
Vol.:(0123456789)1 3

Journal of Signal Processing Systems
https://doi.org/10.1007/s11265-023-01855-x

An Automated Design Flow for Adaptive Neural Network Hardware
Accelerators

Francesco Ratto1 · Ángela Porras Máinez2 · Carlo Sau1  · Paolo Meloni1 · Gianfranco Deriu1 · Stefano Delucchi4 ·
Massimo Massa4 · Luigi Raffo1 · Francesca Palumbo3

Received: 3 April 2021 / Revised: 13 February 2023 / Accepted: 15 February 2023
© The Author(s) 2023

Abstract
Image and video processing are one of the main driving application fields for the latest technology advancement of comput-
ing platforms, especially considering the adoption of neural networks for classification purposes. With the advent of Cyber
Physical Systems, the design of devices for efficiently executing such applications became more challenging, due to the
increase of the requirements to be considered, of the functionalities to be supported, as well as to the demand for adaptivity
and connectivity. Heterogeneous computing and design automation are then turning into essential. The former guarantees
a variegated set of features under strict constraints (e.g., by adopting hardware acceleration), and the latter limits develop-
ment time and cost (e.g., by exploiting model-based design). In this context, the literature is still lacking adequate tooling for
the design and management of neural network hardware accelerators, which can be adaptable and customizable at runtime
according to the user needs. In this work, a novel almost automated toolchain based on the Open Neural Network eXchange
format is presented, allowing the user to shape adaptivity right on the network model and to deploy it on a runtime recon-
figurable accelerator. As a proof of concept, a Convolutional Neural Network for human/animal classification is adopted to
derive a Field Programmable Gate Array accelerator capable of trading execution time for power by changing the resources
involved in the computation. The resulting accelerator, when necessary, can consume 30% less power on each layer, taking
about overall 8% more time to classify an image.

Keywords  Hardware Acceleration · Adaptivity · Design Automation · Convolutional Neural Network · Reconfigurable
Computing · High Level Synthesis

1  Introduction

Cyber Physical Systems (CPSs) advanced a lot in the lat-
est years. They are not only capable of strong interactions
and information exchange with the environment, but port-
ing at the edge the possibility of taking decisions, bringing
Artificial Intelligence (AI) on small embedded platforms,
and making them capable of adapting to different envi-
ronmental and systems stimulus, has pushed their level of

autonomy. The support of variable and intensive workloads,
often requiring real-time execution, and the increasing need
of addressing several concurrent functional and non-func-
tional requirements, led designers to adopt heterogeneous
platforms integrating different types of SoftWare (SW) and
HardWare (HW) resources, as different types of cores, appli-
cation specific units, and configurable logic. Recent trends
have seen Field Programmable Gate Array (FPGA) devices,
traditionally employed for rapid prototyping and low-vol-
ume application purposes, gaining momentum in produc-
tion (e.g., Lattice Semiconductor FPGA in edge devices [1])
since they can guarantee HW acceleration, execution flex-
ibility, and energy efficiency.

In the context of modern smart CPSs, we have been
involved in the ECSEL project FitOptiVis (From the cloud
to the edge - smart IntegraTion and OPtimisation Tech-
nologies for highly efficient Image and VIdeo processing
Systems) [2, 3]. The project has studied novel design and

 *	 Francesca Palumbo
	 fpalumbo@uniss.it

1	 DIEE, Universitá degli Studi di Cagliari, Cagliari, Italy
2	 CEI, Universidad Politecnica de Madrid, Madrid, Spain
3	 Dipartimento di Chimica e Farmacia, Universitá degli Studi

di Sassari, Sassari, Italy
4	 Aitek S.p.A., Genoa, Italy

http://orcid.org/0000-0003-0436-2706
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-023-01855-x&domain=pdf

	 Journal of Signal Processing Systems

1 3

run-time approaches for image and video pipelines in CPSs.
In many different domains image processing is a key aspect
of a CPS. Indeed, in application domains such as video sur-
veillance or environmental exploration, visual context and
awareness are fundamental to making correct decisions and
performing appropriate actions. As a test case scenario for
this work, we consider a Convolutional Neural Network
(CNN) for the classification of humans and animals. The ref-
erence network has been provided by one of the FitOptiVis
Use Case providers, which built it for a critical infrastructure
surveillance scenario. To be effective in the addressed sce-
nario, such CNN needs to be efficient, with optimal execu-
tion time and power consumption, accessible to the user,
both in terms of costs and usability, and adaptive, to trade
the mentioned metrics according to the specific needs (e.g.,
lowering power consumption and, in turn, execution time
when the reactivity of classification is not crucial). The best
candidate target architecture for such a job is an FPGA based
HW accelerator since it can deliver efficiency and adaptiv-
ity with limited costs. Regarding usability, however, such
target architecture still constitutes a challenge for develop-
ers, especially if adaptivity is required. In fact, deriving an
efficient accelerator for a given CNN model is hard, and
several attempts already exist in literature in this sense, but
making it adaptive at runtime is a feature that is not usually
included in the available design flows.

To overcome these limitations, we assembled and devel-
oped a complete toolchain to derive HW accelerators for
neural networks, where users can easily shape adaptivity yet
at the model level. This flow is meant to enable the auto-
matic definition of application-specific HW accelerators
starting from the high-level Open Neural Network eXchange
(ONNX) descriptions of the network to be executed. ONNX
is a widely-adopted open format built to represent machine
learning models. The peculiarity of these accelerators is the
adaptivity support: by exploiting coarse-grained HW recon-
figuration [4–6], the flow presented hereafter guarantees to
the system the possibility of providing functional or non-
functional reconfiguration. Such adaptivity can be modeled
directly by the user at a high level of abstraction, so that it
can be shaped according to the specific needs, requirements,
and constraints. As a proof of concept, in this work we show
how it is possible to provide different working points for
a given CNN, trading off power for latency by changing
resources dedicated to the processing of different CNN lay-
ers. These working points are only an example demonstrat-
ing the possibility of achieving adaptivity at the edge, which
can be exploited for many different purposes, e.g. to switch
among configurations providing different Quality of Ser-
vice (QoS) versus energy consumption profiles [7], or to
provide different encryption degrees at the cost of a higher
power consumption [8], or to deliver different performance
per power [9] or energy [10, 11] trade-offs. At the edge,

minimizing consumption is of paramount importance and
demonstrated to be challenging [12], which motivated in
this work the choice of exploring different working points
presenting different power profiles. The main advantage of
the proposed flow is that the process of creating the adap-
tive accelerator is almost automated, from ONNX models
to the ready-to-use accelerator: the user has only to specify
working points at the same model level. Note that, even if
the presented flow can be easily adapted to an Application
Specific Integrated Circuit (ASIC) target, in this work we
address only FPGA devices, which are surely advantageous
in cost and development time with respect to the former.

The main contribution of the work is then an almost auto-
mated flow for developing neural network adaptive accelera-
tors on FPGAs, from ONNX network specifications down
to HW descriptions ready for logic synthesis. Such a flow
allows users to shape adaptivity by acting on the model,
thus avoiding unnecessary implementation details which can
harden the design process. The same runtime adaptivity sup-
port makes it novel among the literature works providing
neural network and CNN acceleration support. A proof of
concept implementation of an adaptive CNN enabling dif-
ferent working points, each delivering a different execution
time versus power trade-off, demonstrates the effectiveness
of the proposed approach. In particular, the obtained imple-
mentation can lower the power consumed by each layer by
30% in front of an overall 8% overhead in terms of network
classification time.

The rest of the paper is organized as follows: Section 2
gives an overview of the background, discussing aspects
related to CNN acceleration, as available tool support and
adaptivity for them; Section 3 describes the assembled flow
from ONNX to adaptive accelerators, clearly showing the
required user manual interventions, and the customization
possibilities. Section 4 illustrates the preliminary results
regarding the single layers and the overall accelerator,
obtained with the proposed flow on the CNN adopted as an
example for the whole explanation. Lastly, Section 5 pro-
vides some final remarks and future directions of the work.

2 � Background

In this section the background of the work is presented,
touching topics related to CNN acceleration and tooling
(Section 2.1) and to tooling for generic HW acceleration and
adaptivity (Section 2.2). The tools involved in the proposed
toolchain are also presented.

2.1 � CNN Acceleration and Tooling

A huge number of approaches have been proposed in lit-
erature focusing on CNN acceleration. Lots of them, those

Journal of Signal Processing Systems	

1 3

more oriented to adaptivity and reconfigurability, rely on
FPGA architectures as a technology substrate [13]. Prob-
ably the most ready-to-use and powerful currently avail-
able FPGA-based acceleration engine is the proprietary one
offered by Xilinx, which provides an integrated framework,
called VitisAI [14], that helps designers in mapping CNNs
on a template soft IP called Deep Learning Processing Unit
(DPU) [15].

2.1.1 � Architectures for CNN Inference

Most tool-oriented works focus on the creation of an opti-
mized FPGA structure, usually relying on a reference archi-
tecture template, based on a specified target CNN. Yu et al.
[16] developed an FPGA acceleration platform that lever-
ages on a unified framework architecture for general purpose
CNN inference acceleration at a data center, achieving a
throughput comparable with the state-of-the-art Graphics
Processing Units (GPUs) in this field, with less latency.
Zhang et al. [17] proposed Caffeine, a HW/SW library to
efficiently accelerate CNNs on FPGAs, leveraging on a uni-
formed convolutional matrix multiplication representation.
Ma et al. [18] presented a Register Transfer Level (RTL)
CNN compiler that generates automatically customized
FPGA HW for the inference tasks of CNNs from SW to
FPGA. These frameworks provide huge performance gains
when compared to state-of-the-art accelerators, as well as to
general purpose Central Processing Units (CPUs) and GPUs.
However, they do not take into account adaptivity as a main
development objective.

2.1.2 � Resource‑constrained and Real‑time Solutions

Other approaches focus on resource-constrained deploy-
ment, mostly validated on smaller devices, e.g. Zynq Sys-
tem on Chips (SoCs), usually Z-7045 or smaller, or Zynq
Ultrascale+ Multi-Processor System on Chips (MPSoCs).
Venieris et al. [19] presented a latency-driven design
methodology for mapping CNNs on FPGAs. As opposed
to previously presented approaches, mainly intended for
bandwidth-driven applications, this work targets real-time
applications, relying on Xilinx High Level Synthesis (HLS)
tools (i.e. Vivado HLS) for mapping, demonstrated on a
relatively simple CNN such as AlexNet, and a very regular
one such as VGG16 featuring only 3x3 kernels, providing
a peak performance of 123 GOps on Xilinx Zynq Z-7045
SoC. Other works focus on a template-based approach rely-
ing on programmable or customizable RTL accelerators [18,
20, 21], more similar to the one that is used in this paper.
SnowFlake [20] exploits a hierarchical design composed of
multiple compute clusters. Each cluster is composed of four
vector compute units including vector Multiply and Accu-
mulate (MAC), vector max, maps buffer, weights buffers,

and trace decoders. SnowFlake provides a computational
efficiency of 91%, and an operating frequency of 250 MHz
(best-in-class for CNN accelerators on Xilinx Zynq Z-7045
SoC). NEURAghe is an inference accelerator exploiting a
HW convolution engine on FPGA [22]. The main computa-
tional engine of the accelerator is a matrix of MAC modules
that takes care of the convolution workload. The accelera-
tor is configurable at design time with different parameters.
On a Xilinx Zynq UltraScale+ MPSoC ZU3EG device, it
is possible to implement a configuration featuring a matrix
of 90 MAC modules, distributed over 9 parallel input chan-
nels and 10 parallel output channels, working at 180 MHz
clock frequency. NEURAghe has been implemented with
flexibility in mind, which has also enabled its validation of
time series analysis with Time Convolution Networks [23].
However, none of these architecture templates supports runt-
ime adaptivity.

2.1.3 � Reduced Data‑precision Implementations

Multiple approaches have been focusing on performance
improvement through the reduction of the precision of
arithmetic operands. Most of the architectures use a pre-
cision of 16-bit (fixed-point) [18–20]. However numerous
reduced-precision implementations have been proposed
recently, relying on 8-bit, and 4-bit accuracy for both maps
and weights, exploiting the resiliency of CNNs to quanti-
zation and approximation [21]. Even extreme approaches
to quantization have been proposed, exploiting ternary [24]
or binary [25] neural network accelerators for FPGA. This
approach significantly improves the computational effi-
ciency of FPGA accelerators, allowing them to achieve
performance levels as big as 8 TOPS [24]. A recent work
by Rasoulinezhad et al. [26], starting from the Xilinx DSP
slices, proposed an optimized DSP block called PIR-DSP
to efficient map 9, 4, and 2 bits data precision MAC opera-
tions. It is implemented as a parameterized module genera-
tor targeting both FPGAs and ASICs, reaching an estimated
runtime energy decrease of up to 31% for a MobileNet-v2
implementation compared with a standard DSP mode. Other
works, like Wang et al. [27], leverage on FPGA LUT blocks
as inference operators for Binary Neural Networks achiev-
ing up to twice area efficiency compared to state-of-the-art
binarized neural network implementation and against several
standard networks models.

To the best of our knowledge, however, literature is still
lacking an analysis of the possibility of adapting the design
to multiple operating modes at run-time, when using FPGA-
based acceleration for AI-related workload. In this work, we
propose a toolchain that is suitable to derive run-time adap-
tive accelerators or accelerator components. Our approach
is thus complementary to the previously mentioned pieces
of work and can serve as an additional development layer in

	 Journal of Signal Processing Systems

1 3

use cases requiring fast and effective adaptation to varying
scenarios.

2.1.4 � ONNXparser

Dealing with CNN acceleration and related tooling, an inter-
esting instrument, which is involved in the proposed flow,
is ONNXparser1. This parser has been made available open
source as a result of the H2020 ALOHA project [28]. It
is a Python application intended to parse the ONNX mod-
els and automatically create the code for a given kind of
target device. ONNXparser has a modular design that can
be extended by the user adding support for additional code
generation targets.

As shown in Fig. 1, the input point of the tool is the
ONNX reader. It is in charge of parsing the ONNX and iden-
tifying an object for each operator and connection found in
the file. The input file is read using the onnx python pack-
age. In case the ONNX file also includes the parameters of
the model, these are exported in external files during the
parsing. The reader creates an intermediate format with a list
of objects describing actors and connections that are found
in the ONNX under analysis. Each structure is populated
with actor/edge parameters.

At this point, the tool uses a set of writers. Each writer
can take the intermediate format as input and generate plat-
form-dependent code. Additional writers can be created and
customized for different platforms. The code generation also
implements required optimization/transformation steps such
as, for example:

–	 batch normalization folding: in some cases, by taking
adequate measures, multiplications and additions required

for the implementation of this actor can be integrated into
weights and bias values for the convolution that follows
the batch normalization in the CNN topology;

–	 data type conversion: the tool can perform an adaptation
of floating-point represented value parameters into fixed
point formats;

–	 operators merging: when accelerator architectures per-
form operations as a sequence in one single accelerator
activation, the parser can merge the original operation,
expressed in the ONNX in one single call of the com-
posed primitive to the accelerator;

–	 data marshaling: different processing elements require
different orderings of input data and weights, for exam-
ple different feature/dimension interleaving. The writer
in the parser can be easily instrumented to generate the
code according to such an ordering.

ONNX parser currently supports most operators used in state-
of-the-art CNNs and has been tested successfully on VGG,
ResNet, YOLO, and UNet. Writers are available for differ-
ent targets: plain C (the writer used in this paper), Pytorch,
CMSIS-based CNN implementation, accelerators [29].

2.2 � Design Automation for Hardware Acceleration
and Reconfiguration

Design automation for digital systems is still an open issue.
The main players on the market are recently pushing for
an additional level of automation, besides the well-known
logic synthesis and implementation. While this latter allows
designing, and programming in case of FPGAs, digital sys-
tems by means of RTL descriptions in Hardware Description
Languages (HDLs), newer techniques known as HLS raise
the abstraction level of such descriptions.

2.2.1 � High‑level Synthesis

Most HLS tools use common programming languages for
general-purpose systems, mostly C code, as input specifi-
cation of the desired functionality. Lots of HLS solutions
from academia and industry have been proposed in the last
years [30], proof of the fact that the scientific community
and the market are moving towards this new automation
level. In particular, the main ASIC and FPGA tool vendors
all deliver HLS solutions within their design suites [31, 32].
Despite being promising and constantly under development,
current HLS instruments are still not capable of filling the
gap between users and technology. In fact, to be effective
for generating optimized usable HW, HLS requires to act
on the source code with refactoring and pragmas insertion.
Efforts and skills for such pre-processing phase, usually
made manually by the same user, could overcome the overall
automation benefits. Moreover, the maturity of HLS tools

Reader

Writer 1

Writer 2

Writer N

...

Code and
parametersONNX

Optimizer

Optimizer

Optimizer

Extract
parameters

Target
device

Model
builder

Data type
conversion

Figure 1   Internal structure of the ONNXparser.

1  https://​gitlab.​com/​aloha.​eu/​onnxp​arser

https://gitlab.com/aloha.eu/onnxparser

Journal of Signal Processing Systems	

1 3

at the moment is not enough for tackling aspects that may
result crucial in different contexts, such as power consump-
tion, system integration or reconfiguration [33].

2.2.2 � Adaptivity Support

Reconfiguration is commonly used in specialized logic to
reach adaptivity. Designing and optimizing reconfigurable
digital systems has historically been a challenge for develop-
ers [34]. Such a challenge is even harder for modern CPSs
which may have to cope with strict and multiple constraints
and requirements, such as extremely low power behavior or
real-time reactivity. For instance, when reactivity is crucial,
coarse-grain reconfiguration could be more suitable than a
fine-grain (e.g. Dynamic Partial Reconfiguration (DPR) on
FPGAs) solution [5]. Indeed, performing reconfiguration at
the entire data word level, like for coarse-grain reconfig-
urable solutions, ensures quick reconfiguration time at the
price of lower flexibility with respect to a fine-grain solu-
tion, where reconfiguration is applied at the single-bit level.
Reactivity and, in turn, reconfiguration, as well as other
secondarily but often not less important aspects in CPSs
design, are hardly addressed by the currently available HLS
instruments. The main reason behind the existing lack is
that to be effective, solutions tackling reactivity, power, and
other secondary and non-functional aspects require a robust
model-based approach [35, 36].

2.2.3 � Model‑based Design: Dataflow Advantages

Model-based design already proved to be successful in the
abstraction of low-level details, enabling quick design auto-
mation. Dealing with HW acceleration, dataflow models
turn out to be particularly suitable in this sense, including
when adaptivity is necessary. Dataflows can be seen as
directed graphs whose nodes, namely actors, represent pro-
cessing elements, while arcs represent point-to-point com-
munication channels between actors. Such channels hold
storing resources and chunks of data flowing throughout
them, namely tokens, are managed according to a First-In
First-Out (FIFO) policy. Actually, HLS tools are indeed
model-based, but according to the adopted input specifi-
cation, the considered models can have different levels of
abstraction. Here, common programming languages, such
as C, can be seen as models of the desired system (e.g.,
they abstract time information), but they are not very suit-
able for highlighting modularity and parallelism of this
latter, features of primary importance in digital systems
design. Dataflows are instead intrinsically representing
parallelism of applications: for this reason, they have also
been proposed as input specifications for HLS [37, 38].
However, the main drawback of such approaches is that

users have to learn new languages and specifications,
which can be far from the code they usually deal with.
Here, a combination of dataflow models, for describing
the system-level view of the desired platform, and com-
mon programming languages, for describing processing
elements of the same system, can be the right trade-off
between effectiveness and usability.

Modularity is very important in digital systems design
when reconfiguration is required. Having a modular view
of the application allows the identification of common
resources to be shared among different configurations.
For this reason, dataflows have already been employed as
models for applications targeting either customizable sub-
strates of generic processing units (executing actors) and
FIFOs [4], as well as specialized reconfigurable computing
accelerators [39]. In particular, this last case offers enough
room for the previously mentioned mixed HLS model-based
approach, employing both dataflows and common program-
ming languages, taking the best of both.

2.2.4 � MultiDataflow Composer Tool

A tool that provides runtime coarse-grained reconfigur-
ability, leveraging on a dataflow description of the appli-
cation, is proposed in [39]. The Multi-Dataflow Composer
(MDC) is an open source tool for, optionally reconfigur-
able, HW acceleration support2. It takes as input applica-
tions that need to be accelerated, specified as dataflows:
they can be different applications with common processing
steps (common actors), to obtain functional reconfiguration
or different versions of the same application, to obtain non-
functional reconfiguration. The dataflows corresponding to
such applications are combined together, and the resulting
HDL top module is automatically generated (see Fig. 2).
The HDL of the actors is not generated by MDC and has to
be provided by the user (HDL component library): a com-
mon programming language can be adopted to model the
actor behavior and to derive the corresponding HDL through
HLS. Besides the baseline feature of combining applications
and delivering a reconfigurable top module of the resulting
HW accelerator, thanks to dataflows MDC is also capable
of providing advanced features, such as optimizations under
different design goals (resources, power, frequency), smart
power management, and easy system integration.

In this work, to provide a full design flow for CNN accel-
eration and adaptivity support, MDC and a well-known HLS
tool, Vivado HLS, have been combined with specific CNN
instruments, ONNXparser, delivering a new powerful mean
for the final users.

2  https://​github.​com/​mdc-​suite/​mdc

https://github.com/mdc-suite/mdc

	 Journal of Signal Processing Systems

1 3

3 � Proposed Flow

In this section, we are going to describe our proposed
flow to develop adaptive HW neural network accelera-
tors adopting a dataflow-based approach. Several tools,
the ONNXparser, Vivado HLS, and the MDC, are adopted
and very limited user intervention is required. In particu-
lar, the starting CNN models fed to the ONNXparser will
be described in Section 3.1. Then, input preparation for
the following adopted tools, Vivado HLS and MDC, start-
ing from ONNXparser output, are detailed in Section 3.2.
Lastly, MDC potentials in delivering reconfiguration, and
thus adaptivity, are shown in Section 3.3.

An overview of the proposed flow is depicted in Fig. 3,
where labels are defined into red (dataflow networks gen-
eration) and blue (dataflow actors generation) circles to
better understand the flow in the following detailed expla-
nation. The flow is almost automatic. As shown in Table 1,
there are two steps that are manual at the moment: N1,
which is the ONNX to dataflow (input model for MDC)
translation, and A2, which is the pragmas insertion and
code refactoring on the C code generated by the ONNX-
parser. In particular, the latter is intentionally manual since
it constitutes, together with the input ONNX modeling, a
point where users can shape adaptation.

3.1 � CNN Modelling ‑ ONNX Input

The CNN taken as proof of concept for the proposed work is
based on InceptionNet v2 structure presented in [40], which
constituted an important milestone in the development of
CNN classifiers. Differently from previous fully-connected
approaches, seeking to improve performance by stacking con-
volutional layers deeper and deeper at the price of signifi-
cantly high elaboration cost (making them computationally
inefficient), InceptionNet introduced a sparsely connected
architecture. The sparse architecture is composed of modules
performing multiple convolutions with multiple filter sizes in
parallel, before concatenating the output and sending it to the
next module. In this manner, the performance of the network
can be optimized by balancing the number of filters per stage
(width) and the number of layers (depth) in the network that,
in turn, allows for reducing the number of parameters, as well
as the amount of required memory and computation power.
Moreover, having several filters with different sizes allows to
better classify image information. In fact, in general, there is
a huge variation in the location of the information inside an
image, so choosing once and for all the right kernel size for
convolution operation might be difficult. InceptionNet allows
for subsequent refinements: the scale is small and local at
first, and then it gets bigger as it goes deeper.

Figure 2   Overview of the MDC functionality, inputs and outputs.
The three input dataflows ( �, �, � ) are merged by the Multi-Dataflow
Generator in a unique dataflow that shares common actors (A, C)
and addresses tokens depending on the configuration using switch-

ing boxes (SB). Platform-Composer maps this dataflow in a hard-
ware accelerator using the provided actor library (HDL components
library) and communication protocol (XML protocol). The actor
library can be handwritten or synthesized using any HLS tool.

Table 1   Brief description of each step of the flow, highlighting the utilized tool and its input and output.

Step Tool Input Output Description

A1 ONNXparser ONNX model C model Converts the ONNX model to an executable C model
A2 Manual C model Synthesizable C model Refines the C code of actors to shape adaptivity
 A3 Vivado HLS Synthesizable C model RTL model Synthesizes C actors to generate the actors library
N1 Manual ONNX model XML dataflow models Converts the ONNX model to a dataflow to shape adaptivity
N2 MDC XML dataflow models Merged XML dataflow model Merges multiple dataflow models in a reconfigurable datapath
N3 MDC Merged XML dataflow

model + RTL model
RTL reconfigurable accelerator Generates the final hardware accelerator

Journal of Signal Processing Systems	

1 3

Figure 3   Proposed automated design flow for CNN adaptive HW accelerators. Red and blue circles define labels for the different steps which are
referenced in the related explanation.

	 Journal of Signal Processing Systems

1 3

Adopted Network  In this paper, as already said in Section 1,
we adopted a network classifying humans and animals for
the surveillance of a water supply infrastructure, within the
context of the FitOptiVis project use case 1 [41] The compo-
sition of the InceptionNet module is based on InceptionNet
v2, in which each module contains four parallel branches
whose outputs are concatenated at the end (Fig. 4a):

–	 a 1x1 convolutional layer (Conv);
–	 a 3x3 max pool layer (MaxPool) followed by a 1x1 Conv

layer;
–	 a 1x1 Conv layer followed by a 3x3 Conv layer;
–	 a 1x1 Conv layer followed by two 3x3 Conv layers.

The overall structure of the adopted CNN was modified
compared to the original network to make it compatible with
ONNXparser, as described in Appendix 1. Input data are
provided as tensor with format NCHW (batch size, chan-
nel, height, width), characterized as [1, 3, 128, 128] in this
case, and with data type float32. This input is sent to 3 cas-
caded modules with the above-mentioned structure. After
each convolution operation, the activation function ReLu is
applied [42]. The outputs of the four branches are concate-
nated and provided to a MaxPool layer, using a 2x2, 3x3, and

3x3 kernel for each cascaded module respectively, and then
normalized through a batch normalization layer (BatchNor-
malization), with parameters epsilon and momentum defined
by default in [43]. After the three cascaded convolutional
modules, the output is forwarded to a new 1x1 Conv layer
with ReLu activation and normalized again through a Batch-
Normalization layer (Fig. 4b). The returned tensor is flat-
tened, and prediction is calculated using the Sigmoid [44]
activation function, which gives a result in the range [0, 1].

In order to exploit the ONNXparser flow (step A1 in
Fig. 3), the CNN has to be provided in ONNX format. In
this case, it has been modeled with Pytorch and then con-
verted to ONNX. Modeling it in Keras is, in theory, also
possible but several conversion issues are present at the
moment (see detailed discussion in Appendix 1).

Training and Validation  In response to the classification
problem that the CNN wants to solve, two types of images
are required: humans and animals. The training has involved
the UTKface [45], which is a large-scale face dataset3 with

Figure 4   InceptionNet structure
details: a inception module
with the four parallel branches;
b final stage.

a) b)

3  Each image is annotated with different tags (age, gender, and eth-
nicity), and a large variation in pose, facial expression, illumination,
occlusion, and resolution is covered.

Journal of Signal Processing Systems	

1 3

over 20 thousand face images, and the Animals-10 [46],
which contains about 28 thousand medium quality animal
images4. Five thousand images have been chosen from each
of the considered datasets (about 25% of the UTKface data-
set and about 18% of the Animals-10 one), being the variety
the reason for their choice, for an overall number of 10 thou-
sand images. In this way, it is possible to get smaller, but still
representative datasets. The training has been performed in
10 epochs with 100 steps each.

With the rest of the non-used images from UTKface and
Animal-10 datasets, four testing sets have been defined.
These sets have a size corresponding to 5% (val_data_1, 500
images), 10% (val_data_2, 1000 images), 25% (val_data_3,
2500 images) and 50% (val_data_4, 5000 images) of the
training dataset, and contain different images from those
belonging to the training set.

Images have been treated before their usage in the train-
ing, to meet the expected size:

–	 The images coming from the considered datasets, initially
with shape format HWC and data in the range [0, 255],
have been resized to fit in network input data size
128x128, and they have been converted to a torch.
FloatTensor of shape CHW in the range [0.0, 1.0].

–	 Additionally, data have been normalized using the using
torchvision.transforms.Normalize func-
tion. This transform normalizes each channel of the input
tensor taking into account the mean and standard devia-
tion of each channel.

In order to measure the results obtained during the train-
ing phase, parameters such as accuracy and training losses
have been monitored. Table 2 depicts the final validation
results.

3.2 � Deriving Inputs for HLS and MDC

The starting point of the proposed flow is an ONNX rep-
resentation of the CNN, resulting from the preliminary
modeling discussed in Section 3.1. Vivado HLS allows us
to easily customize data representation formats. We used a
16-bit fixed-point representation as this is a common choice
on FPGA implementation to efficiently utilize the program-
mable logic (Section 2.1.3).

N1 ‑ Mapping to Dataflow  Each layer of the ONNX model
is mapped into one, or more, dataflow actors. This step (N1
in Fig. 3) is straightforward since in an ONNX model a node

represents one layer, and in a dataflow graph, a node rep-
resents an actor. Moving to the arcs, in an ONNX model
they represent a tensor, while in a dataflow model, an arc
represents a FIFO channel in which a stream of data can
flow. To convert a tensor into a stream of data it is necessary
to choose a streaming order for the elements of the tensor.
We opted for the raster scan order since it is consistent with
the structure ordinarily used to perform the convolution. We
will see afterward that the adoption of raster scan relieves
the system of buffering the whole tensor between two actors.

A1, A2, A3 ‑ Synthesis of Actors  The next step is to build
an HDL description of the actors (steps A1, A2 and A3 in
Fig. 3). To do so, we used the ONNXparser and Vivado HLS
tool, introduced respectively in Sections 2.1.4 and 2.2.1. The
first is able to convert an ONNX model to the corresponding
C description (step A1), where each layer is implemented
through a different C function. The second is a HLS tool that
generates the HDL code implementing a C function given
as input (step A3). Nevertheless, some modifications have
been necessary to make the C code coming from ONNX-
parser synthesizable by Vivado HLS, and then to optimize
it (step A2):

–	 Inserting a line buffer actor to store part of the input
stream;

–	 Inserting directives to optimize execution;
–	 Adding actors to store and share weights;

The following section describes these modifications,
which correspond to one of the two available points to the
user for shaping adaptivity (the other is N1).

A2 ‑ Convolutional Layer  A great deal of effort went into
building the convolutional layer. As said, it is not possible
for an actor to have random access to the input tensor, but
the input is received as a stream of data. Given that, a certain
storage capacity is needed within a convolutional layer to

Table 2   Training and Validation results on the different considered
validation sets.

Training

Batch size 32
Epochs 10
Steps per epoch 100
Average accuracy 98%
Average loss 3.2

Validation

val_data _1 _2 _3 _4

accuracy 96% 96% 98% 98%

4  The images in this dataset are taken from google images, and
belong to ten different categories, among which are mammals, rep-
tiles, insects, birds, and fishes.

	 Journal of Signal Processing Systems

1 3

store part of the stream. The reason lies in the convolutional
operation itself, which uses the same element of the input
tensor multiple times to compute different elements of the
output. For example, in a layer with a 3x3 kernel and stride
1, each element is used nine times. So, we implemented
a convolutional layer with two actors: a line buffer actor
and a convolutional actor. The line buffer is responsible for
receiving data, storing them, and forwarding them to the
convolutional actor (see Listing 1). More in detail, it stores
elements row by row until a sub-matrix, consistent with the
kernel size, is stored. At this point, it is possible to calculate
an element of the output, so the line buffer actor forwards
this sub-matrix to the convolutional actor to perform the
actual convolution. To do that, the line buffer must have the
capacity of storing a number of rows equal to the height of
the kernel.

A2 ‑ Optimizing Through Directives  After the ONNX-
parser elaboration (A1 in Fig. 3), a library of C functions

corresponding to dataflow actors would be ready to be pro-
cessed by Vivado HLS, but a further step of optimization
is needed to exploit the capabilities of the tool. As before,
we concentrated the most of our effort on the convolutional
actor, being it the heaviest in terms of computation and, con-
sequently, potentially the one promising the larger possible
improvements on the overall performance of the system. In
particular, the convolution function is described through a
set of nested loops. The innermost loop consists of three
operations: reading an element from the kernel, multiply-
ing it with the last input element, and accumulating it (see
Listing 2). These three operations must be performed one
after the other. But there is no dependency between consecu-
tive iterations of the loop, thus an iteration can start even
before the previous one is completed, leaving the door open
for pipelining. This opportunity to speed up the execution
is hidden by the imperative C description, the synthesizer
can be forced to apply pipelining during synthesis with the
pragma HLS PIPELINE directive, as depicted in the
same Listing 2.

A2 ‑ Access to Weights  In order to support reconfigurability,
we need further refinement in the implementation of the
convolutional layer. In fact, storing all the weights used by

Listing 1 C code of the line buffer actor. The first two for loops are
responsible for iterating over the output tensor to check whether it has
been completed or not: for each pixel of the output the Read Loop
and the Write Loop must be executed. The Read Loop reads from the
input stream until a submatrix coherent with the kernel size has been
received. At this point, it exits letting the Write Loop forward the data
to the convolutional actor in the proper order

Listing 2 C description of the convolutional actor. The first two for
loops are responsible for iterating over the output tensor: for each
pixel of the output, the vector out_val must be initialized to the bias
(Init loop), convolved with the kernel (Convolution loop), and then
written to the output channel. The pragma HLS PIPELINE is placed
in the innermost loop to speed it up

Journal of Signal Processing Systems	

1 3

a CNN requires a considerable memory footprint. To avoid
slow memory accesses to off-chip memories, we wanted to
keep all the weights inside the FPGA chip. Moreover, in line
with MDC philosophy which supports different application
configurations by replicating and sharing actors/resources
(see Section 2.2), we decided to opt for sharing the weights
among configurations, rather than duplicating them for
each configuration. To do so, weights that are in common
between different configurations are packed within the same
actors, and these actors have been inserted in the dataflow
model of the different configurations.

Another desirable feature is to keep the implementa-
tion consistent with the dataflow paradigm, which means
avoiding random access to weights and providing them in a
streaming manner. To do that, each set of weights is mapped
on a different, dedicated actor. This type of actor has only
one output port and they are in charge of storing the kernel
weights and delivering them in the proper order to be used
by convolutional actors. The same choice has been taken
for bias storing, so that dedicated bias actors have been
modeled.

A2 ‑ Resulting Convolutional Layer  Wrapping up, the final
result is that a convolutional layer is mapped in four different
actors: a weight and a bias actor to store the kernel, a line
buffer actor to store parts of the input stream to be reused,
and a convolutional actor to perform the computation. The
overall schematic of the layer, which in turn takes the name
of baseline layer (LAYER_B), is depicted in Fig. 5. Note that
LAYER_B includes the baseline version of the convolutional
actor, called hereafter CONV_B, which elaborates one con-
volutional layer.

A2 ‑ Other Layers  We used the same approach of splitting
a layer into two actors, one for storing incoming data and
one for performing the computation, to implement the Max-
Pool layers. Thus they are mapped into a line buffer actor,
exactly as the one saw before, and a pooling actor. Instead,
we used a single actor for mapping the other types of layers:
normalization layer, ReLU layer, and concatenation layer. In
these cases there is a direct correspondence between an input
element and an output one, so no storing is needed. The
same holds for the fully connected layers, where each input
element is multiplied and accumulated a number of times
equal to the output size. In a fully connected layer, each
element of the output vector depends on the whole input,
thus the partial sum for each output is stored inside the actor
until the whole input is received. Moreover, in all these cases
there is no need for additional dedicated actors for storing
(and sharing between configurations, as will be more clear
in Section 3.3) weight and bias data, which are not present
in layers other than convolutional.

3.3 � Adaptive Accelerator Generation

In the proposed flow, adaptivity is delivered by the MDC
tool that generates a reconfigurable datapath, and more
precisely a whole accelerator, capable of accelerating all
the applications corresponding to a set of input dataflow
models (step N2 in Fig. 3). Here, reconfiguration can be
functional, when the input dataflow models correspond
to different applications, or non-functional, when they
model different working points (e.g. with different speeds,
quality, and power consumption) of the same application.
Reconfiguration is performed at the dataflow actors level,
meaning that MDC shares the common actors among
different input dataflows through additional switching
modules (sboxes), so that in the resulting system the cor-
responding resources are multiplexed in time among the
executed configurations.

N1 ‑ Exploiting Inception Topology  For the considered CNN
case, to achieve some degree of adaptivity we exploited the
peculiar architecture of InceptionNet to map more than
one layer on the same convolutional actor, thus sharing the
underlying resources (DSP slices) and implementing non-
functional reconfiguration. As seen in Section 3.1, Incep-
tionNet is characterized by four branches working on the
input in parallel, where one or more convolutional layers
are executed. The regularity of the topology leads to the fact
that some convolutional layers within the same block share
the same hyper-parameters (e.g. kernel size, stride, zero-
padding). This allows using the same actor, which has access
to different weights, to perform different convolutions. We
will refer to this actor as CONV_D actor, and we will let it
be capable of performing two different convolutions (double

Figure 5   Schematic of the implementation of a convolutional layer.
The weight and bias actors (top green circles) are sources that store
and provide the parameters of the kernel. The line buffer actor (bot-
tom green circle) stores part of the input stream and forwards it when
it is possible to evaluate an output element. The CONV_B actor per-
forms the convolution (red circle).

	 Journal of Signal Processing Systems

1 3

convolutional actor). Then two convolutional layers can be
mapped into three actors: two line buffer actors, one for each
flow, plus a single CONV_D actor. In Fig. 6 the resulting
implementation of the two merged layers (LAYER_D) is
shown. Of course, besides convolutional (double) actors and
line buffers, also weight and bias actors, one per each imple-
mented layer, are included. Note that, this process involves
both code refactoring and dataflow modeling activities (step
A2 and N1 in Fig. 3 respectively). This implementation is
expected to achieve adaptivity through non-functional recon-
figuration: it should reduce resource utilization and, in turn,
power consumption, while increasing the execution latency
with respect to a fully parallel baseline implementation.

N2 ‑ Reconfigurable Layer  The possible implementations of
two convolutional layers, LAYER_B which employs two par-
allel layers (Fig. 5 shows only one of them) and LAYER_D
with double layers just introduced, share many actors. The
line buffer actors, the weight actors, and the bias actors
are in fact common to both of them. The CONV_B and
CONV_D are the only different actors between LAYER_B
and LAYER_D. By applying this simple modification to the
baseline structure of the CNN dataflow model (which adopts
only LAYER_B and CONV_B, and hereafter named CNN_B),
a different working point (hereafter named CNN_D) has then
been derived substituting different compatible couples of

LAYER_B with the corresponding LAYER_D. Table 3 gives
an overview of the overall dataflow models composition:
CNN_B involves 131 actors, while CNN_D 121. Overall, the
two models have 113 actors which can be shared.

Through the MDC tool it has then been possible to com-
bine CNN_B and CNN_D to obtain the corresponding recon-
figurable dataflow model (step N2 in Fig. 3), hereafter named
CNN_R, and the related datapath for the adaptive accelerator
(step N3 in Fig. 3). Please note that the HDL corresponding
to the dataflow actors is given by Vivado HLS (step A3 in
Fig. 3) taking as input the C code defined and refined as
discussed in Section 3.2 and at the beginning of this Section.

N3 ‑ Accelerator Generation  The accelerator implements the
two versions of the network and switches dynamically from
the execution of one of them to the other. FIFOs dimen-
sions have been assigned empirically for all the considered
dataflow networks. In particular, we sized the FIFOs of each
branch (right before the concatenation actor) to avoid dead-
locks. To do that we considered the different ratios between
received input elements and output elements produced by
each branch. This ratio, in turn, depends on the number of
layers and their kernel size. The CNN_R overall involves
140 actors plus 72 sboxes. A scheme of a single reconfig-
urable convolutional layer, where CONV_B and CONV_D
are multiplexed in time through sboxes and other actors are

Figure 6   Schematic of the
implementation of two convo-
lutional layers using a single
convolutional actor, which we
will refer to as CONV_D. The
CONV_D actor (blue circle)
performs the convolution of two
different inputs with two differ-
ent kernels, but the two layers
share the same hyper-parame-
ters. On the top right corner, the
functionally equivalent two par-
allel baseline layers (LAYER_B)
are depicted. FIFO

line
buffer

1
FIFO

FIFO

FIFOweight
1

bias
1

input 1

FIFO
line

buffer
2

FIFO

FIFO

FIFOweight
2

bias
2

input 2

CONV
D

output 1

output 2

func�onally equivalent
two parallel baseline layers

Journal of Signal Processing Systems	

1 3

shared, is depicted in Fig. 7. This layer is obtained, basically,
by merging two parallel LAYER_B and the corresponding
LAYER_D. The overall adaptive accelerator, as detailed in
Section 4.1, embeds the reconfigurable datapath in a ready-
to-use Xilinx IP provided with input/output stream channels,
in particular AXI-Stream protocol compliant, which allows
feeding the accelerator with tensors lying in main memory,
accessible from a general purpose core, through a Direct
Memory Access (DMA) engine.

4 � Experimental Results

In this section, experimental results obtained with the pro-
posed flow for the presented test case will be shown. Besides
an overall view of the obtained CNN accelerator, coming
from a real implementation and execution of the system on
a development board (see Section 4.1), also a focus on sin-
gle actor/layer data, coming from logic syntheses and HW
simulations, is provided (see Section 4.2). In both cases,
the target device is a Xilinx Zynq Ultrascale+ SoC, the
XCZU9EG-FFVB1156, available on the ZCU102 Evalu-
ation Kit, while the adopted tools are all from the Xilinx
Vivado design suite.

4.1 � Overall Accelerator

In this section, experimental results related to the overall
CNN accelerator are reported. All the data refer to real
implementations of the system on the considered ZCU102

development board. Besides the CNN datapath provided by
MDC starting from CNN dataflow models (red square on the
bottom right side of Fig. 3), an entire integrated processor-
accelerator system is considered. As depicted in Fig. 8, the
system is composed by:

–	 a host processor to control accelerator and data flowing
(zynq_ultra_ps_e_0);

–	 a main memory where input tensor and results are stored
(zynq_ultra_ps_e_0);

–	 a DMA engine to transfer data from/to the main
memory to/from the accelerator performing memory
mapped to stream protocol translation (axi_dma_0);

–	 AXI-Stream FIFOs to buffer accelerator inputs and out-
puts (axis_data_fifo_in_0 and axis_data_fifo_in_1);

–	 an AXI bus and an AXI smart connect to connect the
processor, the DMA and the accelerator (ps8_0_axi_
periph and axi_smc respectively);

–	 an adaptive CNN accelerator, which embeds the recon-
figurable CNN datapath corresponding to the MDC input
dataflow models (s_accelerator_0).

All the listed components, but the host processor and the
memory which are hardcore, are instantiated on the Zynq
device available programmable logic and run at 100 MHz.

Three different designs are considered for the experiment:

–	 ACCEL_B: the system provided with a non-adaptive
accelerator embedding a CNN datapath coming from
baseline CNN_B dataflow;

–	 ACCEL_D: the system provided with a non-adaptive
accelerator embedding a CNN datapath coming from
double CNN_D dataflow, which computes two convolu-
tional layers with the same actor in different parts of the
network as explained in Section 3.3;

–	 ACCEL_R: the system provided with an adaptive accel-
erator embedding reconfigurable CNN_R datapath
obtained with MDC by combining CNN_B and CNN_D
dataflows.

ACCEL_B and ACCEL_D designs are taken as terms of
comparison for the adaptive ACCEL_R design.

Resource Utilization  Figure 9 depicts the overall accelera-
tor results of the considered systems. Here we can see that
most of the resources in the programmable logic are used by
the CNN accelerator in all the considered cases. Contributes
from the DMA, the AXI FIFOs and AXI Buses are equal for
each accelerator. These blocks are indeed part of the proces-
sor-accelerator interface and are required to communicate
with the host in the integrated system, but do not depend
on the executed accelerator itself. Moreover, the resource

Table 3   Dataflow models composition between baseline (CNN_B)
and double (CNN_D) versions. Convolutional actors are the only
ones differing from the two versions, the other types of actors/layers
present in the model (Section 3.1) are shared.

Actor/layer type # of instances
in CNN_B

of instances
in CNN_D

of
shared
instances

Batch normalization 4 4 4
Bias 22 22 22
Concatenation 3 3 3
Conv_B 22 4 4
Conv_D 0 9 0
Gemm 1 1 1
Line buffer 22 22 22
Line buffer MP 6 6 6
Maxpool 6 6 6
ReLU 22 22 22
Weight 22 22 22
TOTAL 130 121 112

	 Journal of Signal Processing Systems

1 3

overhead of the ACCEL_R is limited when compared with the
two non-adaptive accelerators. This means that most of the
resources are shared when the two accelerators are merged.
From another point of view, the great deal of saving obtained
sharing the common resources in ACCEL_R is appreciable
looking at the comparison of CNN_R with the sum of two
non-adaptive accelerators, CNN_B and CNN_D, shown in
Fig. 9f. For every kind of resource, excluding DSPs, more
than 40% of saving is present. This means that most of the

resources, considering both actors and FIFOs, are shared.
On the contrary, the kind of resource with the smallest sav-
ing is DSP, since DSPs are mainly used by the convolutional
actors that are not shared between the two configurations.
The overall result is that resource sharing allows the recon-
figurable accelerator ACCEL_R to deliver adaptivity at a
reduced resource cost compared with a system that imple-
ments two separate non-adaptive accelerators (ACCEL_B and
ACCEL_D) and switches dynamically between them.

Figure 7   Schematic of the
implementation of two convo-
lutional layers using MDC. The
green actors are shared between
the two configurations, while
the blue ones belong to one or
the other. The sbox modules
are responsible for directing the
tokens according to the selected
configuration.

DDR

FIXED_IO

axi_dma_0

AXI Direct Memory Access

S_AXI_LITE
M_AXI_MM2S

M_AXI_S2MM

M_AXIS_MM2S
S_AXIS_S2MM

axi_mem_intercon

AXI Interconnect

S00_AXI
M00_AXI

S01_AXI

axis_data_fifo_in_0

AXI4-Stream Data FIFO

S_AXIS M_AXIS

axis_data_fifo_out_0

AXI4-Stream Data FIFO

S_AXIS M_AXIS

processing_system7_0

ZYNQ7 Processing System

DDR

FIXED_IO

USBIND_0

S_AXI_HP0_FIFO_CTRL

M_AXI_GP0

S_AXI_HP0 ps7_0_axi_periph

AXI Interconnect

S00_AXI
M00_AXI

M01_AXI

s_accelerator_0

s_accelerator_v1_0

m00_axis
s00_axis

s00_axi

Figure 8   Overview of the overall accelerator architecture.

Journal of Signal Processing Systems	

1 3

Execution Time  Dealing with the execution time related
to a single image classification on the three considered
designs, results are reported on Table 4. The resulting over-
head of convolutional actors implemented by CNN_D with
respect to the baseline CNN_B is about 8% . A trade-off

is then present as execution time is lower in CNN_B, the
most resource-consuming accelerator. Indeed, the resource-
saving introduced in CNN_D by mapping two layers in a
single actor (see Section 3.3) is paid with a degradation of
the execution time.

(a) (b)

(c) (d)

(e) (f)

Figure 9   Resource occupancy of the systems implementing the CNN accelerator. In Fig. 9f there are the overall CNN accelerators, where labels
indicate percentage variation of CNN_R with respect to the sum of CNN_B and CNN_D.

	 Journal of Signal Processing Systems

1 3

4.2 � Focus on Single Actors and Layers

In this section, a detail on single actors and layers results is
proposed, in order to better understand what is happening
within the implemented CNN, how adaptivity is reached in
the practice, and what it implies on the system performance.
In this case, data have been collected with Xilinx Vivado
tools: synthesis, simulation, and power estimation (con-
sidering switching activity gathered during post-synthesis
simulations of the designs). The operating frequency is 100
MHz in all cases.

During the analysis of single convolutional actors and
layers, three different dimensions are considered to highlight
the relationship of the analyzed metrics with the size of the
specific actors and layers. In particular, the designs under
test will be:

–	 small, with 8x3x1x1 convolutional actors and layers;
–	 medium, with 16x64x1x1 convolutional actors and layers;
–	 large, with 64x32x3x3 convolutional actors and layers.

These three actors and layers have been developed con-
sidering both baseline (CONV_B, LAYER_B) and double
(CONV_D, LAYER_D) versions of the convolutional actors
described in Section 3.3. Here CONV_B and CONV_D refer
to the only red and blue circles respectively in Figs. 5 and 6,
while LAYER_B and LAYER_D to all the resources involved
in the same Figures (so that including FIFOs, weight, bias,
and line buffer actors, besides the convolutional actors).
Additionally, 2xCONV_B and 2xLAYER_B designs, which
are simply a sum of two baseline actors and layers, will
be considered to fairly compare CONV_D and LAYER_D,
which actually implement two actors and layers.

Resource utilization Resource occupancy data for single
actors and layers are shown in Table 5. Double versions
(CONV_D and LAYER_D), as expected, present an increase
of resources with respect to the corresponding baseline
ones (CONV_B and LAYER_B), as depicted in column %

1

 .
Such increase is always below 35% in the case of single
actors (CONV_B versus CONV_D), while it is larger, even
more than 100%, in case of single layers (LAYER_B ver-
sus LAYER_D). This difference comes from the fact that
single layers, besides the convolutional actor, also involve

line buffers, weight and bias actors, and FIFOs. Thus, since
LAYER_D implements two convolutional layers, it includes
line buffers, weights, bias, and FIFOs of corresponding to
two different layers. For this reason, a more fair comparison
is given in column %

2

 , where double versions are compared
with two parallel baseline ones (the previously mentioned
2xCONV_B and 2xLAYER_B). Compared to these function-
ally equivalent designs, CONV_D and LAYER_D are almost
always employing less resources, reaching peaks of 50% of
saving in some cases. LUTRAMs in LAYER_D are the only
resources that are not saved with respect to 2xLAYER_B. The
reason is that this type of resource is used by the synthesizer
only to realize the FIFOs, and the number of FIFOs required
by CONV_D is exactly double the one in CONV_B, and they
have all the same number of slots.

Dynamic Power Consumption  Dynamic power consumption
data for single actors and layers are shown in Table 6. Here,
resource occupancy evidence is reflected since power con-
sumption is directly proportional to the number of employed
logic. In particular, the performance of baseline and double
designs is the same in terms of single actors (CONV_B ver-
sus CONV_D), meaning that double actors consume about
the same power as baseline ones. This absence of diversity is
mainly due to the fact that the designs are too small to appre-
ciate a variation in the power estimation. Please note that, if
two parallel baseline actors are considered as a fairer term of
comparison (column %

2

 ) than one unique baseline actor (col-
umn %

1

 ), double actors anyway behave better than baseline
ones. The difference is, instead, evident when entire layers
are considered (LAYER_B versus LAYER_D). Going from
baseline to double versions, an increase of consumed power
is still present, as in terms of resources, and the increase is
in some cases very significant, as for clk contribution. How-
ever, as occurred for resources, when the comparison with
2xLAYER_B is considered (column %

2

 ), the saving is quite
clear, reaching 50% and more in different terms. Overall,
looking at the dyn term, which is the sum of all the others,
the LAYER_D saves always more than 30% of power with
respect to 2xLAYER_B.

Execution Time  While in terms of resources and power con-
sumption the benefits of double versions have emerged, the
drawbacks of computing two convolutional layers with the
same logic, as seen in the previous section, lie in execution
latency. In Table 7 execution latency of the different con-
sidered layers is reported. Such data refer to a test condition
where each layer is fed with an entire tensor necessary for
a single image classification of the CNN, and input/output
are always readable/writable, that is empty/full conditions
in incoming/outgoing FIFOs never occur. Please note that,
in such test condition, CONV_B and LAYER_B execution
latency is almost the same, so that only LAYER_B data

Table 4   Execution time for image classification. % indicate percent-
age variation with respect to ACCEL_B. 

* Execution time depends on the configuration

Accelerator Execution time [ms] %

ACCEL_B 538 -
ACCEL_D 583 8
ACCEL_R 538 - 583* 0 - 8*

Journal of Signal Processing Systems	

1 3

are depicted in the Table 7. Double versions of the layers
(LAYER_D) take exactly double the time than baseline ones
(LAYER_B) to process the input tensor, for all the three con-
sidered dimensions of the kernel. This is true either for the
single baseline layer case (column %

1

 ) and for the parallel
baseline layer one (column %

2

 ) since, being parallel, the two
layers are executed simultaneously in these latter designs.
So, resources and power savings of the double designs seen
in Tables 5 and 6 are paid by doubling the execution time
of the layers.

In the end, the proposed solutions can be further
improved by exploiting the presented toolchain: more than
two working points can be derived to have a wider adaptiv-
ity response (that is modeling more dataflows in step N1
of Fig. 3), performance can be further enhanced by using
other pragmas, e.g. total or partial loop unrolling, on the
convolutional actors during the HLS step (A2 of Fig. 3) as
well as on the other actors, other metrics (e.g. accuracy of
the CNN classification) can be involved in the trade-offs
achieved among working points, thus acting on both steps
N1 and A2, the ones enabling adaptivity shaping.

4.3 � Evaluation Summary

At the single actor and layer level, the trade-off between
power consumption and execution latency due to the adop-
tion of the same resources for performing two convolutional
layers in the double version of the CNN is clearly visible,
since overall dynamic power is reduced by 33%, 31%,
44% respectively in small, medium, and large layer design
(Table 6 cols. %

2

 ) at the price of doubling the execution time
in every layer design (Table 7 cols. %

2

 ). However, energy
is commonly considered more important than power in the
addressed context. We can calculate the energy consumption
of an image classification by multiplying the power con-
sumption by the execution time. To see an energy/execution-
time trade-off between the two proposed configurations, the
overall-accelerator data must be considered (Section 4.1).
In this case, the difference in execution time for using the
LAYER_D layers is only 8% more than the single LAYER_B
layers (Table 4), leading to an expected saving in energy
when this configuration is running. At this point, power
measurements on the accelerators running on board have

Table 5   Resource occupancy
of convolutional actors/layers.
indicates the number of
used slices. %

1

 and %
2

 indicate
percentage variation with
respect to CONV_B/LAYER_B
and 2xCONV_B/2xLAYER_B
respectively, these latter
corresponding to two times the
power of the former.

design resource small medium large

%
1

%
2

%
1

%
2

%
1

%
2

CONV_B LUT 73 - - 80 - - 101 - -
LUTRAM 0 - - 0 - - 0 - -
FF 88 - - 98 - - 110 - -
BRAM 0.5 - - 0.5 - - 0.5 - -
DSP 1 - - 1 - - 1 - -

CONV_D LUT 97 +33 -34 101 +26 -37 120 +19 -41
LUTRAM 0 +0 +0 0 +0 +0 0 +0 +0
FF 107 +22 -39 116 +18 -41 126 +15 -43
BRAM 0.5 +0 -50 0.5 +0 -50 0.5 +0 -50
DSP 1 +0 -50 1 +0 -50 1 +0 -50

LAYER_B LUT 500 - - 740 - - 3218 - -
LUTRAM 80 - - 80 - - 80 - -
FF 569 - - 639 - - 717 - -
BRAM 1 - - 2.5 - - 2 - -
DSP 1 - - 1 - - 2 - -

LAYER_D LUT 982 +96 -2 1454 +96 -2 6357 +98 -1
LUTRAM 160 +100 +0 160 +100 +0 160 +100 +0
FF 1083 +90 -5 1214 +90 -5 1340 +87 -7
BRAM 1.5 +50 -25 4.5 +80 -10 3.5 +75 -13
DSP 1 +0 -50 1 +0 -50 3 +50 -25

	 Journal of Signal Processing Systems

1 3

not been carried out yet. Having proved with this prelimi-
nary paper the feasibility and potential benefits of support-
ing reconfiguration, we will explore in depth the trade-off
execution, as discussed in Section 5.2.

5 � Conclusions

Efficiency and flexible behaviors have nowadays turned out
to be a must in many application domains when cyber-physi-
cal entanglement is there. Designers cope with it by leverag-
ing on heterogeneous systems, whose design still requires a
lot of expertise, especially when custom computation units

have to be derived. This for sure does not help in terms of
design time and development costs so investments and stud-
ies related to design automation and frameworks are still on
the hype.

All these considerations are certainly true in the case of
image and video processing at the edge, especially consider-
ing classification tasks using neural networks. This is a key
aspect in cyber-physical systems, as context awareness is
crucial to take correct decisions and performing actions. The
scientific community is quite active in providing new, more
efficient implementations and tools for neural networks
targeting different devices and features. However, dealing
with HW accelerators it is not yet capable of delivering

Table 6   Dynamic power
consuption in mW of
convolutional actors/
layers (columns mW). %

1

and %

2

 indicate percentage
variation with respect to
CONV_B/LAYER_B and
2xCONV_B/2xLAYER_B
respectively, these latter
corresponding to two times
the resources of the former.
dyn refers to the total dynamic
power, the sum of the other
terms: clock (clk), signal (sig),
logic (logic), BRAM (bram),
and DSP (dsp).

design power small medium large

mW %
1

%
2

mW %
1

%
2

mW %
1

%
2

CONV_B dyn 2 - - 3 - - 4 - -
clk 0 - - 0 - - 0 - -
sig 0 - - 1 - - 1 - -
log 0 - - 1 - - 1 - -
bram 1 - - 1 - - 1 - -
dsp 0 - - 0 - - 0 - -

CONV_D dyn 2 +0 -50 3 +0 -50 4 +0 -50
clk 0 +0 +0 0 +0 +0 0 +0 +0
sig 0 +0 +0 1 +0 -50 1 +0 -50
log 0 +0 +0 1 +0 -50 1 +0 -50
bram 1 +0 -50 1 +0 -50 2 +0 -50
dsp 0 +0 +0 0 +0 +0 0 +0 +0

LAYER_B dyn 6 - - 8 - - 26 - -
clk 2 - - 2 - - 3 - -
sig 1 - - 2 - - 9 - -
log 1 - - 2 - - 13 - -
bram 1 - - 2 - - 2 - -
dsp 0 - - 1 - - 1 - -

LAYER_D dyn 8 +33 -33 11 +38 -31 29 +12 -44
clk 4 +100 +0 4 +100 +0 5 +67 -17
sig 1 +0 -50 2 +0 -50 8 -11 -56
log 1 +0 -50 2 +0 -50 13 +0 -50
bram 1 +0 -50 2 +0 -50 2 +50 -25
dsp 0 +0 +0 0 +0 +0 0 +0 +0

Table 7   Execution latency in ms of convolutional layers (columns ms). %
1

 and %
2

 indicate percentage variation with respect to LAYER_B and
2xLAYER_B respectively, these latter corresponding to the same latency of the former (it is two LAYER_B in parallel).

design small medium large

ms %
1

%
2

ms %
1

%
2

ms %
1

%
2

LAYER_B 9.8 - - 51.9 - - 85.9 - -
LAYER_D 19.6 +100 +100 103.8 +100 +100 171.8 +100 +100

Journal of Signal Processing Systems	

1 3

full support for neural networks delivering high execution
efficiency, but also flexibility through adaptive behaviors.
But, still in the context of cyber-physical systems, adapting
execution metrics to the ongoing situation is necessary to
meet conflicting performance constraints.

5.1 � Summary

In this work, we have presented a novel toolchain for aiding
developers in modeling neural networks, deriving almost
automatically the corresponding HW accelerator, and giving
to the user the possibility of molding on top of that a certain
degree of adaptivity. The proposed toolchain requires an
ONNX neural network model as input, it adopts two open-
source tools, the ONNXparser, and the Multi-Dataflow
Composer, to derive a lower-level specification of the same
network. Adaptivity can be shaped by the user on the same
input ONNX model(s) or on the lower specification of the
network, according to the specific needs, knowledge, and
skills. In the test case proposed in this work, Vivado HLS is
then applied to derive final HW specifications for the accel-
erator, but in theory, other HLS engines can be adopted,
open to the possibility of addressing target devices different
from FPGAs, targeted by Vivado HLS.

A CNN for humans/animals classification, used within
a FitOptiVis project Use Case regarding a critical infra-
structure surveillance scenario, is adopted as a proof of
concept. Such CNN is made adaptable by deriving, at the
Vivado HLS input stage, logic employing different amounts
of resources for elaborating the convolutional layers. As a
result, the CNN accelerator can adapt its behavior accord-
ing to the context needs: if the battery is running out, it can
change profile and consume about 30% less power in each
layer at the price of an extra 8% time to classify an image; on
the contrary, if response time is crucial, e.g. due to prelimi-
nary alarms already raised, the network could be executed
at the maximum speed by pulling more energy from the bat-
tery. Note that the obtained solution is purely demonstrative,
to show the potentials of the proposed flow, so the final
implementation is not optimized and is not competitive with
respect to the state-of-the-art.

5.2 � Future work

Being this a demonstrative work to show the effectiveness
of exploiting runtime reconfigurability to design adaptive
accelerators for CNNs, several further improvements are
planned and ongoing.

Design Flow  While maintaining the same structure, the tool-
chain will be adapted to be compatible with alternative HLS
engines, that in turn can enlarge the set of target devices
and available features. Moreover, the user intervention will

be reduced in manual steps where adaptivity is described
(steps N1 and A2). The mapping from the ONNX model to
the dataflow model (step N1) will be automated, but the user
will necessarily still be in charge of designing the ONNX
model and shaping the adaptivity. The code refactoring and
pragma insertion (step can be A2) will be partially automated
through the extension of the ONNXparser. Most effective
pragmas can be automatically utilized, e.g. loop pipelining.
While the insertion/tuning of other ones, e.g. loop unrolling,
can be facilitated, leaving to the user the duty of selecting
the desired trade-off, e.g. the unrolling factor.

Adaptivity Experiments  Adaptivity support has been dem-
onstrated on a power-vs-latency tradeoff and considering
a limited part of the system (two convolutional layers). A
more complete study with accurate measurements, taking
into consideration also the switching among contexts/sce-
narios, is planned. Such measurements will be taken directly
on the system running on the physical target board and will
reveal the possibility of achieving an energy-vs-latency
tradeoff, not known at this development point. Moreover,
adaptivity support will be investigated by targeting bigger/
deeper CNN models as well as different kinds of tradeoffs,
e.g. trading off data precision with energy consumption. The
integration of the adaptive accelerators with an embedded
OS is ongoing and will serve as a first step to developing a
more accurate and easy-to-use testing environment for the
proposed design flow.

Appendix. Modelling the Networks
with Keras

The starting network given by the use case provider of the
FitOptiVis project was already in ONNX format, and it
was derived from an original Keras model. However, sev-
eral incompatibilities with respect to the adopted ONNX-
parser have emerged, including some layers that are not
supported by ONNXparser, such as Cast, Sqrt and Trans-
pose (all indicated as black modules in Fig. 10). Moreover,
by the initial analysis, it turned out that other optimiza-
tions were needed, like the substitution of the cascade of
Cast+Reshape into a Flatten and of the Matmul+Add into
a Gemm (again, all indicated as black modules in Fig. 4).

The tf2onnx [47] library has been originally used to
export the networks. Taking into account the characteristics
of the used converter, here follows the list of detected issues
that led to the incompatibilities that should be avoided/
overcome:

–	 Transpose: TensorFlow uses NHWC data format by
default, while ONNX uses NCWH. This layer is needed
to overcome the data format incompatibility when trans-

	 Journal of Signal Processing Systems

1 3

lating the network from one framework to another, but its
implementation is not supported by the converter [48].

–	 Exploded Dense Layer (gemm = matmul+add): the opti-
mized representation of the Dense layer in the ONNX
model is through Gemm operator5. However, it was not
supported by tf2onnx until May 14th 2019, but also the
latest version of the converter is still reporting problems
on this topic6.

–	 Flatten: the correct conversion should be constant +
reshape, since Cast operation is not accepted by the
ONNXparser. Until now, all Pytorch to ONNX convert-
ers are able to optimize it directly into a flatten operator,
except for the TensorFlow to ONNX ones7.

–	 Exploded Batch Normalization (Sqrt, Reciprocal, Sub,
Mul, Add): from the carried out analysis, this is caused
by the Batch Normalization operator inserted right after

Figure 10   InceptionNet
structure generated from Keras:
black modules highlight the
main incompatibilities with the
adopted ONNXparser.

5  https://​github.​com/​onnx/​onnx/​issues/​1682
6  https://​github.​com/​onnx/​tenso​rflow-​onnx/​issues/​516#​issue​comme​
nt-​50995​3151

7  https://​github.​com/​onnx/​tenso​rflow-​onnx/​issues/​490#​issue​comme​nt-​
49727​0831

https://github.com/onnx/onnx/issues/1682
https://github.com/onnx/tensorflow-onnx/issues/516#issuecomment-509953151
https://github.com/onnx/tensorflow-onnx/issues/516#issuecomment-509953151
https://github.com/onnx/tensorflow-onnx/issues/490#issuecomment-497270831
https://github.com/onnx/tensorflow-onnx/issues/490#issuecomment-497270831

Journal of Signal Processing Systems	

1 3

Flatten in the provided net. his causes the division of
Batch Normalization in multiple sub-layers, some of
them, such as Sqrt and Reciprocal, are not supported by
the converter.

Therefore, a more suitable converter for the input models
had to be searched for. As a first candidate, the keras2onnx
[49] converter has been considered. However, although the
conversion resulted improved, there were some remaining
issues: non supported identity and traspose functions were
there, as well as the already reported issue regarding the
Exploded Dense Layer. Then, the new ONNXMLTools
library [50] has been tested. This library includes a wrap-
per of keras2onnx, and it allows to take the non-compatible
conversion from Keras to ONNX as input, making it pos-
sible to apply an optimizer to eliminate unnecessary layers
or to merge two or more layers into one. Using the result
obtained with keras2onnx, the following optimizations have
been applied: eliminate_identity and fuse_mat-
mul_add_bias_into_gemm. Nevertheless, an unsolved
bug8 in the ONNX library code used by ONNXMLTools
prevented the network from being optimized. It seems9 that,
at the moment, the only way to use this type of optimizer
without problems is starting from a network described with
Pytorch framework instead of Keras.

In the end, this is what has been done in this work, where
InceptionNet has been re-trained with Pytorch. Neverthe-
less, we do not exclude that the proposed flow with dif-
ferent starting models could be compatible with Keras too,
provided that there is also a constant effort in optimizing the
aforementioned libraries and converters.

Funding  Open access funding provided by Università degli Studi di
Sassari within the CRUI-CARE Agreement. This work is part of the
FitOptiVis project [2], funded by the ECSEL Joint Undertaking under
grant number H2020-ECSEL-2017-2-783162, and of the Comp4Drones
project No. 826610, ECSEL-JU 2018. This work was also partly sup-
ported by the EU H2020 project ALOHA, under the European Union’s
Horizon 2020 research and innovation programme (grant no. 780788).

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 An FPGA “Companion” in Smartphone Design - A Lattice Semi-
conductor White Paper. Document ID 47335 (2012-05).

	 2.	 Al-Ars, Z., et al. (2019). The fitoptivis ECSEL project: highly
efficient distributed embedded image/video processing in cyber-
physical systems. In Conference on Computing Frontiers (pp.
333–338).

	 3.	 Pomante, L., Palumbo, F., Rinaldi, C., Valente, G., Sau, C., Fanni,
T., van der Linden, F., Basten, T., Geilen, M., Peeren, G., Kadlec,
J., Jääskeläinen, P., de Alejandro, M. M., Saarinen, J., Säntti, T.,
Zedda, M. K., Sanchez, V., Goswami, D., Al-Ars, Z., & de Beer,
A. (2020). Design and management of image processing pipelines
within CPS: 2 years of experience from the fitoptivis ECSEL
project. In 23rd Euromicro Conference on Digital System Design,
DSD 2020, Kranj, Slovenia, August 26-28, 2020 (pp. 378–385).
IEEE. Retrieved April 2023, from https://​www.​latti​cesemi.​com/-/​
media/​Latti​ceSemi/​Docum​ents/​White​Papers/​AG/​AnFPG​AComp​
anion​inSma​rtpho​neDes​ign.​ashx?​docum​ent_​id=​47335

	 4.	 Beaumin, C., Sentieys, O., Casseau, E., & Carer, A. (2010). A
coarse-grain reconfigurable hardware architecture for RVC-CAL-
based design. In 2010 Conference on Design and Architectures
for Signal and Image Processing (DASIP) (pp. 152–159). https://​
doi.​org/​10.​1109/​DASIP.​2010.​57062​59

	 5.	 Fanni, T., Rodríguez, A., Sau, C., Suriano, L., Palumbo, F., Raffo, L.,
& de la Torre, E. (2018). Multi-grain reconfiguration for advanced
adaptivity in cyber-physical systems. In 2018 International Confer-
ence on ReConFigurable Computing and FPGAs (ReConFig) (pp.
1–8). https://​doi.​org/​10.​1109/​RECON​FIG.​2018.​86417​05

	 6.	 Wijtvliet, M., Waeijen, L., & Corporaal, H. (2016). Coarse grained
reconfigurable architectures in the past 25 years: Overview and
classification. In W. A. Najjar, & A. Gerstlauer (Eds.), Interna-
tional Conference on Embedded Computer Systems: Architectures,
Modeling and Simulation, SAMOS 2016, Agios Konstantinos,
Samos Island, Greece, July 17-21, 2016 (pp. 235–244). IEEE.

	 7.	 Sau, C., Palumbo, F., Pelcat, M., Heulot, J., Nogues, E., Ménard,
D., Meloni, P., & Raffo, L. (2017). Challenging the best HEVC
fractional pixel FPGA interpolators with reconfigurable and mul-
tifrequency approximate computing. IEEE Embed. Syst. Lett.,
9(3), 65–68.

	 8.	 Palumbo, F., Sau, C., Fanni, T., & Raffo, L. (2017). Challenging
CPS trade-off adaptivity with coarse-grained reconfiguration. In
A. D. Gloria (ed.) Applications in Electronics Pervading Industry,
Environment and Society - APPLEPIES 2017, Rome, Italy, 21-22
September 2017, extitLecture Notes in Electrical Engineering
(vol. 512, pp. 57–63). Springer.

	 9.	 Diniz, C. M., Shafique, M., Bampi, S., & Henkel, J. (2015). A
reconfigurable hardware architecture for fractional pixel inter-
polation in high efficiency video coding. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 34(2),
238–251. https://​doi.​org/​10.​1109/​TCAD.​2014.​23845​17

	10.	 Coutinho Demetrios, A. M., De Sensi, D., Lorenzon, A. F.,
Georgiou, K., Nunez-Yanez, J., Eder, K., Xavier-de Souza, S.
(2020). Performance and energy trade-offs for parallel applica-
tions on heterogeneous multi-processing systems. Energies, 13(9).

	11.	 Suriano, L., Otero, A., Rodríguez, A., Sánchez-Renedo, M., & La
Torre, E. D. (2020). Exploiting multi-level parallelism for run-
time adaptive inverse kinematics on heterogeneous mpsocs. IEEE
Access, 8, 118707–118724. https://​doi.​org/​10.​1109/​ACCESS.​
2020.​30052​02

	12.	 Mittal, S. (2014). A survey of techniques for improving energy
efficiency in embedded computing systems. Int. J. Comput. Aided
Eng. Technol., 6(4), 440–459.

	13.	 Guo, K., Zeng, S., Yu, J., Wang, Y., & Yang, H. (2019). [dl] a
survey of FPGA-based neural network inference accelerators.

8  https://​github.​com/​onnx/​onnx/​issues/​2417#​issue-​51213​0707
9  https://​github.​com/​onnx/​onnx/​issues/​1385#​issue​comme​nt-​
54577​3838

http://creativecommons.org/licenses/by/4.0/
https://www.latticesemi.com/-/media/LatticeSemi/Documents/WhitePapers/AG/AnFPGACompanioninSmartphoneDesign.ashx?document_id=47335
https://www.latticesemi.com/-/media/LatticeSemi/Documents/WhitePapers/AG/AnFPGACompanioninSmartphoneDesign.ashx?document_id=47335
https://www.latticesemi.com/-/media/LatticeSemi/Documents/WhitePapers/AG/AnFPGACompanioninSmartphoneDesign.ashx?document_id=47335
https://doi.org/10.1109/DASIP.2010.5706259
https://doi.org/10.1109/DASIP.2010.5706259
https://doi.org/10.1109/RECONFIG.2018.8641705
https://doi.org/10.1109/TCAD.2014.2384517
https://doi.org/10.1109/ACCESS.2020.3005202
https://doi.org/10.1109/ACCESS.2020.3005202
https://github.com/onnx/onnx/issues/2417#issue-512130707
https://github.com/onnx/onnx/issues/1385#issuecomment-545773838
https://github.com/onnx/onnx/issues/1385#issuecomment-545773838

	 Journal of Signal Processing Systems

1 3

ACM Transactions on Reconfigurable Technology and Systems
(TRETS), 12(1), 1–26.

	14.	 Xilinx Vitis AI development environment. https://​www.​xilinx.​
com/​produ​cts/​design-​tools/​vitis/​vitis-​ai.​html

	15.	 Xilinx Deep Learning Processing Unit. https://​www.​xilinx.​com/​
produ​cts/​intel​lectu​al-​prope​rty/​dpu.​html

	16.	 Yu, X., Wang, Y., Miao, J., Wu, E., Zhang, H., Meng, Y., Zhang,
B., Min, B., Chen, D., & Gao, J. (2019). A data-center FPGA
acceleration platform for convolutional neural networks. In 2019
29th International Conference on Field Programmable Logic and
Applications (FPL) (pp. 151–158). IEEE.

	17.	 Zhang, C., Fang, Z., Zhou, P., Pan, P., & Cong, J. (2016). Caf-
feine: Towards uniformed representation and acceleration for
deep convolutional neural networks. In 2016 IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD) (pp.
1–8). https://​doi.​org/​10.​1145/​29669​86.​29670​11

	18.	 Ma, Y., Cao, Y., Vrudhula, S., & S. Seo, J. (2017). An automatic
RTL compiler for high-throughput FPGA implementation of
diverse deep convolutional neural networks. In 2017 27th Interna-
tional Conference on Field Programmable Logic and Applications
(FPL) (pp 1–8). https://​doi.​org/​10.​23919/​FPL.​2017.​80568​24

	19.	 Venieris, S. I., & Bouganis, C. S. (2017). Latency-driven design
for FPGA-based convolutional neural networks. In 2017 27th
International Conference on Field Programmable Logic and
Applications (FPL) (pp. 1–8). https://​doi.​org/​10.​23919/​FPL.​2017.​
80568​28

	20.	 Gokhale, V., Zaidy, A., Chang, A. X. M., Culurciello, E.
(2017). Snowflake: An efficient hardware accelerator for convo-
lutional neural networks. In 2017 IEEE International Symposium
on Circuits and Systems (ISCAS) (pp. 1–4). https://​doi.​org/​10.​
1109/​ISCAS.​2017.​80508​09

	21.	 Qiu, J., Wang, J., Yao, S., Guo, K., Li, B., Zhou, E., Yu, J., Tang, T.,
Xu, N., Song, S., Wang, Y., & Yang, H. (2016). Going deeper with
embedded FPGA platform for convolutional neural network. In
Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’16 (pp. 26–35). ACM,
New York, NY, USA. https://doi.org/10.1145/2847263.2847265.
http://​doi.​acm.​org/​10.​1145/​28472​63.​28472​65

	22.	 Meloni, P., Capotondi, A., Deriu, G., Brian, M., Conti, F., Rossi,
D., Raffo, L., & Benini, L. (2018). Neuraghe: Exploiting CPU-
FPGA synergies for efficient and flexible CNN inference accel-
eration on ZYNQ SOCS. ACM Transactions on Reconfigurable
Technology and Systems, 11(3). https://​doi.​org/​10.​1145/​32843​57

	23.	 Carreras, M., Deriu, G., Raffo, L., Benini, L., & Meloni, P. (2020).
Optimizing temporal convolutional network inference on FPGA-
based accelerators. IEEE Journal on Emerging and Selected Top-
ics in Circuits and Systems, 10(3), 348–361. https://​doi.​org/​10.​
1109/​JETCAS.​2020.​30145​03

	24.	 Prost-Boucle, A., Bourge, A., Petrot, F., Alemdar, H., Caldwell,
N., & Leroy, V. (2017). Scalable high-performance architecture
for convolutional ternary neural networks on FPGA. In 2017
27th International Conference on Field Programmable Logic
and Applications (FPL) (pp. 1–7). https://​doi.​org/​10.​23919/​FPL.​
2017.​80568​50

	25.	 Umuroglu, Y., Fraser, N., Gambardella, G., Blott, M., Leong, P.,
Jahre, M., & Vissers, K. (2017). Finn: A framework for fast, scal-
able binarized neural network inference. In Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Program-
mable Gate Arrays, FPGA ’17 (pp. 65–74). ACM, New York, NY,
USA. https://​doi.​org/​10.​1145/​30200​78.​30217​44. http://​doi.​acm.​
org/​10.​1145/​30200​78.​30217​44

	26.	 Rasoulinezhad, S., Zhou, H., Wang, L., & Leong, P. H. W.
(2019). PIR-DSP: An FPGA DSP block architecture for multi-
precision deep neural networks. In 2019 IEEE 27th Annual Inter-
national Symposium on Field-Programmable Custom Computing
Machines (FCCM) (pp. 35–44).

	27.	 Wang, E., Davis, J. J., Cheung, P. Y., & Constantinides, G.
(2020). Lutnet: Learning FPGA configurations for highly efficient
neural network inference. IEEE Transactions on Computers.

	28.	 Meloni, P., Loi, D., Deriu, G., Pimentel, A. D., Sapra, D., Moser,
B., Shepeleva, N., Conti, F., Benini, L., Ripolles, O., Solans, D.,
Pintor, M., Biggio, B., Stefanov, T. P., Minakova, S., Fragoulis, N.,
Theodorakopoulos, I., Masin, M., & Palumbo, F. (2018). ALOHA:
an architectural-aware framework for deep learning at the edge. In
M. Martina, & W. Fornaciari (Eds.), Proceedings of the Workshop
on INTelligent Embedded Systems Architectures and Applications,
INTESA@ESWEEK 2018, Turin, Italy, October 04-04, 2018 (pp.
19–26). ACM.

	29.	 Meloni, P., Loi, D., Deriu, G., Carreras, M., Conti, F., Capotondi,
A., & Rossi, D. (2019). Exploring Neuraghe: A customizable tem-
plate for APSOC-based CNN inference at the edge. IEEE Embed-
ded Systems Letters, PP, 1–1. https://​doi.​org/​10.​1109/​LES.​2019.​
29473​12

	30.	 Nane, R., Sima, V., Pilato, C., Choi, J., Fort, B., Canis, A., Chen,
Y. T., Hsiao, H., Brown, S., Ferrandi, F., Anderson, J., & Bertels,
K. (2016). A survey and evaluation of FPGA high-level synthesis
tools. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 35(10), 1591–1604. https://​doi.​org/​10.​1109/​
TCAD.​2015.​25136​73

	31.	 Pursley, D., & Yeh, T. (2017). High-level low-power system
design optimization. In Symposium on VLSI Design, Automation
and Test (pp. 1–4).

	32.	 Xilinx: Vivado Design Suite User Guide - High-Level Synthesis,
UG902

	33.	 Rubattu, C., Palumbo, F., Sau, C., Salvador, R., Sérot, J., Desnos,
K., Raffo, L., & Pelcat, M. (2019). Dataflow-functional high-level
synthesis for coarse-grained reconfigurable accelerators. IEEE
Embedded Systems Letters, 11(3), 69–72. https://​doi.​org/​10.​1109/​
LES.​2018.​28829​89

	34.	 Compton, K., & Hauck, S. (2002). Reconfigurable computing: A
survey of systems and software. 34(2), 171–210. https://​doi.​org/​
10.​1145/​508352.​508353

	35.	 Fanni, T., Sau, C., Raffo, L., & Palumbo, F. (2015). Automated
power gating methodology for dataflow-based reconfigurable
systems. https://​doi.​org/​10.​1145/​27428​54.​27472​85. Cited By 9

	36.	 Li, L., Sau, C., Fanni, T., Li, J., Viitanen, T., Christophe, F.,
Palumbo, F., Raffo, L., Huttunen, H., Takala, J., Bhattacharyya, S.
S. (2019). An integrated hardware/software design methodology
for signal processing systems. Journal of Systems Architecture, 93,
1–19. https://​doi.​org/​10.​1016/j.​sysarc.​2018.​12.​010, https://​www.​
scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​S1383​76211​83017​35

	37.	 Bezati, E., Casale-Brunet, S., Mosqueron, R., & Mattavelli, M.
(2019). An heterogeneous compiler of dataflow programs for
ZYNQ platforms. In ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP)
(pp. 1537–1541). https://​doi.​org/​10.​1109/​ICASSP.​2019.​86825​25

	38.	 Sérot, J., & Berry, F. (2014). High-level dataflow programming
for reconfigurable computing. In Symposium on Computer Archi-
tecture and High Performance Computing Work (pp. 72–77).

	39.	 Sau, C., Fanni, T., Rubattu, C., Raffo, L., & Palumbo, F.
(2021). The multi-dataflow composer tool: An open-source tool
suite for optimized coarse-grain reconfigurable hardware accelera-
tors and platform design. Microprocessors and Microsystems, 80,
103326. https://​doi.​org/​10.​1016/j.​micpro.​2020.​103326, https://​
www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​S0141​93312​03048​53

	40.	 Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z.
(2015). Rethinking the inception architecture for computer vision.
CoRR abs/1512.00567.

	41.	 Sau, C., Rinaldi, C., Pomante, L., Palumbo, F., Valente, G., Fanni,
T., Martinez, M., van der Linden, F., Basten, T., Geilen, M.,
Peeren, G., Kadlec, J., Jääskeläinen, P., Bulej, L., Barranco, F.,
Saarinen, J., Säntti, T., Zedda, M.K., Sanchez, V., Nikkhah, S.T.,

https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/intellectual-property/dpu.html
https://www.xilinx.com/products/intellectual-property/dpu.html
https://doi.org/10.1145/2966986.2967011
https://doi.org/10.23919/FPL.2017.8056824
https://doi.org/10.23919/FPL.2017.8056828
https://doi.org/10.23919/FPL.2017.8056828
https://doi.org/10.1109/ISCAS.2017.8050809
https://doi.org/10.1109/ISCAS.2017.8050809
http://doi.acm.org/10.1145/2847263.2847265
https://doi.org/10.1145/3284357
https://doi.org/10.1109/JETCAS.2020.3014503
https://doi.org/10.1109/JETCAS.2020.3014503
https://doi.org/10.23919/FPL.2017.8056850
https://doi.org/10.23919/FPL.2017.8056850
https://doi.org/10.1145/3020078.3021744
http://doi.acm.org/10.1145/3020078.3021744
http://doi.acm.org/10.1145/3020078.3021744
https://doi.org/10.1109/LES.2019.2947312
https://doi.org/10.1109/LES.2019.2947312
https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.1109/LES.2018.2882989
https://doi.org/10.1109/LES.2018.2882989
https://doi.org/10.1145/508352.508353
https://doi.org/10.1145/508352.508353
https://doi.org/10.1145/2742854.2747285
https://doi.org/10.1016/j.sysarc.2018.12.010
https://www.sciencedirect.com/science/article/pii/S1383762118301735
https://www.sciencedirect.com/science/article/pii/S1383762118301735
https://doi.org/10.1109/ICASSP.2019.8682525
https://doi.org/10.1016/j.micpro.2020.103326
https://www.sciencedirect.com/science/article/pii/S0141933120304853
https://www.sciencedirect.com/science/article/pii/S0141933120304853

Journal of Signal Processing Systems	

1 3

Goswami, D., Amat, G., Maršík, L., van Helvoort, M., Medina,
L., Al-Ars, Z., & de Beer, A. (2021). Design and management
of image processing pipelines within CPS: Acquired experience
towards the end of the Fitoptivis Ecsel project. Microprocessors
and Microsystems, 87.

	42.	 Agarap, A. F. (2018). Deep learning using rectified linear units
(RELU). CoRR abs/1803.08375. http://​arxiv.​org/​abs/​1803.​08375

	43.	 PyTorch: Batchnorm2d (2019). https://​pytor​ch.​org/​docs/​stable/​
gener​ated/​torch.​nn.​Batch​Norm2d.​html

	44.	 Ding, B., Qian, H., & Zhou, J. (2018). Activation functions and
their characteristics in deep neural networks.

	45.	 Zhang Zhifei, S. Y., & Qi, H. (2017). Age progression/regression
by conditional adversarial autoencoder. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE.

	46.	 Corrado, A. (2019). Animal-10 dataset. https://​www.​kaggle.​com/​
aless​iocor​rado99/​anima​ls10

	47.	 Bai, J., Lu, F., Zhang, K., et al. (2019). Onnx: Open neural net-
work exchange. Retrieved April 2023, from https://​docs.​xilinx.​
com/v/​u/​en-​US/​ug902-​vivado-​high-​level-​synth​esis, https://​github.​
com/​onnx/​onnx

	48.	 TensorFlow: Tensorflow core v2.4.1 (2020). https://​www.​tenso​
rflow.​org/​api_​docs/​python/​tf/​nn/​conv2d

	49.	 Keras ONNX: Keras to ONNX converter (2021). https://​github.​
com/​onnx/​keras-​onnx

	50.	 ONNxmltools: ONNxmltools library (2021). https://​github.​com/​
onnx/​onnxm​ltools

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1803.08375
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html
https://www.kaggle.com/alessiocorrado99/animals10
https://www.kaggle.com/alessiocorrado99/animals10
https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis
https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis
https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
https://github.com/onnx/keras-onnx
https://github.com/onnx/keras-onnx
https://github.com/onnx/onnxmltools
https://github.com/onnx/onnxmltools

	An Automated Design Flow for Adaptive Neural Network Hardware Accelerators
	Abstract
	1 Introduction
	2 Background
	2.1 CNN Acceleration and Tooling
	2.1.1 Architectures for CNN Inference
	2.1.2 Resource-constrained and Real-time Solutions
	2.1.3 Reduced Data-precision Implementations
	2.1.4 ONNXparser

	2.2 Design Automation for Hardware Acceleration and Reconfiguration
	2.2.1 High-level Synthesis
	2.2.2 Adaptivity Support
	2.2.3 Model-based Design: Dataflow Advantages
	2.2.4 MultiDataflow Composer Tool

	3 Proposed Flow
	3.1 CNN Modelling - ONNX Input
	3.2 Deriving Inputs for HLS and MDC
	3.3 Adaptive Accelerator Generation

	4 Experimental Results
	4.1 Overall Accelerator
	4.2 Focus on Single Actors and Layers
	4.3 Evaluation Summary

	5 Conclusions
	5.1 Summary
	5.2 Future work

	Appendix. Modelling the Networks with Keras
	References

