6,462 research outputs found

    Assessing water availability in Mediterranean regions affected by water conflicts through MODIS data time series analysis

    Get PDF
    Water scarcity is a widespread problem in arid and semi-arid regions such as the western Mediterranean coastal areas. The irregularity of the precipitation generates frequent droughts that exacerbate the conflicts among agriculture, water supply and water demands for ecosystems maintenance. Besides, global climate models predict that climate change will cause Mediterranean arid and semi-arid regions to shift towards lower rainfall scenarios that may exacerbate water conflicts. The purpose of this study is to find a feasible methodology to assess current and monitor future water demands in order to better allocate limited water resources. The interdependency between a vegetation index (NDVI), land surface temperature (LST), precipitation (current and future), and surface water resources availability in two watersheds in southeastern Spain with serious difficulties in meeting water demands was investigated. MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI and LST products (as proxy of drought), precipitation maps (generated from climate station records) and reservoir storage gauging information were used to compute times series anomalies from 2001 to 2014 and generate regression images and spatial regression models. The temporal relationship between reservoir storage and time series of satellite images allowed the detection of different and contrasting water management practices in the two watersheds. In addition, a comparison of current precipitation rates and future precipitation conditions obtained from global climate models suggests high precipitation reductions, especially in areas that have the potential to contribute significantly to groundwater storage and surface runoff, and are thus critical to reservoir storage. Finally, spatial regression models minimized spatial autocorrelation effects, and their results suggested the great potential of our methodology combining NDVI and LST time series to predict future scenarios of water scarcity.Published versio

    Responses of seasonal indicators to extreme droughts in southwest China

    Get PDF
    Significant impact of extreme droughts on human society and ecosystem has occurred in many places of the world, for example, Southwest China (SWC). Considerable research concentrated on analyzing causes and effects of droughts in SWC, but few studies have examined seasonal indicators, such as variations of surface water and vegetation phenology. With the ongoing satellite missions, more and more earth observation data become available to environmental studies. Exploring the responses of seasonal indicators from satellite data to drought is helpful for the future drought forecast and management. This study analyzed the seasonal responses of surface water and vegetation phenology to drought in SWC using the multi-source data including Seasonal Water Area (SWA), Permanent Water Area (PWA), Start of Season (SOS), End of Season (EOS), Length of Season (LOS), precipitation, temperature, solar radiation, evapotranspiration, the Palmer Drought Severity Index (PDSI), the Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), Gross Primary Productivity (GPP) and data from water conservancy construction. The results showed that SWA and LOS effectively revealed the development and recovery of droughts. There were two obvious drought periods from 2000 to 2017. In the first period (from August 2003 to June 2007), SWA decreased by 11.81% and LOS shortened by 5 days. They reduced by 21.04% and 9 days respectively in the second period (from September 2009 to June 2014), which indicated that there are more severe droughts in the second period. The SOS during two drought periods delayed by 3~6 days in spring, while the EOS advanced 1~3 days in autumn. All of PDSI, SWA and LOS could reflect the period of droughts in SWC, but the LOS and PDSI were very sensitive to the meteorological events, such as precipitation and temperature, while the SWA performed a more stable reaction to drought and could be a good indicator for the drought periodicity. This made it possible for using SWA in drought forecast because of the strong correlation between SWA and drought. Our results improved the understanding of seasonal responses to extreme droughts in SWC, which will be helpful to the drought monitoring and mitigation for different seasons in this ecologically fragile region

    A review of remote sensing and grasslands literature

    Get PDF
    Studies between 1971 and 1980 dealing with remote sensing of rangelands/grasslands in the multispectral band are summarized and evaluated. Vegetation and soil reflectance properties are described. In the majority of the studies, the effect of the reflectance of green rangelands vegetation on the reflectance from the total scene is the primary concern. Developments in technique are summarized and recommendations for further research are presented

    Marathwada agro-climatic drought detection by utilization of temperature and vegetation index records

    Get PDF
    Semi-arid Marathwada economy depends on agricultural production and in recent decades the drought has been observed as an all part of the several recurrent climates related environmental hazards in region, frequently destroying livelihood, socio-economy, and food security of region. The economy of the nation affected due to less productivity of crops as well as decreases the soil moisture. In present work the remote sensing, image processing and geospatial techniques effectively using for drought management, mitigation practices, monitoring and assessment. The main objective of study is to analyze VCI and TCI indices. MOD11A2 and MOD13C2 data (year 2000, 2005, 2014 and 2016) is used for derive the TCI and VCI respectively. Time series of TCI and VCI shows that in certain years resembles each other’s and their result helps to determined occurrence and severity drought. The result shows the seasonal VCI is directly related to the seasonal rainfall as well as TCI of region. The analysis reveals that the conformation of demonstrating extension and severity of aridity in the Marathwada region. The motivation behind the examination to compute the vegetation index (NDVI) and Temperature Condition Index helps to review of agricultural practices and water use

    Spatio-temporal Analysis of Aridity Over Punjab Province, Pakistan using Remote Sensing Techniques

    Get PDF
    Aridity is a severe threat to the ecological environment and it leads to desertification. Aridity has become a more serious hazard to agricultural countries like Pakistan, followed by socio-economic problems. Pakistan is an agrarian country and Punjab province of Pakistan is known as the basket of grain for its population due to its fertile lands and lush green fields. Less or no rainfall can convert any land or region from humid to semi-arid and semi-arid to arid land. Deficiency of moisture also defines arid conditions of any region. Hence, in case of Punjab, aridity is a severe threat to halt the use of full potential of its agricultural land resources. There is an irresistible need to comprehensively assess aridity in Punjab at different time scales and to formulate necessary arrangements and action plans to face this issue on sound footing. Remote sensing can be used to accurately measure aridity on local, regional and global scales. Multi-temporal images of Moderate-resolution Imaging Spectroradiometer (MODIS) MOD13Q1 and MOD11A1 of Punjab province are used for aridity assessment. In this study attempt was made to demarcate arid areas of Punjab in the simplest possible form using different vegetation indices and land surface temperature. Maps are developed by using normalized difference vegetation index (NDVI), transformed normalized difference vegetation index (TNDVI), soil adjusted vegetation index (SAVI) and land surface temperature (LST). A weighted overlay analysis of these indices was also done for further comprehensive analysis of aridity. The results indicate that aridity is more in southern Punjab due to increased temperature and reduced precipitation and in northern regions of the province, aridity is developing especially in those areas, which were semi humid or semi-arid in the past

    Assessment of spatio-temporal vegetation dynamics in tropical arid ecosystem of India using MODIS time-series vegetation indices

    Get PDF
    In the present study, we analyzed spatio-temporal vegetation dynamics to identify and delineate the vegetation stress zones in tropical arid ecosystem of Anantapuramu district, Andhra Pradesh, India, using Normalized Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), and Vegetation Anomaly Index (VAI) derived from time-series Moderate Resolution Imaging Spectroradiometer (MODIS) 16-day products (MOD13Q1) at 250 m spatial resolution for the growing season (June to September) of 19 years during 2000 to 2018. The 1-month Standardized Precipitation Index (SPI) was computed for 30 years (1989 to 2018) to quantify the precipitation deficit/surplus regions and assess its influence on vegetation dynamics. The growing season mean NDVI and VCI were correlated with growing season mean 1-month SPI of dry (2003) and wet (2007) years to analyze the spatio-temporal vegetation dynamics. The correlation analysis between SPI and NDVI for dry year (2003) showed strong positive correlation (r = 0.89). Analysis of VAI for dry year (2003) indicates that the central, western, and southwestern parts of the district reported high vegetation stress with VAI of less than − 2.0. This might be due to the fact that central and south-western parts of the district are more prone to droughts than the other parts of the district. The correlation analysis of SPI, NDVI, and VCI distinctly shows the impact of rainfall on vegetation dynamics. The study clearly demonstrates the robustness of NDVI, VCI, and VAI derived from time-series MODIS data in monitoring the spatio-temporal vegetation dynamics and delineate vegetation stress zones in tropical arid ecosystem of India

    Assessment of Drought in Grasslands: Spatio – Temporal Analyses of Soil Moisture and Extreme Climate Effects in Southwestern Mongolia

    Get PDF
    Soil moisture plays an essential key role in the assessment of hydrological and meteorological droughts that may affect a wide area of the natural grassland and the groundwater resource. The surface soil moisture distribution as a function of time and space is highly relevant for hydrological, ecological, and agricultural applications, especially in water-limited or drought-prone regions. However, gauging soil moisture is challenging because of its high variability. While point-scale in-situ measurements are scarce, the remote sensing tools remain the only practical means to obtain regional and global-scale soil moisture estimates. A Soil Moisture and Ocean Salinity (SMOS) is the first satellite mission ever designed to gauge the Earth’s surface soil moisture (SM) at the near-daily time scales. This work aims to evaluate the spatial and temporal patterns of SMOS soil moisture, determine the effect of the climate extremes on the vegetation growth cycle, and demonstrate the feasibility of using our drought model (GDI) the Gobi Drought Index. The GDI is based on the combination of SMOS soil moisture and several products from the MODIS satellite. We used this index for hydro-meteorological drought monitoring in Southwestern Mongolia. Firstly, we validated bias-corrected SMOS soil moisture for Mongolia by the in-situ soil moisture observations 2000 to 2015. Validation shows satisfactory results for assessing drought and water-stress conditions in the grasslands of Mongolia. The correlation analysis between SMOS and Normalized Difference Vegetation Index (NDVI) index in the various ecosystems shows a high correlation between the bias-corrected, monthly-averaged SMOS and NDVI data (R2 > 0.81). Further analysis of the SMOS and in situ SM data revealed a good match between spatial SM distribution and the rainfall events over Southwestern Mongolia. For example, during dry 2015, SM was decreased by approximately 30% across the forest-steppe and steppe areas. We also notice that both NDVI and rainfall can be used as indicators for grassland monitoring in Mongolia. The second part of this research, analyzed several dzud (specific type of climate winter disaster) events (2000, 2001, 2002, and 2010) related to drought, to comprehend the spatial and temporal variability of vegetation conditions in the Gobi region of Mongolia. We determined how these extreme climatic events affect vegetation cover and local grazing conditions using the seasonal aridity index (aAIZ), NDVI, and livestock mortality data. The NDVI is used as an indicator of vegetation activity and growth. Its spatial and temporal pattern is expected to reflect the changes in surface vegetation density and status induced by water-deficit conditions. The Gobi steppe areas showed the highest degree of vulnerability to climate, with a drastic decline of grassland in arid areas. We found that under certain dzud conditions, rapid regeneration of vegetation can occur. A thick snow layer acting as a water reservoir combined with high livestock losses can lead to an increase of the maximum August NDVI. The snowy winters can cause a 10 to 20-day early peak in NDVI and the following increase in vegetation growth. However, during a year with dry winter conditions, the vegetation growth phase begins later due to water deficiency and the entire year has a weaker vegetation growth. Generally, livestock loss and the reduction of grazing pressure was played a crucial role in vegetation recovery after extreme climatic events in Mongolia. At the last stage of our study, we develop an integrated Gobi drought index (GDI), derived from SMOS and LST, PET, and NDVI MODIS products. GDI can incorporate both, the meteorological and soil moisture drought patterns and sufficiently well represent overall drought conditions in the arid lands. Specifically, the monthly GDI and 1-month standardized precipitation index SPI showed significant correlations. Both of them are useful for drought monitoring in semi-arid lands. But, the SPI requires in situ data that are sparse, while the GDI is free from the meteorological network restriction. Consequently, we compared the GDI with other drought indices (VSWI, NDDI, NDWI, and in-situ SM). Comparison of these drought indices with the GDI allowed assessing the droughts’ behavior from different angles and quantified better their intensity. The GDI maps at fine-scale (< 1km) permit extending the applicability of our drought model to regional and local studies. These maps were generated from 2000 to 2018 across Southwestern Mongolia. Fine-scale GDI drought maps are currently limited to the whole territory for Mongolia but the algorithm is dynamic and can be transported to any region. The GDI drought index can be served as a useful tool for prevention services to detect extremely dry soil and vegetation conditions posing a risk of drought and groundwater resource depletion. It was able to detect the drought events that were underestimated by the National Drought Watch System in Mongolia. In summary, with the help of satellite, climatological, and geophysical data, the integrated GDI can be beneficial for vegetation drought stress characterization and can be a useful tool to monitor the effectiveness of pasture land restoration management practices for Mongolian livelihoods. The future application of the GDI can be extended to monitor potential impacts on water resources and agriculture in Mongolia, which have been impacted by long periods of drought

    A Review of Some Indices Used for Drought Monitoring

    Get PDF
    Drought is a natural hazard that results from a deficiency of precipitation and water availability from expected or normal amounts, usually extended over a season or longer period. Drought can be hydrological, meteorological, agricultural and socio-economical. It affects the ecology, biodiversity, hydrology and climate and economy and the wellbeing of the societies at local, regional and global levels. Drought causes for significant environmental and economic problems, which in turn affect the balance of food supply and demand leads to poverty. Therefore, drought monitoring and prediction and warning system is a very essential component to minimize vulnerabilities and risks. In this regard, drought indices play a great role. The objective of this review is to show different available drought indices used for monitoring drought events. For investigating drought using a single index is not providing better results, therefore, integrating different indices is recommended because the environmental variable is spatially different and the indices do not use the same model and there are gaps in the model. Thus, by integrating different indices it is possible to achieve better drought results. Keywords: Drought; drought indices; drought monitoring DOI: 10.7176/CER/13-5-01 Publication date:August 31st 2021

    Detecting semi-arid forest decline using time series of Landsat data

    Get PDF
    Detecting forest decline is crucial for effective forest management in arid and semi-arid regions. Remote sensing using satellite image time series is useful for identifying reduced photosynthetic activity caused by defoliation. However, current studies face limitations in detecting forest decline in sparse semi-arid forests. In this study, three Landsat time-series-based approaches were used to distinguish non-declining and declining forest patches in the Zagros forests. The random forest was the most accurate approach, followed by anomaly detection and the Sen’s slope approach, with an overall accuracy of 0.75 (kappa = 0.50), 0.65 (kappa = 0.30), and 0.64 (kappa = 0.30), respectively. The classification results were unaffected by the Landsat acquisition times, indicating that rather, environmental variables may have contributed to the separation of declining and non-declining areas and not the remotely sensed spectral signal of the trees. We conclude that identifying declining forest patches in semi-arid regions using Landsat data is challenging. This difficulty arises from weak vegetation signals caused by limited canopy cover before a bright soil background, which makes it challenging to detect modest degradation signals. Additional environmental variables may be necessary to compensate for these limitations
    • …
    corecore