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Abstract
Image and video processing are one of the main driving application fields for the latest technology advancement of comput-
ing platforms, especially considering the adoption of neural networks for classification purposes. With the advent of Cyber 
Physical Systems, the design of devices for efficiently executing such applications became more challenging, due to the 
increase of the requirements to be considered, of the functionalities to be supported, as well as to the demand for adaptivity 
and connectivity. Heterogeneous computing and design automation are then turning into essential. The former guarantees 
a variegated set of features under strict constraints (e.g., by adopting hardware acceleration), and the latter limits develop-
ment time and cost (e.g., by exploiting model-based design). In this context, the literature is still lacking adequate tooling for 
the design and management of neural network hardware accelerators, which can be adaptable and customizable at runtime 
according to the user needs. In this work, a novel almost automated toolchain based on the Open Neural Network eXchange 
format is presented, allowing the user to shape adaptivity right on the network model and to deploy it on a runtime recon-
figurable accelerator. As a proof of concept, a Convolutional Neural Network for human/animal classification is adopted to 
derive a Field Programmable Gate Array accelerator capable of trading execution time for power by changing the resources 
involved in the computation. The resulting accelerator, when necessary, can consume 30% less power on each layer, taking 
about overall 8% more time to classify an image.

Keywords  Hardware Acceleration · Adaptivity · Design Automation · Convolutional Neural Network · Reconfigurable 
Computing · High Level Synthesis

1  Introduction

Cyber Physical Systems (CPSs) advanced a lot in the lat-
est years. They are not only capable of strong interactions 
and information exchange with the environment, but port-
ing at the edge the possibility of taking decisions, bringing 
Artificial Intelligence (AI) on small embedded platforms, 
and making them capable of adapting to different envi-
ronmental and systems stimulus, has pushed their level of 

autonomy. The support of variable and intensive workloads, 
often requiring real-time execution, and the increasing need 
of addressing several concurrent functional and non-func-
tional requirements, led designers to adopt heterogeneous 
platforms integrating different types of SoftWare (SW) and 
HardWare (HW) resources, as different types of cores, appli-
cation specific units, and configurable logic. Recent trends 
have seen Field Programmable Gate Array (FPGA) devices, 
traditionally employed for rapid prototyping and low-vol-
ume application purposes, gaining momentum in produc-
tion (e.g., Lattice Semiconductor FPGA in edge devices [1]) 
since they can guarantee HW acceleration, execution flex-
ibility, and energy efficiency.

In the context of modern smart CPSs, we have been 
involved in the ECSEL project FitOptiVis (From the cloud 
to the edge - smart IntegraTion and OPtimisation Tech-
nologies for highly efficient Image and VIdeo processing 
Systems) [2, 3]. The project has studied novel design and 
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run-time approaches for image and video pipelines in CPSs. 
In many different domains image processing is a key aspect 
of a CPS. Indeed, in application domains such as video sur-
veillance or environmental exploration, visual context and 
awareness are fundamental to making correct decisions and 
performing appropriate actions. As a test case scenario for 
this work, we consider a Convolutional Neural Network 
(CNN) for the classification of humans and animals. The ref-
erence network has been provided by one of the FitOptiVis 
Use Case providers, which built it for a critical infrastructure 
surveillance scenario. To be effective in the addressed sce-
nario, such CNN needs to be efficient, with optimal execu-
tion time and power consumption, accessible to the user, 
both in terms of costs and usability, and adaptive, to trade 
the mentioned metrics according to the specific needs (e.g., 
lowering power consumption and, in turn, execution time 
when the reactivity of classification is not crucial). The best 
candidate target architecture for such a job is an FPGA based 
HW accelerator since it can deliver efficiency and adaptiv-
ity with limited costs. Regarding usability, however, such 
target architecture still constitutes a challenge for develop-
ers, especially if adaptivity is required. In fact, deriving an 
efficient accelerator for a given CNN model is hard, and 
several attempts already exist in literature in this sense, but 
making it adaptive at runtime is a feature that is not usually 
included in the available design flows.

To overcome these limitations, we assembled and devel-
oped a complete toolchain to derive HW accelerators for 
neural networks, where users can easily shape adaptivity yet 
at the model level. This flow is meant to enable the auto-
matic definition of application-specific HW accelerators 
starting from the high-level Open Neural Network eXchange 
(ONNX) descriptions of the network to be executed. ONNX 
is a widely-adopted open format built to represent machine 
learning models. The peculiarity of these accelerators is the 
adaptivity support: by exploiting coarse-grained HW recon-
figuration [4–6], the flow presented hereafter guarantees to 
the system the possibility of providing functional or non-
functional reconfiguration. Such adaptivity can be modeled 
directly by the user at a high level of abstraction, so that it 
can be shaped according to the specific needs, requirements, 
and constraints. As a proof of concept, in this work we show 
how it is possible to provide different working points for 
a given CNN, trading off power for latency by changing 
resources dedicated to the processing of different CNN lay-
ers. These working points are only an example demonstrat-
ing the possibility of achieving adaptivity at the edge, which 
can be exploited for many different purposes, e.g. to switch 
among configurations providing different Quality of Ser-
vice (QoS) versus energy consumption profiles [7], or to 
provide different encryption degrees at the cost of a higher 
power consumption [8], or to deliver different performance 
per power [9] or energy [10, 11] trade-offs. At the edge, 

minimizing consumption is of paramount importance and 
demonstrated to be challenging [12], which motivated in 
this work the choice of exploring different working points 
presenting different power profiles. The main advantage of 
the proposed flow is that the process of creating the adap-
tive accelerator is almost automated, from ONNX models 
to the ready-to-use accelerator: the user has only to specify 
working points at the same model level. Note that, even if 
the presented flow can be easily adapted to an Application 
Specific Integrated Circuit (ASIC) target, in this work we 
address only FPGA devices, which are surely advantageous 
in cost and development time with respect to the former.

The main contribution of the work is then an almost auto-
mated flow for developing neural network adaptive accelera-
tors on FPGAs, from ONNX network specifications down 
to HW descriptions ready for logic synthesis. Such a flow 
allows users to shape adaptivity by acting on the model, 
thus avoiding unnecessary implementation details which can 
harden the design process. The same runtime adaptivity sup-
port makes it novel among the literature works providing 
neural network and CNN acceleration support. A proof of 
concept implementation of an adaptive CNN enabling dif-
ferent working points, each delivering a different execution 
time versus power trade-off, demonstrates the effectiveness 
of the proposed approach. In particular, the obtained imple-
mentation can lower the power consumed by each layer by 
30% in front of an overall 8% overhead in terms of network 
classification time.

The rest of the paper is organized as follows: Section 2 
gives an overview of the background, discussing aspects 
related to CNN acceleration, as available tool support and 
adaptivity for them; Section 3 describes the assembled flow 
from ONNX to adaptive accelerators, clearly showing the 
required user manual interventions, and the customization 
possibilities. Section 4 illustrates the preliminary results 
regarding the single layers and the overall accelerator, 
obtained with the proposed flow on the CNN adopted as an 
example for the whole explanation. Lastly, Section 5 pro-
vides some final remarks and future directions of the work.

2 � Background

In this section the background of the work is presented, 
touching topics related to CNN acceleration and tooling 
(Section 2.1) and to tooling for generic HW acceleration and 
adaptivity (Section 2.2). The tools involved in the proposed 
toolchain are also presented.

2.1 � CNN Acceleration and Tooling

A huge number of approaches have been proposed in lit-
erature focusing on CNN acceleration. Lots of them, those 
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more oriented to adaptivity and reconfigurability, rely on 
FPGA architectures as a technology substrate [13]. Prob-
ably the most ready-to-use and powerful currently avail-
able FPGA-based acceleration engine is the proprietary one 
offered by Xilinx, which provides an integrated framework, 
called VitisAI [14], that helps designers in mapping CNNs 
on a template soft IP called Deep Learning Processing Unit 
(DPU) [15].

2.1.1 � Architectures for CNN Inference

Most tool-oriented works focus on the creation of an opti-
mized FPGA structure, usually relying on a reference archi-
tecture template, based on a specified target CNN. Yu et al. 
[16] developed an FPGA acceleration platform that lever-
ages on a unified framework architecture for general purpose 
CNN inference acceleration at a data center, achieving a 
throughput comparable with the state-of-the-art Graphics 
Processing Units (GPUs) in this field, with less latency. 
Zhang et al. [17] proposed Caffeine, a HW/SW library to 
efficiently accelerate CNNs on FPGAs, leveraging on a uni-
formed convolutional matrix multiplication representation. 
Ma et al. [18] presented a Register Transfer Level (RTL) 
CNN compiler that generates automatically customized 
FPGA HW for the inference tasks of CNNs from SW to 
FPGA. These frameworks provide huge performance gains 
when compared to state-of-the-art accelerators, as well as to 
general purpose Central Processing Units (CPUs) and GPUs. 
However, they do not take into account adaptivity as a main 
development objective.

2.1.2 � Resource‑constrained and Real‑time Solutions

Other approaches focus on resource-constrained deploy-
ment, mostly validated on smaller devices, e.g. Zynq Sys-
tem on Chips (SoCs), usually Z-7045 or smaller, or Zynq 
Ultrascale+ Multi-Processor System on Chips (MPSoCs). 
Venieris et  al. [19] presented a latency-driven design 
methodology for mapping CNNs on FPGAs. As opposed 
to previously presented approaches, mainly intended for 
bandwidth-driven applications, this work targets real-time 
applications, relying on Xilinx High Level Synthesis (HLS) 
tools (i.e. Vivado HLS) for mapping, demonstrated on a 
relatively simple CNN such as AlexNet, and a very regular 
one such as VGG16 featuring only 3x3 kernels, providing 
a peak performance of 123 GOps on Xilinx Zynq Z-7045 
SoC. Other works focus on a template-based approach rely-
ing on programmable or customizable RTL accelerators [18, 
20, 21], more similar to the one that is used in this paper. 
SnowFlake [20] exploits a hierarchical design composed of 
multiple compute clusters. Each cluster is composed of four 
vector compute units including vector Multiply and Accu-
mulate (MAC), vector max, maps buffer, weights buffers, 

and trace decoders. SnowFlake provides a computational 
efficiency of 91%, and an operating frequency of 250 MHz 
(best-in-class for CNN accelerators on Xilinx Zynq Z-7045 
SoC). NEURAghe is an inference accelerator exploiting a 
HW convolution engine on FPGA [22]. The main computa-
tional engine of the accelerator is a matrix of MAC modules 
that takes care of the convolution workload. The accelera-
tor is configurable at design time with different parameters. 
On a Xilinx Zynq UltraScale+ MPSoC ZU3EG device, it 
is possible to implement a configuration featuring a matrix 
of 90 MAC modules, distributed over 9 parallel input chan-
nels and 10 parallel output channels, working at 180 MHz 
clock frequency. NEURAghe has been implemented with 
flexibility in mind, which has also enabled its validation of 
time series analysis with Time Convolution Networks [23]. 
However, none of these architecture templates supports runt-
ime adaptivity.

2.1.3 � Reduced Data‑precision Implementations

Multiple approaches have been focusing on performance 
improvement through the reduction of the precision of 
arithmetic operands. Most of the architectures use a pre-
cision of 16-bit (fixed-point) [18–20]. However numerous 
reduced-precision implementations have been proposed 
recently, relying on 8-bit, and 4-bit accuracy for both maps 
and weights, exploiting the resiliency of CNNs to quanti-
zation and approximation [21]. Even extreme approaches 
to quantization have been proposed, exploiting ternary [24] 
or binary [25] neural network accelerators for FPGA. This 
approach significantly improves the computational effi-
ciency of FPGA accelerators, allowing them to achieve 
performance levels as big as 8 TOPS [24]. A recent work 
by Rasoulinezhad et al. [26], starting from the Xilinx DSP 
slices, proposed an optimized DSP block called PIR-DSP 
to efficient map 9, 4, and 2 bits data precision MAC opera-
tions. It is implemented as a parameterized module genera-
tor targeting both FPGAs and ASICs, reaching an estimated 
runtime energy decrease of up to 31% for a MobileNet-v2 
implementation compared with a standard DSP mode. Other 
works, like Wang et al. [27], leverage on FPGA LUT blocks 
as inference operators for Binary Neural Networks achiev-
ing up to twice area efficiency compared to state-of-the-art 
binarized neural network implementation and against several 
standard networks models.

To the best of our knowledge, however, literature is still 
lacking an analysis of the possibility of adapting the design 
to multiple operating modes at run-time, when using FPGA-
based acceleration for AI-related workload. In this work, we 
propose a toolchain that is suitable to derive run-time adap-
tive accelerators or accelerator components. Our approach 
is thus complementary to the previously mentioned pieces 
of work and can serve as an additional development layer in 
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use cases requiring fast and effective adaptation to varying 
scenarios.

2.1.4 � ONNXparser

Dealing with CNN acceleration and related tooling, an inter-
esting instrument, which is involved in the proposed flow, 
is ONNXparser1. This parser has been made available open 
source as a result of the H2020 ALOHA project [28]. It 
is a Python application intended to parse the ONNX mod-
els and automatically create the code for a given kind of 
target device. ONNXparser has a modular design that can 
be extended by the user adding support for additional code 
generation targets.

As shown in Fig. 1, the input point of the tool is the 
ONNX reader. It is in charge of parsing the ONNX and iden-
tifying an object for each operator and connection found in 
the file. The input file is read using the onnx python pack-
age. In case the ONNX file also includes the parameters of 
the model, these are exported in external files during the 
parsing. The reader creates an intermediate format with a list 
of objects describing actors and connections that are found 
in the ONNX under analysis. Each structure is populated 
with actor/edge parameters.

At this point, the tool uses a set of writers. Each writer 
can take the intermediate format as input and generate plat-
form-dependent code. Additional writers can be created and 
customized for different platforms. The code generation also 
implements required optimization/transformation steps such 
as, for example:

–	 batch normalization folding: in some cases, by taking 
adequate measures, multiplications and additions required 

for the implementation of this actor can be integrated into 
weights and bias values for the convolution that follows 
the batch normalization in the CNN topology;

–	 data type conversion: the tool can perform an adaptation 
of floating-point represented value parameters into fixed 
point formats;

–	 operators merging: when accelerator architectures per-
form operations as a sequence in one single accelerator 
activation, the parser can merge the original operation, 
expressed in the ONNX in one single call of the com-
posed primitive to the accelerator;

–	 data marshaling: different processing elements require 
different orderings of input data and weights, for exam-
ple different feature/dimension interleaving. The writer 
in the parser can be easily instrumented to generate the 
code according to such an ordering.

ONNX parser currently supports most operators used in state-
of-the-art CNNs and has been tested successfully on VGG, 
ResNet, YOLO, and UNet. Writers are available for differ-
ent targets: plain C (the writer used in this paper), Pytorch, 
CMSIS-based CNN implementation, accelerators [29].

2.2 � Design Automation for Hardware Acceleration 
and Reconfiguration

Design automation for digital systems is still an open issue. 
The main players on the market are recently pushing for 
an additional level of automation, besides the well-known 
logic synthesis and implementation. While this latter allows 
designing, and programming in case of FPGAs, digital sys-
tems by means of RTL descriptions in Hardware Description 
Languages (HDLs), newer techniques known as HLS raise 
the abstraction level of such descriptions.

2.2.1 � High‑level Synthesis

Most HLS tools use common programming languages for 
general-purpose systems, mostly C code, as input specifi-
cation of the desired functionality. Lots of HLS solutions 
from academia and industry have been proposed in the last 
years [30], proof of the fact that the scientific community 
and the market are moving towards this new automation 
level. In particular, the main ASIC and FPGA tool vendors 
all deliver HLS solutions within their design suites [31, 32]. 
Despite being promising and constantly under development, 
current HLS instruments are still not capable of filling the 
gap between users and technology. In fact, to be effective 
for generating optimized usable HW, HLS requires to act 
on the source code with refactoring and pragmas insertion. 
Efforts and skills for such pre-processing phase, usually 
made manually by the same user, could overcome the overall 
automation benefits. Moreover, the maturity of HLS tools 
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Figure 1   Internal structure of the ONNXparser.

1  https://​gitlab.​com/​aloha.​eu/​onnxp​arser

https://gitlab.com/aloha.eu/onnxparser
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at the moment is not enough for tackling aspects that may 
result crucial in different contexts, such as power consump-
tion, system integration or reconfiguration [33].

2.2.2 � Adaptivity Support

Reconfiguration is commonly used in specialized logic to 
reach adaptivity. Designing and optimizing reconfigurable 
digital systems has historically been a challenge for develop-
ers [34]. Such a challenge is even harder for modern CPSs 
which may have to cope with strict and multiple constraints 
and requirements, such as extremely low power behavior or 
real-time reactivity. For instance, when reactivity is crucial, 
coarse-grain reconfiguration could be more suitable than a 
fine-grain (e.g. Dynamic Partial Reconfiguration (DPR) on 
FPGAs) solution [5]. Indeed, performing reconfiguration at 
the entire data word level, like for coarse-grain reconfig-
urable solutions, ensures quick reconfiguration time at the 
price of lower flexibility with respect to a fine-grain solu-
tion, where reconfiguration is applied at the single-bit level. 
Reactivity and, in turn, reconfiguration, as well as other 
secondarily but often not less important aspects in CPSs 
design, are hardly addressed by the currently available HLS 
instruments. The main reason behind the existing lack is 
that to be effective, solutions tackling reactivity, power, and 
other secondary and non-functional aspects require a robust 
model-based approach [35, 36].

2.2.3 � Model‑based Design: Dataflow Advantages

Model-based design already proved to be successful in the 
abstraction of low-level details, enabling quick design auto-
mation. Dealing with HW acceleration, dataflow models 
turn out to be particularly suitable in this sense, including 
when adaptivity is necessary. Dataflows can be seen as 
directed graphs whose nodes, namely actors, represent pro-
cessing elements, while arcs represent point-to-point com-
munication channels between actors. Such channels hold 
storing resources and chunks of data flowing throughout 
them, namely tokens, are managed according to a First-In 
First-Out (FIFO) policy. Actually, HLS tools are indeed 
model-based, but according to the adopted input specifi-
cation, the considered models can have different levels of 
abstraction. Here, common programming languages, such 
as C, can be seen as models of the desired system (e.g., 
they abstract time information), but they are not very suit-
able for highlighting modularity and parallelism of this 
latter, features of primary importance in digital systems 
design. Dataflows are instead intrinsically representing 
parallelism of applications: for this reason, they have also 
been proposed as input specifications for HLS [37, 38]. 
However, the main drawback of such approaches is that 

users have to learn new languages and specifications, 
which can be far from the code they usually deal with. 
Here, a combination of dataflow models, for describing 
the system-level view of the desired platform, and com-
mon programming languages, for describing processing 
elements of the same system, can be the right trade-off 
between effectiveness and usability.

Modularity is very important in digital systems design 
when reconfiguration is required. Having a modular view 
of the application allows the identification of common 
resources to be shared among different configurations. 
For this reason, dataflows have already been employed as 
models for applications targeting either customizable sub-
strates of generic processing units (executing actors) and 
FIFOs [4], as well as specialized reconfigurable computing 
accelerators [39]. In particular, this last case offers enough 
room for the previously mentioned mixed HLS model-based 
approach, employing both dataflows and common program-
ming languages, taking the best of both.

2.2.4 � MultiDataflow Composer Tool

A tool that provides runtime coarse-grained reconfigur-
ability, leveraging on a dataflow description of the appli-
cation, is proposed in [39]. The Multi-Dataflow Composer 
(MDC) is an open source tool for, optionally reconfigur-
able, HW acceleration support2. It takes as input applica-
tions that need to be accelerated, specified as dataflows: 
they can be different applications with common processing 
steps (common actors), to obtain functional reconfiguration 
or different versions of the same application, to obtain non-
functional reconfiguration. The dataflows corresponding to 
such applications are combined together, and the resulting 
HDL top module is automatically generated (see Fig. 2). 
The HDL of the actors is not generated by MDC and has to 
be provided by the user (HDL component library): a com-
mon programming language can be adopted to model the 
actor behavior and to derive the corresponding HDL through 
HLS. Besides the baseline feature of combining applications 
and delivering a reconfigurable top module of the resulting 
HW accelerator, thanks to dataflows MDC is also capable 
of providing advanced features, such as optimizations under 
different design goals (resources, power, frequency), smart 
power management, and easy system integration.

In this work, to provide a full design flow for CNN accel-
eration and adaptivity support, MDC and a well-known HLS 
tool, Vivado HLS, have been combined with specific CNN 
instruments, ONNXparser, delivering a new powerful mean 
for the final users.

2  https://​github.​com/​mdc-​suite/​mdc

https://github.com/mdc-suite/mdc
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3 � Proposed Flow

In this section, we are going to describe our proposed 
flow to develop adaptive HW neural network accelera-
tors adopting a dataflow-based approach. Several tools, 
the ONNXparser, Vivado HLS, and the MDC, are adopted 
and very limited user intervention is required. In particu-
lar, the starting CNN models fed to the ONNXparser will 
be described in Section 3.1. Then, input preparation for 
the following adopted tools, Vivado HLS and MDC, start-
ing from ONNXparser output, are detailed in Section 3.2. 
Lastly, MDC potentials in delivering reconfiguration, and 
thus adaptivity, are shown in Section 3.3.

An overview of the proposed flow is depicted in Fig. 3, 
where labels are defined into red (dataflow networks gen-
eration) and blue (dataflow actors generation) circles to 
better understand the flow in the following detailed expla-
nation. The flow is almost automatic. As shown in Table 1, 
there are two steps that are manual at the moment: N1, 
which is the ONNX to dataflow (input model for MDC) 
translation, and A2, which is the pragmas insertion and 
code refactoring on the C code generated by the ONNX-
parser. In particular, the latter is intentionally manual since 
it constitutes, together with the input ONNX modeling, a 
point where users can shape adaptation.

3.1 � CNN Modelling ‑ ONNX Input

The CNN taken as proof of concept for the proposed work is 
based on InceptionNet v2 structure presented in [40], which 
constituted an important milestone in the development of 
CNN classifiers. Differently from previous fully-connected 
approaches, seeking to improve performance by stacking con-
volutional layers deeper and deeper at the price of signifi-
cantly high elaboration cost (making them computationally 
inefficient), InceptionNet introduced a sparsely connected 
architecture. The sparse architecture is composed of modules 
performing multiple convolutions with multiple filter sizes in 
parallel, before concatenating the output and sending it to the 
next module. In this manner, the performance of the network 
can be optimized by balancing the number of filters per stage 
(width) and the number of layers (depth) in the network that, 
in turn, allows for reducing the number of parameters, as well 
as the amount of required memory and computation power. 
Moreover, having several filters with different sizes allows to 
better classify image information. In fact, in general, there is 
a huge variation in the location of the information inside an 
image, so choosing once and for all the right kernel size for 
convolution operation might be difficult. InceptionNet allows 
for subsequent refinements: the scale is small and local at 
first, and then it gets bigger as it goes deeper.

Figure  2   Overview of the MDC functionality, inputs and outputs. 
The three input dataflows ( �, �, � ) are merged by the Multi-Dataflow 
Generator in a unique dataflow that shares common actors (A, C) 
and addresses tokens depending on the configuration using switch-

ing boxes (SB). Platform-Composer maps this dataflow in a hard-
ware accelerator using the provided actor library (HDL components 
library) and communication protocol (XML protocol). The actor 
library can be handwritten or synthesized using any HLS tool.

Table 1   Brief description of each step of the flow, highlighting the utilized tool and its input and output.

Step Tool Input Output Description

A1 ONNXparser ONNX model C model Converts the ONNX model to an executable C model
A2 Manual C model Synthesizable C model Refines the C code of actors to shape adaptivity
 A3 Vivado HLS Synthesizable C model RTL model Synthesizes C actors to generate the actors library
N1 Manual ONNX model XML dataflow models Converts the ONNX model to a dataflow to shape adaptivity
N2 MDC XML dataflow models Merged XML dataflow model Merges multiple dataflow models in a reconfigurable datapath
N3 MDC Merged XML dataflow 

model + RTL model
RTL reconfigurable accelerator Generates the final hardware accelerator
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Figure 3   Proposed automated design flow for CNN adaptive HW accelerators. Red and blue circles define labels for the different steps which are 
referenced in the related explanation.
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Adopted Network  In this paper, as already said in Section 1, 
we adopted a network classifying humans and animals for 
the surveillance of a water supply infrastructure, within the 
context of the FitOptiVis project use case 1 [41] The compo-
sition of the InceptionNet module is based on InceptionNet 
v2, in which each module contains four parallel branches 
whose outputs are concatenated at the end (Fig. 4a):

–	 a 1x1 convolutional layer (Conv);
–	 a 3x3 max pool layer (MaxPool) followed by a 1x1 Conv 

layer;
–	 a 1x1 Conv layer followed by a 3x3 Conv layer;
–	 a 1x1 Conv layer followed by two 3x3 Conv layers.

The overall structure of the adopted CNN was modified 
compared to the original network to make it compatible with 
ONNXparser, as described in Appendix 1. Input data are 
provided as tensor with format NCHW (batch size, chan-
nel, height, width), characterized as [1, 3, 128, 128] in this 
case, and with data type float32. This input is sent to 3 cas-
caded modules with the above-mentioned structure. After 
each convolution operation, the activation function ReLu is 
applied [42]. The outputs of the four branches are concate-
nated and provided to a MaxPool layer, using a 2x2, 3x3, and 

3x3 kernel for each cascaded module respectively, and then 
normalized through a batch normalization layer (BatchNor-
malization), with parameters epsilon and momentum defined 
by default in [43]. After the three cascaded convolutional 
modules, the output is forwarded to a new 1x1 Conv layer 
with ReLu activation and normalized again through a Batch-
Normalization layer (Fig. 4b). The returned tensor is flat-
tened, and prediction is calculated using the Sigmoid [44] 
activation function, which gives a result in the range [0, 1].

In order to exploit the ONNXparser flow (step A1 in 
Fig. 3), the CNN has to be provided in ONNX format. In 
this case, it has been modeled with Pytorch and then con-
verted to ONNX. Modeling it in Keras is, in theory, also 
possible but several conversion issues are present at the 
moment (see detailed discussion in Appendix 1).

Training and Validation  In response to the classification 
problem that the CNN wants to solve, two types of images 
are required: humans and animals. The training has involved 
the UTKface [45], which is a large-scale face dataset3 with 

Figure 4   InceptionNet structure 
details: a inception module 
with the four parallel branches; 
b final stage.

a) b)

3  Each image is annotated with different tags (age, gender, and eth-
nicity), and a large variation in pose, facial expression, illumination, 
occlusion, and resolution is covered.
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over 20 thousand face images, and the Animals-10 [46], 
which contains about 28 thousand medium quality animal 
images4. Five thousand images have been chosen from each 
of the considered datasets (about 25% of the UTKface data-
set and about 18% of the Animals-10 one), being the variety 
the reason for their choice, for an overall number of 10 thou-
sand images. In this way, it is possible to get smaller, but still 
representative datasets. The training has been performed in 
10 epochs with 100 steps each.

With the rest of the non-used images from UTKface and 
Animal-10 datasets, four testing sets have been defined. 
These sets have a size corresponding to 5% (val_data_1, 500 
images), 10% (val_data_2, 1000 images), 25% (val_data_3, 
2500 images) and 50% (val_data_4, 5000 images) of the 
training dataset, and contain different images from those 
belonging to the training set.

Images have been treated before their usage in the train-
ing, to meet the expected size:

–	 The images coming from the considered datasets, initially 
with shape format HWC and data in the range [0, 255], 
have been resized to fit in network input data size 
128x128, and they have been converted to a torch.
FloatTensor of shape CHW in the range [0.0, 1.0].

–	 Additionally, data have been normalized using the using 
torchvision.transforms.Normalize func-
tion. This transform normalizes each channel of the input 
tensor taking into account the mean and standard devia-
tion of each channel.

In order to measure the results obtained during the train-
ing phase, parameters such as accuracy and training losses 
have been monitored. Table 2 depicts the final validation 
results.

3.2 � Deriving Inputs for HLS and MDC

The starting point of the proposed flow is an ONNX rep-
resentation of the CNN, resulting from the preliminary 
modeling discussed in Section 3.1. Vivado HLS allows us 
to easily customize data representation formats. We used a 
16-bit fixed-point representation as this is a common choice 
on FPGA implementation to efficiently utilize the program-
mable logic (Section 2.1.3).

N1 ‑ Mapping to Dataflow  Each layer of the ONNX model 
is mapped into one, or more, dataflow actors. This step (N1 
in Fig. 3) is straightforward since in an ONNX model a node 

represents one layer, and in a dataflow graph, a node rep-
resents an actor. Moving to the arcs, in an ONNX model 
they represent a tensor, while in a dataflow model, an arc 
represents a FIFO channel in which a stream of data can 
flow. To convert a tensor into a stream of data it is necessary 
to choose a streaming order for the elements of the tensor. 
We opted for the raster scan order since it is consistent with 
the structure ordinarily used to perform the convolution. We 
will see afterward that the adoption of raster scan relieves 
the system of buffering the whole tensor between two actors.

A1, A2, A3 ‑ Synthesis of Actors  The next step is to build 
an HDL description of the actors (steps A1, A2 and A3 in 
Fig. 3). To do so, we used the ONNXparser and Vivado HLS 
tool, introduced respectively in Sections 2.1.4 and 2.2.1. The 
first is able to convert an ONNX model to the corresponding 
C description (step A1), where each layer is implemented 
through a different C function. The second is a HLS tool that 
generates the HDL code implementing a C function given 
as input (step A3). Nevertheless, some modifications have 
been necessary to make the C code coming from ONNX-
parser synthesizable by Vivado HLS, and then to optimize 
it (step A2):

–	 Inserting a line buffer actor to store part of the input 
stream;

–	 Inserting directives to optimize execution;
–	 Adding actors to store and share weights;

The following section describes these modifications, 
which correspond to one of the two available points to the 
user for shaping adaptivity (the other is N1).

A2 ‑ Convolutional Layer  A great deal of effort went into 
building the convolutional layer. As said, it is not possible 
for an actor to have random access to the input tensor, but 
the input is received as a stream of data. Given that, a certain 
storage capacity is needed within a convolutional layer to 

Table 2   Training and Validation results on the different considered 
validation sets.

Training

Batch size 32
Epochs 10
Steps per epoch 100
Average accuracy 98%
Average loss 3.2

Validation

val_data     _1 _2 _3 _4

accuracy 96% 96% 98% 98%

4  The images in this dataset are taken from google images, and 
belong to ten different categories, among which are mammals, rep-
tiles, insects, birds, and fishes.
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store part of the stream. The reason lies in the convolutional 
operation itself, which uses the same element of the input 
tensor multiple times to compute different elements of the 
output. For example, in a layer with a 3x3 kernel and stride 
1, each element is used nine times. So, we implemented 
a convolutional layer with two actors: a line buffer actor 
and a convolutional actor. The line buffer is responsible for 
receiving data, storing them, and forwarding them to the 
convolutional actor (see Listing 1). More in detail, it stores 
elements row by row until a sub-matrix, consistent with the 
kernel size, is stored. At this point, it is possible to calculate 
an element of the output, so the line buffer actor forwards 
this sub-matrix to the convolutional actor to perform the 
actual convolution. To do that, the line buffer must have the 
capacity of storing a number of rows equal to the height of 
the kernel.

A2 ‑ Optimizing Through Directives  After the ONNX-
parser elaboration (A1 in Fig. 3), a library of C functions 

corresponding to dataflow actors would be ready to be pro-
cessed by Vivado HLS, but a further step of optimization 
is needed to exploit the capabilities of the tool. As before, 
we concentrated the most of our effort on the convolutional 
actor, being it the heaviest in terms of computation and, con-
sequently, potentially the one promising the larger possible 
improvements on the overall performance of the system. In 
particular, the convolution function is described through a 
set of nested loops. The innermost loop consists of three 
operations: reading an element from the kernel, multiply-
ing it with the last input element, and accumulating it (see 
Listing 2). These three operations must be performed one 
after the other. But there is no dependency between consecu-
tive iterations of the loop, thus an iteration can start even 
before the previous one is completed, leaving the door open 
for pipelining. This opportunity to speed up the execution 
is hidden by the imperative C description, the synthesizer 
can be forced to apply pipelining during synthesis with the 
pragma HLS PIPELINE directive, as depicted in the 
same Listing 2.

A2 ‑ Access to Weights  In order to support reconfigurability, 
we need further refinement in the implementation of the 
convolutional layer. In fact, storing all the weights used by 

Listing 1 C code of the line buffer actor. The first two for loops are 
responsible for iterating over the output tensor to check whether it has 
been completed or not: for each pixel of the output the Read Loop 
and the Write Loop must be executed. The Read Loop reads from the 
input stream until a submatrix coherent with the kernel size has been 
received. At this point, it exits letting the Write Loop forward the data 
to the convolutional actor in the proper order

Listing 2 C description of the convolutional actor. The first two for 
loops are responsible for iterating over the output tensor: for each 
pixel of the output, the vector out_val must be initialized to the bias 
(Init loop), convolved with the kernel (Convolution loop), and then 
written to the output channel. The pragma HLS PIPELINE is placed 
in the innermost loop to speed it up
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a CNN requires a considerable memory footprint. To avoid 
slow memory accesses to off-chip memories, we wanted to 
keep all the weights inside the FPGA chip. Moreover, in line 
with MDC philosophy which supports different application 
configurations by replicating and sharing actors/resources 
(see Section 2.2), we decided to opt for sharing the weights 
among configurations, rather than duplicating them for 
each configuration. To do so, weights that are in common 
between different configurations are packed within the same 
actors, and these actors have been inserted in the dataflow 
model of the different configurations.

Another desirable feature is to keep the implementa-
tion consistent with the dataflow paradigm, which means 
avoiding random access to weights and providing them in a 
streaming manner. To do that, each set of weights is mapped 
on a different, dedicated actor. This type of actor has only 
one output port and they are in charge of storing the kernel 
weights and delivering them in the proper order to be used 
by convolutional actors. The same choice has been taken 
for bias storing, so that dedicated bias actors have been 
modeled.

A2 ‑ Resulting Convolutional Layer  Wrapping up, the final 
result is that a convolutional layer is mapped in four different 
actors: a weight and a bias actor to store the kernel, a line 
buffer actor to store parts of the input stream to be reused, 
and a convolutional actor to perform the computation. The 
overall schematic of the layer, which in turn takes the name 
of baseline layer (LAYER_B), is depicted in Fig. 5. Note that 
LAYER_B includes the baseline version of the convolutional 
actor, called hereafter CONV_B, which elaborates one con-
volutional layer.

A2 ‑ Other Layers  We used the same approach of splitting 
a layer into two actors, one for storing incoming data and 
one for performing the computation, to implement the Max-
Pool layers. Thus they are mapped into a line buffer actor, 
exactly as the one saw before, and a pooling actor. Instead, 
we used a single actor for mapping the other types of layers: 
normalization layer, ReLU layer, and concatenation layer. In 
these cases there is a direct correspondence between an input 
element and an output one, so no storing is needed. The 
same holds for the fully connected layers, where each input 
element is multiplied and accumulated a number of times 
equal to the output size. In a fully connected layer, each 
element of the output vector depends on the whole input, 
thus the partial sum for each output is stored inside the actor 
until the whole input is received. Moreover, in all these cases 
there is no need for additional dedicated actors for storing 
(and sharing between configurations, as will be more clear 
in Section 3.3) weight and bias data, which are not present 
in layers other than convolutional.

3.3 � Adaptive Accelerator Generation

In the proposed flow, adaptivity is delivered by the MDC 
tool that generates a reconfigurable datapath, and more 
precisely a whole accelerator, capable of accelerating all 
the applications corresponding to a set of input dataflow 
models (step N2 in Fig. 3). Here, reconfiguration can be 
functional, when the input dataflow models correspond 
to different applications, or non-functional, when they 
model different working points (e.g. with different speeds, 
quality, and power consumption) of the same application. 
Reconfiguration is performed at the dataflow actors level, 
meaning that MDC shares the common actors among 
different input dataflows through additional switching 
modules (sboxes), so that in the resulting system the cor-
responding resources are multiplexed in time among the 
executed configurations.

N1 ‑ Exploiting Inception Topology  For the considered CNN 
case, to achieve some degree of adaptivity we exploited the 
peculiar architecture of InceptionNet to map more than 
one layer on the same convolutional actor, thus sharing the 
underlying resources (DSP slices) and implementing non-
functional reconfiguration. As seen in Section 3.1, Incep-
tionNet is characterized by four branches working on the 
input in parallel, where one or more convolutional layers 
are executed. The regularity of the topology leads to the fact 
that some convolutional layers within the same block share 
the same hyper-parameters (e.g. kernel size, stride, zero-
padding). This allows using the same actor, which has access 
to different weights, to perform different convolutions. We 
will refer to this actor as CONV_D actor, and we will let it 
be capable of performing two different convolutions (double 

Figure  5   Schematic of the implementation of a convolutional layer. 
The weight and bias actors (top green circles) are sources that store 
and provide the parameters of the kernel. The line buffer actor (bot-
tom green circle) stores part of the input stream and forwards it when 
it is possible to evaluate an output element. The CONV_B actor per-
forms the convolution (red circle).
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convolutional actor). Then two convolutional layers can be 
mapped into three actors: two line buffer actors, one for each 
flow, plus a single CONV_D actor. In Fig. 6 the resulting 
implementation of the two merged layers (LAYER_D) is 
shown. Of course, besides convolutional (double) actors and 
line buffers, also weight and bias actors, one per each imple-
mented layer, are included. Note that, this process involves 
both code refactoring and dataflow modeling activities (step 
A2 and N1 in Fig. 3 respectively). This implementation is 
expected to achieve adaptivity through non-functional recon-
figuration: it should reduce resource utilization and, in turn, 
power consumption, while increasing the execution latency 
with respect to a fully parallel baseline implementation.

N2 ‑ Reconfigurable Layer  The possible implementations of 
two convolutional layers, LAYER_B which employs two par-
allel layers (Fig. 5 shows only one of them) and LAYER_D 
with double layers just introduced, share many actors. The 
line buffer actors, the weight actors, and the bias actors 
are in fact common to both of them. The CONV_B and 
CONV_D are the only different actors between LAYER_B 
and LAYER_D. By applying this simple modification to the 
baseline structure of the CNN dataflow model (which adopts 
only LAYER_B and CONV_B, and hereafter named CNN_B), 
a different working point (hereafter named CNN_D) has then 
been derived substituting different compatible couples of 

LAYER_B with the corresponding LAYER_D. Table 3 gives 
an overview of the overall dataflow models composition: 
CNN_B involves 131 actors, while CNN_D 121. Overall, the 
two models have 113 actors which can be shared.

Through the MDC tool it has then been possible to com-
bine CNN_B and CNN_D to obtain the corresponding recon-
figurable dataflow model (step N2 in Fig. 3), hereafter named 
CNN_R, and the related datapath for the adaptive accelerator 
(step N3 in Fig. 3). Please note that the HDL corresponding 
to the dataflow actors is given by Vivado HLS (step A3 in 
Fig. 3) taking as input the C code defined and refined as 
discussed in Section 3.2 and at the beginning of this Section.

N3 ‑ Accelerator Generation  The accelerator implements the 
two versions of the network and switches dynamically from 
the execution of one of them to the other. FIFOs dimen-
sions have been assigned empirically for all the considered 
dataflow networks. In particular, we sized the FIFOs of each 
branch (right before the concatenation actor) to avoid dead-
locks. To do that we considered the different ratios between 
received input elements and output elements produced by 
each branch. This ratio, in turn, depends on the number of 
layers and their kernel size. The CNN_R overall involves 
140 actors plus 72 sboxes. A scheme of a single reconfig-
urable convolutional layer, where CONV_B and CONV_D 
are multiplexed in time through sboxes and other actors are 

Figure 6   Schematic of the 
implementation of two convo-
lutional layers using a single 
convolutional actor, which we 
will refer to as CONV_D. The 
CONV_D actor (blue circle) 
performs the convolution of two 
different inputs with two differ-
ent kernels, but the two layers 
share the same hyper-parame-
ters. On the top right corner, the 
functionally equivalent two par-
allel baseline layers (LAYER_B) 
are depicted. FIFO
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shared, is depicted in Fig. 7. This layer is obtained, basically, 
by merging two parallel LAYER_B and the corresponding 
LAYER_D. The overall adaptive accelerator, as detailed in 
Section 4.1, embeds the reconfigurable datapath in a ready-
to-use Xilinx IP provided with input/output stream channels, 
in particular AXI-Stream protocol compliant, which allows 
feeding the accelerator with tensors lying in main memory, 
accessible from a general purpose core, through a Direct 
Memory Access (DMA) engine.

4 � Experimental Results

In this section, experimental results obtained with the pro-
posed flow for the presented test case will be shown. Besides 
an overall view of the obtained CNN accelerator, coming 
from a real implementation and execution of the system on 
a development board (see Section 4.1), also a focus on sin-
gle actor/layer data, coming from logic syntheses and HW 
simulations, is provided (see Section 4.2). In both cases, 
the target device is a Xilinx Zynq Ultrascale+ SoC, the 
XCZU9EG-FFVB1156, available on the ZCU102 Evalu-
ation Kit, while the adopted tools are all from the Xilinx 
Vivado design suite.

4.1 � Overall Accelerator

In this section, experimental results related to the overall 
CNN accelerator are reported. All the data refer to real 
implementations of the system on the considered ZCU102 

development board. Besides the CNN datapath provided by 
MDC starting from CNN dataflow models (red square on the 
bottom right side of Fig. 3), an entire integrated processor-
accelerator system is considered. As depicted in Fig. 8, the 
system is composed by:

–	 a host processor to control accelerator and data flowing 
(zynq_ultra_ps_e_0);

–	 a main memory where input tensor and results are stored 
(zynq_ultra_ps_e_0);

–	 a DMA engine to transfer data from/to the main 
memory to/from the accelerator performing memory 
mapped to stream protocol translation (axi_dma_0);

–	 AXI-Stream FIFOs to buffer accelerator inputs and out-
puts (axis_data_fifo_in_0 and axis_data_fifo_in_1);

–	 an AXI bus and an AXI smart connect to connect the 
processor, the DMA and the accelerator (ps8_0_axi_
periph and axi_smc respectively);

–	 an adaptive CNN accelerator, which embeds the recon-
figurable CNN datapath corresponding to the MDC input 
dataflow models (s_accelerator_0).

All the listed components, but the host processor and the 
memory which are hardcore, are instantiated on the Zynq 
device available programmable logic and run at 100 MHz.

Three different designs are considered for the experiment:

–	 ACCEL_B: the system provided with a non-adaptive 
accelerator embedding a CNN datapath coming from 
baseline CNN_B dataflow;

–	 ACCEL_D: the system provided with a non-adaptive 
accelerator embedding a CNN datapath coming from 
double CNN_D dataflow, which computes two convolu-
tional layers with the same actor in different parts of the 
network as explained in Section 3.3;

–	 ACCEL_R: the system provided with an adaptive accel-
erator embedding reconfigurable CNN_R datapath 
obtained with MDC by combining CNN_B and CNN_D 
dataflows.

ACCEL_B and ACCEL_D designs are taken as terms of 
comparison for the adaptive ACCEL_R design.

Resource Utilization  Figure 9 depicts the overall accelera-
tor results of the considered systems. Here we can see that 
most of the resources in the programmable logic are used by 
the CNN accelerator in all the considered cases. Contributes 
from the DMA, the AXI FIFOs and AXI Buses are equal for 
each accelerator. These blocks are indeed part of the proces-
sor-accelerator interface and are required to communicate 
with the host in the integrated system, but do not depend 
on the executed accelerator itself. Moreover, the resource 

Table 3   Dataflow models composition between baseline (CNN_B) 
and double (CNN_D) versions. Convolutional actors are the only 
ones differing from the two versions, the other types of actors/layers 
present in the model (Section 3.1) are shared.

Actor/layer type # of instances 
in CNN_B

# of instances 
in CNN_D

# of 
shared 
instances

Batch normalization 4 4 4
Bias 22 22 22
Concatenation 3 3 3
Conv_B 22 4 4
Conv_D 0 9 0
Gemm 1 1 1
Line buffer 22 22 22
Line buffer MP 6 6 6
Maxpool 6 6 6
ReLU 22 22 22
Weight 22 22 22
TOTAL 130 121 112
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overhead of the ACCEL_R is limited when compared with the 
two non-adaptive accelerators. This means that most of the 
resources are shared when the two accelerators are merged. 
From another point of view, the great deal of saving obtained 
sharing the common resources in ACCEL_R is appreciable 
looking at the comparison of CNN_R with the sum of two 
non-adaptive accelerators, CNN_B and CNN_D, shown in 
Fig. 9f. For every kind of resource, excluding DSPs, more 
than 40% of saving is present. This means that most of the 

resources, considering both actors and FIFOs, are shared. 
On the contrary, the kind of resource with the smallest sav-
ing is DSP, since DSPs are mainly used by the convolutional 
actors that are not shared between the two configurations. 
The overall result is that resource sharing allows the recon-
figurable accelerator ACCEL_R to deliver adaptivity at a 
reduced resource cost compared with a system that imple-
ments two separate non-adaptive accelerators (ACCEL_B and 
ACCEL_D) and switches dynamically between them.

Figure 7   Schematic of the 
implementation of two convo-
lutional layers using MDC. The 
green actors are shared between 
the two configurations, while 
the blue ones belong to one or 
the other. The sbox modules 
are responsible for directing the 
tokens according to the selected 
configuration.
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Execution Time  Dealing with the execution time related 
to a single image classification on the three considered 
designs, results are reported on Table 4. The resulting over-
head of convolutional actors implemented by CNN_D with 
respect to the baseline CNN_B is about 8% . A trade-off 

is then present as execution time is lower in CNN_B, the 
most resource-consuming accelerator. Indeed, the resource-
saving introduced in CNN_D by mapping two layers in a 
single actor (see Section 3.3) is paid with a degradation of 
the execution time.

(a) (b)

(c) (d)

(e) (f)

Figure 9   Resource occupancy of the systems implementing the CNN accelerator. In Fig. 9f there are the overall CNN accelerators, where labels 
indicate percentage variation of CNN_R with respect to the sum of CNN_B and CNN_D.
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4.2 � Focus on Single Actors and Layers

In this section, a detail on single actors and layers results is 
proposed, in order to better understand what is happening 
within the implemented CNN, how adaptivity is reached in 
the practice, and what it implies on the system performance. 
In this case, data have been collected with Xilinx Vivado 
tools: synthesis, simulation, and power estimation (con-
sidering switching activity gathered during post-synthesis 
simulations of the designs). The operating frequency is 100 
MHz in all cases.

During the analysis of single convolutional actors and 
layers, three different dimensions are considered to highlight 
the relationship of the analyzed metrics with the size of the 
specific actors and layers. In particular, the designs under 
test will be:

–	 small, with 8x3x1x1 convolutional actors and layers;
–	 medium, with 16x64x1x1 convolutional actors and layers;
–	 large, with 64x32x3x3 convolutional actors and layers.

These three actors and layers have been developed con-
sidering both baseline (CONV_B, LAYER_B) and double 
(CONV_D, LAYER_D) versions of the convolutional actors 
described in Section 3.3. Here CONV_B and CONV_D refer 
to the only red and blue circles respectively in Figs. 5 and 6, 
while LAYER_B and LAYER_D to all the resources involved 
in the same Figures (so that including FIFOs, weight, bias, 
and line buffer actors, besides the convolutional actors). 
Additionally, 2xCONV_B and 2xLAYER_B designs, which 
are simply a sum of two baseline actors and layers, will 
be considered to fairly compare CONV_D and LAYER_D, 
which actually implement two actors and layers.

Resource utilization Resource occupancy data for single 
actors and layers are shown in Table 5. Double versions 
(CONV_D and LAYER_D), as expected, present an increase 
of resources with respect to the corresponding baseline 
ones (CONV_B and LAYER_B), as depicted in column %

1

 . 
Such increase is always below 35% in the case of single 
actors (CONV_B versus CONV_D), while it is larger, even 
more than 100%, in case of single layers (LAYER_B ver-
sus LAYER_D). This difference comes from the fact that 
single layers, besides the convolutional actor, also involve 

line buffers, weight and bias actors, and FIFOs. Thus, since 
LAYER_D implements two convolutional layers, it includes 
line buffers, weights, bias, and FIFOs of corresponding to 
two different layers. For this reason, a more fair comparison 
is given in column %

2

 , where double versions are compared 
with two parallel baseline ones (the previously mentioned 
2xCONV_B and 2xLAYER_B). Compared to these function-
ally equivalent designs, CONV_D and LAYER_D are almost 
always employing less resources, reaching peaks of 50% of 
saving in some cases. LUTRAMs in LAYER_D are the only 
resources that are not saved with respect to 2xLAYER_B. The 
reason is that this type of resource is used by the synthesizer 
only to realize the FIFOs, and the number of FIFOs required 
by CONV_D is exactly double the one in CONV_B, and they 
have all the same number of slots.

Dynamic Power Consumption  Dynamic power consumption 
data for single actors and layers are shown in Table 6. Here, 
resource occupancy evidence is reflected since power con-
sumption is directly proportional to the number of employed 
logic. In particular, the performance of baseline and double 
designs is the same in terms of single actors (CONV_B ver-
sus CONV_D), meaning that double actors consume about 
the same power as baseline ones. This absence of diversity is 
mainly due to the fact that the designs are too small to appre-
ciate a variation in the power estimation. Please note that, if 
two parallel baseline actors are considered as a fairer term of 
comparison (column %

2

 ) than one unique baseline actor (col-
umn %

1

 ), double actors anyway behave better than baseline 
ones. The difference is, instead, evident when entire layers 
are considered (LAYER_B versus LAYER_D). Going from 
baseline to double versions, an increase of consumed power 
is still present, as in terms of resources, and the increase is 
in some cases very significant, as for clk contribution. How-
ever, as occurred for resources, when the comparison with 
2xLAYER_B is considered (column %

2

 ), the saving is quite 
clear, reaching 50% and more in different terms. Overall, 
looking at the dyn term, which is the sum of all the others, 
the LAYER_D saves always more than 30% of power with 
respect to 2xLAYER_B.

Execution Time  While in terms of resources and power con-
sumption the benefits of double versions have emerged, the 
drawbacks of computing two convolutional layers with the 
same logic, as seen in the previous section, lie in execution 
latency. In Table 7 execution latency of the different con-
sidered layers is reported. Such data refer to a test condition 
where each layer is fed with an entire tensor necessary for 
a single image classification of the CNN, and input/output 
are always readable/writable, that is empty/full conditions 
in incoming/outgoing FIFOs never occur. Please note that, 
in such test condition, CONV_B and LAYER_B execution 
latency is almost the same, so that only LAYER_B data 

Table 4   Execution time for image classification. % indicate percent-
age variation with respect to ACCEL_B. 

* Execution time depends on the configuration

Accelerator Execution time [ms] %

ACCEL_B 538 -
ACCEL_D 583 8
ACCEL_R 538 - 583* 0 - 8*
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are depicted in the Table 7. Double versions of the layers 
(LAYER_D) take exactly double the time than baseline ones 
(LAYER_B) to process the input tensor, for all the three con-
sidered dimensions of the kernel. This is true either for the 
single baseline layer case (column %

1

 ) and for the parallel 
baseline layer one (column %

2

 ) since, being parallel, the two 
layers are executed simultaneously in these latter designs. 
So, resources and power savings of the double designs seen 
in Tables 5 and 6 are paid by doubling the execution time 
of the layers.

In the end, the proposed solutions can be further 
improved by exploiting the presented toolchain: more than 
two working points can be derived to have a wider adaptiv-
ity response (that is modeling more dataflows in step N1 
of Fig. 3), performance can be further enhanced by using 
other pragmas, e.g. total or partial loop unrolling, on the 
convolutional actors during the HLS step (A2 of Fig. 3) as 
well as on the other actors, other metrics (e.g. accuracy of 
the CNN classification) can be involved in the trade-offs 
achieved among working points, thus acting on both steps 
N1 and A2, the ones enabling adaptivity shaping.

4.3 � Evaluation Summary

At the single actor and layer level, the trade-off between 
power consumption and execution latency due to the adop-
tion of the same resources for performing two convolutional 
layers in the double version of the CNN is clearly visible, 
since overall dynamic power is reduced by 33%, 31%, 
44% respectively in small, medium, and large layer design 
(Table 6 cols. %

2

 ) at the price of doubling the execution time 
in every layer design (Table 7 cols. %

2

 ). However, energy 
is commonly considered more important than power in the 
addressed context. We can calculate the energy consumption 
of an image classification by multiplying the power con-
sumption by the execution time. To see an energy/execution-
time trade-off between the two proposed configurations, the 
overall-accelerator data must be considered (Section 4.1). 
In this case, the difference in execution time for using the 
LAYER_D layers is only 8% more than the single LAYER_B 
layers (Table 4), leading to an expected saving in energy 
when this configuration is running. At this point, power 
measurements on the accelerators running on board have 

Table 5   Resource occupancy 
of convolutional actors/layers. 
# indicates the number of 
used slices. %

1

 and %
2

 indicate 
percentage variation with 
respect to CONV_B/LAYER_B 
and 2xCONV_B/2xLAYER_B 
respectively, these latter 
corresponding to two times the 
power of the former.

design resource small medium large

# %
1

%
2

# %
1

%
2

# %
1

%
2

CONV_B LUT 73 - - 80 - - 101 - -
LUTRAM 0 - - 0 - - 0 - -
FF 88 - - 98 - - 110 - -
BRAM 0.5 - - 0.5 - - 0.5 - -
DSP 1 - - 1 - - 1 - -

CONV_D LUT 97 +33 -34 101 +26 -37 120 +19 -41
LUTRAM 0 +0 +0 0 +0 +0 0 +0 +0
FF 107 +22 -39 116 +18 -41 126 +15 -43
BRAM 0.5 +0 -50 0.5 +0 -50 0.5 +0 -50
DSP 1 +0 -50 1 +0 -50 1 +0 -50

LAYER_B LUT 500 - - 740 - - 3218 - -
LUTRAM 80 - - 80 - - 80 - -
FF 569 - - 639 - - 717 - -
BRAM 1 - - 2.5 - - 2 - -
DSP 1 - - 1 - - 2 - -

LAYER_D LUT 982 +96 -2 1454 +96 -2 6357 +98 -1
LUTRAM 160 +100 +0 160 +100 +0 160 +100 +0
FF 1083 +90 -5 1214 +90 -5 1340 +87 -7
BRAM 1.5 +50 -25 4.5 +80 -10 3.5 +75 -13
DSP 1 +0 -50 1 +0 -50 3 +50 -25
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not been carried out yet. Having proved with this prelimi-
nary paper the feasibility and potential benefits of support-
ing reconfiguration, we will explore in depth the trade-off 
execution, as discussed in Section 5.2.

5 � Conclusions

Efficiency and flexible behaviors have nowadays turned out 
to be a must in many application domains when cyber-physi-
cal entanglement is there. Designers cope with it by leverag-
ing on heterogeneous systems, whose design still requires a 
lot of expertise, especially when custom computation units 

have to be derived. This for sure does not help in terms of 
design time and development costs so investments and stud-
ies related to design automation and frameworks are still on 
the hype.

All these considerations are certainly true in the case of 
image and video processing at the edge, especially consider-
ing classification tasks using neural networks. This is a key 
aspect in cyber-physical systems, as context awareness is 
crucial to take correct decisions and performing actions. The 
scientific community is quite active in providing new, more 
efficient implementations and tools for neural networks 
targeting different devices and features. However, dealing 
with HW accelerators it is not yet capable of delivering 

Table 6   Dynamic power 
consuption in mW of 
convolutional actors/
layers (columns mW). %

1

 
and %

2

 indicate percentage 
variation with respect to 
CONV_B/LAYER_B and 
2xCONV_B/2xLAYER_B 
respectively, these latter 
corresponding to two times 
the resources of the former. 
dyn refers to the total dynamic 
power, the sum of the other 
terms: clock (clk), signal (sig), 
logic (logic), BRAM (bram), 
and DSP (dsp).

design power small medium large

mW %
1

%
2

mW %
1

%
2

mW %
1

%
2

CONV_B dyn 2 - - 3 - - 4 - -
clk 0 - - 0 - - 0 - -
sig 0 - - 1 - - 1 - -
log 0 - - 1 - - 1 - -
bram 1 - - 1 - - 1 - -
dsp 0 - - 0 - - 0 - -

CONV_D dyn 2 +0 -50 3 +0 -50 4 +0 -50
clk 0 +0 +0 0 +0 +0 0 +0 +0
sig 0 +0 +0 1 +0 -50 1 +0 -50
log 0 +0 +0 1 +0 -50 1 +0 -50
bram 1 +0 -50 1 +0 -50 2 +0 -50
dsp 0 +0 +0 0 +0 +0 0 +0 +0

LAYER_B dyn 6 - - 8 - - 26 - -
clk 2 - - 2 - - 3 - -
sig 1 - - 2 - - 9 - -
log 1 - - 2 - - 13 - -
bram 1 - - 2 - - 2 - -
dsp 0 - - 1 - - 1 - -

LAYER_D dyn 8 +33 -33 11 +38 -31 29 +12 -44
clk 4 +100 +0 4 +100 +0 5 +67 -17
sig 1 +0 -50 2 +0 -50 8 -11 -56
log 1 +0 -50 2 +0 -50 13 +0 -50
bram 1 +0 -50 2 +0 -50 2 +50 -25
dsp 0 +0 +0 0 +0 +0 0 +0 +0

Table 7   Execution latency in ms of convolutional layers (columns ms). %
1

 and %
2

 indicate percentage variation with respect to LAYER_B and 
2xLAYER_B respectively, these latter corresponding to the same latency of the former (it is two LAYER_B in parallel).

design small medium large

ms %
1

%
2

ms %
1

%
2

ms %
1

%
2

LAYER_B 9.8 - - 51.9 - - 85.9 - -
LAYER_D 19.6 +100 +100 103.8 +100 +100 171.8 +100 +100
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full support for neural networks delivering high execution 
efficiency, but also flexibility through adaptive behaviors. 
But, still in the context of cyber-physical systems, adapting 
execution metrics to the ongoing situation is necessary to 
meet conflicting performance constraints.

5.1 � Summary

In this work, we have presented a novel toolchain for aiding 
developers in modeling neural networks, deriving almost 
automatically the corresponding HW accelerator, and giving 
to the user the possibility of molding on top of that a certain 
degree of adaptivity. The proposed toolchain requires an 
ONNX neural network model as input, it adopts two open-
source tools, the ONNXparser, and the Multi-Dataflow 
Composer, to derive a lower-level specification of the same 
network. Adaptivity can be shaped by the user on the same 
input ONNX model(s) or on the lower specification of the 
network, according to the specific needs, knowledge, and 
skills. In the test case proposed in this work, Vivado HLS is 
then applied to derive final HW specifications for the accel-
erator, but in theory, other HLS engines can be adopted, 
open to the possibility of addressing target devices different 
from FPGAs, targeted by Vivado HLS.

A CNN for humans/animals classification, used within 
a FitOptiVis project Use Case regarding a critical infra-
structure surveillance scenario, is adopted as a proof of 
concept. Such CNN is made adaptable by deriving, at the 
Vivado HLS input stage, logic employing different amounts 
of resources for elaborating the convolutional layers. As a 
result, the CNN accelerator can adapt its behavior accord-
ing to the context needs: if the battery is running out, it can 
change profile and consume about 30% less power in each 
layer at the price of an extra 8% time to classify an image; on 
the contrary, if response time is crucial, e.g. due to prelimi-
nary alarms already raised, the network could be executed 
at the maximum speed by pulling more energy from the bat-
tery. Note that the obtained solution is purely demonstrative, 
to show the potentials of the proposed flow, so the final 
implementation is not optimized and is not competitive with 
respect to the state-of-the-art.

5.2 � Future work

Being this a demonstrative work to show the effectiveness 
of exploiting runtime reconfigurability to design adaptive 
accelerators for CNNs, several further improvements are 
planned and ongoing.

Design Flow  While maintaining the same structure, the tool-
chain will be adapted to be compatible with alternative HLS 
engines, that in turn can enlarge the set of target devices 
and available features. Moreover, the user intervention will 

be reduced in manual steps where adaptivity is described 
(steps N1 and A2). The mapping from the ONNX model to 
the dataflow model (step N1) will be automated, but the user 
will necessarily still be in charge of designing the ONNX 
model and shaping the adaptivity. The code refactoring and 
pragma insertion (step can be A2) will be partially automated 
through the extension of the ONNXparser. Most effective 
pragmas can be automatically utilized, e.g. loop pipelining. 
While the insertion/tuning of other ones, e.g. loop unrolling, 
can be facilitated, leaving to the user the duty of selecting 
the desired trade-off, e.g. the unrolling factor.

Adaptivity Experiments  Adaptivity support has been dem-
onstrated on a power-vs-latency tradeoff and considering 
a limited part of the system (two convolutional layers). A 
more complete study with accurate measurements, taking 
into consideration also the switching among contexts/sce-
narios, is planned. Such measurements will be taken directly 
on the system running on the physical target board and will 
reveal the possibility of achieving an energy-vs-latency 
tradeoff, not known at this development point. Moreover, 
adaptivity support will be investigated by targeting bigger/
deeper CNN models as well as different kinds of tradeoffs, 
e.g. trading off data precision with energy consumption. The 
integration of the adaptive accelerators with an embedded 
OS is ongoing and will serve as a first step to developing a 
more accurate and easy-to-use testing environment for the 
proposed design flow.

Appendix. Modelling the Networks 
with Keras

The starting network given by the use case provider of the 
FitOptiVis project was already in ONNX format, and it 
was derived from an original Keras model. However, sev-
eral incompatibilities with respect to the adopted ONNX-
parser have emerged, including some layers that are not 
supported by ONNXparser, such as Cast, Sqrt and Trans-
pose (all indicated as black modules in Fig. 10). Moreover, 
by the initial analysis, it turned out that other optimiza-
tions were needed, like the substitution of the cascade of 
Cast+Reshape into a Flatten and of the Matmul+Add into 
a Gemm (again, all indicated as black modules in Fig. 4).

The tf2onnx [47] library has been originally used to 
export the networks. Taking into account the characteristics 
of the used converter, here follows the list of detected issues 
that led to the incompatibilities that should be avoided/
overcome:

–	 Transpose: TensorFlow uses NHWC data format by 
default, while ONNX uses NCWH. This layer is needed 
to overcome the data format incompatibility when trans-
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lating the network from one framework to another, but its 
implementation is not supported by the converter [48].

–	 Exploded Dense Layer (gemm = matmul+add): the opti-
mized representation of the Dense layer in the ONNX 
model is through Gemm operator5. However, it was not 
supported by tf2onnx until May 14th 2019, but also the 
latest version of the converter is still reporting problems 
on this topic6.

–	 Flatten: the correct conversion should be constant + 
reshape, since Cast operation is not accepted by the 
ONNXparser. Until now, all Pytorch to ONNX convert-
ers are able to optimize it directly into a flatten operator, 
except for the TensorFlow to ONNX ones7.

–	 Exploded Batch Normalization (Sqrt, Reciprocal, Sub, 
Mul, Add): from the carried out analysis, this is caused 
by the Batch Normalization operator inserted right after 

Figure 10   InceptionNet 
structure generated from Keras: 
black modules highlight the 
main incompatibilities with the 
adopted ONNXparser.

5  https://​github.​com/​onnx/​onnx/​issues/​1682
6  https://​github.​com/​onnx/​tenso​rflow-​onnx/​issues/​516#​issue​comme​
nt-​50995​3151

7  https://​github.​com/​onnx/​tenso​rflow-​onnx/​issues/​490#​issue​comme​nt-​
49727​0831

https://github.com/onnx/onnx/issues/1682
https://github.com/onnx/tensorflow-onnx/issues/516#issuecomment-509953151
https://github.com/onnx/tensorflow-onnx/issues/516#issuecomment-509953151
https://github.com/onnx/tensorflow-onnx/issues/490#issuecomment-497270831
https://github.com/onnx/tensorflow-onnx/issues/490#issuecomment-497270831
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Flatten in the provided net. his causes the division of 
Batch Normalization in multiple sub-layers, some of 
them, such as Sqrt and Reciprocal, are not supported by 
the converter.

Therefore, a more suitable converter for the input models 
had to be searched for. As a first candidate, the keras2onnx 
[49] converter has been considered. However, although the 
conversion resulted improved, there were some remaining 
issues: non supported identity and traspose functions were 
there, as well as the already reported issue regarding the 
Exploded Dense Layer. Then, the new ONNXMLTools 
library [50] has been tested. This library includes a wrap-
per of keras2onnx, and it allows to take the non-compatible 
conversion from Keras to ONNX as input, making it pos-
sible to apply an optimizer to eliminate unnecessary layers 
or to merge two or more layers into one. Using the result 
obtained with keras2onnx, the following optimizations have 
been applied: eliminate_identity and fuse_mat-
mul_add_bias_into_gemm. Nevertheless, an unsolved 
bug8 in the ONNX library code used by ONNXMLTools 
prevented the network from being optimized. It seems9 that, 
at the moment, the only way to use this type of optimizer 
without problems is starting from a network described with 
Pytorch framework instead of Keras.

In the end, this is what has been done in this work, where 
InceptionNet has been re-trained with Pytorch. Neverthe-
less, we do not exclude that the proposed flow with dif-
ferent starting models could be compatible with Keras too, 
provided that there is also a constant effort in optimizing the 
aforementioned libraries and converters.
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