

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/136073

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/305119902?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/136073
mailto:wrap@warwick.ac.uk

Quantifying the Latency Benefits of Near-Edge
and In-Network FPGA Acceleration

Ryan A. Cooke
University of Warwick

Coventry, United Kingdom

Suhaib A. Fahmy
University of Warwick

Coventry, United Kingdom

ABSTRACT
Transmitting data to cloud datacenters in distributed IoT applica-
tions introduces significant communication latency, but is often
the only feasible solution when source nodes are computationally
limited. To address latency concerns, cloudlets, in-network com-
puting, and more capable edge nodes are all being explored as
a way of moving processing capability towards the edge of the
network. Hardware acceleration using Field Programmable Gate
Arrays (FPGAs) is also seeing increased interest due to reduced
computation latency and improved efficiency. This paper evaluates
the the implications of these offloading approaches using a case
study neural network based image classification application, quan-
tifying both the computation and communication latency resulting
from different platform choices. We consider communication la-
tency including the ingestion of packets for processing on the target
platform, showing that this varies significantly with the choice of
platform. We demonstrate that emerging in-network accelerator
approaches offer much improved and predictable performance as
well as better scaling to support multiple data sources.

CCS CONCEPTS
• Hardware → Hardware accelerators; • Computer systems
organization → Reconfigurable computing; • Networks →
In-network processing;

KEYWORDS
Edge computing, hardware acceleration.
ACM Reference Format:
Ryan A. Cooke and Suhaib A. Fahmy. 2020. Quantifying the Latency Benefits
of Near-Edge and In-Network FPGA Acceleration. In Proceedings of 3rd
International Workshop on Edge Systems, Analytics and Networking (EdgeSys
’20). ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3378679.
3394534

1 INTRODUCTION
With the Internet of Things driving an explosive growth in the
connectivity of resource constrained computing platforms, the la-
tency implications of cloud-based computation offload become an
important consideration in deciding how to deploy distributed
applications. Edge computing represents the broad paradigm of
moving processing away from high performance centralised dat-
acenters towards data sources at the periphery of the network.
Computing resources are typically less capable at edge nodes but
communication is minimised since data need not be moved up the
network to be computed on. Communication latency to the cloud

EdgeSys ’20, April 27, 2020, Heraklion, Greece
2020. ACM ISBN 978-1-4503-7132-2/20/04. . . $15.00
https://doi.org/10.1145/3378679.3394534

can be significant, but for complex applications where the capa-
bilities of datacenter servers offer a significant improvement in
computation latency, overall application latency can be improved.
This interplay between communication and computation latencies
is heavily influenced not just by the network distance but also
the choice of processing platform and the complexity of moving
packets from a network interface to the processing hardware. As
application latency has become more important and hardware at
the network edge has improved, the benefits of offloading to cen-
tralised computing resources is now heavily impacted by these
inherent communication delays.

In [1], the authors demonstrated the significant impact of cloud
offload latency on the performance on neural network applications
considering different locations of network “edge” processing. We
expand upon that work by considering how the choice of computing
platform impacts both communication and computation latency.

There has been an increasing trend of adopting heterogeneous
specialised hardware in the datacenter to improve computation per-
formance and efficiency. FPGAs in particular have seen increased
use in the datacenter due to their flexibility and increased per-
formance per watt compared to CPUs and GPUs in a variety of
applications [6, 9, 15, 16].

Cloudlets, also referred to as edge servers, are small-scale data-
centers or servers deployed close to data sources in an attempt to
provide cloud-like services a few hops away in the network [8, 22].
Data traverses fewer switches over a LAN instead of the Inter-
net, reducing communication delay and improving predictability.
Cloudlets may utilise capable hardware comparable to that found
in larger cloud datacenters, including hardware accelerators.

Enhanced computation capability at source nodes is an additional
emerging trend, where simple microcontrollers are giving way to
more capable single board computers like the Raspberry Pi, allowing
more complex computation to take place at the data sources. FPGA
acceleration is also possible at these nodes, through the use of FPGA
SoC platforms such as the Xilinx Zynq, which tightly couples an
FPGA fabric with an Arm Cortex A9 processor. These have the
advantage of running commodity software for programmability,
tightly coupled with custom hardware accelerators for offloaded
computation, with the potential for reconfiguration to support
dynamic workloads. Application specific accelerators such as the
Google Edge TPU allow for computationally intensive machine
learning applications to run on specialised hardware at the network
edge. These more capable embedded devices can also be used as
cluster heads for sensor nodes, or gateways between a collection of
data sources and the rest of the network.

The emerging paradigm of in-network computing [17] sees the
high performance network switches used to route packets extended

https://doi.org/10.1145/3378679.3394534
https://doi.org/10.1145/3378679.3394534
https://doi.org/10.1145/3378679.3394534

EdgeSys ’20, April 27, 2020, Heraklion, Greece Ryan A. Cooke and Suhaib A. Fahmy

with the capability of computing on that data in-flight [5]. Applica-
tion tasks can be deployed to heterogeneous networks comprising
both dedicated computing resources in the network and extended
network elements [3]. FPGAs are a key candidate architecture for
such a paradigm, as they are well suited to packet processing [7],
support tight coupling of custom hardware accelerators, resulting in
lower latency computation with minimal additional offload latency,
and support the dynamic reconfigurability required to support shar-
ing among multiple applications [21].

We use a case study neural network based image classification
application to explore the latency implications of different compu-
tation offload strategies, assuming a network of edge nodes inter-
acting with a cloudlet server through an FPGA-based layer 2 switch.
We explore how edge, in-network, and cloudlet deployments with
heterogeneous hardware impact overall performance for a complex
application that would traditionally be offloaded to the cloud. We
consider how both the communication and computation latencies of
different deployment approaches impact overall application perfor-
mance, including for shared resources. While network round-trip
delay contributes significantly to communication latency, we also
consider the packet ingestion latency required to process stream-
ing network data, which becomes a more significant component
as processing is moved nearer to the data sources, and is heavily
impacted by platform choice.

2 DESIGN AND EXPERIMENTS
We consider a distributed application where data is captured at
edge nodes, transmitted through network switches via Ethernet, to
a server that acts as a cloudlet platform, a common architecture for
IoT applications.We use a neural network based image classification
application that processes images streamed from the edge of the
network. Our evaluation is not focused on the application itself, but
rather the relationship between communication and computation
latency for such distributed deployments. We have selected this
example as it involves the transfer of considerable amounts of
data, as well as high enough computational complexity, while also
demonstrating a good range of computational scaling on these
different architectures. Our investigation focuses on latency – the
time taken to receive a result – rather than throughput. This is
important in a variety of safety critical applications or where data
is time sensitive.

Our network architecture comprises 3 layers, an edge layer, a
switching layer, and a cloudlet layer. Edge nodes produce images
which they can transmit via 100Mb Ethernet through layer 2 net-
work switches, which can forward the data to a cloudlet server.
All layers in the topology can potentially perform the image clas-
sification task. The general structure of the setup, showing all the
possibilities for application deployment is shown in Figure 1.

2.1 Application
The image classification application uses a Deep Neural Network
(DNN) called SqueezeNet [10], that has a small memory footprint,
designed for resource constrained platforms. In recent years there
has been significant research into optimising DNN architectures
for inference at the edge on hardware with less capable resources,
trading off accuracy, runtime, and energy consumption [11, 24].

These models aim to reduce complexity and memory footprint
while maintaining accuracy. In [1], the authors demonstrated how
the performance of such compact DNNs scales on traditional CPU-
based edge nodes, while also evaluating network delay based on
the location of the edge device. We selected SqueezeNet as it is
a compact model with a lower number of operations, leading to
comparatively lower inference time, feasible for deployment on
constrained platforms, compared to other models [19]. This better
allows us to focus on the communication latency considerations,
rather than applications where computing latency significantly
dominates. It also means the lessons learnt are not tied as tightly
to the capabilities of the specific architectures used. SqueezeNet is
also representative of the type of DNN designed for use on edge
devices such as the Raspberry Pi.

Input images are 224×224 pixels with 32-bit combined channel
depth. The neural network has 10 layers, and uses 32-bit floating
point weights, totalling 4.7MB. It can be compressed to 0.5MB while
retaining the same accuracy [10]. The model is pre-trained and
weights pre-loaded on all platforms. Images stream from the edge
nodes, mimicking connected camera sources. In our experiments,
to avoid saturating the network images are sent one at a time, and
the time taken to receive a result measured before the next image
is sent. Images are processed to determine the probability that each
image belongs to one of the 1000 classes classified by the model.

2.2 Measurements
We measure the total time taken to carry out the classification task
on each platform, focusing on latency, rather than throughput. This
includes the computation latency, as well as the communication
time to transfer images from the edge node to the target computing
platform, and to receive the result.

All measurements are taken utilising specialised timing hardware
implemented in the FPGA network switch, allowing for consistent
measurements across the different platforms and independence
from other tasks running on the various platforms. The edge nodes
start transmitting an image upon receiving a start command from
the FPGA which records the start time for the experiment as this
command is sent. The finish time is recorded when the edge node
receives the result. A free running counter running at 200MHz
gives a resolution of 6.4ns.

2.3 Platforms
Edge Node (1): Edge nodes may act as a gateway or cluster head,
or the data source itself. We implement an example of such a node in
our experiments using a Raspberry Pi Model 3B running Raspbian
OS. Up to 4 edge nodes can be connected to the switch in our
experiments. It can carry out the full computation using a Keras
implementation of SqueezeNet, or transmit the image through the
Linux sockets API over 100Mb Ethernet through the network switch
to another platform. Image data is sent using raw Ethernet frames,
with no layer 3 or 4 headers. 100Mb Ethernet represents a realistic
channel for a lightweight edge node, where LPWAN would be too
slow or cellular too costly for video streaming. While network
bandwidth continues to scale, the ingestion latency required to
process received data at a node does not scale proportionally.

Quantifying the Latency Benefits of Near-Edge and In-Network FPGA Acceleration EdgeSys ’20, April 27, 2020, Heraklion, Greece

Figure 1: Outline of the experimental setup.

FPGA Accelerated Edge Node (2): Edge nodes may be en-
hanced with hardware accelerators or co-processors. We build an
FPGA accelerated edge node using the Xilinx Zynq based Arty
Z7 small form factor development board suited for edge applica-
tions. The Zynq consists of a processor subsystem (PS) and pro-
grammable logic (PL) and functions similar to the Raspberry Pi but
with compute-intensive functions offloaded to a hardware accelera-
tor in the PL.

For our experiments, the SqueezeNet accelerator logic was gen-
erated using Vivado HLS, and is implemented in the PL using a
heavily modified version of the implementation in [13]. HLS allows
for the expression of accelerator logic in annotated C rather than a
hardware description language like Verilog. Accelerator parame-
ters such as the memory offsets and sizes of layers are configured
through an AXI-Lite register interface, through software running
on the PS. Weights and image data are stored in on-board DRAM
and data can also be temporarily stored in PL memory while being
used.

TPU Accelerated Edge Node (3): An alternative approach
is to attach an application specific accelerator to an edge node
such as the Google Coral board hosting an ARM processor and
tightly coupled Edge Tensor Processing Unit (TPU) coprocessor.
The execution of Tensorflow models can be offloaded from the host
processor to the TPU for significant improvements to latency and
throughput.

Platforms such as the Edge TPU may alternatively be used as
shared computing resources available over a network. We model
this scenario by connecting a Raspberry Pi edge node to the TPU
board through the network switch over 100Mb Ethernet.

Cloudlet Server (4): We use a Linux server running Ubuntu
18.04 on a 12-core 2.2GHz Intel Xeon E5-2650 v4 CPU, with 64GB of
RAM. This machine has a 10Gb/s Mellanox Technologies MT26448
network card with SFP+ transceivers. The application runs via
Python, with frames sent and received through the sockets API and
the SqueezeNet model executed using Keras.

FPGA Accelerated Cloudlet Server (5): Computation can
also take place on an FPGA accelerator attached to the Linux server
via PCIe. In our experiments we implement this using a Xilinx
VC709 evaluation board that has a PCIe Gen 3×8 interface. On the
FPGA fabric we use the DyRACT framework [20] to manage com-
munication between accelerator and host. The software application
on the host opens a network socket and waits to receive an image

from the edge node, triggering the the accelerator when the image
is received.

In-Network Processing (6): In our testbed, we use an unman-
aged layer 2 switch and a Xilinx KC705 evaluation board, which
hosts a Kintex-7 FPGA to connect edge devices. The standalone
layer 2 switch allows 4 edge devices to be connected to the single
100Mb port on the FPGA board. The FPGA switch bridges the RJ45
100M Ethernet interface of the edge nodes and the 10Gb Ethernet
SFP+ interface of the cloudlet server, and can also host a hardware
accelerator. When a packet is received through the 100Mb inter-
face from an edge node, the destination field in the frame header
determines where it is sent as part of the switch logic.

If the field contains a specified address, the payload is transferred
to the board DRAM, to be used with the accelerator, otherwise it
is forwarded to the 10Gb output port. As up to 4 edge devices
may be transmitting to the FPGA, the source address field of the
inbound frames is used to differentiate between data sent by each
device. Image data from each device is written to a different memory
address offset in DRAMbased on the source address. Upon reception
of a full image from any edge device, a request is generated to start
the accelerator for that device.

The SqueezeNet accelerator logic was generated using Vivado
HLS as for the accelerated edge node, but the expanded resources
of the Kintex FPGA on the KC705 allow for greater unrolling of
loops and increased parallelisation of the design. The board DRAM
also contains the full set of weights for the accelerator, and weights
are loaded prior to the start of the experiment, so there is less
accelerator management overhead.

3 RESULTS
We measured total application latency, including the time to send
the image from the edge node to the platform carrying out the
computation, ingestion of the data and computation, and returning
of the result back to the edge node. We isolated the communication
and computation time for each scenario.

3.1 Isolated edge node measurements
First we consider the measurements for a single active edge device.
The computation latencies measured differ from raw execution
benchmarks, such as in [4], primarily because our latency measure-
ments include the time to ingest input data packets, rather than
raw inference time for data already in memory. This distinction

EdgeSys ’20, April 27, 2020, Heraklion, Greece Ryan A. Cooke and Suhaib A. Fahmy

is important in the context of offloading computation where data
must be received over the network.

It should be clarified that we do not consider the network com-
munication latency to the location of the edge device beyond the
single hop, but rather the network ingestion and computation laten-
cies, as these are platform dependent. The experiments in [1] offer
an insight into how locating these platforms may further impact
overall latency, but the in-network approach has fundamentally
lower latency.

Table 1: Computation and communication latency for of-
fload from a single edge node in milliseconds.

Computing Comp. Comm. Total
Location Latency Latency Latency

1) Edge (Pi) 2380 0 2380
2) Edge (Zynq) 1660 0 1660
3) TPU 210 80 290
4) Server 340 50 390
5) Server + FPGA 60 60 120
6) Network Switch FPGA 60 1 61

0

500

1,000

1,500

2,000

2,500
Computation

Pi Zynq TPU Server PCIe Network
0

20

40

60

80

Computing Location

L
a
te

n
c
y

(m
s)

Communication

Figure 2: Breakdown of latencies per image for different of-
fload scenarios.

It can be seen in Figure 2 that performing all computation on the
edge node with no acceleration has high computation latency, and
despite having no communication latency, this scenario performs
worst, justifying computation offload. Less computationally inten-
sive applications would reduce this disparity between platforms
since the computation latency would not be so dominant, but we
have selected a simpler neural network for this study, and others
are likely to show even more disparity.

Replacing the edge node with a more capable Xilinx Zynq SoC
platform improves latency by 30% due to the hardware acceleration
provided by the FPGA. The embedded FPGA SoC, however, is lim-
ited in capacity and cannot fully parallelise execution of the neural
network, and so numerous iterations of hardware execution are

managed by software, adding to the latency. Further optimisation
is possible, for example, 8 bit fixed point quantization, which would
improve area efficiency, though require further design effort.

The Edge TPU was deployed as a network connected accelerator
on account of its cost compared to other options meaning it is more
likely to be a shared resource. It demonstrates a significant reduc-
tion in computation latency on account of the optimised parallel
hardware and native compilation of the model for this architec-
ture that supports 8-bit arithmetic. As an offload engine attached
to the network, there is some communication latency due to the
software network stack running on the Arm core on the Edge TPU
board. The Zynq FPGA SoC platform can also perform this role
with lower ingestion latency by diverting packets directly into the
PL for processing by the accelerator without the involvement of
the PS processor, as has been demonstrated in [18].

Offloading to the server outperformed both the Raspberry Pi
and FPGA SoC platforms due to the more capable server processor.
Indeed, it achieves close to the computation latency of the Edge
TPU, albeit at much higher power consumption. Improved network
stack performance on a server class processor also results in lower
communication latency compared to the Edge TPU.

Adding a more capable hardware accelerator using a server class
FPGA offers even lower computation latency compared to the other
architectures discussed so far, as loops can be fully parallelised and
there are fewer movements of data to and from memory. This FPGA
accelerator is integrated into a server over a PCIe link which adds
a modest communication latency as data must first traverse the
network stack, then be moved to the accelerator over PCIe. The
software stack that manages this accelerator also adds some man-
agement overhead that contributes to the communication latency.
However, the significant acceleration of the computation means
total latency is significantly reduced.

Attaching the FPGA accelerator directly to the switch drastically
reduces communication latency as network packets can be directly
ingested by the accelerator, and all data movement is managed in
hardware. This coupled with the low computation latency of the
FPGA accelerator means this deployment has significantly lower
latency than those discussed earlier. The communication latency
we measured here does not include multiple hops over a network,
as characterised in [1], which would further increase the magnitude
and variability of communication latency, rather we have isolated
the platform-specific components in our experiments.

While the Edge TPU is capable of very low inference latency,
measured at just 6ms in isolation, packet ingestion and data transfer
from the host processor to the Edge TPU silicon increases latency.
This highlights, once again, that the data movement is of paramount
importance in determining the end-to-end performance of such a
connected application.

We are concerned in this paper with relationship between com-
putation latency and communication (ingestion) latency, consider-
ing deep neural network inference as a case study. Further tweak-
ing of neural network model parameters to optimise for latency
against accuracy can improve performance on constrained edge
platforms [12]. Alternative neural networks also exhibit different
scaling of computation latency on different devices. The effect of
varying these parameters on the different accelerators is an avenue

Quantifying the Latency Benefits of Near-Edge and In-Network FPGA Acceleration EdgeSys ’20, April 27, 2020, Heraklion, Greece

0.4

0.6

0.8

Experiment num.

La
te

nc
y

(s
)

1 2 3 4 devices

(a) Cloudlet

0.05

0.1

0.15

Experiment num.

La
te

nc
y

(s
)

1 2 3 4 devices

(b) Networked FPGA

Figure 3: Latency for cloudlet server and network switch
FPGA servicing multiple edge devices for 100 experiments.

for further work, as is the effect of other factors such as network,
processor, and I/O stress.

3.2 Impact of multiple edge devices
The results presented so far consider one edge device with exclu-
sive access to the network and computing resources. In reality,
multiple connected devices will stream data, leading to contention
for resources and larger, more unpredictable delays. Computing
on edge platforms, such as the Raspberry Pi and FPGA SoC, while
having a higher latency individually, is not subject to these resource
contention issues, as computation is done locally, with no commu-
nication cost. So for large numbers of devices, this approach may
scale favourably. Cloudlet servers or networked FPGA accelerators
will typically share computing resources across multiple streams.

To examine the effects of resource contention, we adapted the
previous experiments to support different numbers of streaming
edge devices. Our experimental setup allows us to connect up to
4 edge nodes to the network switch and FPGA and take detailed
measurements. Experiments were completed with a closed loop
traffic model, where one measurement was taken before the next
experiment was started to avoid flooding the network with data
and causing packet loss. While multiple streams were active in the
system, we measure the latency of a single stream.

When using the cloudlet server, all edge devices share the output
port of the layer 2 switch, the output port of the FPGA switch,
as well as the network pipeline on the FPGA switch, in order to
reach the server. At the server, the streams share the network and
processor resources. Once a full image for the measured stream is
captured, it is processed with the SqueezeNet model in a separate
software process. Latency results are shown in Figure 3a. As the
number of data sources scales, overall latency increases, up to 600ms
with 4 devices connected.

It can be inferred that increasing the number of devices would
further increase latency. This could cause the cloudlet to be slower
than accelerated edge platforms such as the Zynq, where compu-
tation is performed locally and resources are not shared. With a
large number of edge devices serviced by a single cloudlet server,
standard edge nodes without acceleration might offer lower overall
latency due to this network/compute contention. The server-hosted
FPGA accelerator would suffer similar sharing costs since its com-
putation is managed in software and the communication latency is
similar to the cloudlet server scenario.

For the in-network switch hosted FPGA, the sharing is more
fine-grained, so we expect it to better scale with the number of
edge nodes. The results shown in Figure 3b demonstrate that an
additional edge node has minimal effect on total latency due to the
buffering and pipelining of the FPGA design resulting in reduced
contention. Adding a third edge node almost doubles total latency,
and increases jitter. A fourth edge node adds around 3× the latency
compared to a single node, and adds even greater jitter. There are
multiple factors than contribute to these increases. The accelerator
shares the memory interface with the network pipeline, and to
avoid the loss of data, the arbiter gives priority to network data. As
the accelerator cannot retrieve image and weight data frommemory
while the memory interface is busy, latency is higher. Increasing
the number of edge node streams means that the memory interface
is busy more often. Further increases in latency come from the
sharing of a single network interface. More streams means that the
data for any given stream is more likely to be in a queue, which
also explains the increased variation.

Despite these increases in latencywith several connected devices,
the network attached FPGA still outperforms the equivalent number
of edge nodes performing computation locally by a large margin.
The lower computation latency of the FPGA relative to the server
software means that it is more likely to scale well with a greater
number of edge node data streams.

3.3 Discussion
The interplay between computation latency and communication
latency has a significant impact on overall application latency when
offloading computation. Network round-trip time is only one aspect
of communication latency, and packet ingestion latency also has a
noticeable impact. For complex applications, where computation
latency dominates, these factors may not be as important. However,
with the wider use of hardware acceleration, computation latency
is reduced and communication latency, including ingestion latency
becomes more important.

Integrating the accelerator into the network switch made com-
munication latency negligible. The TPU hardware, while capable

EdgeSys ’20, April 27, 2020, Heraklion, Greece Ryan A. Cooke and Suhaib A. Fahmy

of the fastest inference, had its overall effectiveness reduced by
preprocessing and communication time. Going forward, we can see
that a complete view of computation and communication latency
must be considered when evaluating offload platforms.

While for a single device, offloading from the edge node to any
other platform led to large reductions in end-to-end latency, this
benefit diminished as the number of edge nodes increased. As
systems scale, considerations must be made as to how offload from
a large number of devices is handled. In these situations, local
accelerators such as the Zynq, while seeming to under-perform
in our experiments, will gain value as they are not shared across
devices.

4 RELATEDWORK
End-to-end latency analysis for an augmented reality application
offloaded from mobile devices to the cloud is presented in [23].
Computation is identified as the primary contributor to latency,
but alternative platforms are not considered, nor is the impact of a
near-edge deployment. The work in [2] examines the latency for
a range of cognitive assistance applications, showing that when
computation dominates communication latency, the benefits of ex-
ecuting at the edge rather than the cloud are reduced. Network
latency is shown to dominate total application latency in [1], in
which GPUs and algorithmic optimisations were used to decrease
computation latency. Network interface cards, PCIe interconnect,
and the software network stack were all shown to contribute to
non-deterministic latency in the datacenter in [25]. The PCIe con-
tribution to NIC network packet ingestion latency was evaluated
in [14].

5 CONCLUSION AND FUTUREWORK
This paper has explored alternative approaches to accelerated com-
putation near the edge, showing how the benefits of hardware
accelerators can be exploited for offloading from lightweight Inter-
net of Things nodes. A case study neural network image classifi-
cation application was implemented on a variety of platforms for
different offloading scenarios. We showed that both communication
and computation latency must be considered and that the choice
of platform can affect both of these significantly, and that packet
ingestion latency is an important factor. In-network acceleration
demonstrated significant reductions in communication latency, cou-
pled with the low computing latency of FPGA acceleration. While
scaling the number of edge devices sharing these near-edge comput-
ing resources leads to increases in total latency due to network and
compute contention, the in-network FPGA accelerator approach
scaled better than software on a server.

We are interested in exploring the effect of scaling such systems
to larger numbers of edge nodes and more complex network topolo-
gies, wherein we expect more variability in latency. Experiments
with a wider range of applications with differing computation and
communication ratios and platform scaling would allow us to make
more a more general conclusion about the computation accelera-
tion factors required to offset communication latency for different
platforms.

ACKNOWLEDGMENTS
This work was supported in part by The Alan Turing Institute under
the UK EPSRC grant EP/N510129/1.

REFERENCES
[1] Alejandro Cartas et al. 2019. A reality check on inference at mobile networks

edge. In Proc. EdgeSys. 54–59.
[2] Zhuo Chen et al. 2017. An emperical study of latency in an emerging class of

edge computing applications for wearable cognitive assistance. In Proc. SEC.
[3] Ryan A. Cooke and Suhaib A. Fahmy. 2020. A model for distributed in-network

and near-edge computing with heterogeneous hardware. Future Generation
Computer Systems 105 (2020), 395–409.

[4] Coral. 2019. Edge TPU performance benchmarks. https://coral.ai/docs/edgetpu/
benchmarks/

[5] Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé. 2016. Paxos
made switch-y. ACM SIGCOMM Computer Communication Review 46, 2 (2016),
18–24.

[6] Suhaib A. Fahmy, Kizheppatt Vipin, and Shanker Shreejith. 2015. Virtualized
FPGA Accelerators for Efficient Cloud Computing. In Proc. CloudCom. 430–435.

[7] Andreas Fiessler, Sven Hager, Bjorn Scheuermann, and Andrew W. Moore. 2016.
HyPaFilter: a versatile hybrid FPGA packet filter. In Proc. ANCS.

[8] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai, and
Mahadev Satyanarayanan. 2014. Towards wearable cognitive assistance. In Proc.
MobiSys. 68–81.

[9] Hanaa M. Hussain, Khaled Benkrid, Ahmet T. Erdogan, and Huseyin Seker. 2011.
Highly parameterized K-means clustering on FPGAs: Comparative results with
GPPs and GPUs. In Proc. ReConFig. 475–480.

[10] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J.
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and <0.5MB model size.

[11] Hyoukjun Kwon, Tushar Krishna, Liangzhen Lai, and Vikas Chandra. 2019.
HERALD: Optimizing Heterogeneous DNN Accelerators for Edge Devices.
arXiv:cs.CV/1909.07437

[12] Nicholas D. Lane and Pete Warden. 2018. The deep (learning) transformation of
mobile and embedded computing. Computer 51, 5 (2018), 12–16.

[13] Samyukta Lanka. 2017. Squeezenet HLS implementation. https://github.com/
lankas/SqueezeNet

[14] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Sergio López-buedo, and
AndrewW. Moore. 2018. Understanding PCIe performance for end host network-
ing. In Proc. SIGCOMM. 327–341.

[15] Andrew Putnam et al. 2015. A Reconfigurable Fabric for Accelerating Large-Scale
Datacenter Services. IEEE Micro 35, 3 (March 2015), 10–22.

[16] Yun R Qu, Hao H Zhang, Shijie Zhou, and Viktor K Prasanna. 2015. Optimizing
many-field packet classification on FPGA, multi-core general purpose processor,
and GPU. In Proc. ANCS.

[17] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini, and Panos
Kalnis. 2017. In-network computing is a dumb idea whose time has come. In Proc.
Hotnets.

[18] Shanker Shreejith, Ryan A. Cooke, and Suhaib A. Fahmy. 2018. A smart network
interface approach for distributed applications on Xilinx Zynq SoCs. In Proc. FPL.
186–190.

[19] Delia Velasco-Montero, Jorge Fernández-Berni, Ricardo Carmona-Galan, and
Ángel Rodríguez-Vázquez. 2018. Performance analysis of real-timeDNN inference
on Raspberry Pi. In Real-Time Image and Video Processing. Article 106700F.

[20] Kizheppatt Vipin and Suhaib A. Fahmy. 2014. DyRACT: A partial reconfiguration
enabled accelerator and test platform. In Proc. Field Programmable Logic and
Applications.

[21] Kizheppatt Vipin and Suhaib A. Fahmy. 2018. FPGA Dynamic and Partial Re-
configuration: A Survey of Architectures, Methods, and Applications. Comput.
Surveys 51, 4, Article 72 (July 2018).

[22] Shanhe Yi, Zijiang Hao, Zhengrui Qin, and Qun Li. 2016. Fog computing: Platform
and applications. In Proc. HotWeb. 73–78.

[23] Wenxiao Zhang, Bo Han, and Pan Hui. 2017. On the networking challenges of
mobile augmented reality. In Proc. VR/AR Network.

[24] Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra. 2017. Hello
Edge: Keyword Spotting on Microcontrollers. arXiv:cs.CV/1711.07128

[25] Noa Zilberman et al. 2017. Where Has My Time Gone?. In Proc. PAM.

https://coral.ai/docs/edgetpu/benchmarks/
https://coral.ai/docs/edgetpu/benchmarks/
http://arxiv.org/abs/cs.CV/1909.07437
https://github.com/lankas/SqueezeNet
https://github.com/lankas/SqueezeNet
http://arxiv.org/abs/cs.CV/1711.07128

	Abstract
	1 Introduction
	2 Design and Experiments
	2.1 Application
	2.2 Measurements
	2.3 Platforms

	3 Results
	3.1 Isolated edge node measurements
	3.2 Impact of multiple edge devices
	3.3 Discussion

	4 Related Work
	5 Conclusion and Future Work
	Acknowledgments
	References

