

Faculdade de Engenharia da Universidade do Porto

 Run-time selection of customized accelerators

José Miguel Campos

FINAL VERSION

Dissertation carried out within the scope of
Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Major Automação

Orientador: João Canas Ferreira

06/07/2020

ii

© José Miguel Campos, 2020

iii

Abstract

Moore’s law is coming to an end.

In the last twenty years the trend was to explore the parallelization of the task

execution and therefore parallel computing.

Despite being obvious that one could only achieve better performances with another

type of machine like the quantum computers, it is obvious as well that these machines, that

we already have, could be always of use because they are very good when it comes to

performing certain tasks or task sets.

Being so, there are other situations where the best options would be the ones that can

offer the most capacity of parallelization such a multiprocessor, multithreaded environment,

or with a more specific environment such as are the GPUs (Graphical Processing Unit), ASICs

(Application Specific Integrated Circuit) or FPGAs (Field Programmable Gate Array).

This work targeted the development of a hybrid computing system with an FPGA with

runtime partial dynamic reconfiguration capabilities.

Performance and power efficiency requirements of embedded systems are constantly

becoming more demanding as a result of growing algorithm complexity and autonomy. One

important approach to the solution of these conflicting requirements for FPGA-based systems

is to use customized accelerators to improve execution efficiency of hot-spots. The more the

accelerator is customized to the code, the better the performance improvements. However,

an accelerator customized for a given hot-spots, may not be ideal for other hot-spots or may

not be of use at all and, therefore, we may need to reconfigure the FPGA any time we want

to process a different task.

In order to improve overall performance and yet, to switch accelerators dynamically at

run-time using partial reconfiguration each time we have a different task set it is needed to

study the task set or try to predict the cycle of execution.

The objective of this work is to:

- Implement a hardware prototype that supports N customized accelerators and

dynamically chooses the most appropriate one taking into consideration the time and energy

iv

required to switch the accelerators. The choice may also depend on the sequence of hot-

spots to be accelerated.

- Study and analyses of the partial reconfiguration characteristics and tools, and the

study of the static and dynamic execution time components and model.

- The development of specific accelerators to a task or task set.

- The development of a scheduler for an operative system that would reduce the losses

in the performance brought through the overall effects of the partial dynamic reconfiguration

of the FPGA, being able to improve the performance of the system and reducing the power

consumption at runtime.

Results obtained about different algorithms are presented. Results obtained about a

simple scheduler are as well presented and finally we try to conclude what are the efforts we

have to make in order to further develop this proposed scheduler in order to predict the task

set and minimize the time needed to reconfigure the system.

We present conclusions if and when an FPGA is a good option to accelerate a task within

a heterogeneous computing system.

The prototype was evaluated using existing benchmark programs.

v

Resumo

A lei de Moore está a chegar ao seu fim.

Nos últimos vinte anos, a tendência tem sido explorar a paralelização da execução das

tarefas e, portanto, a computação paralela.

Apesar de óbvio que só se poderá obter melhores desempenhos com outro tipo de

máquina, como os computadores quânticos, também é óbvio que estas máquinas, já

existentes, podem ser sempre úteis, porque são muito boas quando se trata de executar

determinadas tarefas ou conjuntos de tarefas.

Sendo assim, existem outras situações em que as melhores opções seriam aquelas que

podem oferecer a maior capacidade de paralelização, como um sistema multiprocessador,

programação multithreaded ou com um ambiente heterogéneo, como com as GPUs (Graphical

Processing Unit), com ASICs (Application Specific Integrated Circuit) ou com FPGAs (Field

Programable Gate Arrays).

Este trabalho teve como objetivo o desenvolvimento de um sistema de computação

híbrido com uma FPGA com recursos de reconfiguração parcial dinâmica em tempo de real.

Os requisitos de desempenho e eficiência de energia dos sistemas embarcados estão se

tornando cada vez mais apertados como resultado da crescente complexidade dos algoritmos.

Uma abordagem importante para o cumprimento desses requisitos apertados para sistemas

com FPGAs é usar aceleradores personalizados para melhorar os tempos de execução das

tarefas e melhorar a performance. Quanto mais o acelerador for personalizado para o código,

maiores serão as melhorias de desempenho. No entanto, um acelerador personalizado para

uma determinada tarefa pode não ser ideal para outras tarefas ou pode não ser de todo útil

e, portanto, talvez seja necessário reconfigurar o FPGA a qualquer momento que desejar

processar uma tarefa diferente ou ter os vários aceleradores instanciados na configuração

inicial da FPGA.

Para alternar dinamicamente os aceleradores em tempo real usando a reconfiguração

parcial cada vez que temos um conjunto de tarefas diferente e, no entanto, melhorar o

desempenho geral e reduzir a perda de performance trazida pela necessidade de reconfigurar

o sistema, é necessário estudar o conjunto de tarefas ou tentar prever o ciclo de execução.

O objetivo deste trabalho é:

vi

- Implementar um protótipo de hardware que suporte N aceleradores personalizados e

escolha dinamicamente o mais apropriado, levando em consideração o tempo e a energia

necessários para alternar os aceleradores. A escolha também pode depender da sequência de

tarefas a serem aceleradas.

- Estudo e análise das características e ferramentas de reconfiguração parcial.

- Estudo dos componentes e modelo estáticos e dinâmicos do tempo de execução.

- O desenvolvimento de aceleradores específicos para uma tarefa ou conjunto de tarefas.

- O desenvolvimento de um escalonador para um sistema operativo que reduza as perdas

no desempenho causadas pelos efeitos gerais da reconfiguração dinâmica parcial do FPGA,

podendo melhorar o desempenho do sistema e reduzir o consumo de energia em tempo de

real.

Resultados obtidos sobre diferentes algoritmos são apresentados.

Os resultados obtidos sobre um escalonador simples também são apresentados e,

finalmente, tentamos concluir quais são os esforços que temos para desenvolver o

escalonador proposto, a fim de prever o conjunto de tarefas e minimizar o tempo necessário

para reconfigurar o sistema.

Apresentamos conclusões se e quando um FPGA é uma boa opção para acelerar uma

tarefa em um sistema de computação heterogêneo.

O protótipo foi avaliado usando os programas de benchmarking existentes.

vii

viii

Acknowledgments

I want to dedicate his work to all the great minds and inventors in history, like Nicola

Tesla, that were ahead of their time, true heroes for mankind.

I want to thank to all my professors and colleagues that were always kind and available to

help, specially to my supervisor professor Canas Ferreira for his guidance and insight, and to

Federico and Pedro for their friendship and interest.

 I want to thank to all my family and friends, specially to my parents and grandparents,

specially to my grandfather Albino that is with us no more, for all their support and for

believing in me.

Finally, I want to thank to my girlfriend Telma, for giving me inspiration and for making

me wanting to be everyday a better man.

ix

“The parallel approach to computing does require

that some original thinking be done about numerical

analysis and the data management in order to secure

efficient use. In an environment which has

represented the absence of the need to think as the

highest virtue this is a decided disadvantage”

Daniel Slotnick, 1967

x

xi

Table of Contents

Abstract .. iii

Resumo .. iii

Acknowledgments .. viii

Table of Contents ... x

List of figures ... xiiii

List of tables .. xv

Acronyms and Symbols... xvi

Chapter 1 ... 1

Introduction ... 1
1.1 - Heterogeneous Computing Systems .. 2
1.2 - FPGA as a Special Type of Processing Unit .. 4
1.2 - High Level Synthesis .. 4
1.3 - Flynn's Taxonomy ... 4
1.4 - Motivation and Problem Statement .. 5
1.5 - Objectives ... 5
1.6 - Approach ... 5
1.7 - Structure of the Document .. 5

Chapter 2 ... 7

Review of Related Work ... 7
2.1 - Encyclopaedia of Parallel Computing .. 7
2.2 - Measuring the Performance of Schedulability Tests ... 7
2.3 - Finding Speedup in Parallel Processors .. 7
2.4 - Self-adaptive loop for CPSs .. 7
2.5 - CoRQ .. 7
2.6 - Dynamic partial reconfiguration in FPGAs ... 7
2.7 - Quantifying the Benefits of DPR for Embedded Vision Applications 7
2.8 - Conclusions .. 7

Chapter 3 .. 17

Overview of the System ..17

xii

3.1 - Zync7000.. 17
3.2 - Developed Prototype ... 20
3.3 - PDR of FPGAs .. 21
3.4 - PDR Control .. 24
3.5 - Data Transfer .. 24
3.6 - Main Memory ... 27
3.7 - Measurement Infrastructure ... 29
3.8 - Accelerator Architecture .. 7
3.9 - Execution Model ... 31

Chapter 4 .. 35

Project Development, Algorithms and Static Analyses .. 35
4.1 - PDR .. 35
4.1 - Algorithm Analyses ... 42

Chapter 5 .. 46

The Proposed Scheduler.. 46
5.1 - Simple Version ... 46
5.2 - Sophisticated Version ... 48

Chapter 6 .. 51

Conclusion and Future Work ... 51
6.1 - Conclusion .. 51
6.2 - Future Work .. 53

References .. 54

xiii

List of figures

Figure 1.1 - Generic Heterogeneous Computing System ... 2

Figure 2.1 - MAX2 board ... 11

Figure 2.2 - Proposed Manager ... 12

Figure 2.3 - Proposed Prototype .. 13

Figure 2.4 - SoC Overview ... 14

Figure 2.5 - System Architecture ... 15

Figure 3.1 - Zynq®-7000 SoC block diagram .. 18

Figure 3.2 - Zynq®-7000 PL ... 19

Figure 3.3 - High Level Block Diagram of the System ... 20

Figure 3.4 - High Level Block Diagram of the System with ICAP Configuration 22

Figure 3.5 - Top Level AXI HWICAP Core .. 23

Figure 3.6 - System Diagram .. 25

Figure 3.7 - System View .. 27

Figure 3.8 - Measuring Time .. 30

Figure 3.9 - High Level Block Diagram for the Template IP .. 31

Figure 3.10 - Execution Model for HW accelerated Task.. 33

Figure 4.1 - Typical Configuration Mode Timings .. 38

Figure 4.2 - Configuration Phases at Power On .. 38

Figure 4.3 - Reconfiguration Timings .. 39

Figure 4.4 - Configuration Phases with PR ... 39

Figure 4.5 - PR Timings .. 40

Figure 4.6 - PDR Timings... 40

xiv

Figure 4.7 - Measured Time of PDR .. 41

Figure 4.8 - Matrix Multiplication Software Execution, ARM, Timing 41

Figure 4.9 - Matrix Multiplication IP ... 41

Figure 4.10 - Bubble Sort, Software Execution, ARM, Timing...................................... 41

Figure 4.10 - Bubble Sort, Software Execution, FPGA, Timing 41

Figure 5.1 - High Level Block Diagram of the Scheduler, Simple Version 45

Figure 5.2 - High Level Block Diagram of the Scheduler, Sophisticated Version 48

xv

List of tables

Table 3.1 — Colour Code for the Execution Model. ... 32

xvi

Acronyms e Symbols

Acronyms

CAD Computer Aided Design

CISC Complex Instruction Set Computer

DEEC Departamento de Engenharia Eletrotécnica e de Computadores

DFT Discrete Fourier Transform

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

DRB Dynamic Reconfiguration Branch

DRI Dynamic Reconfiguration Interface

DRM Dynamic Reconfiguration Memory

EDF Earliest Deadline First

FEUP Faculdade de Engenharia da Universidade do Porto

FPGA Field Programmable Gate Array

OCM On Chip Memory

PDR Partial Dynamic Reconfiguration

RISK Reduced Instruction Set Computer

RM Reconfigurable Module

RP Reconfigurable Partition

Chapter 1

Introduction

In 1965, Gordon Moore predicted that the number of transistors placed in a single chip

would double every two years, being the reduced cost one of the big advantages of

integrated electronics [1].

The State of the Art of computer architecture was for 70 years based on the Von

Neumann model, Complex Instruction Set Computers, CISC, and Reduced Instruction Set

Computers, RISC, based on the Harvard architecture, became the most used and employed

processors even when talking about super computers. The execution model was, for many

years, in a sequential thread fashion, where the sequences of instructions are executed one

at a time.

One of the ways to improve performance, as the number of transistors were increasing for

the same area, was to increase the frequency of the processor as well. This no longer feasible

due to physical constraints [2], above all, because of power consumption and power density,

from which we can observe that the frequency and the supply voltage are directly

proportional. It would be necessary to change and improve the refrigeration systems in order

to further improve the performance augmenting the processor frequency, which is not viable.

As a general rule higher frequency processor designs require exponentially more power than

lower frequency designs. The standard relationship between processor execution time, T, and

required power, P, is: T^3P = k, where k is a constant. As an example, if a high frequency

design were designed to double the frequency of a particular reference design one would

expect it to consume 8 times the power. While clever design may avoid the worst

consequences of this, it is obvious that parallel designs will have a uniform power density

that scales with area. [3]

Additionally, the time to read and write in the memory had become not negligible and it

was for various years a serious bottleneck that resulted in the fabrication of General Purpose

Processors, GPPs, with bigger caches, a trend that still is continuing at the present moment.

For the last twenty years the trend was to parallelize the execution of different tasks or

the task itself if and as well as it would be possible in order to improve the performance of a

machine, in some cases, to meet the specified time constraints of the project. That led to

the creation of computing systems with a large number of multicore GPPs with big caches and

to the advent of multithreaded computing.

Runtime Selection of Customized Accelerators

2

Parallel processors have been an integral part of computer architecture and design for

more than 50 years. Recent re-emphasis on various forms of multiprocessors (multi core and

multithreaded) has arisen from the inability to continue to scale die frequency due to power

limitations. With the continuing advance in circuit density replicating processors in an MIMD,

multiple instruction multiple data, configuration is an obvious alternative. [3]

Besides that, nowadays, embedded systems can run a considerable number of

applications at the same time, which takes us directly to see the improvement of

performance by having a system that could actually run all those applications in different,

but still equal in itself, resources, as are the multiprocessor computers. Despite having to

share some of the resources as the main memory, multiprocessor computers can have a large

number of GPPs, that can process different applications. Even though this improved the

performance, there are still some cases when the GPPs, with the most used and established

processor architectures, RISK and CISC, are not the best option or a good option at all, the

alternative of processor node plus array oriented accelerator has some significant advantages

especially in compute intensive static applications. [3] These computing systems, developed

to solve special cases, when a GPP is not a good solution, are called heterogeneous systems.

1.1 - Heterogeneous Computing Systems

Figure 1.1 - Generic Heterogeneous Computing System

A Heterogeneous Computing System is in its essence a parallel system in which we have

different types of processing units connected, that are specified and developed to process

specific parts of a task set.

Runtime Selection of Customized Accelerators

 3

A Heterogeneous System is possibly comprised by a multicore multiprocessor system with

GPPs, connected to various others GPUs, and possibly FPGAs and ASICs, as shown in figure

1.1. Each of these parts may be the best option to process a task, in terms of performance.

When considering different algorithms or different parts of an application running in a

machine, we may observe that, by using different types of processing resources we will get

different performance results, and so, we should study and optimize the distribution of the

applications in order to achieve the best possible performance we can have with a specific

computer that has different types of processing resources.

In figure 1.1 we can observe a generic heterogeneous system that could be implemented

in a SoC, or connecting multiple different processing units as well.

A system on a chip, SoC, is an integrated circuit that has within itself most components of

a computer including a central processing unit, CPU, memory, input/output ports and

possibly other circuits as a FPGA. It may contain digital, analogue, mixed-signal, and often

radio frequency signal processing functions. All those previously stated parts are within the

same IC, integrated circuit.

1.2 - FPGA as a Special Type of Processing Unit

In the case of FPGAs or ASICs, the computation would be performed by a circuit rather

than by executing instruction in a general purpose, generic processor. FPGAs were initially

used in the testing phase when developing new hardware, but nowadays they are used in

more diverse application areas, i.e., discrete logic, signal processing, high-performance

embedded computing, and recently as accelerators for high-performance computing. With

the adoption of high-speed IO standards, as, i.e., AXI interface when considering the internal

interfaces in a SoC, or other high-speed bus, FPGAs became more attractive when considering

and designing new heterogeneous systems. With a FPGA we have the possibility to develop

accelerators tailored to process a specific task, or make a generic processor type circuit that

is similar to a general purpose processor. FPGAs are extremely versatile, power-efficient, and

they offer high computational performance.

The Advanced eXtensible Interface (AXI), part of the ARM Advanced Microcontroller Bus

Architecture specification, is a parallel high-performance, synchronous, high-frequency,

multi-master, multi-slave communication interface, mainly designed for on-chip

communication.

Runtime Selection of Customized Accelerators

4

1.3 - High Level Synthesis (HLS)

The Xilinx Vivado HLS tool transforms a C specification, in C, C++, or SystemC, into a

register transfer level (RTL) implementation. Hardware designers can work at a higher level

of abstraction while creating high-performance hardware.

There are many reasons to explain why algorithmic-based approaches are getting

popular, but above all, it is due to accelerated design time and because this makes the FPGA

an attractive device for all programmers and software developers. Using HLS almost any

software developer can create a good accelerator much faster than with HDL, hardware

description languages, based design, which is well known only by hardware developers.

Many implementations are possible, that means each project holds one set of C code and

can contain multiple solutions with different constraints and optimization directives.

HLS is comprised of three different parts. Scheduling determines which operations occur

during each clock cycle. Binding determines which hardware resource implements each

scheduled operation. To implement the optimal solution, high-level synthesis uses

information about the target device. Control logic extraction, extracts the control logic to

create a finite state machine (FSM) that sequences the operations in the RTL design.

1.4 - Flynn’s Taxonomy

Flynn’s taxonomy is a categorization of forms of parallel computer architectures. From

the viewpoint of the assembly language programmer, parallel computers are classified by the

concurrency in processing sequences (or streams), data, and instructions. This results in four

classes SISD (single instruction, single data), SIMD (single instruction, multiple data), MISD

(multiple instruction, single data), and MIMD (multiple instruction, multiple data). [4]

1.5 - Motivation and Problem Statement

This master thesis tries to answer different questions, starting with:

Is a FPGA with Partial Dynamic Reconfiguration a possible option to use within a

Heterogeneous Computing System?

After this first question is answered and if we were certain that a FGPA is a good option,

we can proceed to understand if:

What are the consequences of using only one FPGA and create the need to

reconfigure the system at runtime, while maximizing power efficiency?

At last, we will try to get to know the problems created when we need to reconfigure

the system, reducing the overall performance, and answer if:

Would it be possible to reduce the loss of performance and the costs brought by the

dynamic ongoing of PDR?

Runtime Selection of Customized Accelerators

 5

1.6 - Objectives

This master thesis has two main objectives.

The first objective is to determine if a dynamically reconfigurable FPGA would be a

suitable option to be a part of a heterogeneous system and what are the advantages to

choose it.

The second objective of this work is to investigate what are the effects of the need to

reconfigure the system and to develop a scheduler that could be able to maximize the

performance of the system in different situations and would be able to reduce the loss of

performance that occurs when one has to reconfigure the device at runtime, anticipating and

predicting what configuration would be needed next and that reconfigures the device before

it needs to accelerate a specific task.

1.7 - Approach

At first, several accelerators will be developed and studied. Then, it will be also studied

the conditions created by choices during project development by obtaining data from an

actual prototype implementation.

After that, a simple version of the scheduler will be presented. This version does not

take in account nor tries to reduce the effects of the partial reconfiguration of the system.

Finally, based on artificial intelligence, a more sophisticated version of the scheduler,

that tries to predict and anticipate the correct configuration before it is needed, would be

presented.

1.8 - Structure of the Document

In chapter 2, Review of Related Work, a review of several other works and books already

made about this subject in the last few years is made.

In chapter 3, Overview of the System, the proposed prototype is presented.

Chapter 4, Project Development, Algorithms and Static Analyses, presents results and

conclusions that come with the options made during project development and the necessity

to accelerate a particular task or task set. Results from data obtained from measurements

are presented.

Chapter 5, The Proposed Scheduler, has two parts. In a first moment a simple version of

the scheduler is presented and the results obtained, and then in a second part, a more

elaborated and sophisticated version, that tries at runtime, to improve the computing

Runtime Selection of Customized Accelerators

6

performance reducing the time losses brought by partial dynamic reconfiguration of the

FPGA.

Chapter 6, Conclusion and Future Work, presents the conclusions and results of this

master thesis.

Chapter 2

Review of Related Work

In this chapter we review some of the books and studies related to this work.

2.1 – Encyclopaedia of Parallel Computing

The Encyclopaedia of Parallel Computing [4] is an important book where we could find

many subjects of importance to develop our work, namely:

2.1.1 - Affinity Scheduling

Affinity scheduling is the scheduling of tasks on the processing resources where they will

be executed more efficiently. It is often related to different speeds associated with

processing the task in that specific resources of the computing system.

The goal of the scheduling policy is typically to optimize time or throughput.

Another form of affinity scheduling is based on the state of the memory system

hierarchy. More specifically, it may be more efficient in parallel computing environments to

schedule a computing task on a particular computing node than on any other if relevant data,

code, or state information already resides in the caches or local memories associated with

the node.

In parallel computing environments that employ affinity scheduling, the system often

allocates computing tasks on the computing nodes where they will be executed most

efficiently, unless that resource is loaded. If computing tasks are always executed on the

computing nodes for which they have affinity, then the system may suffer from load sharing

problems as tasks are waiting at overloaded nodes while other nodes are under loaded. On

the one hand, if processor affinities are not followed, then the system may incur significant

penalties as each computing task must establish its working set in close proximity to a

computing node before it can proceed.

Runtime Selection of Customized Accelerators

8

Scheduling decisions cannot be based solely on task-node affinity, else other scheduling

criteria, such as fairness, may be sacrificed. Hence, there is a fundamental scheduling trade-

off between keeping the workload shared among nodes and scheduling tasks where they

execute most efficiently. An adaptive scheduling policy is needed that determines, as a

function of system load, the appropriate balance between the extremes of strictly balancing

the workload among all computing nodes and abiding by task-node affinities blindly.

2.1.2 - Algorithm Engineering

The development of algorithms is one of the core areas of computer science, with the

goal to prove worst case performance. A purely theoretical approach delays the transfer of

algorithmic results into applications. Therefore, in algorithm engineering, implementation

and experimentation are viewed as equally important as design and analysis of algorithms.

The CPU time is a good way to characterize the time used by a sequential process

(without I/O), even in the presence of some operating system interferences. In contrast, in

parallel programs we have to measure the actual elapsed time (wall-clock time) in order to

capture all aspects of the parallel program, in particular, communication and synchronization

overheads. Thus timing is usually done as follows: All processors perform a barrier

synchronization immediately before the piece of program to be timed; one processor x notes

down its local time and all processors execute the program to be measured. After another

barrier synchronization, processor x measures the elapsed time. As long as the running time is

large compared to the time for a barrier synchronization, this is an easy way to measure wall-

clock time. To get reliable results, averaging over many repeated runs is advisable.

In parallel computing, running time depends on the number of processors used and it is

sometimes difficult to see whether a particular execution time is good or bad considering the

amount of resources used. Therefore, derived measures are often used that express this more

directly. The speedup is the ratio of the running time of the fastest known sequential

implementation to that of the parallel running time. The speedup directly expresses the

impact of parallelization. The relative speedup is easier to measure because it compares with

the parallel algorithm running on a single processor.

2.1.3 - Benchmarks

Computer benchmarks are computer programs that form standard tests of the

performance of a computer and the software through which it is used.

“A benchmark is testing a software interface to a computer, and not a particular type of

computer architecture”.

“The basic goal of performance modelling is to measure, predict, and understand the

performance of a computer program or set of programs on a computer system”.

Runtime Selection of Customized Accelerators

 9

2.1.4 - Flynn’s Taxonomy

“Developed in 1966 and slightly expanded in 1972, this is a methodology to classify

general forms of parallel operation available within a processor. It was proposed as an

approach to clarify the types of parallelism either supported in the hardware by a processing

system or available in an application”.

The classification is based on the view of either the machine or the application by the

machine language programmer. It implicitly assumes that the instruction set accurately

represents a machine’s micro-architecture.

2.1.5 - Job Scheduling

A parallel job scheduler allocates nodes for parallel jobs and coordinates the order in

which jobs are run. With enough resources available, a system can execute multiple

parallel jobs simultaneously, while other jobs are enqueued and wait for nodes to

become available. The job scheduler manages the queues of waiting jobs and oversees

node allocation. The goals of a scheduler are to optimize throughput of a system (number

of jobs completed per time unit), provide response time guarantees (finish a job by a

deadline), and keep utilization of compute resources high.

2.1.6 - LINPACK Benchmark

The LINPACK benchmark is a computer benchmark that reports the performance for

solving a system of linear equations with a general dense matrix.

The allowed parallelism modes include automatic parallelization done by the compiler as

well as manual parallelization that uses hardware-assisted shared memory or explicit message

passing on a distributed memory machine.

2.1.7 - Livermore Loops

Livermore Loops are a set of 24 Fortran DO-loops (The Livermore Fortran Kernels, LFK)

extracted from operational codes used at the Lawrence Livermore National Laboratory.

They have been used since the early 1970s to assess the arithmetic performance of

computers and their compilers. They are a mixture of vectorizable and non-vectorizable loops

and test rather fully the computational capabilities of the hardware as well as the skill of the

software in compiling and vectorization of efficient code.

The main value of the benchmark is the range of performance that it demonstrates, and

in this respect it complements the limited range of loops tested in the LINPACK benchmark.

Runtime Selection of Customized Accelerators

10

2.1.8 - Scheduling Algorithms

Scheduling algorithms aim at defining when operations of a program are to be executed.

Such an ordering, called a schedule, has to make sure that the dependences between the

operations are met. Scheduling for parallelism consists in looking for a schedule that allows a

program to be efficiently executed on a parallel architecture. This efficiency may be

evaluated in term of total execution time, utilization of the processors, power consumption,

or any combination of this kind of criteria. Scheduling is often combined with mapping, which

consists in assigning an operation to a resource of an architecture.

2.1.9 - Shared-Memory Multiprocessor

A shared-memory multiprocessor is a computer system composed of multiple

independent processors that execute different instruction streams. Using Flynn’s

classification, an SMP is a multiple-instruction multiple-data (MIMD) architecture. The

processors share a common memory address space and communicate with each other via

memory. A typical shared memory multiprocessor includes some number of processors with

local caches, all interconnected with each other and with common memory via an

interconnection (e.g., a bus). Shared-memory multiprocessors can either be symmetric or

asymmetric. Symmetric systems imply that all processors that compose the system are

identical. Conversely, asymmetric systems have different types of processors sharing

memory. Most multicore chips are single-chip symmetric shared-memory multiprocessors.

2.1.10 - SoC

A System on Chip (SoC) refers to a single-integrated circuit (chip) composed of all the

components of an electronic system. SoC technology did not change the functionality of the

systems, it is heterogeneous, it is used to describe chips integrating on a single silicon die

what was before spread on several circuits.

A SoC may contain digital components (processor, memory, hardware device drivers,

bus, etc.), analogue and radio components.

The SoC market has been driven by embedded computing systems: mobile phones and

handheld devices.

2.1.11 - VLSI Computation

VLSI Computation (computation within the Very-Large-Scale-Integrated technology)

concerns the analysis of the computations realized by large integrated networks, whereby the

traditional distinction between networks and computations disappears (each network is

“dedicated” to the execution of a particular algorithm). Specific algorithms realized by such

circuits are evaluated in terms of their efficient use of the integrated technology.

Runtime Selection of Customized Accelerators

 11

2.2 – Measuring the Performance of Schedulability Tests

In the work of Bini et al [5], it is discussed and compared three different metrics that

can be used for evaluating the performance of schedulability tests.

The compared metrics are the breakdown utilization, the utilization upper bound and

the optimality degree.

Synthetic task generation is then investigated to make conclusions on how the random

generation procedure can bias the simulation results of some specific scheduling algorithm. It

is presented efficient method for generating task sets with uniform distribution with the

UUniFast Algorithm.

The main result achieved from this study is that current metrics intrinsically evaluate

the behaviour of RM in pessimistic scenarios, which are more critical for fixed priority

assignments than for dynamic systems. The use of unbiased metrics, such as the Optimality

Degree, shows that the penalty payed in terms of schedulability by adopting fixed priority

scheduling is less than commonly believed.

This is an important study that gives us the possibility to understand the metrics when

considering to evaluate scheduling algorithms and how to generate enough tasks sets

randomly to evaluate a computing system.

Figure 2.1 – MAX2 board [3]

Runtime Selection of Customized Accelerators

12

2.3 – Finding Speedup in Parallel Processors

In the work of Flynn et al [3], it was proposed an acceleration methodology based on

FPGA arrays. The methodology uses high performance FPGA hardware supported by a

comprehensive application analysis.

Rather than basing the HPC (high performance computing) computational paradigm on

MIMD multiprocessors it was proposed an alternative based on a heterogeneous node

consisting of a host processor plus and high density computational array.

A prototype consisting of a board with two Virtex FPGAs and 24GB DDR2 of buffer storage

was evaluated as seen in figure 2.1.

Geophysical Modelling was implemented in a MAX2 and compared with an Intel Xeon

implementation provided more than two orders of magnitude speedup.

This work, made by reference authors in 2008 is directly related to this study and gives

important insights, i.e., when talking about the cylindrical model.

2.4 –Self-adaptive loop for CPSs: is the Dynamic Partial
Reconfiguration profitable?

In the work of D’Andrea et al [6], that focuses in the area of edge computing, a run-time

manager for the partial reconfiguration is introduced. It is adopted a metric to evaluate the

impact of reconfiguration time. Its validation through its usage on a basic application

implemented on FPGA is as well made.

“When exploiting FPGAs with DPR, a crucial problem is to understand whether is

profitable or not to dynamically reconfigure it. In fact, the process requires that a

configuration file is transferred from a storage memory to a reconfiguration memory,

requiring some time, depending on both configuration file size and available bandwidth; this

impact, if not well considered, can nullify the advantage obtained using a DPR” [7].

 In figure 2.1 we can observe the high level block diagram of the run-time

reconfiguration manager.

The monitor was made to work within various different computing systems that can be

related to edge computing and can measure different variables depending on the applications

and the metrics used. It was made to be the less intrusive as possible in order to do not cause

interference on the application execution time.

Analysis “is a phase where a component, called analyser, interprets the raw information

coming from the monitoring system, in order to obtain indications about performance” [7].

Plan is where the decision is made.

Runtime Selection of Customized Accelerators

 13

The execution phase is in reference to the actual partial reconfiguration of the system.

Partial Bitstreams are transferred and the reconfiguration is made. “The configuration files

are prepared at design-time, due to the complexity of the FPGA synthesis operation”.

Figure 2.2 – Proposed Manager [6]

The prototype presented in figure 2.2, made to face timing performance losses in edge

computing presents the manager that evaluates whether dynamic partial reconfiguration

could be of use or not follows the adaptation phenomena called self-adaptive loop model [7].

Figure 2.3 – Proposed Prototype [6]

The authors opted to store partial bitstreams in the external memory and transfer it to

the on chip memory reserved to an ARM core in the processing system. Both o the cores of

the ARM have its own OCM. The reconfiguration is done then by the DRC (dynamic

Runtime Selection of Customized Accelerators

14

reconfiguration controller), using the DRI (dynamic reconfiguration interface) to store the

bitstream in the DRM (dynamic reconfiguration memory). The reconfiguration of a DRB

(dynamic reconfigurable branch) is considered complete when the BS is stored in the DRM.

“Dedicated experimental applications have been designed and developed to show the

run-time manager profitability, i.e., the capability to adapt the system to possible

application changes: it has to guarantee that timing performance are hold, in a scenario

where asynchronous disturbances, i.e., that happens independently from the application, are

present” [6].

“The proposed model is quite general and it has been proposed since, in the state of art,

there are a number of local solutions to the DPR profitability evaluation, and only part of

them consider the impact of DPR time” [6]. First validation activities have been done

considering simple applications in order to infer about the profitability and reusability of the

proposed manager. Future work will consider unmanned aerial vehicles able to guarantee

certain timing performance on image computation using DPR.

It is an interesting work that is directly related to our study and despite being DPR an

area that will be subject of developments, gives us important insights in order to proceed

with our evaluation.

2.5 –CoRQ: Enabling Runtime Reconfiguration Under WCET
Guarantees for Real-Time Systems

In the work of Damschen et al [8], it was presented concepts that enable runtime

reconfiguration under Worst Configuration Execution Time (WCET). It was detailed “the

challenges of runtime reconfiguration in real-time systems and show that conflicts while

accessing a shared main memory during reconfiguration can lead to a slowdown of more than

21× in reconfiguration bandwidth”. It was presented a new reconfiguration controller.

It is discussed how one approach of improving WCET guarantees of a kernel using runtime

reconfiguration which is the stalling approach, a task that reconfigures an accelerator using

stalling, stalls its execution for the whole reconfiguration delay, once the reconfiguration is

completed, the task proceeds execution in software and executes the reconfigured hardware

accelerators. It is made the assumption that the reconfiguration delay can be determined

statically and can be added to the total time of execution.

An approach that enables the CPU to perform useful operations in parallel to

reconfiguration is prefetching. A considerable amount of reconfiguration delay has already

passed at the point in time when the accelerators are actually needed. It provides

considerable performance improvements but, for real-time systems, however, prefetching

poses great challenges.

Runtime Selection of Customized Accelerators

 15

The prototype, seen in figure 2.4, was evaluated and guaranteed reconfiguration delays

for the stalling and prefetching approaches for a uniprocessor system.

Figure 2.4 – SoC Overview [8]

2.6 – Dynamic partial reconfiguration in FPGAs

In the work of Lie et al [9], focuses on the advantages of the dynamic partial

reconfiguration design flow.

They developed a prototype in order to describe the advantages of early access partial

reconfiguration when in comparison with difference based partial reconfiguration or module

based partial reconfiguration, seen in figure 2.5.

Figure 2.5 – Design Architecture [9]

Runtime Selection of Customized Accelerators

16

The direct benefit is less space needed for storing the necessary configurations for

operation. As reconfiguration times are highly dependent on the size and organization of the

PRRs, an additional benefit is that the reconfiguration time is shorter.

2.7 – Quantifying the Benefits of Dynamic Partial
Reconfiguration for Embedded Vision Applications

In the work of Nguyen et al [10], quantify the benefits of dynamic FPGA mapping (with

DPR) over traditional static FPGA mapping for two vision applications, using a smaller FPGA

but still meeting the functional and performance requirements.

2.8 – Conclusions

In this chapter we presented some of the related book and works.

In 2.1 we presented some interesting entries for this project.

From 2.2 to 2.7 we presented some of the works made in the last few years closely

related to this project.

Runtime Selection of Customized Accelerators

 17

Chapter 3

Overview of The System

For the purposes of this master thesis a ZedBoard was chosen because it is a good

option, when considering the questions, we want to answer. It suits well the purposes of our

job.

3.1 Chosen Board: ZedBoard, Zynq®-7000 SoC

Zynq 7000 SoC is a device that integrates the software programmability of an ARM based

processor, a dual-core ARM Cortex-A9, with the hardware programmability of a Field

Programmable Gate Array (FPGA) logic fabric, based on Xilinx 7-series FPGA architecture, in

one single chip. This is completed by industry standard AXI interfaces, which provide high

bandwidth, low latency connections between the two parts. It was made to be the best price

to performance-per-watt, fully scalable SoC platform.

Simplifying the system to a single chip include reductions in physical size and overall

cost and other benefits while being capable in terms of resources and performance. Zynq is a

very flexible system on a chip (SOC).

The development of a complete embedded system is a significant design task, and there

are particular advantages to undertake the design on a platform such as an FPGA or Zynq

device, which make the process more straightforward. Xilinx has a wide variety of standard

IP, peripheral components and interconnections, libraries and standards with performance

characteristics very well-known and integrated into the software development tools and

drivers, meaning that there is no need to redesign the project when considering various

different Xilinx platforms. Reusing components in the form of pre-tested and verified IP,

development can be accelerated and costs can be lowered.

Runtime Selection of Customized Accelerators

18

It was the first device of its kind in the market, never seen before. In many areas as

space exploration, military, telecommunications and, for example, cryptography, this device

can be a good option as it could meet the tight timing, power or flexibility constraints,

keeping the time to market, TTM, low and at a low price.

Figure 3.1 - Zynq®-7000 SoC block diagram

Mainly composed of two different parts, the Programmable System, PS, and the

Programmable Logic, PL, it can be easily configured to have accelerators as peripherals

instantiated in the logic fabric, and an Operating System, OS, running in the ARM that can

decide which and when the resources are allocated to a specific application, while the AXI

interface, part of Advanced Microcontroller Bus Architecture, AMBA, and Direct Memory

Access engine, DMA, allow to transfer data and information very quickly to meet timing

constraints.

As we can see in figure 3.1, the Zynq processing system is not only the ARM processor,

but, as well, a set of associated processing resources forming an Application Processing Unit

(APU), and further peripheral interfaces, cache memory, memory interfaces, interconnect,

and clock generation circuitry.

In figure 3.2, the PL of the smaller Zynq devices corresponds to the fabric of Artix-7

FPGAs, while the larger ones are equivalent to Kintex-7. It is predominantly composed of

general purpose FPGA logic fabric, which is composed of slices, Configurable Logic Blocks

(CLBs), there are also Input/Output Blocks (IOBs) for interfacing. The model used in this

project has five different clock regions.

Runtime Selection of Customized Accelerators

 19

In addition to the general fabric, there are two special purpose components: Block RAMs

for dense memory requirements; and DSP48E1 slices for high-speed arithmetic. It is often an

advantage to use distributed RAM for small memories due to efficiency, performance and a

more flexible placement, but with the Block RAM, which can normally be clocked at the

highest clock frequency supported, 250 MHz, we can store a large amount of data in a small

physical space of the device. The LUTs in the logic fabric can be used to implement

arithmetic operators of any arbitrary length, but are most suitable for arithmetic operators

with short word lengths (arithmetic circuits for long word lengths can have a large footprint

in slice logic, with placement and routing factors resulting in sub-optimal clock frequencies).

Figure 3.2 - Zynq Programmable Logic (PL)

DSP48E1s are special slices for implementing high-speed arithmetic on signals with

medium to long arithmetic word lengths.

A soft processor could be implemented (i.e. MicroBlaze) in the PL, which could be an

advantage when compared with other hybrid systems, for instance because it has a much

more flexible configuration, the actual footprint could be changed, occupying more area for a

better performance, in order to have more features or to work in a specified different clock

frequency. In the other hand we could reduce the area optimizing the soft core for the

Runtime Selection of Customized Accelerators

20

operations it will need to do. MicroBlaze resource utilization varies with configuration,

starting at approximately 900 LUTs, 700 FFs, and 2 Block RAMs for the ‘minimum area’

option, and rising to about 3800 LUTs, 3200 FFs, 6 DSP48E1s and 21 Block RAMs for the

‘maximum performance’ configuration.

3.2 Developed Prototype

As seen in figure 3.3, it was decided to use one of the cores of the ARM processor to run

operative system features while the other core is used to run the applications in parallel with

the Reconfigurable Partitions in the PL.

Figure 3.3 - High Level Block Diagram of the System

This is a simple system in itself, this device could have been configured in a more

elaborated manner, possibly with a soft core processor that could have been tailored to

control the PR features, the use of special memories in the PL, or independent memory

added as peripheral to the board. Although that could have brought better performances the

aim of this study is to make analyses at runtime and decide based on the obtained results,

Runtime Selection of Customized Accelerators

 21

and so, it was decided to simplify at most the possible configurations provided that one could

get good results while making the desired studies.

3.3 Partial Dynamic Reconfiguration of FPGAs

Almost as old as the FPGA itself the reconfiguration of FPGAs at runtime was an

important feature to automate the process of emulating and validate different circuits when

designing ASICs.

As the FPGAs evolved into being devices that could be used to accelerate specific task

sets within an embedded system, easing the job of the GPPs, this feature gains more

importance because it maximizes the flexibility of the system, which is one of the pros

brought by the FPGA while delivering high performance.

Partial dynamic reconfiguration (PDR) allows a programmer to reconfigure a portion of

the FPGA dynamically, while the remaining FPGA design continues to function. One can

define multiple accelerators for a particular region in the design, without impacting

operation in areas outside this region. This methodology is effective in systems with multiple

functions that time-share the same FPGA device resources [11]. PR enables the

implementation of more complex FPGA systems and there are nowadays standard ways to

implement a project with a partially reconfigurable part a runtime.

Xilinx introduced and supported the notion of a Partial Bitstream. Having a Bitstream for

the static implemented design in the FPGA, and of the reconfigurable partitions as black

boxes. Reconfigurable Modules, RMs, with no functionality can be delivered as part of the

initial configuration, to be later replaced with a desired Reconfigurable Module. We can then

create a Partial Bitstream for each configuration we need to have, with different

accelerators actually implemented and functioning in the Reconfigurable Partition, RP

considered to be an actual reconfiguration of the logic fabric at runtime.

The Static Bitstream is the full configuration bitstream. All PR designs start with

standard configuration of the full device using a full configuration bitstream. The format and

structure here is no different from a flat design solution. There is no difference in how this

bitstream can be used to initially program the FPGA. However, the design itself is prepared

for partial reconfiguration of the device after the full programming has been done. Bitstream

compression can be very effective in this case, reducing bitstream size and initial

configuration time.

All configurations use the same top-level, or static, placement and routing results.

Dynamic Function eXchange, DFX, allows for the reconfiguration of modules within an active

Runtime Selection of Customized Accelerators

22

design. DFX is a comprehensive solution that is comprised of many parts. These elements

include the Xilinx silicon ability to be dynamically reconfigured and the Vivado software flow

for compiling designs from RTL to bitstream [11].

The two leading companies in the market of FPGAs, Xilinx and Intel, have already, as

well, their standard ways to develop a project with partial reconfigurable features and IPs to

ease the process of controlling the reconfiguration.

The Xilinx AXI Hardware Internal Configuration Access Port (HWICAP) LogiCORE IP core

for the AXI Interface enables an embedded microprocessor, such as the MicroBlaze processor,

to read and write the FPGA configuration memory through the Internal Configuration Access

Port (ICAPEn) [12]. The ARM processor can be used to control the reconfiguration as well.

Figure 3.4 - High Level Block Diagram of the System with ICAP Configuration

As seen in figure 3.4, with the ICAP, we could have an Operative System, OS, running in

one or various of the GPPs, and an application that would have to communicate with the soft

core processor, in this case the µBlaze, in order to proceed with a partial reconfiguration of

the logic fabric. A soft-core processor is a hardware description language, HDL, model of a

specific processor (CPU) that can be customized for a given application and synthesized for

an ASIC or FPGA target. There are several soft-core processors available from commercial

vendors and open-source communities. As the complexity of embedded systems continues to

increase, it is expected that the usage of customizable soft-core processors will become more

widespread.

In this case, of figure 3.4, not only the processor would be free to be running other

applications but also, we have a special memory instantiated in the FPGA, to store the partial

Runtime Selection of Customized Accelerators

 23

bitstreams and other needed variables by the µBlaze, for example, for controlling the partial

reconfiguration. This would leave at all times the memory controller, the DRAM, and the DMA

engine, free to proceed as needed with the data transfers to process the applications in the

queue. The ICAP is the standard and most used way to reconfigure the FPGA at runtime for

Xilinx devices.

Figure 3.5 - Top Level Block Diagram for the AXI HWICAP Core, Source Xilinx

Figure 3.5 shows the internal structure of the ICAP.

This is not true in the case of Zynq where if we want to control the reconfiguration flow

in the GPP, we can use the Processor Configuration Access Port, the AXI-PCAP bridge, already

implemented in the PS, as part of Device Configuration, DevC. The AXI-PCAP bridge converts

32-bit AXI formatted data to the 32-bit PCAP protocol and vice versa. A transmit and receive

FIFO buffer data between the AXI and the PCAP interface. A DMA engine moves data between

the FIFOs and a memory device, typically the OCM, the DDR memory, or one of the peripheral

memories. The 32-bit PCAP interface is clocked at 100 MHz and supports 400 MB/s download

throughput for non-secure PL configuration and 100 MB/s for secure PL configuration where

data is sent only every 4th clock cycle. To transfer data across the PCAP interface a DevC

driver function needs to be called. The driver will take care of setting the correct PCAP mode

and initiating the DMA transfer. The function call will only return after both the AXI and the

PCAP transfers are complete [13].

The Xilinx Partial Reconfiguration AXI Shutdown Manager safely handles AXI4MM and

AXI4-Liteinterfaces on a Reconfigurable Partition when it is undergoing partial reconfiguration

(PR), preventing system deadlock that can occur if AXI transactions are interrupted by PR.

Runtime Selection of Customized Accelerators

24

One or more Partial Reconfiguration AXI Shutdown Managers can be used to make the AXI

interfaces between a Reconfigurable Partition and the static logic safe during Partial

Reconfiguration (PR). When active, AXI transactions sent to the Reconfigurable Module (RM),

and AXI transactions emanating from the Reconfigurable Module, are terminated by the core

because the Reconfigurable Module might not be able to complete them. When inactive (In

Pass Through mode), transactions are passed unaltered [14].

The Xilinx Partial Reconfiguration Decoupler can be used to provide a safe and managed

boundary between the static logic and a Reconfigurable Partition during Partial

Reconfiguration [15]. The Decoupler can be important to avoid several undesired effects that

can occur during the reconfiguration, namely, undesired values can be driven to the static

logic (signals might glitch, can be driven to 1 by the interconnect or they might be driven by

a reconfigurable module that has not yet been reset and is in an unknown state) and signals

driven by the static logic into the Reconfigurable Partition, RP, that is undergoing

reconfiguration can cause the newly loaded Reconfigurable Module, RM, to become corrupted

(spurious writes to memories can occur or parts of the reconfigurable module can start to

operate while other parts do not).

The Xilinx Partial Reconfiguration Bitstream Monitor can be used to identify partial

bitstreams as they flow through the design. This information can be used for debugging or to

help manage system applications such as blocking bitstream loads [16].

Finally, the Xilinx Partial Reconfiguration Controller core provides management functions

for self-controlling partially reconfigurable designs. It is intended for enclosed systems where

all of the Reconfigurable Modules are known to the controller. The optional AXI4-Lite register

interface allows the core to be reconfigured at run time, so it can also be used in systems

where the Reconfigurable Modules can change in the field [17].

3.4 Partial Dynamic Reconfiguration Control

As stated before, the partial reconfiguration of the PL will be done with the AXI PCAP

and the DMA controller as part of DevC, it is the standard option to do so when talking of

Zynq and a better option with higher throughput that would lead to better performances

would be only achieved with the alteration of the ICAP possibly overclocking this IP, with the

development of a new IP in order to control the partial reconfiguration or with the

compression of the bitstream before the transfer for the reconfiguration is made.

3.5 Data Transfer

“Data access plans determine where data arrays reside, typically choosing between disk,

CPU main memory, FPGA DRAM memory or FPGA on-chip memory, and then develops an

optimized memory hierarchy for the application.” [18]

Runtime Selection of Customized Accelerators

 25

Figure 3.6 - System Diagram

Runtime Selection of Customized Accelerators

26

Two DMA controllers are used. One as part of DevC, which with the PCAP, controls and

executes the reconfiguration of the PL. The others instantiated in the PL as part of the static

logic, controls the transfer of data from the DRAM memory to the accelerators in the PL.

The use of DMA controller to proceed with the transfer of data to the accelerators,

combined with the pre fetching of data to the ARM core that runs applications is of crucial

importance in order to have a good performance and to improve the throughput, because,

despite the AXI interfaces already being made to fulfil this tight timing constrains, the great

amount of information and the attempt of different resources trying to access the memory at

the same time can lead to poor performances and a time to transfer the data 10 to 20 times

greater. The throughput of the DMA controller at 100MHz is 400MB/s [18].

Unlike Programed Input/Output, PIO, that blocks the processor in each transfer, and that

could drastically slowdown the overall cycle time particularly when considering big amount of

data transfer being only a good option, in example, i.e., to control the flow of a task set,

DMA, can significantly reduce the time to transfer the data while freeing the processor to

proceed with the control of the execution of the task set. The time to transfer the data is

proportional to the number of words to be transmitted in the memory mapped interface and,

in the streaming interface, to the number of packets. This component can have a significant

jitter if data transfer is not well controlled, making this time ten to twenty times greater

than the minimum calculated value, that is because we can get to a state in which, i.e., two

different applications are trying to access and control the DMA controller and each restarts

the process of the transference of data not letting it finish before the other tries and gets the

access to the controller. To reduce that uncertainty to an acceptable minimum, for the

purposes of this study, all other communications between a parallel processing component

and the DRAM memory are stalled and waiting for the DRAM memory controller to be free and

had already finished the previous transfer of data, as we will see later in the chapter, when

studying the execution time model.

As seen in figure 3.6, there are three interfaces connected to the smart interconnect,

those are the scatter gather mode interface and the M_AXI_MM2S, memory mapped to

streaming interface, from the PS, connected to the to the DRAM memory controller in order

to get data from main memory to the accelerators in the PL, which must have a streaming

interface. The other connection is the streaming to memory mapped interface that is needed

to write data in the DRAM memory, possibly, the results of calculations of tasks accelerated

in the FPGA.

Beyond those previous stated connections there are AXI Lite connections to allow the

reconfiguration of the DMA controller at runtime, that could be done to transfer different

amount of burst or with different burst sizes, which could be done by the operative system.

Furthermore, as seen, we can configure the controller to interrupt one of the cores of

the processor in order to control the transference o data.

Runtime Selection of Customized Accelerators

 27

3.6 Main Memory

The memory used to store data and partial bitstreams will be the DRAM memory, which

despite being a good option is not the best option at all as it could be bottleneck in this

system because the operative system would have to share it, controlling the access to this

resource.

Figure 3.7 - System View [10]

That would have to be made by the DevC before partial reconfigurations of the PL to get

the bitstreams, and by the Accelerators in the PL and the ARM core that runs applications, to

transfer the data needed by the applications. A better solution would be to use the OCM to

store the data needed by the applications and implement a special memory in the PL to store

bitstreams and control the reconfiguration with the AXI ICAP as this configuration would allow

to make transfers of data and bitstreams in parallel without having to stall one of the

resources. It was decided to stop all data transfer operations while the DMA controller is

operating whether it is for the reconfiguration of the PL whether to transfer the data, in

order to minimize the variations in the time to transfer the data and bitstreams and to have

more precise and expected results.

Runtime Selection of Customized Accelerators

28

There are several possibilities when considering storing the data needed for applications

and as well for booting ad partial and static configurations of the PL.

The booting and OS, as well as, static and partial configurations can be loaded from,

either, the flash memory or, i.e., the SD card or other added peripheral solid state memory.

From that point, we can store data in different resources already present on the board.

The on-chip memory (OCM) module contains 256 KB of RAM and 128 KB of ROM

(BootROM). It supports two 64-bit AXI slave interface ports, one dedicated for CPU/ACP

access via the APU snoop control unit (SCU), and the other shared by all other bus masters

within the processing system (PS) and programmable logic (PL). The BootROM memory is used

exclusively by the boot process and is not visible to the user. OCM supports high AXI read and

write throughput for RAM access by implementing the RAM as a double-wide memory (128

bits). To take advantage of the high RAM access throughput, the user application must use

even AXI burst sizes and 128-bit aligned addresses [19].

The static memory controller (SMC) can be used either as a NAND flash controller or a

parallel port memory controller supporting, i.e., SRAM memory, with fast access possibilities.

The APB bus interface provides a memory mapped area for the software to read and write the

control and status registers [19].

The DDR memory controller supports DDR2, DDR3, DDR3L, and LPDDR2 devices and

consists of three major blocks: an AXI memory port interface (DDRI), a core controller with

transaction scheduler (DDRC) and a controller with digital PHY (DDRP). The DDRI block

interfaces with four 64-bit synchronous AXI interfaces to serve multiple AXI masters

simultaneously. The DDRC performs DDR data service scheduling to maximize DDR memory

efficiency. It also contains fly-by channel for low latency channel to allow access to DDR

memory without going through the CAM. The PHY processes read/write requests from the

controller and translates them into specific signals within the timing constraints of the target

DDR memory. The DDR pins connect directly to the DDR device(s) via the PCB signal traces.

The system accesses the DDR via DDRI via its four 64-bit AXI memory ports. One AXI port is

dedicated to the L2-cache for the CPUs and ACP, two ports are dedicated to the AXI_HP

interfaces, and the fourth port is shared by all the other masters on the AXI interconnect.

The DDR interface (DDRI) arbitrates the requests from the eight ports (four reads and four

writes). The arbiter selects a request and passes it to the DDR controller and transaction

scheduler (DDRC) [19].

Finally, we can have special memories, as a BRAM, instantiated in the PL, and control

transactions and the data flow, from and to, the DRAM memory and PL block memory. This

could greatly improve performance because more parallelization could be added because

different resources processing the task could access different memory spaces at the same

time.

Runtime Selection of Customized Accelerators

 29

3.7 Measurement Infrastructure

Profiling is a method by which the software execution time of each routine is

determined. It is used to determine critical pieces of code and optimal code placement in a

design. Routines that are frequently called are best suited for placement in fast memories,

such as cache memory. One can also use profiling information to determine whether a piece

of code can be placed in hardware, thereby improving overall performance.

To profile a software application, one must ensure that interrupts are raised periodically

to sample the program counter, PC, value. To do this, a timer must be used. The profile

interrupt handler requires full access to the timer, so a separate timer that is not used by the

application itself must be available in the system. Xilinx profiling libraries that provide the

profile interrupt handler support the xps_timer core. These timers should be available for

exclusive use by the profile libraries. The timer interrupt signal is connected directly to the

processor, or it is connected to the processor through the general interrupt controller, GIC.

The utility DExplorer can be used to perform fined-grained profiling to check layer-by-layer

execution time and DDR memory bandwidth. This is very useful for the model’s performance

bottleneck analysis. Other option would be DSight, that delivers the visual format profiling

statistics to let the users have a panorama view over DPU cores utilization, so that they can

locate the application’s bottleneck and further optimize performance [19].

As seen in figure 3.7, each Cortex-A9 processor has its own private 32-bit timer and 32-

bit watchdog timer. Both processors share a global 64-bit timer. These timers are always

clocked at 1/2 of the CPU frequency (CPU_3x2x). On the system level, there is a 24-bit

watchdog timer and two 16-bit triple timer/counters. The system watchdog timer is clocked

at 1/4 or 1/6 of the CPU frequency (CPU_1x), or can be clocked by an external signal from an

MIO pin or from the PL. The two triple timers/counters are always clocked at 1/4 or 1/6 of

the CPU frequency (CPU_1x), and are used to count the widths of signal pulses from an MIO

pin or from the PL [19].

Running the applications in one of the ARM cores or in the FPGA, the other core is free

to be running measurements related code.

We have configured the core private timer and the GIC, general interrupt controller and

created a global variable in order to measure the elapsed real time when processing a task in

those resources.

Next in figure 3.8 we can see an excerpt of the code where we can see the configuration

of the timer and of the interrupts just before it is needed to measure the time to run an

application in this case, the sorting algorithm bubble sort.

Runtime Selection of Customized Accelerators

30

In this case we can see a software task that runs one thousand times. The elapsed real

time is stored in the global variable TimerExpired and stored.

Figure 3.8 – Measuring Time, code excerpt

As soon as we have 1000 measurements the timer is stopped and the average measured

time is calculated.

In this case there is an interruption that occurs each time the timer expires. The value

0xFFFF was loaded to the timer and it was configured to interrupt the ARM core, as seen in

line 200, each 1/1000000 seconds, 1 microsecond.

In each interruption of the core, the variable, TimerExpired is incremented, what would

give us when the application was run the elapsed real time, here represented in line 204 with

a print which should not be done in the real case when we actually measured the time in

order to not to change the actual elapsed time because of I/O interference. Instead this

number was stored for later average time calculations.

3.8 Accelerator Architecture

When developing accelerators specially made to accelerate a specific task, there is a

great probability that we can get to a solution that is very good in one situation but cannot

process other task unless we are talking about the one the circuit was made to accelerate.

Besides this, it would be mandatory in a project with partial dynamic reconfiguration

features that the module in the reconfigurable partition is seen from the outside as the same

black box, whether it is ready to accelerate one task or another, for all possible

Runtime Selection of Customized Accelerators

 31

configurations that are needed, meaning that, the streaming and other control inputs and

outputs must be the same, which can significantly increase the task to develop such an

accelerator.

Figure 3.9 – High Level Block Diagram of the Reconfigurable IP

Figure 3.9 illustrate the high level block diagram of the template IP.

The IP must be seen from the outside as the same IP for each possible configuration

needed.

The I/O are just memories with streaming interfaces and the reconfigurable module is

one implementation for a specific calculations representing each task to be accelerated.

For this purpose, when using Vivado HLS, we have two possible choices. The first one

would be not to care about the interfaces and then create in Vivado IP integrator one IP

whose interfaces to the outside would be the IP created by Xilinx the AXI4-Stream

Accelerator Adapter v2.1, that provides the AXI4-Stream interface to AXI4 infrastructure

components and BRAM/FIFO interface towards Accelerator IP and complements accelerators

using Vivado HLS. The second option would be to already take care of the streaming

interfaces when creating the accelerator in the HLS with the libraries

#include<hls_stream.h> and #include<ap_axi_sdata.h> that would allow us to create

those interfaces.

Runtime Selection of Customized Accelerators

32

3.9 Execution Model

Although we are before a new and trending area, previous studies, as this one, have

shown that we have to make special considerations and options when considering a specific

heterogeneous system, the set of tasks to be accelerated, and project development issues

that could lead to suboptimal performances of the chosen system.

In our case, one would have to decide whether a task will be executed by the GPP or

accelerated in the FPGA, with the previous knowledge that we may have to reconfigure the

PL in order to do so, and, because of that, it is of extreme importance to study the timings

associated with the reconfiguration. It is important, as well, to consider and verify if there is

any precedence between two tasks or sub tasks of an application or if we can maximize the

possibilities to parallelize those different tasks.

In table 3.1 it is explained what are the code of colours used to make illustrations of

synthetic cases that can happen during the execution of different task sets.

Table 3.1 - Colour Code for Execution Model

As shown in figure 3.10, after t0, the scheduler decides which resource to allocate to the

task, in this case, the FPGA. After some time, a delay that could be experienced due to

various issues, from t1 to t2, the process of transference of data needed by the application

starts at t2. This task can have significant jitter and have big variations, varying with amount

of data to be transferred. Because of that it is of extreme importance to avoid conflicting

situations and so it was decided to block all communications until this task is complete

making a resource wait to get access to the memory until it is free again. Analyses and

Runtime Selection of Customized Accelerators

 33

measurements shown that the jitter of data transfer can lead to times ten to twenty times

greater than the smallest possible value.

At the moment t3, the processor is controlling and starting the execution of the task in

HW, which actually starts at t4 and it is concluded at t5.

Figure 3.10 - Execution Time Model for Hardware accelerated Task (HWT)

Finally, and after the FPGA resource waits for the OS, from t5 to t6, to process of

retrieving the results and store them in memory is done, again stalling all other

communications starting at t6 with data transference and then from t6 to t7 the OS concludes

the operation. The second shown HW execution of a task in the figure is similar to the first

one, with exception to the first three steps and occurs when a new different task is to be

accelerated in the FPGA and we need to reconfigure it before proceeding. From t9 to t10 the

OS already verified the we need a different configuration and started that process. First of

all, we need to transfer and load the partial bitstream from the DRAM memory and then we

can actually reconfigure the FPGA, which is being done from t11 to t12 possibly waiting for

the OS. When it is verified that we have the correct configuration, the OS starts the

execution of the task at t12.

In figure 3.11 there are two different situations illustrated.

Runtime Selection of Customized Accelerators

34

At first, it is exemplified one software execution in the ARM core. After the decision to

allocate the task in the ARM, from t0 to t1, there is a moment, again, that could happen for

various reasons, that the system is idle, from t1 to t2.

From t2 to t3, all the communications are stalled due to a data transference to the

SRAM, is this case reserved for ARM allocated tasks. The SRAM is used in our prototype as a

reserved memory of the ARM core that runs the tasks.

Then, from t3 to t4 the scheduler controls the initialization of the task.

From t4 to t5 the ARM core is actually processing the task, and, from t5 to t6, is waiting,

idle for the scheduler to control the transference of results to the main memory.

The second illustrated case is the concurrent behaviour. In this case, two different tasks

are executed in different resources as previously stated. The first one allocated in the ARM

core, and the second whose invocation happens before the other is finished, allocated in the

FPGA. This can happen simply because one of the resources is occupied, but, as well, because

the calculations take us to this situation. The choice should be made not only based on the

measured timing values for the elapsed real time but as well in a balanced use of the

available resources.

Figure 3.11 - Execution Time Model for a Software Task (HWT) and Concurrent Execution

Both the cases studied are in reference to the simple version of the scheduler

demonstrated later in chapter 5. In this case we do not know beforehand the cycle of

execution that can change because of different environment conditions. The simple version

of the scheduler does not try to anticipate the need to partially reconfigure the system and,

Runtime Selection of Customized Accelerators

 35

as later explained, will add the average time to reconfigure the system to the average time

to accelerate the task and will take those two values in account when considering to allocate

the task to a specific resource. In this case, our option is to stall all other communications

until the partial bitstream or the data needed is fully transferred, avoiding big variations in

the time to transfer the data. This transference would be done just before it is needed.

Later studied in chapter 5 as well, are other situations not contemplated in the previous

hypothetical studied cases, when the scheduler found the cycle of execution, even if only for

a short period of time. Being so, the alternative would be to pre fetch the data or,

particularly, the partial bitstreams in order to proceed with the reconfiguration of the system

just before it is needed or already having stored the data in a memory allocated to the

resource that will accelerate the task.

Runtime Selection of Customized Accelerators

36

Chapter 4

Project Development, Algorithms and
Static Analyses

Decisions at project development may be important to determine whether it’s possible

to have an FPGA as a peripheral with Partial Reconfiguration capabilities, to accelerate a task

or not. Bottom-up/OOC synthesis (to create multiple netlist/DCP files) and management of

Reconfigurable Module netlist files is the responsibility of the user.

4.1 - Partial Dynamic Reconfiguration

Standard timing constraints are supported, and additional timing budgeting capabilities

are available if needed. A unique set of design rule checks, DRCs, has been established to

help ensure successful design completion.

A PR design must consider the initiation of Partial Reconfiguration as well as the delivery

of partial BIT files, either within the FPGA or as part of the system design.

The Vivado Design Suite includes support for the Partial Reconfiguration Controller IP.

This customizable IP manages the core tasks for partial reconfiguration in any Xilinx device.

The core receives triggers from hardware or software, manages handshaking and decoupling

tasks, fetches partial bitstreams from memory locations, and delivers them to the ICAP.

A Reconfigurable Partition must contain a super set of all pins to be used by the varying

Reconfigurable Modules implemented for the partition. If an RM uses different inputs or

outputs from another RM, the resulting RM inputs or outputs might not connect inside of the

RM. The tools handle this by inserting a LUT1 buffer within the RM for all unused inputs and

outputs. Developing the accelerators suitable for the project with a partial reconfiguration

region, particularly when this module was specially developed to accelerate a specific task

Runtime Selection of Customized Accelerators

 37

might be a difficult job, that could take 20% to 40% of the project development time and that

should be done with care in order to obtain the best possible results.

One can implement an RP as a pseudo blackbox, referred to in Vivado as a greybox.

Blackboxes are supported for bitstream generation. To do this, the RP must be a blackbox in

the static design. The greybox has no user logic and its bitstream contains information for any

static logic/routes that use resources inside the RP frames. Static routes that pass through

the region, including interface nets up to the partition pin nodes, exist within this region.

Programming information for these signals is included in the blackbox programming

bitstream. Use of greyboxes is an effective way to reduce the size of a full configuration BIT

file, and therefore reduce the initial configuration time.

When considering real time systems with very tight timing constraints, it is very

important to know the worst possible scenario and to determine the time to partially

reconfigure the FPGA in the worst case, even though this time is probably much smaller than

the time to process the task. The time to reconfigure the FPGA and the time to transfer the

data must be considered and added to the time to actually process the task. Because of that

we should be careful when developing such a project.

The compression feature might also be enabled to reduce the size of BIT files. This

option looks for repeated configuration frame structures to reduce the amount of

configuration data that must be stored in the BIT file. The compression results in reduced

configuration and reconfiguration time. When the compression option is applied to a routed

PR design, all of the BIT files (full and partial) are created as compressed BIT files. This might

be a good way to reduce the partial bitstream size, and therefore reduce the time to transfer

bitstreams and the overall reconfiguration time. It might be important to do so in order to

fulfil the project timing constrains that could be difficult to meet and make this option, of

choosing an FPGA with partial reconfigurable partitions, a good option to accelerate a

particular task set.

Floorplanning is required to define reconfigurable regions, per element type. One should

vertically align Pblocks with frame/clock region boundaries to produce the best QoR and

allows RESET_AFTER_RECONFIG to be enabled.

For user reset signals, determine if the logic inside the RM is level or edge sensitive. If

the reset circuit is edge sensitive (as it may be in some IP such as FIFOs), then the RM reset

should not be applied until after reconfiguration is complete.

Partial Dynamic Reconfiguration:

Runtime Selection of Customized Accelerators

38

Despite being most of the times much lower than the overall time to process a task, the

time to partially reconfigure the FPGA must not be neglected when considering an embedded

system with real time constraints.

As seen in figure 4.1 there is a configuration overhead needed to configure the system in

the booting phase, at power on.

Figure 4.1 - Typical Configuration Mode Timing, Source Xilinx

The typical configuration mode, carried at power on, takes a time that could not be

undervalued as it is similar to the time to process or accelerate a task.

Figure 4.2 - Configuration Phases at Power On, Source Xilinx

Typically, at power on, there is a booting phase. In order to boot up an operative system

and, i.e., the configurations of the FPGA, both hardware and software components of the

system must be downloaded to the FPGA and program memory respectively, as we can see in

figure 4.2.

During the prototyping or development phase, the hardware bitstream and software

Executable and Linkable Format, ELF, file images are downloaded from the host computer to

Runtime Selection of Customized Accelerators

 39

the development board using JTAG, Joint Test Action Group, connections. We can then use

Vitis to program the FPGA and debug software applications.

Figure 4.3 - Reconfiguration of the FPGA, Source Xilinx

At the production phase, we have a booting phase. The files stored in non-volatile

memory like the OS variables or the bitstreams are loaded to, i.e., to the DRAM memory, and

the FPGA is configured with the circuitry defined by those configurations.

Figure 4.4 - Configuration Phases with Partial Reconfiguration, Source Xilinx

At the production phase, we can configure the FPGA with the hardware bitstream by

using a configuration programmable ROM, PROM. Standard SPI or Parallel Flash memories can

be used for FPGA hardware configuration. The software components of the system can be

Runtime Selection of Customized Accelerators

40

configured by integrating them into the FPGA block RAMs. Alternately, they can be

programmed into an external Flash memory or integrated into non-volatile memory.

Similar to the typical configuration mode, we can reconfigure all the FPGA at runtime. In

this case, we would have a reconfiguration overhead similar to the configuration overhead, as

seen in figure 4.3. The configuration memory would no longer be fixed over time as the initial

bitstream with the first configuration would be loaded at power on, but later, full device

bitstreams can be loaded, which would represent full devices reconfigurations.

Figure 4.5 - Partial Reconfiguration of the FPGA, Source Xilinx

As we can see in figure 4.4, the partial reconfiguration of the FPGA would not need to go

through all the steps previously stated to reconfigure only a part of the logic fabric, which

when added to the fact that the partial bitstreams are much smaller, makes clear that a

partial reconfiguration of the system would take a much smaller time to be concluded.

Figure 4.6 - Partial Dynamic Reconfiguration of the FPGA, Source Xilinx

Runtime Selection of Customized Accelerators

 41

A we can see in figures 4.5 and figure 4.6, with a partial reconfiguration the overhead to

reconfigure is much smaller, only a subset of the configuration is altered. The difference

between partial reconfiguration and partial dynamic reconfiguration is that in the first case,

figure 5, all computation halts while the device is being reconfigured, and in the second,

figure 6, logic layer continues operating while configuration layer is being modified and the

configuration overhead is limited to the circuit that is being reconfigured.

We should place a Reconfigurable Partition within a clock region to avoid starvation.

Static logic will not be placed within a RP region, therefore a Reconfigurable Module with

high clock utilization can occupy an entire clock region without the clock region block range

constraint. In this case 3 different clock regions of the Zync7000.

Figure 4.7 - Time to Partially Reconfigure the FPGA

As stated in the previous chapter we have made the efforts at project development to

reduce the time to partially reconfigure the FPGA and reduce its variations stalling all other

communications when transferring the partial bitstreams using the PCAP. We could reduce it

even more if we used compression of the partial bitstreams or made alterations in the

frequency of the PCAP or used a specially developed and altered ICAP with a higher

throughput.

Furthermore, we have made the efforts at project development to have in our prototype

a partial dynamic reconfiguration of the FPGA with static circuitry and other reconfigurable

partitions working while one RP is being reconfigured.

As seen in figure 4.7, despite our efforts, the time to partially reconfigure the FPGA

obtained by us had a maximum of 4,4 milliseconds, an average of 3,8 milliseconds and a

0

200

400

600

800

1000

1200

1400

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 4 4,1 4,2 4,3 4,4 4,5

O
cc

ur
en

ce
s

ms

Partial Reconfiguration

Runtime Selection of Customized Accelerators

42

variation of 25% in 8450 measurements. This makes clear that even though this times are

small, they should not be neglected and could be in many occasions a reason to process the

task using the ARM processor, depending of the task set we have ahead of us.

4.2 - Algorithm Analyses

According to Flynn et all [3], “Acceleration takes place in 4 stages: (1) Analysis, (2)

Transformation, (3) Partitioning and (4) Implementation.”

“The analysis stage includes understanding the algorithm, static and dynamic analysis of

the program code and a software performance evaluation. The transformation stage

optimizes program code, data layout and data representation for improved acceleration.” [3]

In this chapter we develop a small analyses of different algorithms in order to

understand the possibilities we have to parallelize and accelerate the specific algorithm and

to understand if we would have gain in terms of performance when considering to process it

using a circuit implemented in a FPGA.

Besides this, we present our results for some of the implemented algorithms. Our choice

was to have a checkpoint with the reconfigurable module as a black box, synthetize each of

the modules out of context, and then create all the different possible configurations with the

different modules.

4.2.1 Matrix Algebra

In the case of matrix algebra, we implemented a matrix multiplication.

Figure 4.8: Matrix Multiplication Software Execution, ARM, Timing

As we can see in figure 4.8 matrix multiplication follows an exponential growth when

considering a SW execution. Matrix multiplication exhibits high arithmetic density, has

regular memory access patterns and control flow. There are already optimized hardware

implementations but it was out of the scope of this work to do so.

0,049
0,375

2,92
23

277
2378

18508
202222

1661000

0,01

1

100

10000

1000000

8 16 32 64 128 256 512 1024 2048

m
ili

se
co

nd
s

number of vector elements

Matrix Multiplication

ARM

Runtime Selection of Customized Accelerators

 43

For the implementation in HLS despite we had streaming interfaces we had to store the

input values in order to proceed with the calculations. We considered square matrixes only as

inputs.

Figure 4.9: Matrix Multiplication IP

In figure 4.9 we can observe the created IP block that is similar to all the other

implemented algorithms.

For matrixes with dimension of 128 the HW execution time roughly match with the SW

execution time. This implementation had 64 BRAM_18K, 3 DSP48E, 298 FF, 347 LUT, 0 URAM

and a latency of 0.106 s. From this point forward we obtained a speedup in this case a

speedup of 1.73.

For matrixes of 256X256 the values were 256 BRAM_18K, 3 DSP48E, 314 FF, 358 LUT, 0

URAM and a latency of 0.842 s and a speedup of 2.556.

For matrixes of 512X512, unfortunately the values of BRAM_18K already exceeds its

maximum, we needed 1024 out of 280, 365%. For the cases of interest, with higher speedups

we would have to use another board, optimize the code or obtain partial results in HW and

finish the calculation in SW.

4.2.2 Sorting Algorithms

Sorting, in computer science, is the process of rearranging an unordered one-dimensional

vector. Sorting is a common task in a wide range of applications. Traditional sorting

algorithms were made to be processed in a GPP.

 Comparator networks are devices with a fixed number of "wires", carrying values, and

comparator modules that connect pairs of wires, swapping the values on the wires if they are

not in a desired order. Such networks called sorting networks are designed to perform sorting

on fixed numbers of values.

Sorting networks can be implemented either in hardware or in software. Donald Knuth

describes how the comparators for binary integers can be implemented as simple, three-state

electronic devices.

Runtime Selection of Customized Accelerators

44

In figure 4.10 we can observe that if we use the ARM to process this task we get low

results until the input vector is 4096 elements. From that point the time to sort the input

vector gets higher in an exponential fashion not comparable with other execution times when

compared with this and other tasks.

Figure 4.10: Bubble Sorting Software Execution, ARM, Timing

Our implementation obtained speedups for arrays with more than 2048 with a speedup of

1 in the worst case, 4096 with worst case scenario of 1.2 speedup, 8192 with a speedup in the

worst case of 1.3, for 16374 a speedup of 1.4 and for 32768 elements a speedup of 1,4.

In example, for 16384 elements, a latency of 5s, 32 BRAM_18K, 0 DSP48E, 210 FF, 378

LUT and 0 URAM, and for arrays of 32768 elements a latency of 21.475 s with a resource

utilization of 64 BRAM_18K, 0 DSP48E, 220 FF, 393 LUT and 0 URAM.

Figure 4.11: Bubble Sorting Software Execution, FPGA, Timing

In figure 4.11 we present the accelerator results for bubble sorting.

0,001
0,01

0,03

0,1
0,5

2
7

27
107

430
1725 7285

30457

0,001

0,01

0,1

1

10

100

1000

10000

100000

Ti
m

e
(m

s)

Number of Elements

Bubble Sort

ARM

0,09 0,1 0,2 0,3
0,7

4
10

30
100

338
1327

5014
21500

0,01

0,1

1

10

100

1000

10000

100000

Ti
m

e
(m

s)

Number of Elements

Bubble Sort

FPGA

Runtime Selection of Customized Accelerators

 45

4.2.3 First Differences

Another kernel from the Livermore Loops that could be easily implemented using

streaming interfaces is first differences.

When we use streaming interfaces HLS will automatically change RAM memories for

FIFO, which makes ideal to implement in HW algorithms that can be accessed in a sequential

order.

4.2.4 The Fast Fourier Transform, FFT

 The Fast Fourier Transform, FFT, is central for many algorithms, in areas like digital

signal processing, image processing or differential equations.

The FFT was one of the first algorithms to be ported to new hardware platforms and to

have a hardware implementation. Xilinx and Altera have their own IP cores that can be set up

for single precision and fixed point FFT computations up to 65536 elements.

Chapter 5

A Proposal for a Scheduler

In this chapter, the proposed scheduler is presented.

5.1 - Simple Version

“Partitioning involves the identification and evaluation of code partitioning options and

data access plans. For code partitioning we choose whether to implement particular pieces of

program code using the host PC or the accelerator array.” [1]

Figure 5.1 - High Level Block Diagram of the Scheduler, Simple Version

The simple version of the scheduler is presented next. In figure 5.1 we can observe the

high level bock diagram of the scheduler.

Runtime Selection of Customized Accelerators

 47

5.1.1 - Static Analyses

In the block Static Analyses, all the information about the tasks that will be processed is

stored. The average timing values, and the worst case of the execution time, are stored in a

table for each different possible input.

As we have seen, as the number of elements is getting bigger, for the proposed task set,

there are more advantages to choose for a hardware acceleration compared with the

execution in the GPP core in the ARM.

5.1.2 – Input

In the block Input, some parameters are inserted when the task is invoked, i.e., in the

case of the sorting, the number of elements and the data itself is given to the scheduler in

order to make the choice of allocating the ARM core or the FPGA to accelerate the task and

proceed when possible with the control of the data transfer needed for the processing of the

task. These parameters can vary from task to task as they are a specific characteristic of the

task itself.

The task period remains a secret for the scheduler and will change from time to time

creating a situation that could lead to different decisions in order to understand if the

scheduler is making the right choice to allocate that specific resource even though that is

based mostly in the average time to process the task stored in Static Analyses but as well in

the current state of the system.

One of the resources can be already occupied and the scheduler may opt for a different

resource if the execution timings are equivalent.

5.1.3 – Decision

The block Decision, is where the decision of allocating a resource is made.

The simple version of the scheduler would have a stalling approach when talking about

the transference of the bitstreams and of the data to the memories allocated to the different

resources, as studied in chapter 3. The reconfiguration would only be one if the allocated

resource is the FPGA and we do not already have the right accelerator in the FPGA, in other

words, if we need to have another configuration for the system. This would only be done

right before that task would be accelerated, and so, in this case, we do not have a queue to

store various different bitstreams or data needed by the tasks.

Here we have two different possibilities, the first one would be to consider the average

time to reconfigure the system and the average time to accelerate the task, add them

together in order to have the total time to process the task. The second option, a more

Runtime Selection of Customized Accelerators

48

pessimistic approach that would be the safest one, is to consider the worst timings case to

get this value, what should be done when considering systems that cannot fail to meet the

timing constraints, or otherwise it could be critical.

5.1.4 – Final Scheduling

After the choice is made, and the scheduler had already decided for a software or

hardware execution, and has already allocated a specific resource to do so. The block Final

Scheduling only represents the actual scheduling of the task. A queue created in order to hold

a number of tasks still waiting for initialization would be maintained by the scheduler. The

allocation of a specific processor could be altered before the tasks start to be executed

following three main objectives. The first one would be do not exceed the deadline of a task

and the second represents a prediction of the time of execution of the task compared with

the others in the queue and to the time of execution of the same task using different

processors. These two proposals together try to minimize the total time of execution. The

third objective is to balance the utilization of resources and again to minimize the total time

of execution.

5.2 - Sophisticated Version

The sophisticated version tries to predict and anticipate the need to partially reconfigure

the system before it is needed.

Given the assumption that, within an embedded system, the execution cycle remains the

same for a given period of time, and that it could be changed only after that period, mainly

because outside changes of conditions, even though we don’t know what tasks would be part

of the cycle we can assume that those would remain the same for a period of time and

therefore it would be of use trying to discover and store information about the cycle in order

to predict what task will be invoked and when will the machine will have to process a certain

task.

A vector to store information about one hundred previous tasks invoked should be

created. In this vector we store a structure that has information about what task was

invoked, the period of the task, the number of elements of the task, the time it was needed

to process it and what resource it was used to allocate the task. This is done in the block

runtime analyses. At first only periodic tasks should be considered in order to smooth the

analyses to be made.

We consider three different situations.

The first situation is when the system does not know what is the execution cycle. In this

case the flow is similar to the simple version of the scheduler. The scheduler decides what

resource to allocate when a task is invoked and reconfigures the FPGA if needed. In this case,

the average time to partially reconfigure the FPGA is added to the average time to process

Runtime Selection of Customized Accelerators

 49

the task using this resource and it is considered to the total time to accelerate the task. If we

get even so any improvements, the task waits in a queue until the FPGA is free.

In a second situation, we already have enough information about the task set but we still

do not know the execution cycle. In this case, if one of the previous events one of the tasks

take much more time than the others the system configures itself to accelerate that task,

and the ARM core is used to process the others.

Finally, if we can determine the execution cycle, the system tries to anticipate the

reconfiguration and has a blanking configuration in other times.

In any case, if one of the assumptions fails we go to a state of the first situation where

we only reconfigure the system before it is needed.

Figure 5.2 – High Level Block Diagram of the Scheduler, Sophisticated Version

In figure 5.2 we can observe the high level block diagram of the sophisticated scheduler.

5.2.1 - Static Analyses

The static analyses remain unaltered from what we have stated in 5.1.1.

5.2.2 – Input and Runtime Analyses

Similar to the case in 5.1.1, we should here use the measurement infrastructure to make

calculations at runtime for the time to accelerate the tasks and to reconfigure the system. In

the case of the sophisticated scheduler those calculations should be made at runtime in order

to have closer values to what is really happening in the previous moments. The scheduler

should not represent a big delay in the response of the system, so we would to have care in

Runtime Selection of Customized Accelerators

50

order not to have a heavy operating system neither slow responses in comparison to the time

to process the tasks.

5.2.3 – Decision and Prediction

 In the block Decision and Prediction, we have implemented an algorithm to discover the

cycle of execution.

As stated before we consider 3 different states for the system.

In the first case the option would be to use again the stalling approach when the

transference of the bitstreams and the data.

In the second case, the scheduler starts to make risky options to maintain the same

configuration even though it could not be accelerating the specified task.

In the third case, when it has discovered the execution cycle, until the cycle changes, the

option would be prefetching the bitstreams and reconfigure the system just before it is

needed.

The system should be prepared to this changes at runtime knowing that

- Any reconfiguration that has started should be finished until it is done;

- There will be a need to have a queue to store the bitstreams that will not be

considered any time the cycle changes;

5.2.4 – Final Scheduling

Again, this remains similar from what we have stated in 5.1.4 but with the creation of

more queues allocated directly to a processor in order to store partial bitstreams and data

that are pre fetched when a prediction is made. This can be changed and not considered if

the actual order of tasks is changed before the task starts to e executed.

Runtime Selection of Customized Accelerators

 51

Chapter 6

Conclusion and Future Work

In this chapter we present conclusions and we make reference for the work to be done in

the future.

6.1 - Conclusion

We have presented prototype of a heterogeneous computing system with an ARM dual

core GPP and a FPGA with the possibility of partial dynamic reconfiguration.

We came to the conclusion that it is of extreme importance to study the algorithms and if

possible of the cycle of execution in order to better allocate the resources and to decide how

to schedule a specific task once decided how the system would be.

Another important conclusion, about the memory hierarchy, is that we should study

develop the best possible interface with different memories allocated to different processing

units in order to better schedule the tasks.

This being said, our conclusion is that an FPGA with the possibility of partial dynamic

reconfiguration, would be a good option depending on the tasks to be accelerated. As we

shown in chapter 4, some specific algorithms are suitable to have hardware implementations

and we could have very high speedups doing so, i.e., in the case of the FFT, using already

developed IPs in the market, we can have a speedup of 10 o 20 times but, as we have seen,

there are already other implementations with higher speedups.

Using a FPGA is much cheaper than developing an ASICs, and with one FPGA we can have

a hardware implementation as much as good but with a much lower price.

Finally, with a FPGA with Partial Dynamic Reconfiguration, we can have a system that

could be reconfigured as it is needed, implementing different circuits in different situations,

that brings much more flexibility to the system while having lower power consumption.

Runtime Selection of Customized Accelerators

52

Partial dynamic reconfiguration can be an important feature in areas like cryptography, space

exploration or in embedded systems that could perform slightly different sequences of tasks

for different conditions of the environment.

It is important, during project development, to consider and study the process of the

reconfiguration of the FPGA. Xilinx has already IPs related to Partial Dynamic Reconfiguration

of FPGAs, we can use, in the case of Zync7000, the ICAP or the PCAP to control the

reconfiguration of the system. If needed to have a higher throughput we would have to

develop another IP to control this process.

Floorplanning is important in order to have static elements or other circuitry that

continue to work while the reconfiguration is done, each of the reconfigurable partitions

must be implemented in different clock zones and may occupy all the resources within that

clock zone in exception to logic associated with the clock.

Another way to further reduce the time to reconfigure the system, at project

development, is to use compression of the partial bitstreams. Reducing the size of the

bitstreams would reduce the time to transfer the data needed for the reconfiguration which

can be important when considering to minimize the undesired effects of a reconfiguration of

the system, namely, loss of performance when we have to wait while the partial

reconfiguration of the FPGA is done.

To improve performance in a heterogeneous computing system with partial dynamic

reconfiguration we must reduce the time to reconfigure the system. This can be done:

- At project development with improvements in the logic that controls the

reconfiguration;

- Reducing the size of bitstreams;

- Anticipating the need of reconfiguration of the system;

We presented a proposal for a scheduler that decides how to best allocate the different

processing resources available and that controls the flow of execution for different feasible

periodic task sets. This simple version of the scheduler takes in account the mean time or the

worst case to partially reconfigure the reconfigurable partitions in addition to the average

time or the worst case of execution of the task itself to decide which resource should be

used.

The simple version of the scheduler only reconfigures the system just before it is needed

to accelerate a task and will not reduce the average measured time to reconfigure the FPGA.

Furthermore, we proposed a sophisticated version of the scheduler that analyses the

previous one hundred tasks and makes measurements in order to make improvements to the

average values used and to predict what configuration should be used in the FPGA.

Our conclusion is that to further improve the performance, in a system with partial

dynamic reconfiguration, whether we already know the task set sequence and this does not

change, or we have to discover the sequence of tasks in recent periods of time.

Runtime Selection of Customized Accelerators

 53

6.2 - Future Work

Finally, there is still work to be done that we have not finished but as well out of the

scope of this work but that would be interesting to further develop and implement.

6.2.1 - Accelerator development

It is a hard job to develop an accelerator suited for partial reconfiguration and specially

developed to accelerate a specific task. We could further develop such a IP with much better

performances giving emphasis to the interfaces that could ease the decision to allocate a

resource to that task.

6.2.2 - Memory map

As we have seen, it is of great importance, in concurrent heterogeneous systems to

develop the best possible memory hierarchy. Having the capacity to store in a queue the data

needed by the tasks in a specific memory dedicated to each processing unit, we could

maximize the possibilities to have a concurrent behaviour. It is something very difficult and

that would take many attention, in order to have a good resource utilization.

6.2.3 - Simple Scheduler

Elaborate a series of sufficient tests with enough different task sets, equally distributed

in order to make clear conclusions.

Implement the system in other platform with real constraints in an embedded system.

6.2.4 - Sophisticated Scheduler

We have come to conclusions and made many assumptions about what would be

necessary to do in order to minimize the effects brought by the need to reconfigure the

system. But it is out of the scope of this project to actually implement the proposed

sophisticated scheduler. It would be of use to further make analyses and conclusions and

implement a scheduler based in artificial intelligence, i.e., a neural network, that could

predict the best possible configuration for the system at any time and would be able to

better allocate a resource to a task.

Runtime Selection of Customized Accelerators

54

References

[1] G. Moore, Cramming more components onto integrated circuits, Electronics, Volume 38,

Number 8, April 19, 1965.

[2] J. Peterson, P. Bohrer, L. Chen, E. Elnozahy, A. Gheith, R. Jewell, M. Kistler, T. Maeurer,

S. Malone, D. Murrell, N. Needel, K. Rajamani, M. Rinaldi, R. Simpson, K. Sudeep and L.

Zhang, Application of full-system simulation in exploratory system design and development,

IBM J. Res. Dev. 50(2,3) (2006).

[3] M. Flynn et all, Finding Speedup in Parallel Processors, 2008 International Symposium on

Parallel and Distributed Computing

[4] D. Padua, Encyclopaedia of Parallel Computing, Volume 4, Springer.

[5] F. Bini, G. Buttazo, Measuring the Performance of Schedulability Tests

[6] G. D’Andrea, T. di Mascio, G. Valente, “Self-adaptive loop for CPSs: is the Dynamic

Partial Reconfiguration profitable?”, MECO 2019.

[7] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” Computer, vol. 36,

no. 1, pp. 41–50, Jan 2003.

[8] M. Damschen, L. Bauer, J. Henkel, CoRQ: Enabling Runtime Reconfiguration Under

WCET Guarantees for Real-Time Systems, IEEE EMBEDDED SYSTEMS LETTERS, V. 9, N. 3, 2017.

[9] Wang Lie, Wu Feng-yan, Dynamic partial reconfiguration in FPGAs, 2009 Third

International Symposium on Intelligent Information Technology Application.

[10] M. Nguyen, R. Tamburo, S. Narasimhan, J. Hoe, Quantifying the Benefits of Dynamic

Partial Reconfiguration for Embedded Vision Applications, 2019 29th International Conference

on Field Programmable Logic and Applications

[11] UG909, Vivado Design Suite User Guide, Dynamic Function eXchange.

[12] PG134, AXI HWICAP LogiCORE IP Product Guide Vivado Design Suite.

[13] XAPP1159, Partial Reconfiguration of a Hardware Accelerator on Zynq-7000 All

Programmable SoC Devices.

[14] PG305, Partial Reconfiguration AXI Shutdown Manager v1.0, LogiCORE IP Product Guide.

[15] PG227, Partial Reconfiguration Decoupler v1.0, LogiCORE IP Product Guide.

[16] PG304, Partial Reconfiguration Bitstream Monitor v1.0, LogiCORE IP Product Guide.

[17] PG193, Partial Reconfiguration Controller v1.3, LogiCORE IP Product Guide.

[18] PG021, AXI DMA v7.1, LogiCORE IP Product Guide.

[19] UG585, Zynq-7000 SoC Technical Reference Manual.

