385 research outputs found

    On the Biomimetic Design of Agile-Robot Legs

    Get PDF
    The development of functional legged robots has encountered its limits in human-made actuation technology. This paper describes research on the biomimetic design of legs for agile quadrupeds. A biomimetic leg concept that extracts key principles from horse legs which are responsible for the agile and powerful locomotion of these animals is presented. The proposed biomimetic leg model defines the effective leg length, leg kinematics, limb mass distribution, actuator power, and elastic energy recovery as determinants of agile locomotion, and values for these five key elements are given. The transfer of the extracted principles to technological instantiations is analyzed in detail, considering the availability of current materials, structures and actuators. A real leg prototype has been developed following the biomimetic leg concept proposed. The actuation system is based on the hybrid use of series elasticity and magneto-rheological dampers which provides variable compliance for natural motion. From the experimental evaluation of this prototype, conclusions on the current technological barriers to achieve real functional legged robots to walk dynamically in agile locomotion are presented

    Biomechanics of Prosthetic Knee Systems : Role of Dampening and Energy Storage Systems

    Get PDF
    One significant drawback of the commercial passive and microprocessored prosthetic devices, the inability of delivering positive energy when needed, is due to the absence of the knee flexion during stance phase. Moreover, consequences such as circumduction and disturbed gait pattern take place due to the improper energy flow at the knee and the absence of the positive energy delivery during the swing phase. Current generation powered design has solved these problems by delivering the needed energy with heavy battery demanding motors, which increase the mass of the device significantly. Hence, the gait quality of transfemoral amputees has not improved significantly in the last 50 years due to the inefficient energy flow distribution causing the patient to hike his/her pelvis, which leads to back pain in the long run. In this context, state-of-art prosthetics technology is trending toward creating energy regenerative devices, which are able to harvest/ return energy during ambulation by a spring mechanism, since a spring not only permits significant power demand reduction but also provides high power-to-weight ratio. This study will examine the sagittal plane knee moment versus knee flexion angle properties robotically, clinically and theoretically to explore the functional stiffness of a healthy knee as well as a prosthetic knee during the energy return and harvest phases of gait. With this intention, a prosthetic knee test method will be developed for investigating the torque-angle properties of the knee by iteratively modifying the hip trajectory until achieving the closest to healthy knee biomechanics by a 3-Degree of Freedom (DOF) Simulator. This research reveals that constant spring stiffness is suboptimal to varying gait requirements for different types of activity, due to the variability of the power requirements of the knee caused by the passive, viscous and elastic characteristics and the activation dependent properties of the muscles. Exploring this variation is crucial for the design of tran

    Biomechanics of Prosthetic Knee Systems : Role of Dampening and Energy Storage Systems

    Get PDF
    One significant drawback of the commercial passive and microprocessored prosthetic devices, the inability of delivering positive energy when needed, is due to the absence of the knee flexion during stance phase. Moreover, consequences such as circumduction and disturbed gait pattern take place due to the improper energy flow at the knee and the absence of the positive energy delivery during the swing phase. Current generation powered design has solved these problems by delivering the needed energy with heavy battery demanding motors, which increase the mass of the device significantly. Hence, the gait quality of transfemoral amputees has not improved significantly in the last 50 years due to the inefficient energy flow distribution causing the patient to hike his/her pelvis, which leads to back pain in the long run. In this context, state-of-art prosthetics technology is trending toward creating energy regenerative devices, which are able to harvest/ return energy during ambulation by a spring mechanism, since a spring not only permits significant power demand reduction but also provides high power-to-weight ratio. This study will examine the sagittal plane knee moment versus knee flexion angle properties robotically, clinically and theoretically to explore the functional stiffness of a healthy knee as well as a prosthetic knee during the energy return and harvest phases of gait. With this intention, a prosthetic knee test method will be developed for investigating the torque-angle properties of the knee by iteratively modifying the hip trajectory until achieving the closest to healthy knee biomechanics by a 3-Degree of Freedom (DOF) Simulator. This research reveals that constant spring stiffness is suboptimal to varying gait requirements for different types of activity, due to the variability of the power requirements of the knee caused by the passive, viscous and elastic characteristics and the activation dependent properties of the muscles. Exploring this variation is crucial for the design of tran

    Space science/space station attached payload pointing accommodation study: Technology assessment white paper

    Get PDF
    Technology assessment is performed for pointing systems that accommodate payloads of large mass and large dimensions. Related technology areas are also examined. These related areas include active thermal lines or power cables across gimbals, new materials for increased passive damping, tethered pointing, and inertially reacting pointing systems. Conclusions, issues and concerns, and recommendations regarding the status and development of large pointing systems for space applications are made based on the performed assessments

    Design And Testing Of A Passive Prosthetic Ankle With Mechanical Performance Similar To That Of A Natural Ankle

    Get PDF
    This thesis presents the design and test results of a passive prosthetic ankle that has mechanical behavior similar to that of a natural ankle. The ankle prosthesis is designed to store and return enough energy to the amputee to propel their body forward during push-off. The ankle prosthesis is a 2 degree of freedom (DoF) mechanism containing a network of conventional compression springs. One DoF allows the lower leg to compress when weight is applied; the other allows the foot to rotate about the ankle joint. Bulk property and dynamic performance criteria are used to assess the performance of the ankle prosthesis. Lightweight, compactness and low friction are the primary bulk property requirements for the ankle device. Stiffness nonlinearity and active behavior similar to that of a human ankle are the major dynamic performance characteristics. In this research, a preliminary computer geometric model of the prosthesis was developed, simulated, and refined in CAD software. A proof-of-concept prototype was then fabricated, modified and tested on both a robot and a human subject. The test results showed that the designed ankle prosthesis demonstrated its ability to satisfy the bulk property requirements and some of the dynamic performance characteristics. The nonlinearity of ankle stiffness was validated, however, more active behavior should be achieved by the prosthesis during push-off

    Combining series elastic actuation and magneto-rheological damping for the control of agile locomotion

    Get PDF
    All-terrain robot locomotion is an active topic of research. Search and rescue maneuvers and exploratory missions could benefit from robots with the abilities of real animals. However, technological barriers exist to ultimately achieving the actuation system, which is able to meet the exigent requirements of these robots. This paper describes the locomotioncontrol of a leg prototype, designed and developed to make a quadruped walk dynamically while exhibiting compliant interaction with the environment. The actuation system of the leg is based on the hybrid use of series elasticity and magneto-rheological dampers, which provide variable compliance for natural-looking motion and improved interaction with the ground. The locomotioncontrol architecture has been proposed to exploit natural leg dynamics in order to improve energy efficiency. Results show that the controller achieves a significant reduction in energy consumption during the leg swing phase thanks to the exploitation of inherent leg dynamics. Added to this, experiments with the real leg prototype show that the combined use of series elasticity and magneto-rheologicaldamping at the knee provide a 20 % reduction in the energy wasted in braking the knee during its extension in the leg stance phase

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field
    corecore