338 research outputs found

    Radar Sub-surface Sensing for Mapping the Extent of Hydraulic Fractures and for Monitoring Lake Ice and Design of Some Novel Antennas.

    Full text link
    Hydraulic fracturing, which is a fast-developing well-stimulation technique, has greatly expanded oil and natural gas production in the United States. As the use of hydraulic fracturing has grown, concerns about its environmental impacts have also increased. A sub-surface imaging radar that can detect the extent of hydraulic fractures is highly demanded, but existing radar designs cannot meet the requirement of penetration range on the order of kilometers due to the exorbitant propagation loss in the ground. In the thesis, a medium frequency (MF) band sub-surface radar sensing system is proposed to extend the detectable range to kilometers in rock layers. Algorithms for cross-hole and single-hole configurations are developed based on simulations using point targets and realistic fractured rock models. A super-miniaturized borehole antenna and its feeding network are also designed for this radar system. Also application of imaging radars for sub-surface sensing frozen lakes at Arctic regions is investigated. The scattering mechanism is the key point to understand the radar data and to extract useful information. To explore this topic, a full-wave simulation model to analyze lake ice scattering phenomenology that includes columnar air bubbles is presented. Based on this model, the scattering mechanism from the rough ice/water interface and columnar air bubbles in the ice at C band is addressed and concludes that the roughness at the interface between ice and water is the dominate contributor to backscatter and once the lake is completely frozen the backscatter diminishes significantly. Radar remote sensing systems often require high-performance antennas with special specifications. Besides the borehole antenna for MF band subsurface imaging system, several other antennas are also designed for potential radar systems. Surface-to-borehole setup is an alternative configuration for subsurface imaging system, which requires a miniaturized planar antenna placed on the surface. Such antenna is developed with using artificial electromagnetic materials for size reduction. Furthermore, circularly polarized (CP) waveform can be used for imaging system and omnidirectional CP antenna is needed. Thus, a low-profile planar azimuthal omnidirectional CP antenna with gain of 1dB and bandwidth of 40MHz is designed at 2.4GHz by combining a novel slot antenna and a PIFA antenna.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120674/1/wujf_1.pd

    Antenna Bandwidth and Radiation Control by Topology and use of Non-Conductive Materials.

    Full text link
    The demand for ultra-wideband (UWB) antennas have been on the rise in the last decade. There are many different systems and devices such as ground penetrating radars (GPRs) and wireless communications where such antennas find very unique applications. Many topologies and configurations have been studied and reported in designing UWB antennas. These topologies are corresponding to radiation pattern, polarization, and band of operation. In addition, in low frequencies, the size of the antenna becomes a major factor that must be taken into consideration. A portion of this thesis focuses on the design of novel UWB antennas. A new approach in design of a cavity-backed coupled sectorial loop antenna (CB-CSLA) with directional radiation pattern is presented. This antenna is backed by a short cylindrical cavity with a special modal suppressing septum to accomplish a unidirectional radiation pattern while maintaining a very wide bandwidth. Another approach, more applicable to ground penetrating radars, based on dielectric loaded multi-resonant slot antenna is also presented. Unidirectional radiation is achieved by a symmetrically loading the slot radiators. Since the slot length is reduced, radiation is preferentially aimed towards the dielectric superstrate. By gradually changing the index of refraction, the radiation from the dielectric back to the surrounding medium is facilitated. A prototype with dimension of 0.28λ by 0.2λ by 0.07λ is fabricated and shown to have a bandwidth of 35.5% and a front to back ratio of 12dB. For the new 700MHz band considered for wireless communication applications, a novel planar wideband slot antenna is designed. The slot antenna size is reduced from the traditional λ/2 slot to λ/4. Then parasitic coupling, using a number of λ/4 slot elements appropriately positioned around the driving element, and direct feeding are used to increase the bandwidth. For communication applications, a novel miniaturized impedance matched antenna with an omnidirectional horizontally polarized radiation pattern is presented. The antenna structure resembles a circular loop formed by a circular array of shunt miniaturized n-fold resonant dipole antennas which is referred to as a miniature composite wire-loop antenna (MCWLA). This antenna has a diameter of λ/9 and a height of less than λ/500.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120697/1/hbukhari_1.pd

    Metamaterial antennas for cognitive radio applications

    Get PDF
    Cognitive radio is one of the most promising techniques to efficiently utilize the radio frequency (RF) spectrum. As the Digital Video Broadcasting-Handheld (DVB-H) band is targeted (470-862 MHz), the size of the antenna becomes challenging. Metamaterial concept is used as a miniaturization technique. Two antennas are designed, fabricated and measured. The first one achieved multiband operation by loading it with a metamaterial unit cell. These bands are controlled by engineering the dispersion relation of the unit cell. The second one, which is a 2-lumped elements loaded antenna, achieved wideband operation through the entire DVB-H band with a planar size of 5×2 cm^2. A model is proposed to explain, through simple numerical simulations and an optimization algorithm, the behavior of these component loaded antennas (which are equivalent to metamaterial inspired electrically small antennas)

    Grating Lobes Reduction Using a Multilayer Frequency Selective Surface on a Dual-Polarized Aperture Array Antenna in Ka-Band

    Get PDF
    [EN] This paper presents a multilayer frequency selective surface for a dual-polarized aperture array antenna in Ka-band. The elements of the array are cylindrical open cavities with a diameter of at 30 GHz, and spaced one wavelength. Due to this separation between elements, which is limiting and not reducible by the architecture of the feeding network and the size of the radiating element, grating lobes appear. Frequency Selective Surfaces (FSS) can be a solution to this problem without modifying the feeder architecture nor the radiating elements. This paper presents the FSS design for reducing grating lobes level, the antenna assembly, and the experimental validation. The full antenna performance demonstrates that FSS operates in a range identical to the feeder (29.5 GHz to 31 GHz) with the added benefit of reducing the grating lobes level more than 10 dB for both polarizations.This work was supported by the Spanish Ministry of Economy and Competitiveness (Ministerio de Economia y Competitividad) under Project TEC2016-79700-C2-1-R.Sánchez-Escuderos, D.; Ferrando-Rocher, M.; Herranz Herruzo, JI.; Valero-Nogueira, A. (2020). Grating Lobes Reduction Using a Multilayer Frequency Selective Surface on a Dual-Polarized Aperture Array Antenna in Ka-Band. IEEE Access. 8:104977-104984. https://doi.org/10.1109/ACCESS.2020.3000069S104977104984

    Antenna Array Designs For Directional Wireless Communicatoin

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2018

    Antennas and Propagation

    Get PDF
    This Special Issue gathers topics of utmost interest in the field of antennas and propagation, such as: new directions and challenges in antenna design and propagation; innovative antenna technologies for space applications; metamaterial, metasurface and other periodic structures; antennas for 5G; electromagnetic field measurements and remote sensing applications

    A SIMPLE EM DIPOLE RADIATING ELEMENT FOR DUAL-POLARIZED PHASED ARRAY WEATHER RADARS

    Get PDF
    The Dual Polarized radiating element is a critical component in the Multi-function Phased Array Radar (MPAR) System. This thesis studies a new type of dual polarized radiating element based on the Electro-Magnetic (EM) dipole concept. Two different geometries i.e., loop approximated as magnetic dipole and a printed electric dipole are used to form a single dual polarized radiating element. Radiation patterns based on Ansoft® High Frequency Structural Simulator (HFSS) simulation software and measurements carried out in Anechoic Chambers are presented. The results are compared to commercially available electric and magnetic dipole antennas. An Initial array and simple linear array design based on these elements is also discussed

    Design and performance evaluation of millimeter-wave flat lens antennas for communications, radar and imaging applications

    Get PDF
    Millimeter-wave systems introduce a set of particular severe requirements from the antenna point of view in order to achieve specific performances. In this sense, high directive antennas are required to overcome the huge extra path loss. Moreover, each particular application introduces additional requirements. For example, in very high throughput (VHT) wireless personal area networks (WPANs) communication systems at 60 GHz band beam-steering antennas are needed to deal with high user random mobility and human-body shadowing characteristic of indoor environments. Similarly, beam-steering capabilities are also needed in automotive radar applications at 79 GHz, since the determination of the exact position of an object is essential for most of the functions realized by the radar sensor. In the same way, beam-scanning, which is still commonly mechanically performed nowadays, is also needed in passive imaging systems at 94 GHz. Finally, from the integration perspective, the antennas must be small, low-profile, light weight and low-cost, in order to be successfully integrated in a commercial millimeter-wave wireless system. For these reasons, many types of antenna structures have been considered to achieve high directivity and beam-steering capabilities for the aforementioned millimeter-wave communication, radar and imaging applications at 60, 79 and 94 GHz. The most part of the currently adopted solutions are based on the expensive, complex and bulky phased-array antena concept. Actually, phased-array antenna systems can scan the beam at a fast rate. However, they require a complex integration of many expensive, lossy and bulky circuits, such as solid-state phase shifters and beam-forming networks. This doctoral thesis has contributed to the study, development, and assessment of the performance of innovative antena solutions in order to improve the existing architectures at millimeter-wave frequencies, conveniently solving the problems related specifically to short-range high data rate communication systems at 60 GHz WPAN band (including future 5G millimeter-wave systems), automotive radar sensors at 79 GHz band, and communications, radar, and imaging systems at 94 GHz. The specific goals pursued in this work, focused on defining an alternative antenna architecture able to achieve a full reconfigurable 2-D beam-scanning of high gain radiation beams at millimeter-wave frequencies, has been fulfilled. In this sense, this thesis has been mainly devoted to study in depth and practically develop the fundamental part of an innovative switched-beam antenna array concept: novel inhomogeneous gradient-index dielectric flat lenses, which, despite their planar antenna profile configurations, allow full 2-D beam-scanning of high gain radiation beams. A transversal study, going from theoretical investigations, passing by numerical analysis, new fabrication strategies, performance evaluation, and to full experimental assessment of the new antenna architectures in real application environment has been successfully carried out.Los sistemas a frecuencias de ondas milimétricas introducen una serie de requisitos muy estrictos desde el punto de vista de la antena con el objetivo de conseguir unos rendimientos específicos. En este sentido, se requieren antenas con una muy alta directividad con tal de conseguir superar las enormes pérdidas adicionales por propagación. Además, cada aplicación en concreto introduce unos requisitos adicionales. Por ejemplo, en redes de área personal de alta velocidad para sistemas de comunicación a la banda de 60 GHz, antenas con la capacidad de reconfiguración del haz de radiación son necesarias para poder tratar la problemática de la alta movilidad de los usuarios en entornos cerrados. De la misma forma, capacidades de reconfiguración de la orientación del haz de radiación son necesarias en aplicaciones relacionadas con radar de automoción a 79 GHz, dado que la determinación de la posición exacta de un objeto es esencial para muchas de las funciones del sensor de radar. De forma muy similar, la capacidad de apuntamiento del haz, que muchas veces todavía se realiza mediante sistemas mecánicos, es también imprescindible en sistemas de escaneo para aplicaciones biomédicas y de seguridad a 94 GHz. Finalmente, desde la perspectiva de la integración, las antenas deben ser eléctricamente pequeñas, ligeras, y económicas para poder ser incorporadas a un sistema inalámbrico comercial a frecuencias de onda milimétricas. Por todos estos motivos, diferentes tipos de estructuras de antenas han sido propuestos para conseguir alta directividad, junto con capacidades de reconfiguración y apuntamiento del haz de radiación para las aplicaciones anteriormente mencionadas y descritas en la banda de 60, 79, y 94 GHz. La solución tradicionalmente adoptada en este tipo de casos està estrictamente basada en el siempre caro, complejo y aparatoso concepto del phased-array. De hecho, los phased-arrays permiten el rápido escaneo de haces de radiación de alta directividad. Sin embargo, el hecho que requieran una compleja integración de muchos y caros componentes a alta frecuencia, tales como desfasadores de estado sólido o redes de conformación, los cuales introducen ciertos niveles de pérdidas, siendo además aparatosos, hacen que esta solución resulte inviable. La presente tesis doctoral contribuye al estudio, desarrollo, y ensayo experimental del rendimiento de soluciones de antenas innovadoras para la mejora de las existentes arquitecturas de antena en la banda frecuencial de las ondas milimétricas, convenientemente solucionando los problemas asociados específicamente a los sistemas de comunicación de corto alcance y alta velocidad a 60 GHz (incluyendo los futuros sistemas 5G a milimétricas), a los sistemas de radar de automoción a 79 GHz, y a los sistemas de comunicación, radar, y escaneo para aplicaciones a 94 GHz. Los objetivos específicos perseguidos en este trabajo académico, focalizados en definir una arquitectura alternativa de antena, capaz de conseguir una completa reconfiguración y escaneo de los haces de radiación en dos dimensiones del espacio a frecuencias de onda milimétricas, se han conseguido plenamente. En este sentido, esta tesis doctoral ha sido dedicada esencialmente al estudio en profundidad y desarrollo práctico de la parte fundamental del innovador concepto del switchedbeam array: nuevas lentes dieléctricas inhomogéneas de gradiente de índice con estructura plana, las cuales, a pesar de su configuración física totalmente llana, permiten una reconfiguración total, en dos dimensiones del espacio, de haces de radiación de alta directividad. Un estudio eminentemente transversal, que abarca desde la investigación teórica, pasando por el análisis numérico, nuevas metodologías y técnicas de fabricación, evaluación de rendimientos, hasta una completa caracterización y ensayo del rendimiento en entornos reales de aplicación de las nuevas arquitecturas de antena, se ha llevado a cabo con total éxito.Els sistemes a freqüències d'ones mil·limètriques introdueixen una sèrie de requisits molt estrictes des del punt de vista de l'antena per tal d’aconseguir uns rendiments específics. En aquest sentit, es requereixen antenes amb una alta directivitat per aconseguir superar les enormes pèrdues addicionals per propagació. A més a més, cada aplicació en concret introdueix uns requeriments addicionals . Per exemple, en xarxes d'àrea personal d'alta velocitat per a sistemes de comunicació a la banda de 60 GHz, antenes amb la capacitat de reconfiguració del feix de radiació són necessàries per tal de poder tractar la problemàtica de l'alta mobilitat dels usuaris en entorns tancats . De la mateixa manera, capacitats de reconfiguració de l'orientació del feix de radiació són necessàries en aplicacions associades a radar d'automoció a 79 GHz, donat que la determinació de la posició exacta d'un objecte és essencial per moltes de les funcions portades a terme pels ens or del radar. De forma molt similar, la capacitat d'apuntament del feix, que moltes vegades encara es realitza per mitjà de sistemes mecànics, és també imprescindible en sistemes d'escaneig per aplicacions mèdiques i de seguretat a 94 GHz. Finalment, des de la perspectiva de la integració, les antenes han de ser petites en termes elèctrics, lleugeres, i econòmiques per tal de poder ser incorporades en un sistema sense fils comercial a freqüència d'ones mil·limètriques. Per aquestes raons , diversos tipus d'estructures d'antenes han sigut proposats per aconseguir alta directivitat, conjuntament amb la capacitat d'apuntament del feix de radiació per les aplicacions anteriorment descrites a les bandes de 60, 79, i 94 GHz. La solució tradicionalment adoptada en aquests casos és estrictament basada en el sempre car, complexe, i aparatós concepte del phased-array. De fet, els phased-arrays tenen la capacitat de reconfigurar a gran velocitat feixos de radiació d'alta directivitat. Tot i això, el fet que requereixin la complexa integració de molts components cars a alta freqüència, amb certs nivells de pèrdues i aparatosos, com són els desfasadors d'estat sòlid, i les xarxes de conformació, fan d'aquesta solució inviable. La present tesis doctoral contribueix a l'estudi, des envolupament, i assaig experimental del rendiment de solucions d'antenes innovadores per tal de millorar les existents arquitectures d'antena a la banda freqüencial de les ones mil·limètriques, convenientment solucionant els problemes associats específicament als sistemes de comunicació de rang proper d'alta velocitat a 60 GHz (incloent els futurs sistemes 5G a mil·limètriques ), als sistemes de radar d'automoció a la banda dels 79 GHz, i als sistemes de comunicació, radar, i escaneig per aplicacions a 94 GHz. Els objectius específics perseguits en aquest treball acadèmic, focalitzats en definir una arquitectura d'antena alternativa, capaç d'aconseguir una completa reconfiguració i escaneig dels feixos de radiació en dues dimensions de l'espaia freqüències d'ona mil·limètriques , s'han plenament aconseguit. En aquest sentit, aquesta tesis doctoral s'ha dedicat essencialment a l'estudi en profunditat i desenvolupament pràctic de la part fonamental de l'innovador concepte del switched-beam array: noves lents dielèctriques inhomogenees de gradient d'índex amb estructura planar, les quals, tot i preservar una configuració física totalment plana, permeten una reconfiguració total en dues dimensions de l'espai de feixos de radiació d'alta directivitat. Un estudi transversal, que comprèn des de la investigació teòrica, passant per l'anàlisi numèric, noves metodologies i tècniques de fabricació, avaluació de rendiments, fins a una completa caracterització i assaig del rendiment en entorns reals d'aplicació de les noves arquitectures d'antena s'ha dut a terme amb total èxit

    Miniaturized Microwave Devices and Antennas for Wearable, Implantable and Wireless Applications

    Full text link
    This thesis presents a number of microwave devices and antennas that maintain high operational efficiency and are compact in size at the same time. One goal of this thesis is to address several miniaturization challenges of antennas and microwave components by using the theoretical principles of metamaterials, Metasurface coupling resonators and stacked radiators, in combination with the elementary antenna and transmission line theory. While innovating novel solutions, standards and specifications of next generation wireless and bio-medical applications were considered to ensure advancement in the respective scientific fields. Compact reconfigurable phase-shifter and a microwave cross-over based on negative-refractive-index transmission-line (NRI-TL) materialist unit cells is presented. A Metasurface based wearable sensor architecture is proposed, containing an electromagnetic band-gap (EBG) structure backed monopole antenna for off-body communication and a fork shaped antenna for efficient radiation towards the human body. A fully parametrized solution for an implantable antenna is proposed using metallic coated stacked substrate layers. Challenges and possible solutions for off-body, on-body, through-body and across-body communication have been investigated with an aid of computationally extensive simulations and experimental verification. Next, miniaturization and implementation of a UWB antenna along with an analytical model to predict the resonance is presented. Lastly, several miniaturized rectifiers designed specifically for efficient wireless power transfer are proposed, experimentally verified, and discussed. The study answered several research questions of applied electromagnetic in the field of bio-medicine and wireless communication.Comment: A thesis submitted for the degree of Ph
    corecore