include techniques adopted from conventional wireless communication

systems. Moreover, a few research efforts investigate the use of wireless 60 GHz links

to realize control network in DCN [405,410] instead of using it for data traffic network.

In the following we briefly discuss the two topics.

Enabling Technologies

In [46], Yamane et al. discuss a method for interference cancelation in distributed

MIMO systems. The method is a geometric iterative optimization of signal to interfer-

ence ratio (SIR) by natural gradients on matrix manifolds. Partial linear zero-forcing

is applied to obtain more interference-suppressive initial points that can improve con-

vergence property of the iterative algorithm. Yamane et al. applied their method to

a channel model for a typical DC and the simulation results show that this method

can improve SIR and achieve higher sum rate at high SNR.

Yu et al. study multicast data delivery problem in [411]. Multicast tree problem

is defined, and the objective is to minimize the total multicast data traffic. Yu et

al. prove that the problem is NP-hard. An efficient heuristic algorithm is proposed,
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and results show that the proposed algorithm is effective, compared with an optimal

solution designed for traditional wired DCs.

Control and Facilities Networks

In [405], Zhu et al. investigate the design of a dedicated facilities network for DCs

using wireless communication. A facilities network is a network orthogonal to the data

plane and is used to manage DCN. The facilities network is responsible for multiple

critical jobs, such as, working as a control plane, and installs and brings up hardware

devices.

Control traffic has tighter latency performance requirement as compared to the

data traffic which mandates that the facilities plan is isolated from the data plane.

Facilities network is different from traditional data plane networks in the sense that it

requires lower bandwidth, higher availability, and long-term survivability as compared

to those of a data plane. Moreover, the rate at which the bandwidth demands grows

is slower.

Zhu et al. propose Angora, a low-latency facilities network in which 60 GHz

technology with 3D beamforming is used. A testbed used to evaluate Angora, using

both experimental measurements and simulations, is developed taking into account

link coordination, link interference, and network failures. Results show that Angora

can enable large number of concurrent low-latency control channels with high fault-

tolerance and flexibility to adapt to workloads and network dynamics.

3.4 Approaches for Deploying FSO in DCNs

Recent research efforts demonstrate the possibility of implementing high capacity

indoor FSO links [85,86,369]. In [86], Chowdhury et al. experimentally demonstrate
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the transmission of a 15 m LOS point-to-point indoor FSO link. The link comprises

three channels, uni-directional Cable Television (CATV) signal, and a bi-directional

link comprised of two 10 Gbps data links. The authors use LD source that operates

in the 1550-nm wavelength range. Direct detection using a PD with active area

diameter of 0.5 mm is used at the receiver. To avoid link obstruction due to human

movements, the system is placed at a height of 2 m. Results show that the FSO link

realized is almost lossless. As expected, for a fixed received power, a better alignment

of transmitter and receiver collimators results in more collected and collimated light,

and thus received power. This leads to higher SNR and improved bit error rate

(BER). The indoor FSO link demonstrated by Chowdhury et al. can be useful for

several applications including inter-rack communication in DCNs.

Figure 3.9: Design proposed by Riza et al. [8]

The research on deploying wireless technologies in DCNs is novice, and thus only

a few papers [8–11, 50, 52, 412–414] and patents [12, 415, 416] discuss the deployment

of FSO in DCNs. In the following, we discuss the efforts exerted by researchers to

realize hybrid and pure FSO DCNs.
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3.4.1 Hybrid FSO DCNs

Research efforts on hybrid FSO DCNs can be broken down into two types based on

the approach used to configure the links used: mechanically steerable or electronically

configurable links. In the following, we discuss both types.

Mechanically Steerable Links

In [8, 417], Marraccini and Riza experimentally demonstrate a power smart indoor

FSO link that utilizes an electronically controlled variable focus lens (ECVFL). The

link is designed to adaptively realize self-imaging effect at the receiver, and thus zero

propagation loss via changing the properties of the Gaussian beam propagation. The

authors use ABCD matrix analysis of Gaussian beams to theoretically analyze the

link performance. A proof-of-concept is realized using an unmodulated 10 mW He-

Ne laser operating at 632.8 nm and has a beam divergence of 0.62 mrad. A laser

beam profiler is used to receive and measure the signal at different distances from the

transmitter (up to 15 m). Depending on the length of the link, L, the duty cycle of

the pulsed wave drive signal is varied to change the focal length of the ECVFL.

Figure 3.10: FireFly by Hamedazimi et al. [9]

Although power smart link should experience zero loss, the non-ideal behavior
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of the ECVFL and laser beam Gaussian propagation lead to power loss. Moreover,

it is not clear whether an attempt has been made to improve the performance of

the non-smart link by testing for different specifications for the components used.

Nonetheless, results show that the power smart link outperforms non-smart link. For

example, at L = 4 m, the power loss of the power smart link is less than 7%, whereas

non-smart link experiences loss of 59.07%. As the length of the link increases, so does

the difficulty of obtaining the required focal length for zero loss propagation, and thus

both links experience an increasing power loss. At L = 15 m, the power loss is 92.8%

and 61.5% for the non-smart and smart links, respectively.

In [8], Riza and Marraccini discuss different applications in which power smart

FSO links can be utilized. One of the applications is inter-rack communications in

wireless DCNs. A transceiver is mounted to a pedestal platform that sits on top of

each rack. The pedestal allows for vertical and rotational motion such that LOS links

between different racks can be established [see Figure 3.9]. Power smart FSO link can

adapt to the varying link length as a rack establishes the links with different racks in

the DCN.

Riza and Marraccini focus their discussion on regular indoor, and containerized

DCNs in which servers, storage, and networking equipments are placed in a standard

shipping (12.2×2.4×2.6 m3) containers. Containerized DCNs allow for mobility and

modularity, and are easier and cheaper to build. Although highly flexible, mechanical

components may significantly add to the complexity and latency of the system. This

can increase the risk of failure and affect the availability and durability of DCN

components. Moreover, it is easy to keep the length of the FSO links below 15 m in

containerized DCNs. However, at the scale of mega DCNs, the effectiveness of power

smart links will become less significant.
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Electronically Configurable Links

Hamedazimi et al. propose FireFly, a hybrid FSO DCN [9,50]. Similar to the 60 GHz

RF Flyways [44], all inter-rack communications in FireFly are performed using links

that are reflected off a reflector (mirror) mounted to the ceil.

In FileFly, FSO transceivers are placed on ToRs. In order to perform link steering,

the authors propose the use of switchable mirrors (SMs) or Galvo Mirrors (GMs). In

the case of SMs, every FSO transceiver is equipped with several SMs (see Figure 3.10).

SMs are pre-configured and aligned to a receiving FSO on a different rack. According

to the states of SMs (i.e., glass/mirror), a link is directed to devices on other racks

through the reflection off a mirror mounted to the ceiling. Links are established by

switching relevant SMs to mirror/transparent states. On the other hand, a GM is

a small mirror mounted on an axis that has limited rotation capability. A link is

established by proper rotation of the mirror that deflects the incident beam.

Due to the limited number of FSO modules that can be mounted atop a ToR, a

limited number of steering mechanisms (i.e., switchable and Galvo mirrors) must be

provisioned and preconfigured so that the network robustness to future and unforeseen

traffic patterns is guaranteed. To this end, the problem of designing a FireFly using

each of the steering techniques are formulated as a constrained optimization problems.

Moreover, the authors discuss different types of real-time reconfigurations required

in FireFly, periodic and triggered reconfigurations. The communication and network

reconfigurability is controlled using a centralized topology and routing managers.

The authors propose a new goodness metric, dynamic bisection bandwidth (DBW),

to evaluate the performance of the new flexible network design.

In [16,53,165], we propose a new class of non-blocking multicast FSO switch using

non-moveable tri-state switching elements (T-SEs). A T-SE is a switching element

that can be reconfigured in one of three states (Fig. 3.11): Reflective, Transmissive,
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Figure 3.11: T-SE (a) R-State. (b) T-State. (c) S-State.

Figure 3.12: FlyCast by Bao et al. [10]

or Splitting state (half reflective/half transmissive). Any material similar to the one

used in SMs can be used to realize T-SEs. Using the splitting state, a beam can

split into any number of copies enabling multicast. We discuss the T-SEs further in

Chapters 6 and 7.

It might be noted that in [9, 50], Hamedazimi et al. use the SMs only in the

reflective and transmissive states, and thus links are limited to unicast. Using the

design of FireFly and the concept of T-SEs used in our switch to provide multicast,

Bao et al. propose FlyCast FSO DCN [10]. In FlyCast, the authors utilize the

splitting (referred to as mixed) state of the SMs to enable multicast without the

need for a switch. Figure 3.12 depicts the design of FlyCast. A transmitting rack

is preconfigured to communication with three receivers. Reconfiguring the states of

the SMs leads to different communication pattern. For example, configuring the first,

second, SMs in the glass mode, and third mirror in mirror state will lead to the same

link setup in Figure 3.10. On the other hand, by configuring the first, second, and

third mirrors in mixed, glass, and mirror states, respectively, multicast is achieved
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and the transmitted signal is sent to the first and third receivers.

Bao et al. use a ring topology to demonstrate the effectiveness of the FlyCast.

A signal transmitted by a rack will require multiple hops to reach the destinations.

Using FlyCast, a signal can be transmitted simultaneously and in a single hop to

the destinations. Similar to FireFly, FlyCast is an SDN. The network controller

computes the network topology which reduces to building a directed Steiner tree

with constraints. Therefore, computing the topology problem is NP-hard, and thus

heuristics are used to implement the control algorithm in the network controller.

In splitting state, light beam is split into two perpendicular beams: transmitted

beam (along the path of the original incident beam), and reflected beam. Based on

the design, transmitted and reflected beams may or may not have the same power.

Bao et al. change the splitting ratio and compute the maximum number of possible

signal splitting operations such that the signal remain detectable. The transmittance

of the splitter is changed from 10% to 90%. Certainly the maximum number of

splitting operations corresponds to the transmittance power of 90%. This is because

higher transmitted power can endure larger number of splitting operations. This

also matches our results in [52] as we will discuss later. A simple lab experiment is

performed to calculate the splitting loss at transmittance of 50%. However, instead

of using a SM, the authors use a regular beam splitter with transmittance of 50%.

Similar to the RF Flyways [44], the work by Hamedazimi et al. and Bao et

al. [9,10,50] can provide full flexibility, nevertheless, implementation can be challeng-

ing. For example, any imperfection in the ceil mirror can impact the signal reflection

leading to signal misalignment. Moreover, obstacles in the server floor (e.g., building

columns and ducts) must be avoided, which may add to the design complexity of

the DC. Finally, even though preconfiguration of FSO links are expected to be infre-

quent, it can be time consuming, require specialized manpower, and it will impact
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the availability of the DCN.

3.4.2 Pure FSO DCNs

In [416], Davidson et al. present an extensive theoretical discussion of a pure FSO

DCNs. The inventors conceptually discuss connecting DCN components such as:

servers, racks, or a set of racks using FSO links, switches, ceiling mirror, mechanically

or electrically controllable mirrors and/or beam splitters. However, since the goal of

the patent is to cover as much design concepts as possible, the challenges and the

details of connecting multiple DCN components using FSO links are not discussed.

Designs of intra and inter-rack FSO links in pure FSO DCNs are independent,

and thus it is possible that a designer use preconfigured links for intra-rack, whereas

inter-rack links can be mechanically or electronically configurable. Therefore, there

is no clear-cut grouping of pure FSO DCNs designs as compared to hybrid DCNs. To

improve the readability, however, we divide pure FSO DCN designs into two groups,

preconfigured links, and mixed (preconfigured + mechanical steering).

(a) (b)

Figure 3.13: Design proposed by Arnon [11] (a) Side view. (b) Top view.
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Preconfigured Links

In [11], Arnon discusses both, intra-rack and inter-rack communications using FSO.

For intra-rack communication, server should be able to communicate with each other

and with the ToR using inter-server OWC transceivers. However, the structure the

inter-server OWC transceiver and the means of establishing FSO links between servers

are not discussed.

In the case of inter-rack communication, racks are arranged in circular cells such

that neighboring racks can communicate using LOS OWC links. Moreover, ToRs

within a cell can communicate with Aggregate (or core) switches located at a higher

layer as shown in Figure 3.13. Aggregate (or core) switches can communicate with

each other at a higher layer on top of the layer of ToRs. However, a complete topology

of a DC using the proposed design has not been addressed, and thus, it is not clear

how racks, aggregate, and core switches, are connected on a large scale. Similar to

the work by Vardhan et al. [5], cellular DCNs can lead to DC space underutilization.

Mixed (Preconfigured + Mechanical Steering)

A bi-directional point-to-point FSO link design utilizing high power, high speed

vertical-cavity surface-emitting laser (VCSEL) arrays is presented by Joseph et al.

[12]. The inventors discuss communication inside DCNs (i.e., inter/intra-rack) as one

of the applications of their invention. They envision intra-rack communication to be

performed using a ToR optical switch employing a multiple lens array. Servers in the

rack send information to the ToR Switch as shown in Figure 3.14-(a). The optical

switch then directs the information back to the servers using data shower beams. The

switch can be placed at the top, bottom, or middle of the rack cabinet.

In the design proposed by Joseph et. al. [12], the optical switch must be equipped

with number of transceivers equal to the number of servers. For large number of
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servers, this design may become intractable or expensive. Moreover, an intensive

alignment effort is needed to adjust each beam to hit the corresponding lens in the

multiple lens array mounted to the lower surface of the switch.

For the inter-rack communications, optical switches or transceivers are mounted to

a polygonal structure. For example, Figure 3.14-(b) depicts six switches (transceivers)

mounted to a hexagonal structure. Similar to the work by Marraccini and Riza [8,417],

the structure is mounted to a pedestal system that allows rotational and vertical

height adjustments. This arrangement can be very useful for cellular FSO DCNs.

(a) (b)

Figure 3.14: Design proposed by Joseph et al. [12] (a) Intra-rack. (b) Inter-rack top
(top) and side (bottom) views.

3.5 Wireless DCNs: Challenges and Lessons

Applications hosted by DCNs (e.g., Hadoop and Spark) generate large demands for

intra and inter-rack communication bandwidth. To meet such demands, new commu-

nication technologies must be capable of achieving high link and network capacities.

However, realizing high-bandwidth links can be challenging, and these challenges vary



137

depending on the technology used for communication. In this section, we discuss the

challenges facing the deployment of wireless technologies in DCNs and the lessons

learned from the literature. We start by discussing the challenges that may face

any wireless technology to be deployed in DCNs, then we focus our discussion on

technology-specific challenges:

Security

In a DCN, often data is exchanged between nodes in different racks to complete tasks.

Therefore, isolation of data from unintended nodes and services is a must to avoid

security and privacy problems.

The limited transmission range of 60 GHz and the inability to penetrate obstacles

prevent 60 GHz signals from traveling further than their intended target. Moreover,

the use of narrow beam width makes it easier to target only the intended receiver.

This makes 60 GHz technology immune to eavesdropping. On the other hand, one

of the distinct advantages of FSO technology is its inherent PHY layer immunity to

eavesdropping as compared to most RF technologies. Wireless DCN designers must

take advantage of this feature and develop efficient low-overhead security protocols

at higher networking layers. This means that less overhead, and more useful data can

be transmitted leading to higher throughput and improved overall performance.

Small form factor of networking components

A typical rack is 0.078′′ high, 23-25′′ wide and 26-30′′ deep. Servers and switches are

inserted horizontally into the racks. The thickness of a module in a rack is measured

in Rack Unit (U), which is 1.8′′. Most servers fit the 1U size, other servers may

require 2U or larger sizes [412]. The designers are required to develop components

and network interfaces of small form factor taking into consideration the dimension
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constraints imposed by DCN commodity technologies.

Heat and air flow

DCN designers may change the rack arrangement in DCN floor (i.e., physical topol-

ogy) instead of using the conventional row-based arrangement to fully utilize the

flexibility provided by wireless links (e.g., cellular DCN design). Any change in the

DCN floor, however, can cause changes in the air flow and heat distribution proper-

ties. This may in turn lead to inefficient cooling, and thus network component failure

or higher power consumption. Moreover, it can also cause turbulence and may im-

pact the performance of FSO links. Therefore, computational fluid dynamic (CFD)

analysis must be performed for new DCN arrangements to understand the behavior

of the air and heat flows and ensure functional and efficient DCN.

Agile Links

To address the hotspot problem encountered by wired DCNs, inter-rack wireless links

must have a degree of reconfigurability. One of the main challenges faced by wireless

DCN designers is establishing and maintaining wireless links between different servers

or racks. There are several methods that can be used to realize agile links. Some

of them work for both, RF and FSO, technologies, whereas other methods could be

technology-specific.

• Mechanical steering. The main idea is to steer RF horn antenna or FSO

transceiver. mounted to pedestals that sit on top of rack cabinets. Both ro-

tation and height of the transceiver can be controlled allowing for establishing

flexible wireless links [8, 12,417].

As discussed earlier, mechanical components can add to the complexity and latency
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of the system, and can increase the risk of failure. These limitations can be addressed

using the following technology-specific solutions:

• RF Beamforming using phased array antennas can provide very fast steering,

however experiences signal leakage, and thus weaker signals.

• FSO Preconfigurable-Electronically Reconfigurable Links. In this type of links,

a link is electronically reconfigured to choose from preconfigured link configu-

ration [9, 10, 50]. There is no guarantee, however, that the preconfigured links

are efficient. Moreover, manual change of the preconfiguration is needed.

There is a need for new means for realizing agile wireless links in RF and FSO DCNs.

Obstruction-free wireless links

At the scale of mega DCNs, hundreds of racks must be interconnected, and thus

wireless DCN should scale to meet this large link connectivity requirements. Net-

work resources must be efficiently provisioned to meet the requirements of hosted

DC services and applications, and to maintain a minimum level of availability. How-

ever, a critical impediment to the design of wireless DCN is the difficulty establishing

obstruction-free wireless links to connect multiple adjacent network components. This

is because LOS links can not be easily maintained as other components get in between

the source and destination need to be connected leading to risk of link blocking [52].

Several solutions appear in the literature to overcome this problem. Different solu-

tions present different tradeoffs with respect to simplicity and configurability. In the

following, we discuss these solutions:

• Configurable Link + Ceil Reflector: this solution is proposed in both 60 GHz,

and FSO DCN literature. In this design a configurable link is used to transmit
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the signal towards a reflector (e.g., mirror in case of FSO). The signal reflects

off of the reflector towards the destination node. The configurable link can be

obtained using any of the techniques discussed in ”Agile Links”. This solution

can provide obstruction-free links covering most of the DCN. However, align-

ment and configuration of the link can be complex. Moreover, it depends on

the degree of reconfigurability of the transmitter.

• Cellular (circular, polygonal, or spherical) Design: although can provide limited

configurability, cellular design guarantees simple LOS wireless links. In case of

cellular design, wireless transceivers can be placed on ToRs at a height that

is above the average human height, so human movements do not obstruct the

link [85,86]. Cellular designs, however, usually involve unutilized space enclosed

by the cells.

Containerized DCNs

Many existing and under development DCs utilize large open DCN floor design. How-

ever, as discussed in Section 3.4.1, containerized DCNs can present a cheaper and an

efficient alternative design. A few papers discuss the deployment of 60 GHz RF and

FSO technologies in the containerized DCN scenario [8, 44]. As a container becomes

the building block of a DCN, intra and inter-container communication links must be

designed.

At the scale of a container, problems related to cabling complexity may not be sig-

nificant. Moreover, using wireless communication to replace the wiring infrastructure

in a DCN container may help increase the number of servers by only a few. Therefore,

studies are needed to ensure the viability of wireless technologies deployment in DCN

containers.

Once proven viable, other technical issues must be taken into consideration during
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the deployment of wireless communication in DCN containers. Confined space and

metal walls make the container a challenging environment for 60 GHz links as signals

may reflect off the walls leading to multipath fading. A possible solution to alleviate

the multipath fading in containers is to cover the inner of the container with adsorbent

materials, or by employing very narrow beam antennas [44]. On the other hand,

environmentally controlled containers are very suitable for FSO communication.

Inter-container links carry the traffic of the container, and thus must provide

higher bandwidth. However, 60 GHz can be of limited capacity with respect to the

container traffic. On the other hand, FSO can provide the required capacity, however,

it becomes prone to the environment impairments and techniques used for outdoor

FSO links must be applied to mitigate such impairments. It is possible that multiple

links and MIMO techniques can be used to provide the required inter-container traffic.

In addition to the challenges and requirements discussed above, each technology can

experience unique technology-specific challenges and requirements. In the following

we discuss the challenges specific to 60 GHz RF, and FSO technologies.

3.5.1 Challenges for 60 GHz in DCNs

60 GHz Behavior Modeling and Analysis

In [406], Zaaimia et al. present initial measurements of 60 GHz RF channels in a

real campus DCN. Authors perform experiments on two inter-rack measurement sets,

cross aisle (racks from parallel rows) scenario set, and neighbor (on the same row)

racks scenario set. Channel transfer function is measured using a channel sounder that

is based on vector network analyzer. In order to verify the accuracy of measurements,

the authors conduct ray tracing simulations as well. Needless to say, neighbor racks

scenario show a 3 dB improvement in the link budget over cross aisle scenario.
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The research on wireless DCNs is relatively novice. Therefore, large number of

new unprecedented design concepts and topologies are emerging. All designs aim

to fully utilize the flexibility presented by 60 GHz technology. A major conclusion

from the study by Zaaimia et al. is that path loss of 60 GHz link is environment-

dependent. Therefore, there is a current need for an accurate modeling scheme of

wireless DCN environment. This can be a challenging task due to the high density of

metal structure in DC. Moreover, having a design or simulation tool can be of great

interest to DCN designers to test the physical topology of their DCNs.

RF Channel Allocation and Frequency Reuse

Channel allocation can be classified as fixed (FCA), dynamic (DCA), and hybrid

(HCA). In FCA schemes, a channel or set of channels is permanently allocated to each

RTU. In DCA, all channels are kept in a central pool and are assigned dynamically

to new links. This assignment can be done by a central controller or the allocation

scheme can be distributed. HCA is a combination combination of both FCA and DCA

techniques. in HCA, the total number of channels available for service is divided into

fixed and dynamic sets. Fixed set is assigned to RTUs, whereas the dynamic set is

shared by all DCA.

In DCs, the decision of which channel allocation scheme to use mainly depends

on the type of DCN. For example, in case of hybrid DCNs, wireless links are used to

provide on-demand links to enhance the performance. Therefore, FCA is not a good

choice as it will lead to channel underutilization due to the unused assigned channels,

and DCA in this case is more suitable.

On the other hand, in case of pure DCN, performing scheduling every time a server

sends a signal is not practical. Moreover, the traffic patterns can lead to unfairness

as few servers can dominate the links. Therefore, using DCA in a pure DCN can be
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inefficient. However, given the scale of DCNs and the large number of nodes and the

limited number of channels, FCA in pure RF DCNs requires careful assignment and

scheduling to reduce the impact of interference.

60 GHz technology has lower link range and very limited ability to penetrate

obstacles. This in turn promotes frequency reuse. However, the frequency reuse

in DCNs is not yet explored. We envision that wireless DCNs can benefit from the

mature mobile network systems. For example, a DCN plane can be divided into logical

cells. Each cell can be assigned a set of frequencies, such that the frequencies are used

across the DCN. This way the channel allocation problem becomes at the scale of a

cell, and thus simpler than the channel allocation and scheduling at the DCN scale.

This will also lead to a faster allocation using developed heuristics or using any of the

well-known evolutionary algorithms, such as Genetic Algorithm (GA) [418], Particle

Swarm Optimization (PSO) [60], or Binary Harmony Search Algorithm (BHSA) [419].

3.5.2 Challenges for FSO in DCNs

Visible vs. infrared sources

The experiment by Chowdhury et al. [85, 86] has shed some light on the potentials,

as well as limitations, of FSO links for DCNs. Although FSO links are capable of

providing lossless high data rate transmission, point-to-point FSO links require careful

installation and alignment [85,86]. Using visible light sources can ease the alignment

of FSO links in FSO DCNs. However, most off-the-shelf components such as LDs

and optical modulators are manufactured for fiber optics, and thus operate in the

infrared spectrum. This is because the attenuation of the glass in fiber optics is the

lowest at the infrared region of the spectrum. Therefore, there is a current need for

the development of communication components (e.g., high speed optical modulators)
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required for establishing high data rate point-to-point FSO links using LDs operating

in the visible region of the spectrum.

Artificial light sources

In the absence of the background radiation, ambient artificial light becomes the dom-

inant source of noise for indoor FSO systems [52]. Conventionally, two types of

ambient artificial light sources are used for indoor illumination, incandescent and

fluorescent lights. Using high pass filters (HPF), fluorescent lights driven by a con-

ventional ballast can be mitigated, whereas, fluorescent lights driven by electronic

ballast are harder to mitigate.

Due to the good attributes of LEDs, such as, better light quality, low energy

consumption, small size, and long lifetime, there is a trend towards using LEDs to

replace traditional incandescent and fluorescent light sources for indoor illumination

[75,267]. Since LEDs have narrower power spectral densities (PSDs) as compared to

that of incandescent and fluorescent lights, a possible solution to mitigate the effect

of the artificial ambient light in DCNs is to illuminate the DC using LED sources

that are out of band with respect to the LDs used for communication [52].

Vibration

In order to achieve high data rate links, point-to-point FSO links are used. However,

point-to-point links require careful alignment so that sufficient optical power can be

received. Vibrations due to server fans, discs, HVAC and UPS units can lead to link

misalignment [420], and thus add to the complexity of the FSO link design. There

are three possible solutions for the vibration problem:

• Use active vibration isolation (AVI) system [376]. Although this is suitable for

lab experiments, in case of large number of links such as in DCNs, this solution
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can be expensive.

• Increase the width of the beam such that it overfills the detector at the receiver

side allowing for vibration tolerance. In case of minor misalignment due to

vibration, the receiver will still be able to receive sufficient power to maintain the

link. According to Hamedazimi et al. [50], 6 mm vibration tolerance is sufficient

to handle minor misalignment due to vibration. This solution, however, requires

the use of detectors with higher sensitivity, and thus more expensive transceivers

must be used.

• Mount optical transceivers on a metal frame that is separate from the rack

structure. This way, the impact of rack vibration is reduced. Links between the

rack and the optical modules mounted on the frame can be established using

short flexible optical fibre cables. This solution can’t completely alleviate the

impact of vibrations. Moreover, the metal frames can lead to underutilization

of the DC space.

3.6 Chapter Summary

In this chapter, we compare the two potential candidate technologies for wireless

communication in DCs, namely; 60 GHz and FSO. Comparison shows that both

technologies are unlicensed and have link length suitable for the confined environment

of DCs. Moreover, 60 GHz and FSO technologies depend on LOS links, but 60 GHz

technology has lower practical bandwidth and can be affected by interference. On

the other hand, FSO links require careful alignment to maintain the LOS.

We propose a classification that can be used to classify any DC, including existing

wired and emerging wireless DCs. Our classification is based on the communication

technologies used to realize the DCN. According to the proposed classification, wired
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DCs can be classified as pure electrical/optical wired DC, or hybrid wired DC. On the

other hand, wireless technology can be used either to augment wired DCs resulting

in hybrid DCs, or to realize pure RF/FSO DC. We discuss different wireless-based

DC designs and collate the major work in the field to jump-start researchers to tap

into the growing research on wireless DCs.

Several research questions and design challenges must be investigated before wire-

less DCs can be realized. Based on the classification and the review of existing

literature, we believe that the following two questions are the key research questions;

• Can a wireless technology alone satisfy the requirements of future DCs in a pure

wireless DC fashion, or do we need hybrid DCs?

• Given a wireless technology, what is the best network architecture and topology?

Using the proposed classification, we now have a nearly complete picture for the

design space of DCNs. By surveying the literature and mapping existing solutions

to different possible designs in the proposed classification, it is now possible to easily

identify new research areas. For example, in this chapter, we were able to identify

that the area of hybrid wireless DCNs has not yet been explored.
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Chapter 4

OWC-Bus

In this chapter, we propose a design of a data center network (DCN) using Opti-

cal Wireless Communications (OWC) technology. The proposed OWC-DC design is

based on fixed, non-mechanical, OWC links facilitating the realization of fully con-

nected OWC racks and rows/columns of racks. Each rack becomes a point of intersec-

tion of three fully connected sub-networks. We investigate requirements, advantages

and challenges of the proposed design.

4.1 Towards the Design of a Pure OWC DCNs

It may be noted that a common impediment for all wireless DCN designs is the

difficulty of connecting multiple adjacent network components, such as racks in a row

or servers in a rack, using point-to-point LOS links.

Figure 4.1-(a) shows a DC in which racks are deployed in a row-based arrangement

with J rows. Each row contains k racks. A rack can be identified using its row

and column numbers (j, k), where, (1 ≤ j ≤ J and 1 ≤ k ≤ K). For the ease

of demonstration, each rack is represented by a rectangle labeled with the rack’s

coordinates Rack(j, k).
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(a) (b)

Figure 4.1: (a) Proposed Design of an OWC-DC. (b) Proposed Fully Connected,
Switch-Free OWC Rack of Servers.

We start with the design of an OWC rack, in order to understand the design of

the proposed OWC-DC.

4.1.1 Switch-Free OWC Rack

Figure 4.1-(b) shows a switch-free OWC rack comprising S servers. The servers are

numbered from 1 to S from top to bottom of the rack. Therefore, a server in the

Rack(j, k) can be identified by its coordinates Server(j, k, s), where, (1 ≤ s ≤ S), is

the number of the server. In order to achieve high data rate communication between

servers within the same rack, servers must be connected using point-to-point OWC

links.

In our design, each server is equipped with an optical transmitter on one side

of the server, and an optical receiver comprising a photodetector (or an array of

photodetectors) on the opposite side. Servers are mounted on the OWC rack such

that all transmitters (receivers) of the servers are on the same side of the rack. The

main idea is to direct the transmitted beams either for intra-rack, inter-rack, or both

communications, using the intra/inter-rack selector. For intra-rack communication,

the beams are directed to the other side of the rack where receivers are placed. Using a
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beam distributer, beams are distributed to all servers allowing switch-free intra-rack

communication. On the other hand, for inter-rack communication, the combined

beam is directed to the Rack Optical Controller (ROC).

Directing the beams around the rack can be done using a set of mirrors mounted

to the structure of the rack. Any server can receive a copy of the S beams using beam

splitters placed in front of the server to be able to intercept the beams.

Figure 4.1-(a) shows three rows (i.e., rows 1, 2, and J), and the first and last

columns (i.e., columns 1 and K). ROCs within the same row (and similarly, ROCs

within the same column) can be connected together using a method similar to the

method used to connect servers within the same rack.

In case of intra-rack communication, S light beams from the S servers can be

transmitted and received by all servers, simultaneously. Each transmitter has a sep-

arate optical path connecting it to all other servers. Therefore, there are no collision

domains, instead, each server has its broadcast domain which must be managed ef-

ficiently so that, data are delivered to the intended destination(s) only. Many net-

working and addressing schemes can be used. A network topology of the rack can be

changed according to the scheme selected. In the following, we briefly discuss three

of such schemes:

• Time Division Multiple Access (TDMA), where, the frame of any source server

s is divided into S − 1 time slots (TSs). The server s transmits data to the

server i using the TS i, where, 1 ≤ i ≤ S and i 6= s. The intra-rack network

can be considered as S subnetworks, each subnetwork is a bus network with a

single transmitter.

• Using a technique similar to optical burst switching (OBS), source server s sends

a short optical packet prior to the data transmission. The short packet contains
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addresses of the destination(s) and any other necessary information. The S− 1

servers receive the short packet, intended destinations receive incoming data,

and other servers ignore it. The topology of the network is similar to that of in

TDMA case.

• Wavelength Division Multiplexing (WDM). Can help boosting the capacity of

intra-rack links. Each receiver is assigned a wavelength, or multiple wavelengths.

Using tunable transmitters and receivers, signals transmitted to other servers

are delivered using the same beam at different wavelengths. In this case, the

rack topology is a fully connected (complete mesh) network.

4.1.2 Rack Optical Controller (ROC)

For inter-rack communication, an ROC receives data from other racks to deliver to

the servers in its rack, communicate with other racks in the same row/column, and

relay the data received from any of the ROCs in the same row/column to any of the

ROCs in the same column/row.

Racks are arranged in rows and columns, and it is possible to connect ROCs using

the same method as for servers within the same rack. Moreover, communications

between ROCs can follow same schemes discussed in the intra-rack communication.

The functions performed by ROCs are very similar to a regular switch, however, it

might be noted that unlike TOR switches, intra-rack communication is not dependent

on the ROC. Moreover, each ROC is the intersection of three fully connected networks.

This can be efficiently utilized in routing and DC network management. An ROC is

expected to handle large amount of traffic compared to servers, therefore, we envision

the use of WDM/DWDM to increase inter-rack link capacities. Two cases in inter-

rack communication:



151

1. The source ROC is located on the same row/column of the destination ROC,

and two-hops link is needed to perform the communication. The source server

sends data to the source ROC, which forwards the data to the destination ROC,

and finally, to the destination server.

2. The source and destination ROCs are neither located on the same row nor same

column. In this case, a link with a minimum of three hops is needed. Source

server sends data to source ROC, which in turn forwards the data to the ROCs

on the same row or column. The ROC located at the row/column intersection

of the source and destination ROCs will forward the data to the destination

ROC then to the destination server. However, due to the full connectivity,

other paths can be used for routing. The decision of transmitting the data to

the row or the column ROCs depends on the used routing algorithm.

In order to realize rack topology equivalent to S bus subnetworks using current tech-

nology, S2 wires are needed (i.e., 1600 wires/rack for S = 40). Similarly, a fully

connected rack using the current technology requires a total of (S2−S)/2 full-duplex

wire segments (i.e., 780 wires/rack for S = 40) where each server is equipped with,

at least, S ports. This is almost impossible to manage and basically one of the main

reasons why the star topology was adopted in the first place.

The small size of OWC components, and the ability to split a beam among S

servers using a set of passive optical elements, help realize a fully connected rack

using only S beams.

4.1.3 Indoor Point-to-Point LOS OWC Link

In this section, we provide a brief description of an indoor point-to-point, LOS OWC

link.
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The proposed design uses Laser Diodes (LDs) because they have high optical

power outputs and can support transmission at high bit rates. We adopt Avalanche

photodetectors (APDs) since they are preferred in systems that require high data

rates and where the noise induced by ambient light is negligible because APDs have

high cost and require high bias [51].

4.1.4 Optical Noise Sources

OWC links are deployed in a wide range of environments (e.g., indoor and outer

space). Different noise sources affect the performance of the OWC link with varying

degrees of severity depending on the environment. We first discuss the noise from

different sources affecting indoor OWC links that can be mitigated in our design.

The absence of the noise due to background radiation (e.g., the sun) makes the

ambient artificial light the dominant source of noise in DCs [51].

Point-to-point LOS links utilize transmitter and receivers with narrow field of view

(FOV), therefore, these links are capable of rejecting majority of the ambient artificial

light [51]. Moreover, using high pass filters (HPF), fluorescent lights driven by a

conventional ballast can be mitigated, whereas, fluorescent lights driven by electronic

ballast are harder to mitigate [51]. Since LEDs have narrower PSDs as compared to

that of other light sources, a more efficient solution for the artificial ambient light

would be to illuminate the DC using LED sources that are out of band of the LDs

used in the DC. This way, the ambient artificial light can be easily mitigated.

On the other hand, there are three inevitable noise sources, namely; quantum

(shot) noise, dark noise and thermal (Johnson) noise. The shot noise is due to the

random arrival rate of photons from the transmitter and has a variance σ2
q . On

the other hand, dark noise is due to a very small current from the PD which is

a combination of two currents: bulk (ID) and surface leakage (IL) currents with
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variances (σ2
db) and (σ2

dl), respectively. Finally, the thermal noise exists in any circuit

of equivalent resistance RL and temperature Te and modeled as a white Gaussian

noise with zero mean and variance σ2
th. The total noise variance σ2

N is given by:

NT = σ2
q + σ2

db + σ2
dl + σ2

th (4.1)

NT = 2qRPRBFM
2 + 2qIDBFM

2 + 2qILB +
4κTeB

RL

(4.2)

where q is the electric charge, R is the PD’s responsivity, PR is the power received,

B is the electronic bandwidth, M is the PD’s gain factor, and F is the excess noise

factor.

4.1.5 Link Budget

Using LDs, we can get very narrow beam with concentrated power, however, any

beam propagating in the free space experiences a slight divergence. Short links might

not be affected by this problem since it is possible to use PDs with light collecting

areas that matches the spot size of the light beam. For long OWC links, collimators

can be placed at certain points along the path to re-collimate the beams.

The diameter of the spot size of a beam that has a very small beam width angle

θ and travels a distance D is approximately equal to (θ ·D) [106],

Assume a point-to-point, LOS link with a transmitted power Pt, transmitter and

receiver optics efficiencies, ηT and ηR, respectively. The received unfaded power PR

is given by,

PR = ηTηRLGLPT (4.3)
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where, LGL, denotes the geometrical loss which is the ratio between aperture area of

the receiver (AR) and the spot size area of the beam at the receiver (Aim), and is

given by,

LGL =
AR

Aim

=

(
DR

θD

)2

(4.4)

where, DR ≤ θD, and hence, Equation 4.3 becomes,

PR = ηTηR

(
DR

θD

)2

PT (4.5)

4.2 Design and Analysis of an OWC Rack

In our design, servers are connected using point-to-point, non-LOS (NLOS) links

formed using specular reflections (i.e., a set of mirrors and BSs). The difference

between the link budget of a point-to-point, LOS link and that of NLOS with specular

reflection is that, mirrors and BSs absorb light, and hence, might have efficiencies less

than 100%. Moreover, a BS is used to split the light beam into two perpendicular

beams: transmitted beam (along the path of the original incident beam), and reflected

beam. Based on the design, transmitted and reflected beams may or may not have

the same power. Therefore, in case of point-to-point, NLOS link, Eq. 4.5 must be

extended to include the efficiencies and power reductions caused by mirrors and BSs.

The losses and factors depend on the number and arrangement of mirrors and BSs in

the design.

Figure 4.2 depicts the proposed design of a fully connected OWC rack. A typical

OWC rack consists of S servers. Each server, s (for 1 ≤ s ≤ S), is equipped with

an optical transmitter Ts operating at wavelength λs. The power transmitted by a

transmitting server s is denoted as PTs and the power efficiency of the transmitter’s
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lens is ηs.

Figure 4.2: A Fully Connected OWC Rack of Servers.

An optical receiver is placed on the other side of the server with a PD array Rs to

receive signals transmitted by the S servers. Each array contains S PDs, numbered

from 1 to S. A PD s within the PD array Rs has a diameter DRs , power efficiency of

the optical lens ηRs and operates at the corresponding wavelength λs. It is assumed

that the receiver is capable of handling the S input signals, using multiple receivers,

a control plane, or a scheduler.

A mirror Ms is associated with each server s on the transmitter’s side. On the

other side of the server, a beam splitter BSs is placed except for the server number

S where the BS is replaced by the mirror MS. Each mirror Ms has an efficiency

of ηMs , whereas, each BS has an efficiency of ηBSs . A beam splitter BSs splits the

incident beam into two beams: reflected and transmitted with powers αs and (1− αs),

respectively. As shown in Figure 4.2, two mirrors are used to direct the beams from

transmission side to receiver side.
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We consider the case where a single wavelength is used i.e., λs= λ, 1 ≤ s ≤ S. In

order to distinguish between transmitter and receiving servers, we use notation s for

the transmitting server and s′ for the receiving server, 1 ≤ s, s′ ≤ S. The received

power by a server s′ from transmitter server s is,

PR (s, s′) = PTs · ηTs · ηRs′
·
(

DRs′

θs,s′ ·Ds,s′

)2

· ηM (s′) · ηBS (s′) ·∆BS (s′) (4.6)

where, θs,s′ , and Ds,s′ are the angle width, and the distance of the link between

transmitter s and receiver s′. ηM (s′) and ηBS (s′) are the mirrors and BSs aggregated

power efficiency functions, respectively. ∆BS (s′) is the aggregate power splitting

function of BSs.

In a rack of 40 servers the maximum distance between a transmitter and a receiver

does not exceed 5 meters. Therefore, it is possible to use PDs with light collecting

area equal to the area of the beam at the PD. It is assumed that DR = θD for all

transmitter-receiver combinations. This is a reasonable assumption since the beam

diameter at the receiver is 2.5 mm, assuming a beam width angle of 0.5 mrad.

It is assumed that all transmitters and receivers are identical with the same power

transmitted and optical efficiencies. It is also assumed that all mirrors have the same

efficiency ηM and all BSs has the same efficiency ηBS. Then PR (s, s′) becomes,

PR (s, s′) = PT · ηT · ηR · ηM (s′) · ηBS (s′) ·∆BS (s′) (4.7)

Figure 4.2 depicts that a link between two servers is reflected from three mirrors,

except for server S, the number of mirrors is four. So, mirrors aggregated power

efficiency function is,
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ηM (s′) =


η3
M, for 1 ≤ s′ ≤ S − 1

η4
M, for s′ = S

(4.8)

A link to a destination server s′ traverses s′ BSs except for server S, where the beam

traverses (S− 1) BSs. Accordingly, BSs aggregated power efficiency function is given

by,

ηBS (s′) =


ηs

′
BS, for 1 ≤ s′ ≤ S − 1

ηS−1
BS , for s′ = S

(4.9)

The number of BSs and the power ratio of the transmitted/reflected beams at each of

the BSs affect the received power at each server. We assume that a BS s′ reflects αs′%

of the incident beam’s power, and transmits (1 − αs′)%. Hence, the power splitting

function of BSs is,

∆BS (s′) =


αs′

s′−1∏
j=1

(1− αj), for 1 ≤ s′ ≤ S − 1

S−1∏
j=1

(1− αj), for s′ = S

(4.10)

The signal-to-noise ratio (SNR) is given by [51],

SNRIM-DD =
I2
p

NT

=
(RMPT)2

σ2
q + σ2

dl + σ2
db + σ2

th

(4.11)

4.3 Simulation and Results

In this section we present the analysis of the proposed OWC Rack and a cost estimate

of the proposed OWC-DCN.
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Figure 4.3: Received power by Servers.

4.3.1 Performance Analysis of OWC Rack

The electronic charge q is equal to 1.602 × 10−19. PD responsivity (R) and gain

factor (M) are assumed to be 0.9 and 3, respectively. Both, dark current and leakage

currents are assumed to be 15nA. The temperature and equivalent resistance of the

receiver are assumed to be 290K and 1 KΩ. We assume that the number of servers

S = 40. Optical efficiency of all transmitters/receivers optics, mirrors and BSs are

assumed to be 99%. For a BS s′, the power of the reflected light beam αs′ is 10%, and

hence, the power of the transmitted light beam is 90%. The wavelength is assumed

to be 1500 nm.

The power received as a function of the position of the server in the rack is shown

in Figure 4.3. The power reception falls as we move towards the bottom of the rack.

Power levels are of the order of 10−3 W for transmitted power in the range of 0.5
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Figure 4.4: Eye Diagrams of OWC (top) and Fiber Optics (bottom) at 2.5 Gbps and
PT = 10 mW (a) s=1. (b) s=25. (c) s=39.

mW to 10 mW. There is a sudden improvement in the received power by the server

S compared to the server S − 1. This is due to the ratios of the BSs used where the

last server receives 0.99× 0.9 of the power incident to the BS number S− 1 while the

server S − 1 receives 10% of that power.

In order to evaluate the performance of an OWC link within the rack, OptiSystem

software was used. An OWC link was implemented with an OWC channel of five

meters. We created a link with the same characteristics, however, it deploys a fiber

optic instead of OWC. Both transmitters use OOK NRZ modulation scheme for

simplicity, however, for higher data rates, other modulation schemes such as pulse

position modulation (PPM) are preferred [51]

Figure 4.4 depicts the eye diagrams of the OWC and fiber optical links at 2.5

Gbps. Three servers are selected (i.e., server 1, 25 and 39). It is clear that as

we move towards the bottom of the rack, the power received decreases, degrading
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Figure 4.5: Eye Diagrams at different servers (S = 1, 25, and 39) using 2.5 Gbps and
varying transmitted power (PT ).

the performance of the OWC link. On the other hand, it is difficult to notice any

variation in the fiber optical link since the link is too short, and the received power

is not affected by BSs or mirrors as in the OWC link.

Table 4.1 summarizes the performance of OWC and fiber optical links at different

servers and different transmitting powers. As we move towards servers at the bottom

of the rack, when transmitted power is low, Q-factor, eye height, and threshold all

degrade and minimum BER increases. On the other hand, increasing the transmitted

power improves the performance of the link allowing error-free communication.

Results in Table 4.1 suggest that for higher bit rates, using low power (near 1mW)

is sufficient to realize low BER for servers near the top of the rack. On the other

hand, it might be difficult to establish a link with servers near the bottom of the

rack at this low transmitted power. Therefore, system optimization can be realized
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Table 4.1: Summary of the OWC Link Performance Compared to the Optical Fiber
Link.

PT = 1 mW PT = 5 mW PT = 10 mW

s OWC Fiber OWC Fiber OWC Fiber

Max. Q 1 110.4 253.8 227.0 276.9 274.8 284.4

Factor 25 15.8 248.3 61.9 269.5 105.5 293.0

39 3.84 257.0 18.8 286.7 33.1 276.0

Min 1 0 0 0 0 0 0

BER 25 1.5E-6 0 0 0 0 0

39 6.1E-5 0 0 0 0 0

Eye 1 250E-6 2.6E-3 1.3E-3 13.0E-3 2.6E-3 26.0E-3

Height 25 1.8E-5 2.6E-3 100E-6 13.0E-3 210E-6 26.0E-3

39 1.1E-6 2.6E-3 2.2E-5 13.0E-3 4.8E-5 26.0E-3

Thresh- 1 3.0E-5 190E-6 100E-6 940E-6 180E-6 1.9E-3

old 25 9.7E-6 180E-6 2.5E-5 960E-6 2.8E-5 1.9E-3

39 2.4E-6 190E-6 1.1E-5 930E-6 2.3E-5 1.9E-3

by setting the power transmitted by each server based on the intended destination.

This way, the power consumption can be minimized.

We perform further simulations to understand the performance of the OWC Rack

at different servers and using different transmission powers. Figure 4.5 shows the

eye diagrams at different servers (S) using 2.5 Gbps and different transmitted power

(PT ). We chose S = 1 (top of the rack), S = 25 (middle of the rack), and S = 39

(bottom). Moreover, we vary the transmitted power using 1, 2.5, 5, and 10 mW. As

expected, reducing the transmitted power does not significantly impact the received

signal at S = 1. On the other hand, at S = 25 we notice degradation in the quality

of the received signal at 1 and 2.5 mW. At S = 39, the quality of the received signal

degrades as we reduce the power. At PT = 1mW we notice a highly distorted eye

indicating high noise, jitter, and inter-symbol interference (ISI).
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4.3.2 Cost Estimate

Comparing OWC-DC to CDC is challenging. CDCs have been the main interest

of the academic and industrial communities for long time. This implies that the

cost-performance tradeoff of the wired technology has been improving over the last

decades. On the other hand, OWC components for DCs may not exist yet. Therefore,

we only aim to have an approximate sense of the OWC-DC cost. We consider the

price of the TOR, aggregate and core switches following [6], however, we also include

the cost of the network interface cards (NICs). Tables 4.2 and 4.3 depict the prices

used in our calculations and the costs of three reference CDC configurations used to

connect 10K servers for comparison, respectively [6].

Table 4.2: Cost of Different Components used in CDC

Component Price ($) Minimum Unit

NIC 80 1

TOR 8,000 1

Aggregate Switch (AS) 9,000 1

Core Switch (CS) Subunit 60,000 1

Core Switch (CS) Chassis 12,000 1

Core Switch (CS) Power Supply 3,500 3

Table 4.3: Total Cost of Different CDC Configurations

Configuration # TOR # AS
# CS

Subunit
# CS

Chassis
Total

Cost ($)

CDC1 250 52 16 2 4,162,500

CDC2 250 48 12 2 3,886,500

CDC3 250 26 8 1 3,436,500

In case of the OWC-DC, we consider cost of OWC transceivers and ROCs. Since

there is no reference for these prices, we estimate cost by refereing to the prices of
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Figure 4.6: OWC-DC Cost Function Compared to CDCs.

CDC devices, e.g., we assume that the price of OWC transceiver is γ times the price

of an NIC (CNIC), and the price of an ROC is β times the price of an aggregate

switch (Cagg), where 0.1 ≤ γ, β ≤ 2. Therefore, the total cost of an OWC-DC is:

COWC−DC = J ·K · [γ · S · CNIC + β · Cagg] (4.12)

Figure 4.6-(b) depicts the cost function of the OWC-DC. It might be noted that, at

γ = β = 2, the cost of OWC-DC is approximately 1.7 times the CDC3, and around

1.4 times the price of CDC1. However, there is still a range where, γ and β are

greater than one, and yet, the price of the OWC-DC is cheaper or comparable to

that of the CDC. We expect that, the cost of OWC technology will decrease as it is

commercialized, leading to further reduction in the cost OWC-DC.
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OWC-DC has another advantage over CDC is that an upgrade in a DC (e.g. from

10 Gbps to 40/100/400 Gbps or higher) will require huge investment and changes

in the CDC as cables and switches must be replaced. OWC-DC presents a more

modular architecture that is highly scalable with little upgrade required.

4.4 Chapter Summary

An OWC-DC design and associated link budget analysis for a fully-connected rack

of servers is presented. Simulation shows that the proposed design realizes high data

rates within a rack. Our cost analysis shows that the cost of the proposed OWC-

DC design is comparable to that of conventional wired DCs. It is expected that

the cost of the proposed design will decrease as OWC technology is commercialized.

The proposed design is highly suitable for scaling and upgrading DCs. The proposed

design addresses many problems and limitations of the current art, but several issues

remain to be investigated.
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Chapter 5

OWCell: Optical Wireless Cellular

Data Center Design

In this chapter, we propose OWCells, a class of optical wireless cellular data center

network architectures in which fixed line of sight (LOS) optical wireless communica-

tion (OWC) links are used to connect racks of servers arranged in regular polygonal

topologies. We present the OWCell DCN architecture, develop its theoretical under-

pinnings, and investigate routing protocol and OWC transceiver design.

The chapter is organized as follows. In Section 5.1, we discuss the proposed cellular

OWCell architectures. Results and analysis are discussed in Section 5.2 followed by

future directions in Section 5.3. Conclusions are presented in Section 5.4.

5.1 Design of OWCell DCNs

In this section, we present our design philosophy for the proposed OWCell DCN

architecture and develop its theoretical underpinnings.

From the discussion in previous chapters, it is clear that conventional row-based
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rack arrangement in DCNs substantially hinders establishing inter-rack LOS wireless

links. Therefore, recent research on RF DCNs propagates the use of polygonal ar-

rangement of racks instead of rows [5,6]. Similarly, in [11], the authors present a very

high-level description on intra- and inter-rack communications using OWC.

(a) (b)

Figure 5.1: Examples of multiprocessor and NoC network topologies using polygons
(a) Square. (b) Hexagonal.

In large multiprocessor and networks on chip (NoC) systems, several studies con-

sidered arranging processors in a mesh of polygonal cells [421]. Figure 5.1 shows the

commonly used square and hexagonal multiprocessor and NoC network topologies,

where nodes represent the processors and edges represent connection links. Since the

inter-processor links are established using wires, it is difficult to connect processors

across the polygonal cells, and thus processor connections are limited to neighbor

processors.

To achieve high data rate transmission using OWC links, line-of-sight (LOS) links

are required. Conventional row-based arrangement of racks in DCNs is not an effective

choice as it makes establishing LOS inter-rack FSO links a challenging task. To

overcome this challenge, racks can be placed in regular polygonal arrangements, which

we refer to as a cell of racks (CoR). In this chapter, we propose OWCell DCNs
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(OWCells for brevity), a class of OWC DCNs built using Interconnected CoRs where

racks in a CoR can communicate using LOS OWC links. We analyze and establish

the graph-theoretic properties related to the proposed OWCell DCN architectures.

We also perform simulations to analyze the proposed OWCells and compare it to

existing DCNs.

5.1.1 Design Philosophy

In our design, we use a cell of racks (CoR) as a building block for OWCells. To

facilitate LOS communication, racks in a CoR are arranged in a regular polygonal

topology by placing racks at its vertices. Figure 5.2-(a) depicts three possible designs

of CoR using three basic polygons; square, hexagon, and octagon. We assume that

racks in a CoR are fully connected, and thus each ToR is equipped with an OWC

transceiver that allows the rack to simultaneously communicate with all other racks in

the same CoR using LOS OWC links, as shown in Figure 5.2-(a) for one of the racks.

A CoR, therefore, can be represented by a complete graph where nodes represent

ToRs, and edges represent intra-CoR inter-rack OWC links. Figure 5.2-(b) shows the

corresponding graphs of the CoRs proposed in Figure 5.2-(a). CoRs of the same type

are then interconnected in a mesh arrangement to realize a DCN.

As stated above, a CoR can be represented by a complete graph, Kn, where

n ∈ Z+. After investigating different values, we find that n = 4, 6, and 8 are very

promising for designing OWCells. Using one of these three polygons as a building

block, any rectangular mesh DCN can be realized.

By interconnecting CoRs we obtain a complete graph mesh (CGM), that repre-

sents the OWCell, denoted as C(n, t, S), where n is the number of ToRs in a CoR, t

represents the order of the CGM, and S represents the number of servers per rack.

A CoR is a CGM of order 1, denoted by C(n, 1, S), and thus represents the building
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(a)

(b)

Figure 5.2: Examples of the proposed polygonal OWCell DCN (a) Topology (b)
C(n, 1, S), for n = 4, 6, and 8.

block for an OWCell. Figure 5.2-(b) depicts C(4, 1, S), C(6, 1, S), and C(8, 1, S).

We use the notation C(4d, t, S) to refer to the special class of graphs with number

of nodes, n = 4d for d ∈ Z+. We construct square CGMs for all graphs in this class.

A second order (i.e., t = 2) CGM, C(4d, 2, S), is obtained by arranging four CoRs

in a 2× 2 square grid such that adjacent CoRs share a node [see Figure 5.3-(a)]. In

general, CGM mesh of order t, C(4d, t, S), is obtained by arranging t2 CoRs in a t× t

square grid with adjacent CoRs sharing a single node.

On the other hand, in case of hexagonal CoRs, we build hexagonal meshes in-

stead of square meshes [422]. The C(6, 2, S) is obtained by adding six CoRs around

C(6, 1, S), where each of the added CoRs shares a node with C(6, 1, S) as shown in

Figure 5.3-(b). Inductively, a C(6, t, S) is obtained from C(6, t − 1, S) by adding a

layer of CoRs around the boundary of C(6, t− 1, S).

Table 5.1 summarizes the total number of CoRs, ToRs (N), servers, inter-rack

links, bisection width, diameter, and minimum and maximum degrees for C(4d, t, S)

and C(6, t, S).
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(a) (b)

Figure 5.3: Examples of the proposed OWCell DCN topologies, C(n, 2, S): (a) n =
4, and 8 (b) n = 6.

Table 5.1: Properties of Complete Graph Meshes, C(n, t, S).

Property n = 4d, ∀d ∈ Z+ n = 6

Number of CoRs t2 3t2 − 3t+ 1

Number of ToRs (N) (n− 2)t2 + 2t 9t2 − 3t

Number of Servers ((n− 2)t2 + 2t)× S (9t2 − 3t)× S
Number of Links n(n−1)

2
t2 45t2 − 45t+ 15

Bisection Width
t even: (n− 1)t

16t− 13 ∀ t > 1
t odd: (n− 1)(t− 1) + (n

2
)2

Diameter 2t− 1

Maximum Degree (∆) 2(n− 1)

Minimum Degree (δ) (n− 1)
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(a) (b) (c)

Figure 5.4: Different partitioning in CGM6
1 (top) and CGM8

1 (bottom). Bold edges
form the corresponding cut-set. (a) n− 1 (b) 2(n− 2) (c) (n

2
)2

We find that the class of mesh networks with number of nodes, n = 4d for d ∈ Z+

admit elegant theoretical analysis. Therefore, in the following, we analyze C(4d, t, S)

in detail and develop its theoretical properties. As mentioned earlier, graphs with

n = 4d have similar properties and analysis, and thus the following analysis can be

easily extended to any C(4d, t, S) OWCell. Moreover, similar analysis can be directly

obtained for C(6, t, S).

Theorem 1. The total number of ToRs (N), servers and links in a C(4d, t, S) OWCell

are (n− 2)t2 + 2t, ((n− 2)t2 + 2t)× S, and (n(n− 1)/2)t2, respectively.

Proof. A C(4d, t, S) has t2 CoRs. Each CoR shares one rack with adjacent CoRs along

the width and height of the network. Every row and column has (t− 1) shared racks.

The total number of racks is N = nt2−(t−1)t−(t−1)t = (n−2)t2+2t. Each rack has

S servers. It follows that, the total number of servers is S×N = S× ((n− 2)t2 + 2t).
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Every CoR is a complete graph Kn and has n(n− 1)/2 links, hence total number of

links is (t2)(n(n − 1)/2). Figure 5.3-(a) shows a network with t = 2 and n = 4 with

12 ToRs and 24 links.

Bisection width is the minimum bandwidth available between two network parts

with equal number of nodes in each partition. If all links have the same capacity, find-

ing the bisection width reduces to finding a minimum cut-set such that the network

is partitioned into two halves.

To find the cut leading to the bisection width in the proposed OWCell, we have

to cut some building blocks, C(n, 1, S), of the DCN. We are interested in two possible

cuts of a C(n, 1, S) in which we separate a single node (one-node cut) and bisect

C(n, 1, S). In general, for a C(n, 1, S), separating a one-node cut results in a cut-set

of n−1 edges, whereas bisecting a C(n, 1, S) leads to a cut-set of (n/2)2 edges. Figures

5.4-(a) and (b) depict the two cuts, respectively, for C(8, 1, S), where bold edges form

the corresponding cut-set.

Theorem 2. The bisection width of OWCell DCNs, C(n, t, S) ∀ n = 4d, is (n− 1)t

if t is even (see Figure 5.5).

Proof. Figure 5.5 depicts the general case of C(8, t, S) : t is even. It may be noted

that, the two middle columns (or rows) of CoRs share t ToRs. We stretch the graph

around the shared ToRs as shown in Figure 5.5 to facilitate the calculation of the

bisection width. Except for these t shared ToRs, we can divide the C(8, t, S) into

two equal and symmetric parts. However, to bisect C(8, t, S), we have to divide the

t shared ToRs equally between the two parts. To do so, we perform t one-node cuts

such that the upper t
2

ToRs become part of the left (shaded) half and the lower t
2

ToRs join the right (unshaded) half. The vertical solid line in Figure 5.5 shows the

corresponding cut. Since we perform t one-node cuts; each resulting in a cut set of
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Figure 5.5: Bisection width (solid) and diameter (dashed) in C(8, t, S) for even t. The
graph is stretched around the column of shared ToRs to illustrate the bisection width.

n− 1 = 7 edges, the bisection width becomes 7t.

In general, for C(4d, t, S), ∀ d, t ∈ Z+ : t is even, there are t shared ToRs, and

we need t one-node cuts to halve the t shared ToRs. Each one-node cut leads to a

cut-set of n− 1 edges, and thus the bisection width is (n− 1)t.

Theorem 3. Bisection width of OWCell DCNs, C(n, t, S) ∀ n = 4d and odd t, is

(n− 1)(t− 1) + (n/2)2.

Proof. In case of, C(8, t, S) : t is odd, the network can be divided into two parts each

containing t−1
2

columns (or rows) of CoRs with a column (row) of CoRs shared by

the two network parts (see Figure 5.6). To bisect the network, we need to equally

split the middle column of CoRs between the left and right parts of the network.

The middle column contains an odd number, t, of CoRs. Therefore, each network

half can take t−1
2

CoRs leaving a single (centered) CoR to be split between the two
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Figure 5.6: Bisection width (solid) and diameter (dashed) in C(8, t, S) for odd t. The
graph is stretched around the shared column of CoRs to illustrate the bisection width.

halves. The vertical solid line in Figure 5.6 illustrates the corresponding cut where

t−1
2

one-node cuts are performed followed by a bisection of the center CoR and then

another t−1
2

one-node cuts. The bisection width therefore becomes 7(t− 1) +
(
n
2

)2
.

A C(4d, t, S) : t is odd, requires t − 1 one-node cuts each with a cut-set of n − 1

edges, and bisecting one C(4d, 1, S) with a cut-set of (n
2
)2, and thus the bisection

width is (n− 1)(t− 1) + (n
2
)2.

Theorem 4. Bisection width of OWCell DCNs, C(6, t, S) is 16t− 13 ∀ t > 1.

Proof. Figure 5.7-(a) depicts the case of C(6, 2, S). We can think of a C(6, t, S) as

an inner hexagonal CoR C(6, 1, S) surrounded by a tier that is formed of six CoRs.

In that case, the bisection width can be obtained by using a one-node cut for each
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(a) (b)

(c)

Figure 5.7: Bisection width (solid) and diameter (dashed) in C(6, t, S). (a) t = 2 (b)
t = 3 (c) General case.
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of the two cells in the surrounding tier (i.e., 2× (n− 1)), leaving the center CoR to

be split between the two halves (n
2
)2) for a total bisection width of 2(n − 1) + n

2
)2.

Increasing t by one means adding another tier of CoRs between the inner CoR and

the outer tier of CoRs [see Figure 5.7-(b)]. This increases the bisection width by a

number of links equivalent to two two-node cuts (i.e., 2(n − 2)). Figure 5.7 shows

the general case of C(6, t, S). The order of the graph t can be divided into; one inner

CoR (n
2
)2), two outer CoRs with one-node cuts (2× (n− 1)), and 2t− 4 intermediate

CoRs with two-node cuts ((2t−4)×(2n−4)). This leads to a total bisection width of

n
2
)2 +2×(n−1)+×(2t−4)×(2n−4). For n = 6, this can be reduced to 16t−13.

Theorem 5. The network diameter of C(4d, t, S) and C(6, t, S) is (2t− 1).

Proof. The distance between two racks is maximum when the racks are at the extreme

ends of the diagonal of the network. Dashed lines in Figures 5.5, 5.6, and 5.7 show

the diameter of C(8, t, S) and C(6, t, S), respectively. Moving from one CoR to an

adjacent CoR takes exactly one hop, and moving within a CoR is at most one hop.

In case of C(4d, t, S), each side can be traversed in t− 1 hops plus the one hop within

the bottom right CoR, hence the diameter is 2(t− 1) + 1 = 2t− 1. It may be noted

that, there are several paths between the ToRs selected. However, all such paths

follow the Taxicab geometry leading to the same path length of 2t − 1. The same

argument applies to the C(6, t, S).

5.1.2 Multipoint OWC System Design for OWCell DCNs

Most existing commercial OWC transceivers are designed for outdoor point-to-point

links. To operate under the varying and/or severe weather conditions, high powered

lasers and relatively expensive components are used. On the other hand, the simple

design requirements by indoor OWC systems, such as short range links, in addition
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to the absence of the outdoor environmental impairments, makes it possible to design

cheap OWC transceivers by coupling optical fiber ends directly with collimators to

realize OWC links. In [86], Chowdhury et al. demonstrate transmission of a 10 Gbps

cable television RF signals over an almost lossless 15 m point-to-point indoor OWC

link in an environment similar to that of DCNs.

To avoid mechanically steerable transceivers, a number of fixed transceivers equal

to the number of racks in the CoR (i.e., n) must be used. Since the space of the

ToR is limited, multipoint OWC system with dense packaging of transceiver elements

may help utilize the space of the ToR. In [423], Heng et al. propose a multipoint

OWC system that is designed for long-range mobile flight terminals such as satellites

or unmanned aerial vehicles flying within a cluster. Due to the long range and mo-

bility requirements of the application, a sophisticated transceiver design is used that

includes micro-electro-mechanical-system (MEMS) switches, controller, and mechan-

ically mounted transmitters. OWC links in OWCell DCNs, however, are shorter and

fixed, and thus we can use a simplified multipoint OWC system (see Figure 5.8) that

is based on that of Heng et al. [423].

Transmitters and the receiver are separated. A ball lens is used to capture the

incoming beams from all n racks in the CoR. Captured beams are coupled into optical

fibers placed at the focal point of the ball lens. The beams will be subsequently exited

into free space and detected by the corresponding optical communication detector

[423]. Beam divergence in OWCell DCNs is expected to be limited compared to

that of outdoor links due to the short range of OWC links in DCNs. Therefore,

the use of a big ball lens at the receiver is not required leading to smaller form

factor and better utilization of the limited ToR space. The number of transmitters

must be equal to the number of n racks in the CoR and cannot be reduced. Each

transmitter, however, is simply a single-mode fiber connected to the beam collimator
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to transmit the modulated optical beam from the laser source. Therefore, transmitters

are expected to be smaller and cheaper as compared to conventional OWC transceiver.

This way a single OWC receiver and multiple smaller transmitters replace multiple

large expensive transceivers.

5.1.3 Switching and Routing Protocol

The traffic in a data center is comprised of large (elephant) and small (mice) flows.

Although the small flows are greater in number (around 80%), large flows carry about

95% of data [384]. The type of optical switching technique used in a network has a

significant impact on the performance of the network.

In optical communication, there are three switching techniques, namely; optical

circuit switching (OCS), optical packet switching (OPS), and optical burst switching

(OBS). Due to the immaturity of OPS, we consider only OCS and OBS switching

technologies. However, the long setup time of OCS may lead to high latency especially

for mice flows because the duration of the flow is short relative to the set up time.

On the other hand, OBS is suitable for mice flows but not the elephant flows. Hybrid

switching, in which OCS and OBS switching technologies are integrated, can provision

high speed, on-demand, and high bandwidth communications for both long duration

and bursty flows in DCs. We assume that each ToR in OWCell DCN employs hybrid

switching.

The uniform structure of OWCell DCNs facilitate the use of low computational

and storage cost geographical routing protocols. In this chapter, we consider OWCells

with square CoRs (n = 4). In a C(4, t, S) network (see Figure 5.9), there are 2t2 + 2t

racks arranged in 2t + 1 rows and 2t + 1 columns, numbered bottom (y = 0) to top

(y = t + 1) and left (x = 0) to right (x = t + 1), respectively. A server s where

1 ≤ s ≤ S is geographically identified using the tuple (x, y, z), where x and y are
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Figure 5.9: Types of nodes in C(4, t, S) OWCell DCN. Type 1 nodes (even-
column/odd-row indices) and Type 2 nodes (odd-column/even-row).
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coordinates of the rack, and z corresponds to the ordinal number for the server within

a rack.

Algorithm 1: Basic Routing in C(4, t, S) OWCell DCN.

Input: A source rack Src and a destination rack Dest.
Output: A path P from Src to Dest
1 Current← Src
2 Path← Src
3 while Current 6= Dest do
4 4x = Dest.x− Current.x
5 4y = Dest.y − Current.y
6 if Current.y is even then
7 Next← route type1(Current,4x,4y)
8 else
9 Next← route type2(Current,4x,4y)

10 Path← Append(Path,Next)
11 Current← Next

12 Return Path;

Algorithm 1 shows the routing in C(4, t, s). There are two types of nodes in the

proposed OWCell (see Figure 5.9). Nodes with even-column/odd-row (Type 1 nodes),

and nodes with odd-column/even-row (Type 2 nodes). To determine the output port

at each node, the coordinates of the current and destination racks are compared and

the difference is calculated as4x = xdestination−xcurrent and4y = ydestination−ycurrent.

Depending on the type of the node and the values of 4x and 4y, the output port is

determined (Lines 7 and 9) according to Table 5.2.

Table 5.2: Selection of routing output port in C(4, t, S).

routetype1 routetype2

4x ≥ 0 4x < 0 4x ≥ 0 4x < 0

4y ≥ 0 A or B B or C B or C D or E

4y < 0 E or F D or E A or B E or F
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5.1.4 Putting It All Together

In Section 5.1.2, we discuss the design of a multipoint transceiver for inter-rack com-

munications in the proposed OWCell design. In Section 5.1.3, we discuss the routing

and switching schemes for inter-rack communications. In this section, we put ev-

erything together to design a ToR switch that can perform the required intra- and

intra-rack communications.

Figure 5.10 depicts the proposed design of the ToR in the proposed OWCell DCNs.

Received light beams are directed to a stage of 1 × 2 splitters. The splitters are

responsible of directing the received beams depending on the destination of the traffic.

There are three possible scenarios.

1. The corresponding rack is the destination rack. In this case, the splitters should

direct the beams to the (S + n)× (S + n) Electronic Switch Fabric.

2. Current rack is a relay node in the path of the traffic. Splitting stage must

direct the beams to the transmitters through the n× n FSO switch.

3. Current rack is one of the multicast destinations of the received traffic. In this

case, the splitters must direct a copy of the received signal to the (S+n)×(S+n)

Electronic Switch Fabric and another copy to the n× n FSO switch.

Different technologies can be used to implement the splitting stage. For example,

fixed 1 × 2 splitters. In this case, the splitting stage will always split the beams.

Although simple, it is inefficient to generate undesired copies of the received signals

in Cases 1 and 2.

To overcome this problem, a configurable splitting stage can be obtained using

technologies such as Micro-Electro-Mechanical-Systems (MEMS). In this case, MEMS

splitters can be used such that when the MEMS element is in the lay position, the
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beam will be directed to the n × n FSO switch. When the MEMS element is in the

up position, the beam will be split into two copies. This resolves the problem of the

undesired split in Case 1. However, the splitting is still inevitable in Case 2. In fact,

the discussed design of the 1× 2 splitting stage in the ToR is a good introduction for

the problem encountered in existing FSO switches. We discuss these issue in details

and propose an efficient solution for the problem in Chapters 6 and 7).

The local copy generated in the splitting stage is then directed to the Electronic

Switch Fabric after being converted from optical to electrical domain using O/E

converters. The Electronic Switch Fabric receives traffic from S servers and n OWC

receivers. It perform the required switching by directing the traffic to one (or many)

of the S servers and n transmitters connected to its output ports.

The n transmitters receive traffic either from the Electronic Switch Fabric (traffic

from servers intended for inter-rack communication) or from the FSO switch (inter-

rack traffic using the corresponding traffic as an intermediate node). In the former

case, the traffic is first converted from the electrical to the optical domain using E/O

converters. In the latter, the traffic is already in the optical domain and no need

for conversions. Multiplexers are used to select the one of the two traffic links to be

connected to the transmitters.

Splitters and multiplexers are controlled using control signals from the ToR con-

troller. Controller and controlling signals are now shown for simplicity. Moreover, if

OBS is used, the traffic directed from the Electronic Switch Fabric to the transmitters

must go through an OBS assembly and queuing stage before being directed to the

transmitters.
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5.2 Simulation and Results

In this section, we describe the experiments and analyze the results obtained.

5.2.1 Simulation Setup

We develop a flow-level simulator to study the performance of the proposed OWCell

architecture for different network sizes (i.e., total number of servers). Flows greater

than 25 MB are considered large flows, whereas small flows are assumed to be less than

8 MB in size [384]. The source and destination servers are chosen randomly which are

mapped to the corresponding ToRs. We consider only inter-rack traffic because intra-

rack traffic do not traverse the links in the topology and inter-rack traffic are the most

likely candidates for over-subscription. We assume links with uniform transmission

capacity of 1 Gbps. OCS connection setup time is assumed to be 1 ms, while the

processing time at each node for the OBS path setup is considered to be 20 µs [384]

We use the buffer-triggered OBS. If a burst is blocked due to contention, then all the

packets in the bursts are dropped. In the following, we perform different studies to

validate and compare the proposed OWCell DCN.

5.2.2 Impact of OWCell Design Space on its Performance

OWCell has a parametric design space. For a fixed total number of servers, the selec-

tion of t and S can make OWCell expand either vertically or horizontally. Increasing

the number of servers per rack, S, leads to vertical expansion and a reduction in the

order, t, of OWCell architecture as a smaller number of racks is required. On the

other hand, reducing the number of servers per rack means that larger number of

racks are required (horizontal expansion) to achieve the desired DCN size. In this

study, we investigate the impact of the vertical and horizontal expansion of OWCell
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Figure 5.11: Aggregated throughput of C(4, t, S) for different OWCell DCN sizes and
different servers per rack S = 15 (most left), 20, 25, 30, 35, and 40 (most right).

on its performance.

We vary the number of server per rack (for a fixed OWCell DCN size) from 10

to 40 with a step of 5. Figure 5.11 depicts the performance, in terms of aggregate

throughput, of four OWCell DCN networks with 16k, 32k, 64k, and 128k total number

of servers at different values of servers per rack. At fixed DCN size, e.g., 16K, as the

number of servers per rack increases, the number of links and ToRs decreases from

1066 (S = 15) to 400 (S = 40) and we notice a degradation in the performance of

OWCell. This is consistent for the four different sizes of the OWCell DCNs. We

notice that the overall DCN traffic increases as the size of the DCN increases and so

does the accepted and rejected traffic (see Figure 5.11).

Figure 5.12 shows the impact of increasing the DCN size while maintaining the

same network order t. This can be achieved by increasing the number of servers per

rack. The combination graph in Figure 5.12 shows the throughput in TBs and as a

percentage of the total traffic injected in the network. Even though the total number
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Figure 5.12: Performance of C(4, 40, S) for different DCN Sizes.

of Bytes delivered by the network increases, we can see that the percentage of accepted

traffic is still decreasing. This is because the network has to handle increasing traffic

while maintaining the same network order t, and thus number of inter-rack OWC

links.

5.2.3 Hybrid vs. OCS Switching in OWCell

As mentioned earlier, the switching technique used has an impact on the performance

of the network. Figure 5.13 depicts a comparison of the performance of a 16k servers

OWCell DCN using OCS and hybrid (OCS+OBS) switching. On average, hybrid

switching outperforms OCS.

The graph in Figure 5.13 can be divided into three regions. In region 1, OCS

outperforms hybrid switching. This is because, in case of OCS, all the links are

initially empty and most of the flows are routed successfully. On the other hand,
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Figure 5.13: Performance of Hybrid Switching vs. OCS in a 16k server OWCell DCN
C(4, 14, 40).

the buffers of the OBS in the hybrid switching are empty and the mice flows, which

represent 80% of the flows and routed by OBS, are still being stored in the buffers.

Therefore, the performance of hybrid switching is reflective of only the long flows

which are routed using OCS.

In region 2, performance of the hybrid switching improves and outperforms OCS.

This is because the OBS buffers start getting full and the combined flows are generated

leading to a better utilization of link bandwidth as compared to OCS which still

reserves bandwidth for all flows, including the mice flows.

As the number of flows in the network increases, accumulation and discharge of

flows in the buffers of OBS is constant and the network saturates (see region 3). As

expected, for mixed traffic with large number of mice flows, hybrid switching improves

the utilization of links and presents a better performance as compared to that of OCS.



188

Figure 5.14: Comparison of throughput and number of inter-rack links (log scale) of
OWCell vs. HyScale DCN.

5.2.4 Performance Comparison of OWCell and HyScale

In this study, we compare OWCell and HyScale [384] DCNs of different sizes (16k,

64k, and 128k servers) which is proven to outperform the conventional Fat Tree DCN

(see [384]). Figure 5.14 depicts a combination graph of the aggregate throughput

in GBs and number of inter-rack links. As we can see, OWCell DCN can achieve a

performance that is within 15-25% that of HyScale using significantly lower number

of links that is in the order of 95-98% compared to that of HyScale.

It is worth pointing that, the colossal difference in the number of links between

HyScale and OWCell is the main reason why HyScale outperforms OWCell. HyScale

has lower diameter as compared to OWCell. Moreover, the large number of links

facilitate lower average hop count (see Table 5.3). However, the substantial reduction

in the number of links (i.e., 95-98%), and hence cost, shows that the proposed OWCell

can help overcome the wiring problem of conventional wired DCNs while maintaining

a comparable performance. As we shall discuss in the next section, increasing the
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order of the CoRs and the use of a coexisting OWC network are expected to improve

the performance of the OWCell design.

5.3 Discussions

The incorporation of wireless technologies into DCNs is still in its infancy, and thus

further research and development is needed to make wireless DCNs an efficient and

practical reality. In this section, we discuss future research directions related to the

proposed OWCell DCN architecture. Some interesting design considerations and open

questions involve:

• Hybrid versus Pure DCNs. As we mentioned before, wireless links can

be used to augment existing wired DCNs or to realize a pure wireless DCN.

However, it is not yet clear which type of DCNs can provide a more efficient

solution. Pure wireless DCNs are envisioned to solve cabling complexity and hot

spot problems. However, it is possible that some degree of wired connectivity

for intra/inter-rack communication can benefit the performance [6]. In order to

answer this question, all possible solutions on the DCN design space including

pure wired DCNs, hybrid DCNs, and pure wireless DCNs must be explored.

Large number of possible DCN realizations fall under the umbrella of hybrid

DCNs. Thus, it is important to find the optimum combination of wired and

wireless networks to realize an efficient DCN.

• Goodness Metrics. The bisection bandwidth and diameter metrics used com-

monly to model the static prospective of the topology which is suitable for wired

DCNs [9,50]. To characterize the flexible and dynamic network topology a flex-

ible wireless DCN can provide, a notion of dynamic bisection bandwidth or at

least a lower (upper) bounds is needed [9, 50].
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• Network Architecture. While it is intuitive to replace wired links by wireless

links using the same DCN arrangement, we believe that the flexibility provided

by wireless links can not be fully exploited unless new topologies and DCN

arrangements are used. A network architecture must address the requirements

of future DCNs, including scalability, high capacity, and fault tolerance. Char-

acteristics of 60 GHz and FSO technologies, such as, the short transmission

range, necessity of LOS, and the interference among 60 GHz wireless links must

be taken into consideration [405,424].

• Cost Tradeoffs. In pure wireless DCN, switching and communication func-

tionalities are shifted from few powerful, high-power, and high-cost nodes (switches,

and routers) to a large number of low-power and low-cost end points (i.e.,

servers). It is crucial to understand the cost structure of individual nodes to

decide whether one or a combination of these design possibilities will lead to an

efficient cost-effective DCN [6].

• Visible Light Communication (VLC). VLC is another rapidly emerging

technology in which light emitting diodes (LEDs) are used to provide VLC

data links as well as illumination. We envision that, not only LEDs can be used

for illumination in DCNs, but also it can be utilized for communication and

networking (e.g., unicast/broadcast of control signals).

Unlike most existing research on OWC DCNs, we believe that row-based arrange-

ment of racks is a limiting factor in the development of OWC DCNs. Therefore, new

DCN architectures are needed to adapt to the LOS requirements by OWC links and

to fully exploit its advantages. In this chapter, we propose OWCell DCN architecture

that is developed using CoRs. It may be noted, however, that the OWCell design

presented and analyzed in this chapter uses square cells (n = 4). We believe that,
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using higher order cells, i.e., hexagons (n = 6) or octagons (n = 8), will improve the

performance of the proposed OWCell DCN as it will result in larger number of OWC

links, and thus more paths between any two servers in the DCN.

The uniform structure of OWCell DCN architectures facilitates the use of low

computational and storage cost geographical routing protocol. We present a simple

deterministic routing protocol that depends on the geographical coordinates of the

source (current) and destination racks. However, it is possible to fine-tune the routing

protocol for more flexible routing and enhancing the fault tolerance of the OWCell.

Table 5.3: Number of Inter-Rack Links and Average Hop Count in OWCell and
HyScale.

DCN OWCell HyScale

Size Links Average Hop Count Links Average Hop Count

16k 1536 12.5483 10240 6.16

64k 12696 32.691 802816 8.09

128k 10584 29.8768 802816 8.12

From the analysis in Section 5.2, we have seen that vertical expansion (i.e., larger

number of servers per rack and less number of racks) can lead to a degradation in the

performance of OWCell. Therefore, horizontal expansion is preferable. However, this

can pose a challenge to the OWCell design as horizontal expansion leads to larger

network diameter, and thus higher average hop count which in turn can lead to longer

latency. To overcome this problem, we plan to investigate the design of OWCell DCNs

with a coexisting OWC network [11]. The coexisting network can provide shorter

paths and less hops for long distance connections, and thus counteract the impact of

the horizontal expansion.
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5.4 Chapter Summary

We propose OWCells, cellular optical wireless DCN architectures. We present an OW-

Cell with square cells and develop its theoretical properties. Flow-level simulations

are conducted to validate and compare the performance of OWCell. The impacts

of OWCell design parameters on its performance are investigated. We compare the

performance of OWCell using OCS and hybrid (OCS+OBS) switching schemes. We

also compare the performance of OWCell and HyScale DCN, a switch-centric hybrid

optical DCN. Finally, we discuss future research directions and approaches to improve

the performance of the proposed OWCell DCN.



193

Chapter 6

New Class of Multicast Free Space

Optical Switches

Enabling multicast in optical networks requires the use of multicast-capable opti-

cal switches. In this chapter, we propose a new class of strictly nonblocking (SNB)

multicast-capable FSO switches. Our design exploits non-movable tri-state switch-

ing elements (T-SEs) that support signal splitting and switching simultaneously and

seamlessly, and thus, separate splitting stages used in the conventional multicast

switches are not needed.

6.1 Introduction

Applications hosted by DCs generate large demands for bandwidth with different

communication patterns involving a combination of unicast, multicast, in-cast, and

all-to-all-cast traffics [24, 54]. For example, Hadoop and Spark require in-cast traf-

fic delivery during the shuffle stage of MapReduce, and require multicast for data

replication, parallel database join operation, as well as data dissemination in virtual
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machine (VM) provisioning [54].

Optical technologies have been long seen as a viable solution; not only for providing

high-bandwidth [14,425,426], but also for implementing multicasting more efficiently

compared to higher layers implementations (e.g., application layer). Realizing multi-

cast in the optical layer requires the development of efficient multicast-capable optical

switches.

As pointed earlier, real world DC traffic traces show that more than 95% of the

data are being transferred by the top 10% largest elephant flows (i.e., flows with large

amount of data) [29]. Researchers are currently investigating DC optical interconnects

using hybrid optical switching schemes in which fast and slow optical switches are

used simultaneously [427–430]. Fast optical switches are used for packet and small

bursts of data, whereas, slow optical switches are used for long lived (circuit and long

burst) traffic. Therefore, there is a current practical need for slow, yet, efficient and

cheap multicast optical switches.

Most existing FSO designs are for unicast [426], and hence, incorporating multicast

into these switches require additional hardware (e.g., splitters). This results in a

higher complexity; and thus, cost. Moreover, the existence of a splitting stage adds to

the overall basic switching structure, and thus, can potentially add to the overall loss

experienced by the signal due to Gaussian beam divergence. Accordingly, the design

of multicast FSO switches with reduced complexity and path lengths is an interesting

yet challenging problem. To this end, we propose a new N × N strictly nonblocking

(SNB) multicast FSO switch using non-movable tri-state SEs (T-SEs). Compared to

existing multicast optical switches, the new switches are shown to exhibit a substantial

reduction in hardware complexity, path lengths, and have reduced costs.

The remainder of the chapter is organized as follows. In Section 6.2, we discuss

preliminaries and review existing FSO multicast switches. We dedicate Sections 6.3
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and 6.4 to present and discuss the properties of the new class of FSO SNB multicast

switches. Performance evaluation is presented in Section 6.5. We summarize the

chapter in Section 6.6.

6.2 Preliminaries and Related Work

In this section, we introduce notations and definitions and review existing FSO

switches.

6.2.1 Notation and Basic Concepts

An N × M switch has N input ports; I = {I0, · · · , IN−1}, and M output ports;

Ω = {O0, · · · , OM−1}. A connection request between an input port Ip, 1 ≤ p ≤ N ,

and an ordered set of output port(s) Ωp, Ωp ⊆ Ω, is denoted by Rp = 〈Ip,Ωp〉. A

request Rp is said to be a multicast if 1 < |Ωp| < N , a unicast if |Ωp| = 1, or a

broadcast if |Ωp| = M (i.e., Ωp = Ω). A set of all requests in an N × M switch,

RN×M , can be any combination of unicast requests Γ, 1 ≤ |Γ| ≤ min(N,M), and

multicast requests Ψ, 1 ≤ |Ψ| ≤ min(N, bM/2c). In the following, we summarize the

basic concepts of optical switching networks used in this dissertation.

• Input/Output Port Symmetry. In general, an optical switch consists of an ar-

bitrary number of input and output ports. If the number of the input and

output ports is the same, the switch is said to be homogeneous, otherwise, it

is called heterogeneous. In this dissertation, we focus only on homogenous op-

tical switches (i.e., M = N). The analysis and results, however, can be easily

extended to the case of M 6= N .

• Blocking Characteristics. A switch is said to be nonblocking if it can realize

any possible interconnection pattern among inputs and outputs, otherwise, it
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is called blocking. A nonblocking switching network can be rearrangeable non-

blocking (RNB), Wide-sense Nonblocking (WNB), or Strict-sense Nonblocking

(SNB). A network is said to be RNB if establishing a new connection may re-

quire some existing connections to be reconfigured, whereas in SNB and WNB,

no reconfiguration is needed. A switching network is WNB if there exists a

routing strategy to establish all connections, one at a time, without reconfig-

uring any existing connection. SNB networks, on the other hand, require no

reconfiguration under any routing strategy. In this dissertation, we consider

both SNB and RNB classes of switches.

6.2.2 MEMS-Based FSO Multicast Switches

Several multicast optical switch architectures have been investigated in the literature

(e.g., [13,425,431]). Optical splitter-and-delivery (SaD) is a well-known SNB multicast

switch [13]. Figure 6.1 shows an N×N SaD switch where each input beam is initially

split to N identical branches using 1×N splitter. Corresponding branches from all N

splitters are connected to one output port. Thus, any input can be connected to any

number of output ports. It is worth noting that the SaD switch does not distinguish

between unicast and multicast requests, which results in unnecessary splitting and

signal losses. To overcome unnecessary splitting, configurable splitters may be used

which adds to the complexity of the design and control of the switch [431].

A MEMS-based multicast FSO switch can be implemented using the SaD archi-

tecture [13] by replacing the 1× 2 switches with MEMS mirrors, and we refer to this

switch as SaD-I. In Figure 6.2-(a) we propose a possible realization of a 1 × 4 FSO

splitter. The total number of components used in a 1×N splitter is Φ = 2dlog2(N)e+1−2.

SaD-I can be further improved by employing configurable splitters (we refer to it

as SaD-II ) [431]. Figure 6.2-(b) shows a possible realization of a configurable 1 × 4
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Figure 6.1: N ×N SaD switch [13].

(a) (b)

Figure 6.2: Possible realization of 1 × 4 FSO splitter (a) Conventional. (b) Config-
urable.
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splitter. The total number of components used in a 1 × N configurable splitter is

2Φ. In SaD-II switches, each input beam is divided into a number of beams equal

to the cardinality of the output set (|Ωp|), eliminating unnecessary splitting [431]. It

can be seen that SaD-II behaves like 2D MEMS and SaD-I in the case of unicast and

broadcast, respectively.

A switch that treats unicast and multicast requests separately is proposed in

[14,425]. The architecture combines a d×N SaD switch and an N × (N + d) three-

plane switch [see Figure 6.4] to realize an SNB switch (SUM-SaD). Unicast requests

are switched by the three-plane switch, and only multicast requests are delivered by

the SaD. Thus, splitting loss for unicast and multicast is similar to that of SaD-II

and SaD-I, respectively.

Figure 6.3: N ×N SUM-SaD switch [14].

In [15], Lin et al. propose an FSO 2D MEMS switch that performs bridging to

restore failed links. Bridging can thought of as a special case of multicast where an

input signal is forwarded to exactly two outputs.



199

Figure 6.4: N ×N MEMS switch with one-port bridging capability [15].

Figure 6.5: T-SE (a) R-State. (b) T -State. (c) S-State.

6.3 Proposed Strictly Non-Blocking (SNB) Multi-

cast FSO Switch Design

We propose a new class of SNB multicast FSO crossbar switches using tri-state switch-

ing elements (T-SEs). A T-SE is placed at every node i.e., row-column intersection.

SE(p, q) denotes a T-SE at the intersection of input port p, and output port q,

(1 ≤ p ≤ N , and 1 ≤ q ≤M).

A T-SE can be configured (see Figure 6.5) in one of three states; Reflective (R),

Transmissive (T ), or Splitting state (S), half reflective/half transmissive [16, 165].

SE(p, q) denotes a T-SE at the intersection of input port p, and output port q. The

configuration of SE(p, q) is denoted by τ(p, q, χ), where χ ∈ {R, T, S}, represents the

state of the T-SE.

Figure 6.6 shows the four possible configurations of the basic 2×2 proposed switch
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where the S-state is used to perform the required multicasting.

Figure 6.6: Switching modes in a proposed 2× 2 switch.

Fig. 6.7 shows a 6 × 6 crossbar employing T-SEs with one unicast: 〈6, 4〉, and

two multicast requests: 〈3, {1, 3, 6}〉 and 〈4, {2, 5}〉. Request 〈3, {1, 3, 6}〉 is realized

by configuring T-SEs as follows: τ(3, 1, S), τ(3, 3, S), and τ(3, 6, R).

6.3.1 Switch Configuration

The configuration (routing) of unicast connections on the proposed switch follows

the conventional crossbar switch. For multicast connection, we propose Algorithm 2

to systematically configure T-SEs. Algorithm 2 in each iteration processes a request

Rp ∈ R, and configures the corresponding T-SEs. It is assumed that all T-SEs are

initially in the T -state.

Let Ωp = {Op
q,k | 1 ≤ q ≤M, 1 < k ≤ |Ωp| and ∀v, w ∈ k; Op

q,v < Op
q,w if v < w}.

In Algorithm 2, a request 〈Ip,Ωp〉 can be processed by configuring τ(p, j, χ), ∀ Op
j,k ∈

Ωp, as follows:
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Figure 6.7: Multicast in 6× 6 crossbar using T-SEs.

τ(p, j, χ) =


τ(p, j, S), if 1 ≤ k ≤ |Ωp| − 1

τ(p, j, R), if k = |Ωp|
(6.1)

6.4 Switch Properties

In the following, we analyze the proposed switch with respect to, hardware complexity,

signal path length, and number of T-SEs in the S-state.

6.4.1 Switch Blocking Characteristics

In the following, we prove Theorem to establish that the proposed switch employing

T-SEs is an SNB multicast switch.

Theorem 6. Theorem1 An N ×N crossbar switch employing T-SEs is strictly non-

blocking multicast switch.
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Figure 6.8: Possible permutations using the proposed 3× 3 switch.
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Algorithm 2: Multicast Connection Routing

Input: Set of requests R.
Output: States of the NM T-SEs.
1 for p = 1→ |R| do
2 Counter ← |Ωp|
3 j ← 0
4 while Counter ≥ 1 and j ≤ N − 1 do
5 if j ∈ Ωp then
6 if Counter > 0 then
7 Configure τ(p, j, S)
8 else
9 Configure τ(p, j, R)

10 j ← j + 1
11 Counter ← Counter − 1

12 else
13 j ← j + 1

14 Route light beam from input to output ports

Proof. We will use induction to prove the theorem. It is clear that all permutations,

multicast assignments, and broadcast connections can be realized for the 3×3 switch

(i.e., N = 3) as shown in Figure 6.8. For simplicity, we change the indexing of ports.

This change does not affect the functionality or the performance of the switch in any

way.

Assume that an (N − 1) × (N − 1) switch is strictly nonblocking. Hence, it is

always possible to connect any idle input terminal to an arbitrary set of idle output

terminals independent of its current state. By induction, we wish to prove that an

N ×N switch is also strictly nonblocking.

For induction step, an N × N switch can be obtained by adding a row and a

column to the (N − 1)× (N − 1) switch as shown in Figure 6.9. The set of requests,

RN×N , for N × N switch can be defined as RN×N = R(N−1)×(N−1) ∪ RN , where

RN = 〈IN ,ΩN〉. The added 2N − 1 T-SEs are configured in the T -state. This way,

none of the N − 1 inputs is affected, and therefore, the functionality and the state of
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the (N − 1)× (N − 1) sub-switch is not affected. For the N ×N switch to be strictly

nonblocking, it is sufficient to show that:

1. The input IN can request any arbitrary set, ΩN , of idle output terminals in-

cluding the new N th output port, ON , without changing the states of any of the

T-SEs of the (N − 1)× (N − 1) sub-switch, and

2. The output ON can be requested by any of the input ports including the new

N th input port, IN , without changing the states of any of the T-SEs of the

(N − 1)× (N − 1) sub-switch.

Figure 6.9: An N × N switch with an (N − 1) × (N − 1) subswitch used in the
induction step.

In general, for a request 〈Ip,Ωp〉, the switch is configured based on descending order

of ports in Ωp. All possible scenarios can be summarized in the following four cases

based on the status of RN , and ON .

Case 1. ΩN = ∅, and ON /∈ Ωi, where 1 ≤ i ≤ |RN×N |.
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The added row and column of T-SEs have no impact on the (N − 1) × (N − 1)

sub-switch because ΩN = ∅ has not changed. Hence, the N ×N switch is SNB.

Case 2. ΩN 6= ∅, and ON /∈ Ωi, where 1 ≤ i ≤ |RN×N |.

Let Ωp = {Op
q,k | 1 ≤ q ≤ N, 1 < k ≤ |Ωp| and ∀ v, w ∈ k;Op

q,v < Op
q,w if v < w}.

The request Rp can be processed by configuring τ(p, j, χ), ∀ Op
j,k ∈ Ωp, as follows:

τ(p, j, χ) =


τ(p, j, S), if 1 ≤ k ≤ |Ωp| − 1

τ(p, j, R), if k = |Ωp|
(6.2)

In this case, the request RN can be processed by configuring τ(N, j, χ), ∀ ON
j,k ∈ ΩN ,

as follows:

τ(N, j, χ) =


τ(N, j, S), if 1 ≤ k ≤ |ΩN | − 1

τ(N, j,R), if k = |ΩN |
(6.3)

It is easy to see that an idle output in the (N − 1) × (N − 1) sub-switch indicates

that all the T-SEs in its column are in the T -state. Therefore, no states need to be

changed in the (N − 1) × (N − 1) sub-switch. It follows that the N × N switch is

SNB.

Case 3. ON ∈ ΩN .

This case follows the analysis in Case 2 except that ΩN has at least one output

(i.e., ON). From Equation (6.3), if the request is unicast, then SE(N,N) is configured

in the R-state (i.e., τ(N,N,R)). If there are other output ports in ΩN , then we will

have τ(N,N, S), τ(N, j, S) for 2 ≤ k ≤ |Ωp| − 1, and τ(N, j,R) for k = |Ωp|.

Case 4. ON ∈ Ωx, where x 6= N and Rx ∈ R(N−1)×(N−1).
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The request RN can be realized using the same argument as in Case 2. If Rx ∈ Γ,

then this can be easily realized by configuring τ(x,N,R), making the N ×N switch

SNB. On the other hand, if Rx ∈ Ψ, the request can be realized by configuring

τ(x,N, S), where the input signal Ix is split at τ(x,N, S). Accordingly, one part of the

signal goes to the output port ON , whereas the other part goes to the (N−1)×(N−1)

sub-switch. The (N − 1)× (N − 1) sub-switch is assumed to be SNB, and therefore,

the N ×N switch is SNB.

6.4.2 Hardware complexity

In the proposed switch, signal splitting and switching are performed simultaneously

and seamlessly. Therefore, the proposed design supports multicast without separate

splitting stage, and thus has lower complexity. The hardware complexity is directly

proportional to the total number of T-SEs required. An N ×N proposed SNB mul-

ticast switch requires a total of N2 T-SEs.

Theorem 7. The proposed SNB multicast FSO switch is optimal w.r.t hardware

complexity as compared to all existing SNB multicast switches.

Signal path length

The performance of the proposed switch depends on the number of T-SEs traversed

by the light beam, and the number of splitting operations. For an N × N switch

the number of T-SEs in the shortest and longest signal paths is 1 and (2N − 1),

respectively.

Lemma 1. The minimum and maximum number of T-SEs configured in S-state is 1

and N − 1, respectively.



207

Proof. This directly follows from the minimum and maximum cardinalities of multi-

cast connections which is 2 and N including broadcast case, respectively.

Lemma 2. For all requests at a given time, the total number of T-SEs configured in

the S-state is given by NΨ − |Ψ|, where 2 ≤ NΨ ≤ N is the number of output ports

in all multicast requests at that time NΨ =
∑|Ψ|

w=1 Ωw, ∀ Rp ∈ Ψ.

Proof. For each multicast request 〈Ip,Ωp〉, all T-SEs in the row corresponding to the

input port and columns corresponding to output ports in Ωp are configured in the S-

state except for last output port in Ωp which is configured in the R-state. Therefore,

the total number of T-SEs in the R-state out of NΨ is equal to the total number of

multicast requests |Ψ|.

6.4.3 Signal Power Loss

An optical signal undergoes losses as it propagates from input to output ports in an

FSO switch. There are two types of losses: insertion/coupling, and splitting losses.

Insertion and Coupling Losses. This is mainly due to the Gaussian beam diver-

gence experienced by any beam propagating in free space [432]. Extensive analysis

and studies has been performed to characterize the performance of 2D MEMS with

respect to the insertion and coupling losses. Insertion and coupling losses in our de-

sign follow the analysis used for MEMS switches [432] but with the following two

differences:

1. In MEMS-based multicast switches, an optical beam must propagate through

a splitting stage before being switched by a crossbar. However, in the proposed

switch, an optical beam propagates only through a crossbar in which, splitting

and switching are performed simultaneously and seamlessly. This can reduce

the insertion loss due to Gaussian beam divergence.
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2. In MEMS, mechanical motion of the mirrors result in angular misalignment

leading to inefficient coupling. The proposed design, however, employs only

non-movable parts and is free of such losses.

Splitting Losses. Splitting losses are the losses encountered by the light beam due

to the splitting required for multicasting. In SaD-based switches, an input beam is

split using a 1×N splitter into N and |Ωp| equal signals in case of conventional and

configurable splitters, respectively. Following the splitting stage, a beam travels in

free space from the input to output ports in a crossbar reflecting off of a single mirror.

In the proposed design, the beam may incur losses due to the cascaded splitting

nature of the crossbar as it propagates through a chain of non-movable T-SEs along

its path to the output. Let β and η be the reflection and transmission efficiencies of

T-SE in the R− and T−states, respectively. We refer to the percentage of the power

reflected by a T-SE in the S-state as α, and the transmitted power of the beam is ζ

(Figure 6.5). In our proposed switch, splitting losses depend on the cardinality of the

output set |Ωp|, and thus, we have two cases.

Case 1: Unicast (|Ωp| = 1). Power loss is due to the reflection from SE
(
p,Op

q,1

)
,

transmission losses of the (N − 1 − p) T-SEs before the reflection, and transmission

losses of the q T-SEs after the reflection. The loss in the unicast case [LUC

(
Ip, O

p
q,1

)
]

is given by:

LUC

(
Ip, O

p
q,1

)
= 10 log10

(
β · ηN−1−p+q

)
(6.4)

The lower (upper) bounds for LUC are related to the shortest (longest) path traversed

by the light beam:

10 log10 (β) ≤ LUC ≤ 10 log10

(
η2(N−1) · β

)
(6.5)
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Case 2: Multicast (1 < |Ωp| < N). The optical losses of an output Op
q,k ∈ Ωp is

due to the transmission losses of (N − p+ q − k) T-SEs in the T -state, transmission

losses of k − 1 T-SEs in the S-state, and the reflection loss of a T-SE in the S or

R-state. The losses in the multicast case LMC

(
Ip, O

p
q,k

)
is given by

LMC

(
Ip, O

p
q,k

)
= 10 log10

(
(σ · α + (1− σ) · β) · ηN−p+q−k · ζk−1

)
(6.6)

where σ = 1 for 1 ≤ k < |Ωp| and σ = 0 for k = |Ωp|. Using Lemmas 1 and 2, the

lower (upper) bounds for losses in multicast requests are given by,

10 log10 (α) ≤ LMC ≤ 10 log10

(
β · (η · ζ)N−1

)
(6.7)

The equations for the broadcast case (i.e., |Ωp| = N) can be easily deduced from

Equation (7.5) and inequality (6.7) by setting |Ψ| = 1 and MΨ = N .

6.4.4 Switching Delay

The switching latency of the T-SEs depends on the properties of its material. In the

case of the e-TransFlector material, the switching delay ranges from 10 ms to 100

ms at 20◦C [433]. In [50], the switching latency of a 12” × 15” switchable mirror

(SM) based e-TransFlector and tuned for IR spectrum is about 250 ms. The authors

expect that, for a 1” × 1” SM, the switching latency will be around 20 ms since the

switching latency is proportional to the surface area of the SM [50]. We envision that

the dimensions of the T-SEs in the proposed switch are much smaller than 1” × 1”,

thus, the switching delay can be reduced.
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6.5 Performance Evaluation

2D FSO crossbars are generally of low scalability due to the Gaussian beam prop-

agation loss which becomes the dominant source of losses at high-port count [434].

Therefore, in this section, we present a comparative analysis of the proposed switch

with respect to hardware complexity, power splitting, and cost for N = 8 (i.e., 8× 8

switches).

6.5.1 Hardware Complexity

We decompose all switches into five basic elements, namely; fixed/movable mirrors,

fixed/movable splitting mirrors, and T-SEs. Table 7.1 summarizes the hardware

complexity of architectures under consideration. Figure 7.6 depicts the hardware

complexity for an N = 8.

Table 6.1: Summary of Hardware Complexity of Different Architectures Φ =(
2(dlog2(N)e+1) − 2

)
.

Movable Fixed Movable Fixed T-SE

Mirror Mirror Splitter Splitter

SaD-I N2 NΦ/2 - NΦ/2 -

SaD-II N2 +NΦ NΦ/2 NΦ/2 - -

SUM-SaD 2N2 NΦ/4 - NΦ/4 -

Proposed - - - - N2

In SaD-I, all requests including unicast undergo 1 × N splitting. Therefore, no

extra hardware is needed to separate unicast connections leading to a lower hardware

complexity for SaD-I. SaD-II is similar to SaD-I except that configurable splitters

are used to separate unicast and multicast connections. Even for multicast connec-

tions, SaD-II is capable of splitting the input beam to the exact size of the output

set. However, this comes at the expense of additional hardware and control complex-

ity. SUM-SaD separates unicast and multicast connections and has lower hardware
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Figure 6.10: Hardware complexity for an 8× 8 switch.

complexity as compared to that of SaD-II. Hardware complexity of SUM-SaD is com-

parable to that of SaD-I, however, it uses more movable components. On the other

hand, the proposed crossbar switch using T-SEs is capable of separating the unicast

and multicast connections using smaller number of hardware components (i.e., N2)

as compared to SaD-based switches.

6.5.2 Power Splitting Properties

To evaluate the performance of the proposed switch, we calculate the power penalties

of the four architectures of size 8×8. We calculate the losses at the eight output ports

for all 255 possible combinations of different output set sizes. Since the splitting loss

in the proposed switch depend on the input port, we calculate the signal loss for the

1st and 8th input ports to represent the lower and upper bounds of the splitting loss,

respectively.

We use the commercial specifications reported by KentOptronics [433] for the tri-

state material e-TransFlector which can be tuned to operate in the IR spectrum range

used by existing optical communication networks. For example, in [50], Hamedaz-
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imi et al. demonstrated a proof-of-concept of an FSO communication link for DC

communication using the e-TransFlector material tuned for IR spectrum. Accord-

ingly, we set both reflectance in R-state (β) and transmittance in T -state (η) to 87%,

whereas for the S-state, both transmittance (ζ) and reflectance (α) are set to 43%.

We assume that the optical efficiency of all fixed/movable mirrors, and splitters are

99%, and 49%, respectively [435].

In case of SaD-I, the power loss is independent of the output set size, and is given

by,

LSaDI = 10 log10 (0.99) + 10 log10 (1/N) (6.8)

For SaD-II, the unnecessary splitting is avoided, and thus splitting loss depends on

|Ωp|, and is given by:

LSaDII = 10 log10 (0.99) + 10 log10 (1/|Ωp|) (6.9)

Figures 7.7-(a), (b), and (c) depict the average minimum, average, and average max-

imum splitting power loss of the four switch architectures under consideration at

different sizes of output sets.

In case of unicast, SaD-II and SUM-SaD have the same performance that is better

than other architectures (see Figure 7.7). This is because the unicast connections are

switched separately without incurring any additional losses. On the other hand, SaD-

I has the highest power penalty (≈ 9.3 dB) due to the fact that unicast connections

undergo unnecessary forced power splitting. Although the proposed architecture does

not enforce splitting for unicast connections, there are additional losses of 4.53 dB

and 7 dB for input ports 1 and 8, respectively. This is due to the propagation of

the beam through the non-moveable T-SEs configured in the T -state along its path.
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(a)

(b)

(c)

Figure 6.11: Splitting power penalty in an 8 × 8 switch (a) Minimum. (b) Average.
(c) Maximum.
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Even though this does not split the beam; however it adds additional losses due to

the imperfection of the material.

In case of multicast (i.e., starting from output set size of two), it can be observed

that as the size of the output set increases, so does the average and average maximum

power penalties in all architectures except for the SaD-I and SUM-SaD, they have a

fixed power loss (≈ 9.3 dB). This is because SaD-I and SUM-SaD perform fixed full

splitting for all input signals regardless of the size of output set.

The average minimum power loss in case of SaD-II also increases as the size of the

output set increases, whereas, the average minimum loss is fixed for SaD-I and SUM-

SaD due to the full splitting property. The average minimum losses in the proposed

switch are monotonically decreasing starting with output size of two. However, we

observe an increase in the average minimum losses from output size of one to output

size of two.

Average minimum (maximum) losses depend on the number of combinations at

different sizes of output sets. This number increases starting from output set size of

one (i.e., eight possible combinations of unicast) to four (i.e., 70 possible combina-

tions) and then decreases.

Regardless of the decrease in the number of combinations starting from output set

size of four, average maximum loss experiences a monotonic increase as the aggregated

maximum loss becomes dominant, whereas the average minimum loss decreases as the

size of the output set increases.

The proposed switch outperforms both SaD-I and SUM-SaD up to an output size

of two, whereas, its performance is comparable to the other architectures up to output

set size of four, after which the power loss increases.

It is worth pointing that we only consider the splitting losses in our analysis.

Although MEMS-based switches show relatively lower splitting power losses, MEMS-
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based switches incur additional losses due to the Gaussian beam losses due to the

propagation of the beam in the separate splitting stage, and the angular misalignment

of the micro-mirrors [15, 432]. Losses due to angular misalignment can become more

significant if the light beam experiences multiple reflections such as in 1 × N beam

splitters [436,437].

High power losses can cause the signal power to fall below the sensitivity of the

optical receiver, and thus amplification at the input ports may be needed. It might

also be noted that the proposed switch experiences variation in the splitting power

losses at output ports. For example, in case of output set size of eight, the variation

between the minimum and maximum splitting loss is 25 dB (see Figure 7.7). In order

to alleviate the impact of the varying power loss at the outputs, variable optical

attenuators (VOAs) must be used at the output ports to equalize the impact of the

insertion loss such that the power of the received signal falls within the dynamic range

of the optical receiver [438].

Even though MEMS-based switches do not demonstrate differences between min-

imum and maximum splitting power losses at the output ports as compared to the

proposed switch, MEMS-based switches still need pre-amplifiers, e.g., SUM-SaD [see

Figure 6.4], and variable optical attenuators due to the losses encountered by the

signal in the splitting stage.

Table 7.2 summarizes the number of amplifiers and VOAs required by the switches

investigated. The proposed switch, SaD-I and SaD-II needN amplifiers, andN VOAs.

However, SUM-SaD switches require N VOAs and N/2 amplifiers. This is because

only N/2 of the inputs are propagating through the splitting stage as shown in Figure

6.4.
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Table 6.2: Number of Amplifiers and VOAs.

Amplifiers VOAs

SaD-I N N

SaD-II N N

SUM-SaD N/2 N

Proposed N N

6.5.3 Switch Cost Analysis

From the discussion above, the total cost (Carch
tot ) of a switch architecture arch depends

on the costs of VOAs (Carch
V OA), amplifiers (Carch

amp ), and switching elements (Carch
sw ) used,

and is given by,

Carch
tot = Carch

V OA + Carch
amp + Carch

sw (6.10)

where arch can be SaD-I, SaD-II, SUM-SaD, or the proposed switch. Carch
V OA and Carch

amp

depend on the number of VOAs (Narch
V OA) and amplifiers (Narch

amp ) used, respectively.

From Table 7.2, SaD-I, SaD-II, and the proposed switch architectures employ N

VOAs at the output ports and N amplifiers at the input ports. However, SUM-SaD

switch architecture requires N VOAs and only N/2 amplifiers. Therefore, SUM-SaD

architecture has a cost advantage over SaD-I, SaD-II, and the proposed architecture

with respect to Camp.

We can expand Carch
sw further and express it as a function in the cost of a fixed

(mirrors/splitters) component Cf , a movable (mirror/splitter) component Cm, and a

T-SE Ctse. Given the cost of each component, we can use Table 7.1 to calculate Carch
sw

as follows:

Carch
sw = Narch

f · Cf +Narch
m · Cm +Narch

tse · Ctse (6.11)

whereNarch
f , Narch

m , andNarch
tse are the numbers of fixed, moveable, and T-SE switching
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elements used in the switch arch, respectively.

We use a relative cost model to quantify and compare the cost of the proposed

switch. We use the cost of the fixed elements, Cf , as reference since the cost of these

components is relatively stable compared to the other two types.

Let ρ be the ratio of the cost of a movable versus fixed components, i.e., ρ =

Cm/Cf . Similarly, let µ be the ratio of the cost of a T-SE versus a fixed component,

i.e., µ = Ctse/Cf . To evaluate the cost effectiveness of the proposed switch as com-

pared to SaD-I switch, we use the total number of fixed and movable components in

Table 7.1 to setup the following inequality:

N2Cm +NΦCf ≥ N2Ctse (6.12)

By simplifying the inequality (6.12), it is straightforward to show that the proposed

switch has a smaller overall cost as compared to that of SaD-I if and only if the value

of σ satisfies the following inequality:

ρSaD−I ≥ µ−
(
2(dlog2(N)e+1) − 2

)
N

(6.13)

Similarly, we can compute a lower bound on the value of ρ for the SaD-II and SUM-

SaD as follows:

ρSaD−II ≥
µN − 2dlog2(N)e − 1

N + 3× 2dlog2(N)e − 3
(6.14)

ρSUM−SaD ≥
µN − 2dlog2(N)e − 1

2N
(6.15)

Figure 7.9 plots the ratio ρ/µ to provide an insight on the relationship between the

cost of a T-SE and that of a movable component. Moreover, we plot the function
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Figure 6.12: Comparative cost analysis for the proposed switch. The curves represent
the relative cost effectiveness of the proposed switch as compared to the existing SaD
switches with respect to SEs. Shaded regions are invalid design regions. White region
above (below) a curve indicates that the proposed switch is more (less) cost effective
compared to the corresponding SaD switch for specific number of ports N .

1/µ (i.e., ρ = 1) which corresponds to the case Cm = Cf . Obviously, the cost of a

MEMS mirror Cm > Cf . Therefore, we consider the shaded area below the curve 1/µ

as an invalid design region. It is not expected that the cost Ctse will be less than Cf .

Therefore, we have also excluded the area corresponding to µ < 1.

Given the cost of various hardware components, one can use Figure 7.9 to compare

the cost effectiveness of the proposed design with respect to SaD-based switches at

different port sizes (N = 4, 8, 16, and 32). For N = 4, even if the cost of a T-SE is

ten times the cost of fixed components (i.e., Ctse = 10×Cf ), the proposed switch will
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be more cost effective as compared to the SaD-I, SaD-II and SUM-SaD, when Ctse is

at most 1.18, 3.5 and 2.16 times Cm, respectively.

6.6 Chapter Summary

We propose a new class of SNB FSO multicast switches using tri-state switching ele-

ments (T-SEs). In the proposed switch, TSEs simultaneously support signal splitting

and switching without the need for separate splitting stages used in the conventional

multicast switches. Thus, a beam propagating in the proposed switch avoids the prop-

agation loss that may be encountered by an optical beam passing through a splitting

stage followed by a crossbar as in SaD-based switches. This leads to lower insertion

loss that is due to the Gaussian beam divergence. An N ×M SNB multicast switch

requires only NM non-movable T-SEs. Comparison with existing optical multicast

switches shows that the proposed switch provides multicast capability with lower

hardware complexity and a comparable performance. Cost analysis for the proposed

switch shows that its cost is lower than SaD-based switches, even if the cost of the

T-SE is is 1.2 to 3.5 times that of MEMS mirror.
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Chapter 7

Proposed Rearrangeably

Non-Blocking Multicast FSO

Switch

In this chapter, we propose an N×N RNB multicast FSO switch. Our design exploits

non-movable tri-state switching elements (T-SEs). The proposed switch exhibits an

optimal hardware complexity as it requires only N(N + 1)/2 T-SEs. In addition, we

present a simple routing algorithm that systematically establishes connections over

the new switch.

7.1 Introduction

Another important switch design aspect is its blocking characteristics. A strictly

nonblocking (SNB) switch allows an input signal to be directed to any available

output, or a set of outputs (if multicast-capable), irrespective of the current state

of the switch. A rearrangeably nonblocking (RNB) switch allows an input signal to
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Figure 7.1: Multicast in 6× 6 proposed switch using T-SEs.

be directed to one or more available outputs, however, rearranging already existing

connections may be required. SNB switches have better blocking attributes compared

to RNB switches at the cost of increased hardware complexity. In some realistic

cases; however, RNB design is sufficient if the requests are known a priori [436].

For example, in wavelength division multiplexing (WDM) or dense WDM (DWDM)

backbone networks, setup of connections is based on demands of multiple Gbps links,

and thus connections can tolerate relatively long setup time involving rearranging

existing connections to host a new one [434]. Therefore, designing RNB switches is

of a practical interest.

The remainder of this chapter is organized as follows. We dedicate Sections 7.2

and 7.3 to present and analyze the new RNB multicast switch. Comparative analysis

is presented in Section 7.4, followed by chapter summary in Section 7.5.
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7.2 Proposed RNB Multicast FSO Switch

In this section, we propose a new RNB multicast switch and present a routing algo-

rithm to systematically establish connections over the proposed switch. In the next

section, we present and analyze the properties of the proposed switch.

In our design, we aim to use the minimum number of T-SEs to perform RNB

multicast switching without impacting the performance of the switch. Therefore, in

the proposed switch, a T-SE is placed at the intersection of input port p and output

port q only if p ≤ q. This leads to a triangular switch in which a row corresponding

to input port p contains N + 1− p T-SEs as shown in Figure 7.1.

Figure 7.1 depicts a 6 × 6 proposed triangular switch with one unicast: 〈6, 4〉,

and two multicast requests: 〈3, {1, 3, 6}〉 and 〈4, {2, 5}〉. Both T-SE sides reflect

light in the R-state. Light beam incident to any of the T-SE sides can propagate

through or split in the T and S-states, respectively. The proposed switch requires

only N(N + 1)/2 T-SEs.

7.2.1 Proposed Request Routing Algorithm

Algorithm 3 is proposed for the configuration (routing) of connections on the proposed

multicast switch. In this algorithm, let Ωp = {Op
q,k | 1 ≤ q ≤ N, 1 < k ≤ |Ωp| and

∀v, w ∈ k; Op
q,v < Op

q,w if v < w}.

The proposed iterative algorithm involves elimination process, where N̂ denotes

the virtual switch size, p̂ and Ôp
q,k denote the input and output port index, respectively.

7.2.2 Example

To illustrate the proposed algorithm, we discuss an example that covers different

switching scenarios. Figure 7.2 depicts an 8×8 switch with three unicast and two mul-
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Algorithm 3: Request Routing

Input: Set of Requests R.
Output: States of the N(N + 1)/2 T-SEs.
1 N̂ ← N
2 for Counter = 1→ |R| do
3 Update list of virtual input and output ports
4 if (Rp ∈ Γ || (Rp ∈ Ψ && p̂ > 1)) then

5 if Ô
p

q,1 ≤ N̂ + 1− p̂ then

6 Configure τ(d, Ô
p

q,1, R) for d = p̂ → N̂ + 1− Ô
p

q,1

7 Eliminate SE(p̂, d) for d = 1→ Ô
p

q,1

8 else
9 i← p̂

10 j ← N̂ + 1− p̂

11 while j < Ô
p

q,1 do
12 Configure τ(i, j, R) and τ(i− 1, j, R)
13 i← i− 1
14 j ← j + 1

15 Configure τ(i, j, R)

16 Eliminate SE(p̂, d) for d = 1→ N̂ + 1− p̂

17 Eliminate SE(d, N̂ + 1− d) for d = i+ 1→ p̂ − 1

18 if Rp ∈ Γ then

19 Eliminate SE(d, Ô
p

q,1) for d = 1→ N̂ + 1− Ô
p

q,1

20 N̂ ← N̂ − 1

21 else

22 for d = Ô
p

q,1 → Ô
p

q,|Ωp|−1 do

23 Configure τ(1, d, S)

24 Eliminate SE(w, d) for w = 1→ N̂ + 1− d

25 for d = 1→ N̂ + 1− Ô
p

q,|Ωp| do

26 Configure τ(d, Ô
p

q,|Ωp|, R)

27 Eliminate SE(d, Ô
p

q,|Ωp|)

28 Eliminate SE(1, d) for d = 1→ Ô
p

q,|Ωp|

29 N̂ ← N̂ − |Ωp|

30 Route light beams of all requests R.
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(a) (d)

(b) (e)

(c) (f)

Figure 7.2: This figure illustrates the process of configuring an 8× 8 proposed switch
with three unicast and two multicast requests using Algorithm 1. Black lines indicates
the T-SEs that will be eliminated at the end of current iteration. Each subfigure
shows the accumulative result of a request being routed. (a) Unicast request 〈4, 5〉.
(b) Unicast request 〈5, 1〉. (c) Unicast request 〈6, 7〉. (d) Multicast request 〈2, {2, 6}〉.
(e) Multicast request 〈8, {3, 4, 8}〉. (f) Fully configured switch with all requests.
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ticast requests configured using Algorithm 3; namely: 〈4, 5〉, 〈5, 1〉, 〈6, 7〉, 〈2, {2, 6}〉,

and 〈8, {3, 4, 8}〉. We use T-SEs with solid colors in Figures 7.2 (a)-(e). White, blue,

and yellow-filled circles are used to refer to a T-SEs in T , R, and S-states, respec-

tively. Then the final solution is presented using T-SE symbols discussed in Figure

6.5.

To configure the switch, we first process the, |Γ| = 3, unicast requests. Requests

〈4, 5〉 and 〈5, 1〉 [Figures 7.2-(a) and (b), respectively] have q ≤ N + 1 − p, and

hence, there is a T-SE that can directly reflect the light beam from Ip to Oq. When

a T-SE is configured in the R-state, all T-SEs corresponding to the same column q

and higher input ports are also configured in the R-state (line 6). This guarantees

that the light routed from these input ports reach their destinations through multiple

reflections [436]. After each iteration, the row (lines 19-20) and the column (line 7) of

the configured T-SEs are crossed and remaining T-SEs are used to realize a smaller

virtual switch.

Figure 7.2-(c) shows realization of the request 〈6, 7〉, where q > N + 1− p. Here,

at least three reflections are needed in order to connect Ip to Oq (lines 9-15). After

processing unicast requests, a virtual switch is defined by eliminating the input row

(lines 19-20), output column, and any diagonal SEs used in routing path (lines 16-17).

After processing unicast requests, we process multicast requests in an ascending

order of the input port indices. Fig 7.2-(d) depicts the realization of the multicast

request 〈2, {2, 6}〉. For a multicast request, first we configure routing as in unicast

case from the input port to the lowest index output port in the request (i.e., I2 to

O2 in this example). After the first output port, a series of split operations ending

in a reflect operation are configured in the lowest row of the switch (i.e., p̂ = 1) to

route the signal to other output ports (lines 22-29). Similarly, the multicast request

〈8, {3, 4, 8}〉 is realized [see Figure 7.2-(e)]. The switch with all requests configured is
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shown in Figure 7.2-(f).

Figure 7.3: M ×M rectangular sub-switch.

7.3 Properties of the Proposed Switch

In this section, we prove that the proposed switch is RNB and discuss it’s properties

including hardware complexity, signal path length, and switch reconfigurability.

7.3.1 Switch Blocking Characteristics

In the following, we prove Theorem 8 to establish that the proposed triangular switch

employing T-SEs is an RNB multicast switch. We start by proving the following

lemma that is used in the proof of the theorem. In this lemma, we consider a rectan-

gular switch as shown in Figure 7.3. The North and West sides of the switch are used

as inputs and are referred to as INorth
p and IWest

p , respectively, where 1 ≤ p ≤ M .

The South and East sides are used for outputs and the corresponding sets of output
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ports are referred to as ΩS = {OSouth
1 , · · · , OSouth

M } and ΩE = {OEast
1 , · · · , OEast

M },

respectively.

Lemma 3. An M×M crossbar with 2M input and 2M output ports shown in Figure

7.3 is SNB under the following conditions:

1. 1 ≤ |RM×M | ≤M .

2. a West-input IWest
p , 1 ≤ p ≤ M can be switched to an arbitrary unused subset

of South-output ports ΩSouth
p , and/or the corresponding East-output port OEast

p .

3. a North-input INorth
p where 1 ≤ p ≤ M can be switched to an arbitrary unused

subset of South-output ports {OSouth
y |p ≤ y ≤M} and/or anyone of the unused

East-output ports {OEast
z }, where 1 ≤ z ≤M .

Proof. Assume that all of the requests are from West-input ports IWest
1 , . . . , IWest

M .

For each request Rp = 〈IWest
p ,Ωp〉, one of the following cases applies:

Case 1. Ωp = OEast
p

All T-SEs are configured in the T-state and the light directly propagates towards

the corresponding East-output port OEast
p .

Case 2. Ωp ∈ ΩSouth

The T-SEs corresponding to the output ports are configured in the S-state except

for the T-SE corresponding to the last output which is configured in the R-state.

Case 3. Ωp ∈ ΩSouth ∪OEast
p
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All T-SEs corresponding to the output ports in ΩSouth are configured in the S-state

and no T-SE in the row is configured in the R-state. This way, part of the signal

propagates towards the corresponding East-output port OEast
p .

Figure 7.4: General structure of an N ×N triangular switch.

For a canceled request by any of the West-input ports IWest
1 , . . . , IWest

M , there can be

a request by one of the North-input ports INorth
1 , . . . , INorth

M . This also means that

all T-SEs in the row corresponding to the canceled request are configured in T-state

and can be used by any new request. Hence, light beam from the North-input port

of the new request can be directed through its corresponding column until it gets to

the row of the canceled request where splitting is performed.

Therefore, an M ×M crossbar shown in Figure 7.3 is SNB under the three afore-

mentioned conditions.

Theorem 8. The proposed triangular switch employing T-SEs is a rearrangeable

nonblocking multicast switch.
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Proof. After processing the |Γ| unicast requests, we get a triangular switch to process

multicast requests. Assume an N ×N triangular switch (see Figure 7.4). We want to

prove that an N ×N triangular switch used to process |Ψ| multicast requests, where

1 ≤ |Ψ| ≤ N/2, is RNB.

We will use induction to prove the theorem. We assume that N = 2k, where

k ∈ N+. For the basis case, it is clear that all permutations, multicast assignments,

and broadcast requests can be realized for a 2× 2 switch (i.e., k = 1).

Assume by induction that an N ×N triangular switch, where N = 2k−1 is RNB.

By induction, we wish to prove that an N ×N switch, where N = 2k is also RNB.

For induction step, an N × N triangular switch can be divided into three sub-

switches (see Figure 7.4): an N/2×N/2 rectangular sub-switch, and two N/2×N/2

triangular sub-switches. The sub-switches are numbered from 1 to 3 in counter-

clockwise order.

Both N/2×N/2 triangular sub-switches are triangular switches of dimension 2k−1,

and thus are RNB by induction hypothesis.

Therefore, for an N × N triangular switch shown in Figure 7.4 to be RNB, we

only need to prove that the N/2×N/2 rectangular sub-switch is SNB for processing

requests from input ports I1, · · · , IN/2 and inputs from sub-switch 1 (i.e., outputs

from sub-switch 1).

Using Lemma 1, one can see that the sub-switch 2 is equivalent to the switch

in Figure 7.3. Input ports I1, · · · , IN/2 are equivalent to the West-inputs, and inputs

from sub-switch 1 are equivalent to the North-input ports. Moreover, the output ports

O1, · · · , ON/2 are equivalent to the South-output ports ΩSouth, whereas output ports

connecting sub-switches 2 and 3 are equivalent to the East-output ports. Therefore,

the N/2×N/2 rectangular sub-switch (i.e., sub-switch 2) is SNB, and thus the N×N

triangular switch is RNB.



230

7.3.2 Hardware Complexity

This is directly proportional to the total number of T-SEs. An N × N proposed

RNB multicast switch requires a total of N(N + 1)/2 T-SEs. Since the T-SEs of

the diagonal are either in the T - or R-state, the number of T-SEs can be reduced to

N(N − 1)/2 by replacing the N diagonal T-SEs with fixed mirrors.

Theorem 9. The proposed RNB multicast FSO switch is optimal w.r.t hardware

complexity as compared to all existing multicast switches.

Proof. In [439], it is shown that the number of elementary 2×2 switches in an N×N

planar optical RNB unicast switch is at least N(N −1)/2. Also, from [436], the lower

bound for a 2D unicast RNB MEMS switch is N(N + 1)/2. The proposed RNB

multicast FSO switch needs only N(N − 1)/2 T-SEs (elementary 2× 2 switches) and

N fixed mirrors. Since the hardware complexity of the proposed switch is equal to

the lower bound of a unicast switch, it must be optimal.

7.3.3 Signal Path Length

Several signal paths are possible between a fixed input-output pair (Ip, Oq), 1 ≤ p, q ≤

N , the number of which can be computed using enumerative combinatorics [440]. It

may be noted, however, that all paths follow the Taxicab geometry leading to the

following lemma.

Lemma 4. The length, ∆(p, q), of any of the possible paths between a fixed pair of

input-output ports is expressed in terms of the number of T-SEs traversed by the beam

and is given by, ∆(p, q) = p+ q − 1 [440].

The path length is constant for a fixed input-output pair (Ip, Oq) and is known a priori,

however, the numbers of T-SEs in the T - and R-states are dependant on co-existing

connections.
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Lemma 5. It is possible to establish lower and upper bounds for the number of T-SEs

in R-state from Ip to Oq, ER(p, q), based on the relation between p and q.

Proof. If q ≤ N + 1 − p, this implies that there is a T-SE at the intersection of the

row p and column q of the proposed switch. In this case, the input signal can be

directed to the output port via a reflection off of that T-SE configured in R-state.

Thus, ER(p, q) is given by,:

ER(p, q) = 1 (7.1)

On the other hand, if q > N + 1− p, then there is not a T-SE at the intersection of

the row p and column q. At least three reflections are, therefore, needed to direct the

input signal to the output port. The lower (upper) bounds for ER(p, q) are given by,

3 ≤ ER(p, q) ≤ 2min(p− 1, q − 1) + 1 (7.2)

7.3.4 Total Number of Splitting Operations

The performance of the proposed switch depends on the number of splitting operations

given by the following Lemmas.

Lemma 6. In multicast, the minimum and maximum number of T-SEs configured

in S-state are similar to that of the SNB switch [16] and are equal to 1 and N − 1,

respectively.

Proof. This directly follows from the minimum (of 2) and maximum (of N) cardinal-

ities of outputs.
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Lemma 7. For all requests at a given time, the total number of T-SEs configured in

the S-state is given by NΨ − |Ψ|, where 2 ≤ NΨ ≤ N is the number of output ports

in all multicast requests at a certain point of time NΨ =
∑|Ψ|

w=1 Ωw, ∀ Rp ∈ Ψ, and

|Ψ| is the total number of multicast requests.

Proof. For each multicast request 〈Ip,Ωp〉, using Algorithm 3, all T-SEs in the first

row and columns corresponding to output ports in Ωp are configured in the S-state

except for last output port in Ωp which is configured in the R-state. Therefore, the

total number of T-SEs in the R-state out of NΨ is equal to the total number of

multicast requests |Ψ|.

7.3.5 Signal Power Loss

An optical signal in multicast switch undergoes insertion/coupling and splitting losses

as it propagates from input to output ports. Insertion/coupling loss is mainly due

to the Gaussian beam divergence experienced by any light beam propagating in free

space [432], and thus depends on the architecture of the switch. Extensive analysis

and studies has been performed to characterize the insertion/coupling loss in 2D

MEMS crossbar. Insertion/coupling loss in the proposed design follows the analysis

used for MEMS switches [432] but with the following two differences:

1. In MEMS-based multicast switches, a beam must propagate through a splitting

stage before being switched by a crossbar. On the other hand, an optical beam

propagates only through a single stage in the proposed triangular switch, which

may lead to a shorter total propagation distance, and thus lower insertion loss.

2. Mechanical motion of the mirrors in MEMS switches results in angular mis-

alignment leading to inefficient coupling. Our proposed design employs only

non-movable parts, and hence, is free of such losses.
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Splitting Losses are the losses encountered by the light beam due to the splitting

required for multicasting. Let β and η be the reflection and transmission efficiencies

of T-SE in the R− and T−states, respectively. We denote the percentage of the power

reflected by a T-SE in the S-state as α, and the transmitted power of the beam is ζ

(Figure 6.5). In the proposed switch, splitting losses depend on the cardinality of the

output set |Ωp|, and thus, we have two different cases.

Case 1: Unicast (|Ωp| = 1). The power loss is due to the reflection and trans-

mission losses of the T-SEs configured; respectively, in the R- and T -states along the

path, and thus depends on the number of T-SEs configured in R-state [i.e., ER(p, q)].

From Lemma 4, the length of a path ∆(p, q) is known. Given ER(p, q), the number of

T-SEs configured in the T -state is ∆(p, q)−ER(p, q). Since β and η are the reflection

and transmission efficiencies of T-SE in the R and T−states, respectively, the power

penalty in a unicast request, LUC(p, q1), can be expressed as follows,

LUC(p, q1) = 10 log10

[
βER(p,q) · η∆(p,q)−ER(p,q)

]
(7.3)

For q ≤ N + 1− p, ER(p, q) = 1 (according to Lemma 5), and thus the power loss is

given by,

LUC(p, q1) = 10 log10

[
β · η∆(p,q)−1

]
(7.4)

Case 2: Multicast (1 < |Ωp| < N). Power loss at an output port Oq, that is

part of a multicast output set, Ωp, is due to reflection and transmission losses of the

T-SEs in the path configured in R, T , and S-states.

Depending on the position, k, of the output port Oq in the output set Ωp, we

can define how many splitting processes the signal has to go through. For example,

the input signal experience k − 1 splits before it reaches the kth output port in Ωp.
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Therefore, the power loss due to these splits can be calculated as log10(ζk−1).

Moreover, all outputs in Ωp are reached via a reflection off of a T-SE configured

in the S-state, except for the last output port which is reached using a reflection off

of a T-SE in the R-state. Therefore, for all signals we reduce the power by log10(α)

except for the last output port, we reduce its power by log10(β).

Since we know the path length, ∆(p, q) , from Lemma 4, this means that the

remaining ∆(p, q)−k T-SEs in the path can be either in the T or R-states depending

on the route allocated using Algorithm 3. Given ER(p, q), we can use the following

equation to express splitting power loss in case of multicast LMC

(
Ip, O

p
q,k

)
,

LMC

(
Ip, O

p
q,k

)
= 10 log10

(
(σ · α + (1− σ) · β) · βER(p,q) · η∆(p,q)−k−ER(p,q) · ζk−1

)
dB

(7.5)

where σ = 1 for 1 ≤ k < |Ωp| and σ = 0 for k = |Ωp| to choose from α and β

depending on k.

Below, we prove Theorem 10 to show that the splitting loss analysis of the pro-

posed N × N RNB switch when η = β is similar to that of an N × N SNB switch

presented in [16].

Theorem 10. Splitting loss at output ports in the proposed RNB switch are similar

to that of an SNB switch [16] if η = β.

Proof. Path length of the connections from Ip to Oq (as a unicast request or part of

a multicast request) is fixed. Similarly, the number of splitting operations for Rp is

fixed, and thus, the remaining T-SEs are either in T− or in R−state. Since both T−

and R−states have the same power losses, the overall loss is similar to that of in our

SNB switch discussed in Chapter 6.
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Based on Theorem 10, we can use power loss equations in [16] to calculate splitting

power loss in the proposed switch. Equation (7.3) for the power penalty in a unicast

request becomes,

LUC(p, q1) = 10 log10

(
η∆(p,q)

)
= 10 log10

(
β∆(p,q)

)
(7.6)

Similarly, Equation (7.5) for the power penalty of multicast requests can be expressed

as,

LMC

(
Ip, O

p
q,k

)
= 10 log10

(
(σ · α + (1− σ) · β) · ηN−p+q−k · ζk−1

)
dB (7.7)

7.3.6 Switching Delay

The switching latency depends on the switching speed and the properties of the

material used to realize T-SEs. The switching latency of a 1” × 1” switchable mirror

(SM) based e-TransFlector and tuned for IR spectrum is in the range of 1-10 ms at

room temperature (22◦C). The dimensions of the T-SEs in the proposed switch are

expected to be much smaller than 1”×1”. Since the switching latency is proportional

to the surface area of the SM, the switching delay can be reduced. Moreover, as the

technology of the materials used to realize T-SEs improves, more responsive T-SEs

can be developed, and thus faster switches can be realized.

7.3.7 Switch Reconfigurability

For an N ×N SNB crossbar [16,441] discussed in Chapter 6, a square substrate with

N2 T-SEs is required. On the other hand, two of the proposed N×N RNB triangular

switches would require a triangular substrate with 2 × (N(N + 1)/2) = N(N − 1)
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Figure 7.5: Two 6× 6 RNB switches on a single square substrate.

T-SEs. However, as discussed earlier, the diagonal T-SEs in the proposed switch

are either in the T or R-states, and thus diagonal T-SEs can be replaced with fixed

mirrors, or can be configured permanently in the R-state. This way, two of the

proposed N × N RNB triangular switches can share the diagonal T-SEs, and hence

both switches can be accommodated on a single square substrate with N2 T-SEs as

shown in Figure 7.5.

It might be noted that we can obtain a very flexible switch using the setup in

Figure 7.5. This switch can operate as two N ×N RNB switches or a single N ×N

SNB switch for IWest-ΩSouth or INorth-ΩEast. Moreover, the switch in Figure 7.5 can

also operate as a 2N × 2N switch (see Figure 7.3) under the constraints outlined in

Lemma 3.
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7.4 Comparative Analysis

2D FSO switches are generally of low scalability due to the Gaussian beam propaga-

tion loss which becomes the dominant source of losses at high-port count [438]. In

this section, we present a comparative analysis of the proposed switch with respect

to hardware complexity, power splitting, and cost for N = 8 (i.e., 8× 8 switches).

7.4.1 Hardware Complexity Comparison

We decompose all switches into five basic SEs, namely; fixed/ movable mirrors,

fixed/movable splitting mirrors, and T-SEs. Table 7.1 summarizes the hardware

complexity of architectures under consideration. Figure 7.6 depicts the hardware

complexity for N = 8.

Table 7.1: Summary of Switching Hardware Complexity of Different Architectures
Φ =

(
2(dlog2(N)e+1) − 2

)
.

Movable Fixed Movable Fixed
T-SE

Mirror Mirror Splitter Splitter

SaD-I N2 NΦ/2 - NΦ/2 -

SaD-II N2 +NΦ NΦ/2 NΦ/2 - -

SUM-SaD 2N2 +N NΦ/4 - NΦ/4 -

Crossbar
- - - - N2

(T-SE)

Proposed - N - - N(N−1)
2

In SaD-I, unicast request must undergo 1 × N splitting. Therefore, no extra

hardware is needed to separate unicast requests. SaD-II is similar to SaD-I except

that configurable splitters are used to separate unicast and multicast requests, and

to split the input beam to the exact size of the output set. However, this comes

at the expense of additional hardware and control complexity. SUM-SaD separates

unicast and multicast connections and has lower hardware complexity as compared to
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that of SaD-II. Although comparable to SaD-I with respect to hardware complexity,

SUM-SaD uses more movable SEs.

Similar to SaD-II, SNB crossbar using T-SEs and the proposed switch can separate

unicast and multicast requests, and can also split a beam into a number of beams

equal to the size of the output set. A crossbar required N2 T-SEs, whereas, the

proposed RNB switch requires only N(N − 1)/2 T-SEs and N fixed mirrors. For

N = 8, the proposed switch demonstrates 87.5% and 43.8% savings in total number

of SEs as compared to SaD-II and the crossbar with T-SEs, respectively.

Figure 7.6: Hardware complexity for 8× 8 switches.

7.4.2 Comparison of Splitting Losses

In the previous section, we have shown that the proposed switch can achieve up to

87% reduction in hardware complexity as compared to that of existing switches. In

this section, we show that the hardware complexity improvement achieved does not

sacrifice the power splitting and scalability properties of the switch. To this end, we

discuss the power penalties for the five architectures of size 8 × 8 by computing the



239

losses at 8 output ports for all 255 combinations of output set sizes. Since the loss in

the proposed switch depends on the input port, losses for the 1st (best-case) and 8th

(worst-case) are presented.

In case of SaD-I, signal power loss is independent of output set size |Ωp|, as N -way

splitting is enforced, and is given by,

LSaDI = 10 log10 (0.99) + 10 log10 (1/N) dB (7.8)

For SaD-II, the unnecessary splitting of SaD-I is avoided, thus, splitting loss is de-

pendent on |Ωp| and is given by:

LSaDII = 10 log10 (0.99) + 10 log10 (1/|Ωp|) dB (7.9)

We use the commercial specifications reported by KentOptronics [433] for the tri-state

material e-TransFlector which can be tuned to operate in the IR spectrum range used

by existing optical communication networks. For example, in [50], Hamedazimi et al.

demonstrated a proof-of-concept for an FSO communication link for data center com-

munication using the e-TransFlector material tuned for IR spectrum. Accordingly, we

set both reflectance in R-state (β) and transmittance in T -state (η) to 87%, whereas

for the S-state, both transmittance (ζ) and reflectance (α) are set to 43%. We as-

sume that the optical efficiency of all fixed/movable mirrors, and splitters are 99%,

and 49%, respectively [435].

In the power loss study, we use the term proposed to refer to both SNB and

RNB T-SE based switches. Figures 7.7-(a), (b), and (c) depict the average minimum,

average, and average maximum splitting power loss of the five switch architectures

under consideration at different sizes of output sets.

SaD-II and SUM-SaD can switch unicast connections separately without incur-
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(a)

(b)

(c)

Figure 7.7: Splitting power penalty in an 8 × 8 switch [16] with α = ζ = 43%, and
η = β = 87% (a) Minimum. (b) Average. (c) Maximum.
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ring any additional losses, and thus SaD-II and SUM-SaD have the same performance

that outperforms other architectures in case of unicast. On the other hand, unicast

requests switched using SaD-I are penalized ≈ 9.3 dB as SaD-I enforces full power

splitting even for unicast connections. Proposed architecture does not enforce split-

ting for unicast connections, however there are additional losses of 4.53 dB and 7 dB

for input ports 1 and 8, respectively. This is due to the propagation of the beam

through the non-moveable T-SEs configured in the T -state along its path which adds

additional loss due to the imperfection of the material.

In case of multicast (i.e., starting from output set size of two), it can be observed

that as the size of the output set increases, so does the average and average maximum

power penalties in all architectures except for the SaD-I and SUM-SaD, they have

a fixed power loss (≈ 9.3 dB). This is because SaD-I and SUM-SaD perform fixed

full splitting for all input signals regardless of the size of output set. The proposed

switch outperforms both SaD-I and SUM-SaD up to an output size of two, whereas,

its performance is comparable to the other architectures up to output set size of four,

after which the power loss increases.

Splitting power loss depends on the number of combinations at different sizes

of output sets. This number increases starting from output set size of one (i.e.,

eight possible combinations of unicast) to four (i.e., 70 possible combinations) and

then decreases to become one possible combination of broadcast. Regardless of the

decrease in the number of combinations starting from output set size of four, average

maximum loss experiences a monotonic increase as the aggregated maximum loss

becomes dominant, whereas the average minimum loss decreases as the size of the

output set increases.

High power losses can cause the signal power to fall below the sensitivity of the

optical receiver, and thus amplification at the input ports may be needed. Moreover,
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power loss at an output port can vary depending on the configuration of the switch.

For example, in case of output set size of eight, the variation between the minimum

and maximum splitting loss in the proposed switch is 25 dB (see Figure 7.7). There-

fore, variable optical attenuators (VOAs) must be used at the output ports to equalize

the impact of the insertion loss such that the power of the received signal falls within

the dynamic range of the optical receiver [438].

It might be noted that MEMS-based switches show relatively lower splitting power

losses and do not demonstrate differences between minimum and maximum splitting

power loss at the output ports as compared to the proposed switch. This is because we

only consider the splitting losses in our analysis. MEMS-based switches, however, in-

cur additional Gaussian beam loss due to the propagation of the beam in the separate

splitting stage, and loss due to the angular misalignment of the micro-mirrors [15,432]

which can become significant if the light beam experiences multiple reflections such

as in 1 × N beam splitters [436, 437]. Therefore, MEMS-based switches still need

pre-amplifiers, e.g., SUM-SaD [see Figure 6.4], and variable optical attenuators due

to the non-splitting losses encountered by the signal.

Table 7.2 summarizes the number of amplifiers and VOAs required by the switches

investigated. The proposed switch, SaD-I, SaD-II, and TSE-based crossbar need N

amplifiers, and N VOAs, whereas SUM-SaD switch requires N VOAs and only N/2

amplifiers. This is because only N/2 of the inputs are propagating through the

splitting stage as shown in Figure 6.4.

Gaussian beam propagation loss is considered the main limiting factor for real-

izing FSO switches with high scalability. However, other factors, such as material

imperfection of T-SE and signal splitting properties, can also limit the scalability of

the proposed switch.

The technology of the material used to realize T-SEs is still in its infancy. We use
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Table 7.2: Number of Amplifiers and VOAs.

Amplifiers VOAs

SaD-I N N

SaD-II N N

SUM-SaD N/2 N

Crossbar (T-SEs) N N

Proposed N N

modest values for the material transmittance and reflection efficiencies (i.e., η = β =

87%, and α = ζ = 43% for a 50/50 reflection/ transmission splitting ratio). However,

as the quality of the material continues to improve, so will the performance of the

proposed switch.

To understand the impact of the quality of the material used on the performance

of the proposed switch, we calculate splitting power loss for the proposed switch

assuming improved T-SE efficiencies. We assume that η = β = 99% instead of

87%. For the splitting state, we set α = ζ = 49% instead of 43%. To measure the

improvement in the performance of the proposed switch due to the improved material

quality, we consider the worst request scenario, that is, a broadcast request from the

8th input port. We notice an overall reduction in the splitting power penalty for the

proposed switch based on the improved parameters. For example, a reduction in

the power penalty of 8.5 dB (equivalent to an improvement of 28%) in the case of

broadcast from the 8th input port is achieved.

Another factor that limits the scalability of the proposed switch is the cascaded

splitting nature of signal power along the way from the input to the outputs. This

splitting behavior results in higher power loss and unequal signal power at output

ports. For example, to multicast a signal to four outputs, using a SaD switch will

result in 1/4 of the input power at each of the four outputs as compared to 1/2, 1/4,

1/8, and 1/8 of the input power in case of the proposed switch. One way to alleviate
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this incremental power loss is to change the splitting ratio of the T-SE such that a

small fraction of the input signal (e.g., 10%) is tapped at each output port and the

remaining 90% of the power is forwarded to the subsequent output ports.

We evaluate the impact of changing the T-SE splitting ratio by calculating the

splitting power penalty for the proposed switch assuming 10/90 splitting reflection/

transmission ratio while maintaining η = β = 87%. Changing the splitting ratio led

to an improvement in the performance of the proposed switch and a reduction of

13.5 dB in the power penalty in case of broadcast from the 8th input port. This is

equivalent to an improvement of 44.3%.

It is possible to further improve the overall performance of the proposed switch

by improving the quality of the material used and also changing the T-SE splitting

ratio. Figures 7.8-(a), (b), and (c) depict the average minimum, average, and average

maximum splitting power loss at different sizes of output sets assuming improved T-

SE quality (i.e., η = β = 90%) while maintaining a splitting ratio of 10/90. Significant

decrease in the power penalty can be observed. In case of broadcast from the 8th input,

the maximum splitting power penalty is 13 dB which is less than that of in Figure

7.7 by 17.44 dB indicating an improvement of 57.2%.

7.4.3 Cost Analysis

From the discussion above, the total cost (Carch
tot ) of a switch architecture arch depends

on the costs of VOAs (Carch
V OA), amplifiers (Carch

amp ), and switching elements (Carch
sw ) used,

and is given by,

Carch
tot = Carch

V OA + Carch
amp + Carch

sw (7.10)

where arch can be SaD-I, SaD-II, SUM-SaD, or the proposed switch. Carch
V OA and Carch

amp
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(a)

(b)

(c)

Figure 7.8: Splitting power penalty in an 8× 8 switch with α = 10%, ζ = 90%, and
η = β = 99% (a) Minimum. (b) Average. (c) Maximum.
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depend on the number of VOAs (Narch
V OA) and amplifiers (Narch

amp ) used, respectively.

From Table 7.2, SaD-I, SaD-II, and the proposed switch architectures employ N

VOAs at the output ports and N amplifiers at the input ports. However, SUM-SaD

switch architecture requires N VOAs and only N/2 amplifiers. Therefore, SUM-SaD

architecture has a cost advantage over SaD-I, SaD-II, and the proposed architecture

with respect to Camp.

We can expand Carch
sw further and express it as a function in the cost of a fixed

(mirrors/splitters) component Cf , a movable (mirror/splitter) component Cm, and a

T-SE Ctse. Given the cost of each component, we can calculate Carch
sw as follows:

Carch
sw = Narch

f · Cf +Narch
m · Cm +Narch

tse · Ctse (7.11)

whereNarch
f , Narch

m , andNarch
tse are the numbers of fixed, moveable, and T-SE switching

elements used in the switch arch, respectively, and can be obtained from Table 7.1.

We use a relative cost model to quantify and compare the cost of the proposed

switch. We use the cost of the fixed elements, Cf , as reference since the cost of these

components is relatively stable compared to the other two types.

Let ρ = Cm/Cf and µ = Ctse/Cf . To evaluate the cost effectiveness of the

proposed switch as compared to SaD-I, we use the total number of fixed and movable

components in Table 7.1 to setup the inequality:

N2Cm +NΦCf >
N(N − 1)

2
Ctse +NCf (7.12)

From Equation (7.12), it is easy to show that, the proposed switch has a smaller

overall cost as compared to that of SaD-I iff:

ρSaD−I >
(N − 1)µ+ 2− 2Φ

2N
(7.13)
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Figure 7.9: Comparative cost analysis for the proposed switch. The curves represent
the relative cost effectiveness of the proposed switch as compared to the existing SaD
switches with respect to SEs. Shaded regions are invalid design regions. White region
above (below) a curve indicates that the proposed switch is more (less) cost effective
compared to the corresponding SaD switch for specific number of ports N .

Similarly, we can compute a lower bound on the value of ρ for the SaD-II and SUM-

SaD as follows:

ρSaD−II >
(N − 1)µ+ 2− Φ

2N + 3Φ
(7.14)

ρSUM−SaD >
(N − 1)µ+ 2− Φ

4N + 2
(7.15)

Figure 7.9 plots the ratio ρ/µ to provide an insight on the relationship between the
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cost of a T-SE and that of a movable component. Given the cost of various hardware

components, one can use Figure 7.9 to determine the cost effectiveness of the proposed

design with respect to switching elements as compared to SaD-based switches at

different port sizes (N = 4, 8, and 16). The function 1/µ (i.e., ρ = 1) corresponds to

the case in which Cm = Cf . Obviously, the cost of a moveable element Cm > Cf , and

thus the shaded area below the curve 1/µ is considered as an invalid design region.

It is not expected that Ctse will be less than Cf . Therefore, we have also excluded

the area corresponding to µ < 1. White region above (below) a curve indicates that

the proposed switch is more (less) cost effective compared to the corresponding SaD

switch for specific number of ports N . For example, for N = 4, even if the cost of a

T-SE is 15 times the cost of fixed components (i.e., µ = 15), the proposed switch will

be more cost effective as compared to the SaD-I, SUM-SaD, and SaD-II even when

Ctse is 3.5, 6.7, or 10 times Cm, respectively, corresponding to ρ/µ ratios of 0.29, 0.15,

and 0.1, respectively.

7.5 Chapter Summary

We propose a new FSO multicast rearrangeable non-blocking (RNB) switch architec-

ture using tri-state switching elements (T-SEs). In our design, signal splitting and

switching are simultaneously performed within the same stage, and thus separate

splitting stages, used in the conventional multicast switches, are not needed. The ad-

vantages of the switch proposed are twofold: first, significant reduction in hardware

complexity as an N×N switch with full multicast capability requires only N(N+1)/2

non-movable SEs; and secondly, a beam propagating in the switch proposed avoids

the propagation loss that may be encountered by an optical beam passing through a

splitting stage followed by a crossbar as in SaD-based switches. This leads to lower
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insertion loss that is due to the Gaussian beam divergence. Comparison with existing

optical multicast switches shows that the proposed switch provides multicast capa-

bility with lower hardware complexity and a comparable performance. Cost analysis

shows that, for N = 4, the overall cost of the new design is lower than that of existing

SNB switches even if the T-SE is 4 to 10 times the cost of typical MEMS mirrors.
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Chapter 8

Conclusions and Future Research

Directions

In this dissertation, we address the problem of cabling complexity in wired DCNs.

To this end, we propose OWCells, a class of optical wireless cellular data center net-

work architectures in which fixed line of sight (LOS) optical wireless communication

(OWC) links are used to connect the racks arranged in regular polygonal topologies.

We present the OWCell DCN architecture, develop its theoretical underpinnings, and

investigate routing protocols and OWC transceiver design. To realize a fully wireless

DCN, servers in racks must also be connected using OWC links. There is, however,

a difficulty of connecting multiple adjacent network components, such as servers in a

rack, using point-to-point LOS links. To overcome this problem, we propose and val-

idate the feasibility of an FSO-Bus to connect multiple adjacent network components

using NLOS point-to-point OWC links. As part of the design of the OWC transceiver,

we develop a new class of strictly and rearrangeably non-blocking multicast optical

switches in which multicast is performed efficiently at the physical optical (lower)

layer rather than upper layers (e.g., application layer).
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In Chapter 2, we present a simple, yet powerful classification scheme for FSO tech-

nology. In this scheme, an FSO link can be classified as a combination of four different

criteria, namely: Environment (ε), Coverage Type (κ), LOS Availability (α), Mobil-

ity (µ), and link distance (δ). An FSO link can be deployed in an indoor, terrestrial,

space, or UW scenario. The link can be either a point or cellular coverage which can

be realized using a LOS or NLOS link. Furthermore, a link can be fixed or mobile.

Using the discussed four criteria, we were able to develop a generic classification that

can be used to categorize different FSO links including recently evolving schemes in

which other classifications in the literature fall short. In particular, the proposed

classification scheme describes any FSO link configuration as a tuple (ε/κ/α/µ/δ).

We discuss all possible FSO link configurations in the four different environments.

We provide examples for each FSO link configuration by listing selected recent ref-

erences and related research efforts. Moreover, we briefly discuss the impairments

experienced by each link type and their possible solutions. We also use the proposed

classification scheme to review existing FSO standards and recommendations. IrDA

has produced a set of standards aiming for high data rate short FSO links. JEITA

CP-1221, CP-1222, CP-1223, IEEE 802.15.7, and IEEE 802.15.7r1 standards are de-

signed for short/medium range VLC supporting low data rate links. On the other

hand, limited efforts are directed towards standardizing terrestrial, space, and under-

water FSO links. For example, a single recommendation for terrestrial FSO links,

ITU-R F.2106-1, was proposed by ITU.

In Chapter 3, we propose a classification that can be used to classify any DC,

including existing wired and emerging wireless DCs. Our classification is based on

the communication technologies used to realize the DCN. According to the proposed

classification, wired DCs can be classified as pure electrical/optical wired DC, or hy-

brid wired DC. On the other hand, wireless technology can be used either to augment
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wired DCs resulting in hybrid DCs, or to realize pure RF/FSO DC. We discuss differ-

ent wireless-based DC designs and collate the major work in the field to jump-start

researchers to tap into the growing research on wireless DCs. Using the proposed

classification, we now have a nearly complete picture for the design space of DCNs.

By surveying the literature and mapping existing solutions to different possible de-

signs in the proposed classification, it is now possible to easily identify new research

areas. For example, in this chapter, we were able to identify that the area of hybrid

wireless DCNs has not yet been explored.

In Chapter 4, we present an OWC-DC design and discuss the associated link

budget analysis for a fully-connected rack of servers. Simulation shows that the

proposed design realizes high data rates within a rack. Our cost analysis shows that

the cost of the proposed OWC-DC design is comparable to that of conventional wired

DCs. It is expected that the cost of the proposed design will decrease as OWC

technology is commercialized. The proposed design addresses many problems and

limitations of the current art, but several issues remain to be investigated.

Although the design proposed in Chapter 4 present a useful design for OWC rack

of servers, the conventional row-based DCN arrangement forms a great impairment

for wireless connectivity in DCNs. We dedicate Chapter 5 to discuss the proposed

cellular optical wireless DCN architectures, OWCells, that can overcome the prob-

lems encountered by conventional row-based DCNs. Different polygonal shapes can

be used to design OWCell; square, hexagon, and octagon. We present an OWCell

using the three different cells and develop their theoretical properties. Flow-level

simulations are conducted to validate and compare the performance of OWCell using

square cells. The impacts of OWCell design parameters on its performance are inves-

tigated. We compare the performance of OWCell using OCS and hybrid (OCS+OBS)

switching schemes. We also compare the performance of OWCell and HyScale DCN,
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a switch-centric hybrid optical DCN. Finally, we discuss future research directions

and approaches to improve the performance of the proposed OWCell DCN.

An essential component in optical networks is the optical switch. In Chapter 6

we propose a new class of strictly non-blocking (SNB) FSO multicast switches using

tri-state switching elements (T-SEs). In the proposed switch, TSEs simultaneously

support signal splitting and switching without the need for separate splitting stages

used in the conventional multicast switches. Thus, a beam propagating in the pro-

posed switch avoids the propagation loss that may be encountered by an optical beam

passing through a splitting stage followed by a crossbar as in SaD-based switches. This

leads to lower insertion loss that is due to the Gaussian beam divergence. An N ×M

SNB multicast switch requires only NM non-movable T-SEs. Comparison with ex-

isting optical multicast switches shows that the proposed switch provides multicast

capability with lower hardware complexity and a comparable performance. Cost anal-

ysis for the proposed switch shows that its cost is lower than SaD-based switches, even

if the cost of the T-SE is is 1.2 to 3.5 times that of MEMS mirror.

We also propose a new FSO multicast rearrangeable non-blocking (RNB) switch

architecture using tri-state switching elements (T-SEs) in Chapter 7. The advantages

of the switch proposed are twofold: first, significant reduction in hardware complex-

ity as an N × N switch with full multicast capability requires only N(N + 1)/2

non-movable SEs; and secondly, a beam propagating in the switch proposed avoids

the propagation loss that may be encountered by an optical beam passing through a

splitting stage followed by a crossbar as in SaD-based switches. This leads to lower

insertion loss that is due to the Gaussian beam divergence. Comparison with existing

optical multicast switches shows that the proposed switch provides multicast capa-

bility with lower hardware complexity and a comparable performance. Cost analysis

shows that, for N = 4, the overall cost of the new design is lower than that of existing
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SNB switches even if the T-SE is 4 to 10 times the cost of typical MEMS mirrors.

8.1 Future Work

In this section, we discuss future research directions in the domain of OWC technology

and its applications, development of wireless DCNs, and future research on FSO

multicast optical switches.

8.1.1 Research Directions and Open Problems for OWC sys-

tems

We discussed different OWC link configurations and systems throughout this chapter.

As we discuss the applications for the OWC links and systems, we pointed out future

directions of research related to each OWC subdomain, system, and application.

From previous sections, we can see that researchers are continuously finding new

applications for OWC technology. This continuous expansion of OWC technology

application portfolio makes the task of predicting the future of OWC technology

challenging. In this section, we will shed the light on a few of the future OWC

technology research directions and applications.

OWC and the Internet of Things (IoT)

To realize the IoT vision, in which 34 billion things (people, devices, and objects)

will be connected to the Internet by 2020, different types of networks forming the

infrastructure of the IoT paradigm must evolve to accommodate the data volume

and transmission speed requirements. Moreover, the emerging practical deployments

for the IoT trigger a need to integrate and inter-operate a variety of hybrid connec-

tivity technologies to realize real business values. Several applications require the
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integration of technologies, such as Wireless Sensor Networks (WSNs) and RFID,

using WiFi, Bluetooth, and/or ZigBee connectivity technologies into one single hy-

brid network. As the RF spectrum gets more congested, there is a need to explore

other connectivity technologies to be used in such networks. One of the key candi-

date technologies to complement RF is OWC since it does not interfere with the RF

technology. Moreover, the possibility of developing a communication module that is

small in size and weight, consumes lower power, has low cost, and on top of that,

operates in an unregulated spectrum, leads us to envision that OWC will play a key

role in the future of IoT.

In addition to connecting things in the IoT network, an indoor VLC network can

also serve as a backbone of the OWC-enabled IoT network [442]. In [443], Hussein

and Elgala a lightweight OFDM modulation scheme that is convenient for the OWC-

enabled objects in the IoT network. Another research direction that can help pave

the way for OWC in IoT domain is the use of OWC to recharge the battery of a an

object in the IoT network [444,445]. Such a technology can help extend the network

lifetime, and also enables the objects in the network to transmit at higher power

extending their reach and make them more discoverable.

Optical Scattering Communication

Modeling T/CC/NLOS/x OSC channel is more challenging as compared to modeling

traditional LOS links [194]. The reason is that as the link range increases, so does

the complexity of jointly modeling atmospheric turbulence and the multiple scatter-

ing [70]. Furthermore, the performance of the link highly depends on the geometry of

the link with respect to the transmitter and receiver angles and beam shape. Devel-

oping channel and system models that capture the variables affecting the performance

of OSC is of great interest especially that this link configuration can be viable for
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connecting distributed nodes and objects in future IoT networks.

Relay-Assisted FSO Networks

As mentioned earlier in Section 2.6.2, relay transmission can be used to overcome

the atmospheric turbulence by allowing the transmitted data to use a relay node and

avoid a direct link to the destination that is severely impaired by the atmospheric

turbulence. There are two types of relaying configurations, namely; serial (i.e., multi-

hop transmission) and parallel (i.e., cooperative diversity) relaying [446]. Multi-hop

relaying is usually used to extend the range of a transmitted with limited transmission

range. In this approach, the signal moves from one relay node to the other in a serial

fashion. In parallel relaying, the sending node transmits the data to the receiving

node and a relay node which in turn retransmits the date to the receiving node. This

form of transmission acts as a distributed array of antennas and is considered as a

cooperative diversity approach [81].

Since the concept of relay-assisted networks is mature when it comes to RF tech-

nology, researchers in FSO are adopting the techniques and approached used in RF

relay-assisted networks. For example, for the protocols used to forward the data using

the relay nodes, researchers utilized amplify-and-forward (AF) [447–450], decode-and-

forward (DF) [451, 452], and detect-and-forward (DetF) [453] protocols. All-optical

AF relaying is introduced to avoid the requirement of optical-electro-optical (OEO)

conversion at relay stations eliminating the need for high-speed circuits and delay

associated with the conversion [454–458].

There are common assumptions among the aforementioned approaches that relay

nodes are buffer-less and stationary. In [336], Fawaz et al. utilize moving UAVs

equipped with buffers to function as a relay node in the relay-assisted heterogenous

network in which fixed and moving relay nodes are used.
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Hybrid FSO/x Networks

We discussed the application of hybrid FSO/x systems in several scenarios such as

future indoor LiFi-WiFi networks, backhaul networks, underwater sensing, and pro-

viding internet access for underdeveloped regions of the globe. There are, however,

some challenges that must be addressed to fully utilize the advantages of hybrid

FSO/x systems. One of the main challenges is the handover and the realization of

a seamless mobility of the mobile users. For example, in the discussed LiFi-WiFi

network, a user should be able to seamlessly move between LiFi cells (horizontal

handover) and between LiFi and WiFi networks (vertical handover) [135,459].

With the increasing number of deployed OWC cells for coverage, inter-cell in-

terference is inevitable. Inter-cell interference coordination (ICIC) and mitigation

techniques have been studied for a long time in the RF domain [60]. The re-

searchers in the OWC domain are utilizing the successful approached used in the

RF domain [460–462]. Since OWC technology is becoming part of the future hybrid

networks in particular to alleviate the spectrum congestion due to the interference in

RF, it is critical to understand how to manage the interference in the between OWC

link.

WDM FSO Links

The success of the WDM techniques in fiber optics has led the FSO researchers

to consider the WDM to expand the capacity of the FSO links [463–468] In [463],

Chen et al. realize a 160 Gbps T/PC/LOS/F/Long WDM FSO link using sixteen

10 Gbps channels. The link uses OOK and has a distance of 2.16 km. Other

T/PC/LOS/F/Long FSO link WDM FSO links were developed and experimented

realizing 8 × 40 Gbps [464] and 32 × 40 Gbps [465] and using OOK modulation. The-

oretical analysis and link performance of WDM FSO systems were also performed.
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In [466], Mbah et al. analyze the outage probability in the presence of turbulence-

accentuated inter-channel crosstalk. Most recently, Zhao et al. present a 200 Gbps

FSO WDM communication system. The system features integrated modules and

utilizes PAM-4 modulation scheme [469]. Despite the recent advances in the WDM

FSO links, more research is required to realize integrated, low-cost, and high capacity

WDM FSO links in all of the four environments discussed.

8.1.2 Future Research Directions in Wireless DCNs

To further improve the performance of the proposed OWCell DCNs, we will design

a multi-layered OWCell, where each cell of racks has a base switch. Base switches

are connected using OWC forming a coexisting network. This is expected to improve

the graph-theoretic properties of the OWCell DCN by reducing the diameter and

increasing the bisection width, and thus reduce latency and improve throughput.

We also envision that the integration of OWC and RF wireless communication

technologies in DCNs to realize a hybrid wireless DCN is a promising research direc-

tion. It is, however, challenging to envision a hybrid wireless DCN. This is because

current research has not yet explored all the potentials and challenges of deploying

wireless communication in DCNs. In order to realize the best possible designs, we

must first develop the best practices in wireless DCNs.

One approach to develop hybrid wireless DCN may be based on small clusters of

RF operated racks. In each cluster the set of all available frequency channels is used.

This prevents the intra-cluster interference problem. The DCN might be organized

such that the clusters are distant enough to prevent inter-cluster interference. This is

doable since the 60 GHz technology has a limited short range. Moreover, additional

FSO links can be used safely for intra-cluster communication since FSO does not

interfere with the RF. On the other hand, for inter-cluster communication, FSO
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LOS links can be used. This concept is analogous to the coverage cells in mobile

communication, except that there is no mobility or handover needed.

8.1.3 Future Research Directions in Optical Switches

The proposed algorithm used to configure the RNB multicast switch in Chapter 7 may

lead to redundant configuration of T-SEs that are not used in the routing process.

Therefore, the proposed algorithm is not optimal. Currently, we are optimizing the

routing algorithms developed for the proposed rearrangeable subclass of switches.

We will formulate the routing problem as an optimization problem. The objective

is to find a routing configuration for the switch such that the number of T-SE state

transitions is minimized, thus minimizing the total configuration power and latency.
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