5,430 research outputs found

    The future of Earth observation in hydrology

    Get PDF
    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smart-phones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other hydrologically important variables such as channel depths using commercially available wireless devices. Global internet access is being pursued via high-altitude balloons, solar planes, and hundreds of planned satellite launches, providing a means to exploit the "internet of things" as an entirely new measurement domain. Such global access will enable real-time collection of data from billions of smartphones or from remote research platforms. This future will produce petabytes of data that can only be accessed via cloud storage and will require new analytical approaches to interpret. The extent to which today's hydrologic models can usefully ingest such massive data volumes is unclear. Nor is it clear whether this deluge of data will be usefully exploited, either because the measurements are superfluous, inconsistent, not accurate enough, or simply because we lack the capacity to process and analyse them. What is apparent is that the tools and techniques afforded by this array of novel and game-changing sensing platforms present our community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological sciences. To accomplish this will require more than just an application of the technology: in some cases, it will demand a radical rethink on how we utilize and exploit these new observing systems

    Trends in the incidence of rain rates associated with outages on fixed links operating above 10 GHz in the southern United Kingdom

    Get PDF
    Studies have shown that climate change is leading to an increase in the incidence of heavy rain in the United Kingdom, particularly over winter. The major interest has been on the hydrological impacts of this increase, and so studies have focused on rain accumulations over hours or days and for large catchments. The availability of fixed, microwave links is limited by the incidence of heavy rain with an integration time of a minute or less. This document introduces evidence of an increasing trend in rain rates associated with outages. High-resolution rain data, produced by 30 tipping bucket gauges sited in the south of England, have been analyzed to identify these trends. The data span up to 20 years at each site. Increasing trends in the incidence of rain rates exceeded at annual time percentages between 0.005% and 0.1% are demonstrated. Data suggest that the total annual outage would have doubled or tripled over each decade analyzed for the majority of fixed links operating at rain fade limited frequencies. It is plausible that this trend could continue

    On requirements for a satellite mission to measure tropical rainfall

    Get PDF
    Tropical rainfall data are crucial in determining the role of tropical latent heating in driving the circulation of the global atmosphere. Also, the data are particularly important for testing the realism of climate models, and their ability to simulate and predict climate accurately on the seasonal time scale. Other scientific issues such as the effects of El Nino on climate could be addressed with a reliable, extended time series of tropical rainfall observations. A passive microwave sensor is planned to provide information on the integrated column precipitation content, its areal distribution, and its intensity. An active microwave sensor (radar) will define the layer depth of the precipitation and provide information about the intensity of rain reaching the surface, the key to determining the latent heat input to the atmosphere. A visible/infrared sensor will provide very high resolution information on cloud coverage, type, and top temperatures and also serve as the link between these data and the long and virtually continuous coverage by the geosynchronous meteorological satellites. The unique combination of sensor wavelengths, coverages, and resolving capabilities together with the low-altitude, non-Sun synchronous orbit provide a sampling capability that should yield monthly precipitation amounts to a reasonable accuracy over a 500- by 500-km grid

    An Improved Slant Path Attenuation Prediction Method in Tropical Climates

    Get PDF
    An improved method for predicting slant path attenuation in tropical climates is presented in this paper. The proposed approach is based on rain intensity data R_0.01 (mm/h) from 37 tropical and equatorial stations; and is validated by using the measurement data from a few localities in tropical climates. The new method seems to accurately predict the slant path attenuation in tropical localities, and the comparative tests seem to show significant improvement in terms of the RMS of the relative error variable compared to the RMS obtained with the SAM, Crane, and ITU-R prediction models

    Towards innovative solutions for monitoring precipitation in poorly instrumented regions: real-time system for collecting power levels of microwave links of mobile phone operators for rainfall quantification in Burkina Faso

    Get PDF
    Since the 1990s, mobile telecommunication networks have gradually become denser around the world. Nowadays, large parts of their backhaul network consist of commercial microwave links (CMLs). Since CML signals are attenuated by rainfall, the exploitation of records of this attenuation is an innovative and an inexpensive solution for precipitation monitoring purposes. Performance data from mobile operators’ networks are crucial for the implementation of this technology. Therefore, a real-time system for collecting and storing CML power levels from the mobile phone operator “Telecel Faso” in Burkina Faso has been implemented. This new acquisition system, which uses the Simple Network Management Protocol (SNMP), can simultaneously record the transmitted and received power levels from all the CMLs to which it has access, with a time resolution of one minute. Installed at “Laboratoire des Matériaux et Environnement de l’Université Joseph KI-ZERBO (Burkina Faso)”, this acquisition system is dynamic and has gradually grown from eight, in 2019, to more than 1000 radio links of Telecel Faso’s network in 2021. The system covers the capital Ouagadougou and the main cities of Burkina Faso (Bobo Dioulasso, Ouahigouya, Koudougou, and Kaya) as well as the axes connecting Ouagadougou to these citie

    Real-Time Urban Weather Observations for Urban Air Mobility

    Get PDF
    Cities of the future will have to overcome congestion, air pollution and increasing infrastructure cost while moving more people and goods smoothly, efficiently and in an eco-friendly manner. Urban air mobility (UAM) is expected to be an integral component of achieving this new type of city. This is a new environment for sustained aviation operations. The heterogeneity of the urban fabric and the roughness elements within it create a unique environment where flight conditions can change frequently across very short distances. UAM vehicles with their lower mass, more limited thrust and slower speeds are especially sensitive to these conditions. Since traditional aviation weather products for observations and forecasts at an airport on the outskirts of a metropolitan area do not translate well to the urban environment, weather data for low-altitude urban airspace is needed and will be particularly critical for unlocking the full potential of UAM. To help address this need, crowdsourced weather data from sources prevalent in urban areas offer the opportunity to create dense meteorological observation networks in support of UAM. This paper considers a variety of potential observational sources and proposes a cyber-physical system architecture, including an incentive-based crowdsensing application, which empowers UAM weather forecasting and operations

    Advanced Communications Technology Satellite (ACTS). Phase 1: Industrial/academic experimenters

    Get PDF
    This report presents the work done at Arizona State University under the ACTS Experimenters Program. The main thrust of the Program was to develop experiments to test, evaluate, and prove the commercial worthiness of the ACTS satellite which is scheduled for launch in 1993. To accomplish this goal, meetings were held with various governmental, industrial, and academic units to discuss the ACTS satellite and its technology and possible experiments that would generate industrial interest and support for ASU's efforts. Several local industries generated several experiments of their own. The investigators submitted several experiments of educational, medical, commercial, and technical value and interest. The disposition of these experimental proposals is discussed in this report
    • …
    corecore