139 research outputs found

    FPGA dynamic and partial reconfiguration : a survey of architectures, methods, and applications

    Get PDF
    Dynamic and partial reconfiguration are key differentiating capabilities of field programmable gate arrays (FPGAs). While they have been studied extensively in academic literature, they find limited use in deployed systems. We review FPGA reconfiguration, looking at architectures built for the purpose, and the properties of modern commercial architectures. We then investigate design flows, and identify the key challenges in making reconfigurable FPGA systems easier to design. Finally, we look at applications where reconfiguration has found use, as well as proposing new areas where this capability places FPGAs in a unique position for adoption

    Circuit-Variant Moving Target Defense for Side-Channel Attacks on Reconfigurable Hardware

    Get PDF
    With the emergence of side-channel analysis (SCA) attacks, bits of a secret key may be derived by correlating key values with physical properties of cryptographic process execution. Power and Electromagnetic (EM) analysis attacks are based on the principle that current flow within a cryptographic device is key-dependent and therefore, the resulting power consumption and EM emanations during encryption and/or decryption can be correlated to secret key values. These side-channel attacks require several measurements of the target process in order to amplify the signal of interest, filter out noise, and derive the secret key through statistical analysis methods. Differential power and EM analysis attacks rely on correlating actual side-channel measurements to hypothetical models. This research proposes increasing resistance to differential power and EM analysis attacks through structural and spatial randomization of an implementation. By introducing randomly located circuit variants of encryption components, the proposed moving target defense aims to disrupt side-channel collection and correlation needed to successfully implement an attac

    Flexible Baseband Modulator Architecture for Multi-Waveform 5G Communications

    Get PDF
    The fifth-generation (5G) revolution represents more than a mere performance enhancement of previous generations: it will deeply transform the way humans and/or machines interact, enabling a heterogeneous expansion in the number of use cases and services. Crucial to the realization of this revolution is the design of hardware components characterized by high degrees of flexibility, versatility and resource/power efficiency. This chapter proposes a field-programmable gate array (FPGA)-oriented baseband processing architecture suitable for fast-changing communication environments such as 4G/5G waveform coexistence, noncontiguous carrier aggregation (CA) or centralized cloud radio access network (C-RAN) processing. The proposed architecture supports three 5G waveform candidates and is shown to be upgradable, resource-efficient and cost-effective. Through hardware virtualization, enabled by dynamic partial reconfiguration (DPR), the design space exploration of our architecture exceeds the hardware resources available on the Zynq xc7z020 device. Moreover, dynamic frequency scaling (DFS) enables the runtime adjustment of processing throughput and power reductions by up to 88%. The combined resource overhead for DPR and DFS is very low, and the reconfiguration latency stays two orders of magnitude below the control plane latency requirements proposed for 5G communications

    FPGA-based architectures for acoustic beamforming with microphone arrays : trends, challenges and research opportunities

    Get PDF
    Over the past decades, many systems composed of arrays of microphones have been developed to satisfy the quality demanded by acoustic applications. Such microphone arrays are sound acquisition systems composed of multiple microphones used to sample the sound field with spatial diversity. The relatively recent adoption of Field-Programmable Gate Arrays (FPGAs) to manage the audio data samples and to perform the signal processing operations such as filtering or beamforming has lead to customizable architectures able to satisfy the most demanding computational, power or performance acoustic applications. The presented work provides an overview of the current FPGA-based architectures and how FPGAs are exploited for different acoustic applications. Current trends on the use of this technology, pending challenges and open research opportunities on the use of FPGAs for acoustic applications using microphone arrays are presented and discussed

    A dynamic reconfigurable architecture for hybrid spiking and convolutional FPGA-based neural network designs

    Get PDF
    This work presents a dynamically reconfigurable architecture for Neural Network (NN) accelerators implemented in Field-Programmable Gate Array (FPGA) that can be applied in a variety of application scenarios. Although the concept of Dynamic Partial Reconfiguration (DPR) is increasingly used in NN accelerators, the throughput is usually lower than pure static designs. This work presents a dynamically reconfigurable energy-efficient accelerator architecture that does not sacrifice throughput performance. The proposed accelerator comprises reconfigurable processing engines and dynamically utilizes the device resources according to model parameters. Using the proposed architecture with DPR, different NN types and architectures can be realized on the same FPGA. Moreover, the proposed architecture maximizes throughput performance with design optimizations while considering the available resources on the hardware platform. We evaluate our design with different NN architectures for two different tasks. The first task is the image classification of two distinct datasets, and this requires switching between Convolutional Neural Network (CNN) architectures having different layer structures. The second task requires switching between NN architectures, namely a CNN architecture with high accuracy and throughput and a hybrid architecture that combines convolutional layers and an optimized Spiking Neural Network (SNN) architecture. We demonstrate throughput results from quickly reprogramming only a tiny part of the FPGA hardware using DPR. Experimental results show that the implemented designs achieve a 7× faster frame rate than current FPGA accelerators while being extremely flexible and using comparable resources

    Quantifying the latency benefits of near-edge and in-network FPGA acceleration

    Get PDF
    Transmitting data to cloud datacenters in distributed IoT applications introduces significant communication latency, but is often the only feasible solution when source nodes are computationally limited. To address latency concerns, cloudlets, in-network computing, and more capable edge nodes are all being explored as a way of moving processing capability towards the edge of the network. Hardware acceleration using Field Programmable Gate Arrays (FPGAs) is also seeing increased interest due to reduced computation latency and improved efficiency. This paper evaluates the the implications of these offloading approaches using a case study neural network based image classification application, quantifying both the computation and communication latency resulting from different platform choices. We consider communication latency including the ingestion of packets for processing on the target platform, showing that this varies significantly with the choice of platform. We demonstrate that emerging in-network accelerator approaches offer much improved and predictable performance as well as better scaling to support multiple data sources
    • …
    corecore