43 research outputs found

    Subsea Blowout Preventer (BOP): Design, Reliability, Testing, Deployment, and Operation and Maintenance Challenges

    Get PDF
    Subsea blowout preventer (BOP) is a safety-related instrumented system that is used in underwater oil drilling to prevent the well to blowout. As oil and gas exploration moves into deeper waters and harsher environments, the setbacks related to reliable functioning of the BOP system and its subsystems remain a major concern for researchers and practitioners. This study aims to systematically review the current state-of-the-art and present a detailed description about some of the recently developed methodologies for through-life management of the BOP system. Challenges associated with the system design, reliability analysis, testing, deployment as well as operability and maintainability are explored, and then the areas requiring further research and development will be identified. A total of 82 documents published since 1980's are critically reviewed and classified according to two proposed frameworks. The first framework categorises the literature based on the depth of water in which the BOP systems operate, with a sub-categorization based on the Macondo disaster. The second framework categorises the literature based on the techniques applied for the reliability analysis of BOP systems, including Failure Mode and Effects Analysis (FMEA), Fault Tree Analysis (FTA), Reliability Block Diagram (RBD), Petri Net (PN), Markov modelling, Bayesian Network (BN), Monte Carlo Simulation (MCS), etc. Our review analysis reveals that the reliability analysis and testing of BOP has received the most attention in the literature, whereas the design, deployment, and operation and maintenance (O&M) of BOPs received the least

    An integrated model for asset reliability, risk and production efficiency management in subsea oil and gas operations

    Get PDF
    PhD ThesisThe global demand for energy has been predicted to rise by 56% between 2010 and 2040 due to industrialization and population growth. This continuous rise in energy demand has consequently prompted oil and gas firms to shift activities from onshore oil fields to tougher terrains such as shallow, deep, ultra-deep and arctic fields. Operations in these domains often require deployment of unconventional subsea assets and technology. Subsea assets when installed offshore are super-bombarded by marine elements and human factors which increase the risk of failure. Whilst many risk standards, asset integrity and reliability analysis models have been suggested by many previous researchers, there is a gap on the capability of predictive reliability models to simultaneously address the impact of corrosion inducing elements such as temperature, pressure, pH corrosion on material wear-out and failure. There is also a gap in the methodology for evaluation of capital expenditure, human factor risk elements and use of historical data to evaluate risk. This thesis aims to contribute original knowledge to help improve production assurance by developing an integrated model which addresses pump-pipe capital expenditure, asset risk and reliability in subsea systems. The key contributions of this research is the development of a practical model which links four sub-models on reliability analysis, asset capital cost, event risk severity analysis and subsea risk management implementation. Firstly, an accelerated reliability analysis model was developed by incorporating a corrosion covariate stress on Weibull model of OREDA data. This was applied on a subsea compression system to predict failure times. A second methodology was developed by enhancing Hubbert oil production forecast model, and using nodal analysis for asset capital cost analysis of a pump-pipe system and optimal selection of best option based on physical parameters such as pipeline diameter, power needs, pressure drop and velocity of fluid. Thirdly, a risk evaluation method based on the mathematical determinant of historical event magnitude, frequency and influencing factors was developed for estimating the severity of risk in a system. Finally, a survey is conducted on subsea engineers and the results along with the previous models were developed into an integrated assurance model for ensuring asset reliability and risk management in subsea operations. A guide is provided for subsea asset management with due consideration to both technical and operational perspectives. The operational requirements of a subsea system can be measured, analysed and improved using the mix of mathematical, computational, stochastic and logical frameworks recommended in this work

    Reliability analysis and optimisation of subsea compression system facing operational covariate stresses

    Get PDF
    This paper proposes an enhanced Weibull-Corrosion Covariate model for reliability assessment of a system facing operational stresses. The newly developed model is applied to a Subsea Gas Compression System planned for offshore West Africa to predict its reliability index. System technical failure was modelled by developing a Weibull failure model incorporating a physically tested corrosion profile as stress in order to quantify the survival rate of the system under additional operational covariates including marine pH, temperature and pressure. Using Reliability Block Diagrams and enhanced Fusell-Vesely formulations, the whole system was systematically decomposed to sub-systems to analyse the criticality of each component and optimise them. Human reliability was addressed using an enhanced barrier weighting method. A rapid degradation curve is obtained on a subsea system relative to the base case subjected to a time-dependent corrosion stress factor. It reveals that subsea system components failed faster than their Mean time to failure specifications from Offshore Reliability Database as a result of cumulative marine stresses exertion. The case study demonstrated that the reliability of a subsea system can be systematically optimised by modelling the system under higher technical and organisational stresses, prioritising the critical sub-systems and making befitting provisions for redundancy and tolerances

    Evaluation of proactive maintenance policies on a stochastically dependent hidden multi-component system using DBNs

    Get PDF
    In complex systems with stochastically dependent components which are not observed directly, determining an effective maintenance policy is a difficult task. In this paper, a dynamic Bayesian network based maintenance decision framework is proposed to evaluate proactive maintenance policies for such systems. Two preventive and one predictive maintenance strategies from a cost perspective are designed for multi-component dependable systems which aim to reduce maintenance cost while increasing system reliability at the same time. Tabu procedure is employed to avoid repetitive similar actions. The performances of the policies are compared with a reactive maintenance strategy and also with each other using different strategy parameters on a real life system confronted in thermal power plants for six different scenarios. The scenarios are designed considering different structures of system dependability and reactive cost. The results show that the threshold based maintenance which is the predictive strategy gives the minimum cost and maintenance number in almost all scenarios.This research is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under grant: 117M587.Publisher's Versio

    Risk-based life cycle assessment methodology for green and safe product selection

    Get PDF
    Life-cycle assessment (LCA) is an effective technique widely used to estimate the emissions produced during the entire life-cycle of a fuel or a product. However, most of the conventional LCA methods consider the risk of voluntary releases such as emissions, discharges or energy use. In other words, involuntary risks such as accident risks associated with exploration, production, storage, process and transportation have been overlooked. For hazardous materials involuntary risks could be significant; thus, ignoring this may result in imprecise LCA. The present study aims to develop a methodology for risk-based life-cycle assessment (RBLCA) of fossil fuels by integrating both the voluntary and involuntary risks (risk associated with potential accidents) of hazardous materials. The risk associated with potential accidents is estimated using Bayesian network approach. This provides a robust probabilistic platform of LCA. The application of the developed methodology is demonstrated for liquefied natural gas (LNG) and heavy fuel oil (HFO) as fuels of a hypothetical power plant. The comparative analysis of two fuels based on RBLCA helps an analyst not only overcome data uncertainty but also identify holistically green and safer fuel option

    Dynamic corrosion risk-based integrity assessment of marine and offshore systems

    Get PDF
    Corrosion poses a serious integrity threat to marine and offshore systems. This critical issue leads to high rate of offshore systems degradation, failure, and associated risks. The microbiologically influenced corrosion (microbial corrosion), which is a type of corrosion mechanism, presents inherent complexity due to interactions among influential factors and the bacteria. The stochastic nature of the vital operating parameters and the unstable microbial metabolism affect the prediction of microbial corrosion induced failure and the systems’ integrity management strategy. The unstable and dynamic characteristics of the corrosion induced risk factors need to be captured for a robust integrity management strategy for corroding marine and offshore systems. This thesis proposes dynamic methodology for risk-based integrity assessment of microbially influenced corroding marine and offshore systems. Firstly, a novel probabilistic network based structure is presented to capture the non-linear interactions among the monitoring operating parameters and the bacteria (e.g., sulfate-reducing bacteria) for the microbial corrosion rate predictions. A Markovian stochastic formulation is developed for the corroding offshore system failure probability prediction using the degradation rate as the transition intensity. The analysis results show that the non-linear interactions among the microbial corrosion influential parameters increase the corrosion rate and decrease the corroding system's failure time. Secondly, a dynamic model is introduced to evaluate the offshore system's operational safety under microbial corrosion induced multiple defect interactions. An effective Bayesian network - Markovian mixture structure is integrated with the Monte Carlo algorithm to forecast the effects of defects interactions and the corrosion response parameters’ variability on offshore system survivability under multispecies biofilm architecture. The results reveal the impact of defects interaction on the system's survivability profile under different operational scenarios and suggest the critical intervention time based on the corrosivity index to prevent total failure of the offshore system. Finally, a probabilistic investigation is carried out to determine the parametric interdependencies' effects on the corroding system reliability using a Copula-based Monte Carlo algorithm. The model simultaneously captures the failure modes and the non-linear correlation effects on the offshore system reliability under multispecies biofilm structure. The research outputs suggest a realistic reliability-based integrity management strategy that is consistent with industry best practices. Furthermore, a dynamic risk-based assessment framework is developed considering the evolving characteristics of the influential microbial corrosion factors. A novel dynamic Bayesian network structure is developed to capture the corrosion's evolving stochastic process and the importance of input parameters based on their temporal interrelationship. The associated loss scenarios due to microbial corrosion induced failures are modeled using a loss aggregation technique. A subsea pipeline is used to demonstrate the model performance. The proposed integrated model provides a risk-based prognostic tool to aid engineers and integrity managers for making effective safety and risk strategies. This work explores the microbial corrosion induced failure mechanisms and develops dynamic risk-based tools under different operational scenarios for systems’ integrity management in the marine and offshore oil and gas industries

    Dynamic safety analysis of decommissioning and abandonment of offshore oil and gas installations

    Get PDF
    The global oil and gas industry have seen an increase in the number of installations moving towards decommissioning. Offshore decommissioning is a complex, challenging and costly activity, making safety one of the major concerns. The decommissioning operation is, therefore, riskier than capital projects, partly due to the uniqueness of every offshore installation, and mainly because these installations were not designed for removal during their development phases. The extent of associated risks is deep and wide due to limited data and incomplete knowledge of the equipment conditions. For this reason, it is important to capture every uncertainty that can be introduced at the operational level, or existing hazards due to the hostile environment, technical difficulties, and the timing of the decommissioning operations. Conventional accident modelling techniques cannot capture the complex interactions among contributing elements. To assess the safety risks, a dynamic safety analysis of the accident is, thus, necessary. In this thesis, a dynamic integrated safety analysis model is proposed and developed to capture both planned and evolving risks during the various stages of decommissioning. First, the failure data are obtained from source-to-source and are processed utilizing Hierarchical Bayesian Analysis. Then, the system failure and potential accident scenarios are built on bowtie model which is mapped into a Bayesian network with advanced relaxation techniques. The Dynamic Integrated Safety Analysis (DISA) allows for the combination of reliability tools to identify safetycritical causals and their evolution into single undesirable failure through the utilisation of source to-source variability, time-dependent prediction, diagnostic, and economic risk assessment to support effective recommendations and decisions-making. The DISA framework is applied to the Elgin platform well abandonment and Brent Alpha jacket structure decommissioning and the results are validated through sensitivity analysis. Through a dynamic-diagnostic and multi-factor regression analysis, the loss values of accident contributory factors are also presented. The study shows that integrating Hierarchical Bayesian Analysis (HBA) and dynamic Bayesian networks (DBN) application to modelling time-variant risks are essential to achieve a well-informed decommissioning decision through the identification of safety critical barriers that could be mitigated against to drive down the cost of remediation.The global oil and gas industry have seen an increase in the number of installations moving towards decommissioning. Offshore decommissioning is a complex, challenging and costly activity, making safety one of the major concerns. The decommissioning operation is, therefore, riskier than capital projects, partly due to the uniqueness of every offshore installation, and mainly because these installations were not designed for removal during their development phases. The extent of associated risks is deep and wide due to limited data and incomplete knowledge of the equipment conditions. For this reason, it is important to capture every uncertainty that can be introduced at the operational level, or existing hazards due to the hostile environment, technical difficulties, and the timing of the decommissioning operations. Conventional accident modelling techniques cannot capture the complex interactions among contributing elements. To assess the safety risks, a dynamic safety analysis of the accident is, thus, necessary. In this thesis, a dynamic integrated safety analysis model is proposed and developed to capture both planned and evolving risks during the various stages of decommissioning. First, the failure data are obtained from source-to-source and are processed utilizing Hierarchical Bayesian Analysis. Then, the system failure and potential accident scenarios are built on bowtie model which is mapped into a Bayesian network with advanced relaxation techniques. The Dynamic Integrated Safety Analysis (DISA) allows for the combination of reliability tools to identify safetycritical causals and their evolution into single undesirable failure through the utilisation of source to-source variability, time-dependent prediction, diagnostic, and economic risk assessment to support effective recommendations and decisions-making. The DISA framework is applied to the Elgin platform well abandonment and Brent Alpha jacket structure decommissioning and the results are validated through sensitivity analysis. Through a dynamic-diagnostic and multi-factor regression analysis, the loss values of accident contributory factors are also presented. The study shows that integrating Hierarchical Bayesian Analysis (HBA) and dynamic Bayesian networks (DBN) application to modelling time-variant risks are essential to achieve a well-informed decommissioning decision through the identification of safety critical barriers that could be mitigated against to drive down the cost of remediation

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore