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ABSTRACT
Detecting forest decline is crucial for effective forest management in arid and semi-arid 
regions. Remote sensing using satellite image time series is useful for identifying reduced 
photosynthetic activity caused by defoliation. However, current studies face limitations in 
detecting forest decline in sparse semi-arid forests. In this study, three Landsat time-series- 
based approaches were used to distinguish non-declining and declining forest patches in the 
Zagros forests. The random forest was the most accurate approach, followed by anomaly 
detection and the Sen’s slope approach, with an overall accuracy of 0.75 (kappa = 0.50), 0.65 
(kappa = 0.30), and 0.64 (kappa = 0.30), respectively. The classification results were unaffected 
by the Landsat acquisition times, indicating that rather, environmental variables may have 
contributed to the separation of declining and non-declining areas and not the remotely 
sensed spectral signal of the trees. We conclude that identifying declining forest patches in 
semi-arid regions using Landsat data is challenging. This difficulty arises from weak vegetation 
signals caused by limited canopy cover before a bright soil background, which makes it 
challenging to detect modest degradation signals. Additional environmental variables may 
be necessary to compensate for these limitations.
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Introduction

Recent research highlights the rapid decline of (semi-) 
arid forests worldwide, emphasizing the need for 
a better understanding of the causes of forest decline 
(e.g. Anderegg et al., 2015). While many studies have 
investigated deforestation in these regions (e.g. Hoyos 
et al., 2013; Le Polain de Waroux & Lambin, 2012), 
forest decline has received relatively little attention (Le 
Polain de Waroux & Lambin, 2012; Li et al., 2009). 
The decline of forests is often the result of degrada-
tion, which negatively impacts their functional and 
structural properties (Vásquez-Grandón et al., 2018; 
Wang et al., 2020). Forest decline can also decrease the 
regeneration capacity of a forest by reducing the num-
ber of available reproductive trees and altering micro- 
environmental conditions, in addition to the direct 
loss of trees (Cailleret et al., 2019). Moreover, forest 
decline can have long-term consequences for ecosys-
tem services and regulatory services (Le Polain de 
Waroux & Lambin, 2012).

Forest decline is often caused by interacting biotic 
and abiotic factors (Hosseini et al., 2017). Among 
abiotic factors, droughts can have a particularly dama-
ging effect on forests (Sulla-Menashe et al., 2014, Le 
Polain de Waroux & Lambin, 2012. (Semi-)arid eco-
systems must deal with more frequent and severe 

droughts, which, in combination with other biotic 
stressors, can lead to significant forest decline 
(Sánchez-Pinillos et al., 2021). While forest decline 
occurs globally, (semi-)arid ecosystems are particu-
larly vulnerable, with an increasing tree mortality 
rate (David et al., 2022).

The Zagros forests in western Iran have been suffer-
ing from significant forest decline due to climatic 
extremes, wildfires, and overexploitation by local popu-
lations. Their low tree species diversity, dominated by 
a few oak species, in particular Brant’s Oak (Quercus 
brantii Lindl.), makes them susceptible to various forest 
pathogens (Goodarzi et al., 2016; Moradi et al., 2021). 
Earlier studies conducted in the region often focused on 
deforestation but not forest decline (e.g. Goodarzi et al.,  
2016; Hosseini et al., 2017; Jahanbazy Goujani et al.,  
2020; Moradi et al., 2021). Understanding forest decline 
in the region is crucial for effective forest management 
and adaptation initiatives but is still lacking for larger 
continuous areas (Moradi et al., 2021).

Field data on forest decline is often limited due to 
cost, particularly in less accessible and extensive areas 
(Diao et al., 2020; Lausch et al., 2016; Shafeian et al.,  
2021) such as the Zagros forests. Studies performed by, 
for example, Wang et al. (2020) and Senf et al. (2020), 
indicate that remote sensing (RS) is an alternative to 
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assess forest decline in the field and over large regions. 
Comparing multi-temporal satellite images enables 
the detection of changes in vegetation conditions in 
a particular area (Wang et al., 2020). Various studies 
have used vegetation indices (VIs) like normalized 
vegetation index (NDVI) (Jin et al., 2016) and normal-
ized burn ratio (NBR) (Francini & Chirici, 2022) to 
detect forest decline. However, multispectral VIs are 
known to have limitations in monitoring biophysical 
and biochemical vegetation properties in (semi-)arid 
ecosystems (e.g. David et al., 2022). For instance, 
NDVI is sensitive to green components, not to 
woody components, and factors like moisture content 
and species composition can influence the relationship 
between biomass and NDVI. The Enhanced 
Vegetation Index (EVI) was developed to overcome 
the drawbacks associated with variable background 
reflectance and atmospheric interference in the 
NDVI (David et al., 2022). The EVI provides more 
comprehensive information about changes in vegeta-
tion over time and space and is particularly suitable for 
assessing vegetation in semi- and arid ecosystems. 
Meanwhile, Bae et al. (2022) and Li et al. (2022) note 
that studies on forest decline commonly utilize very 
high-resolution remote sensing data, which can be 
costly and challenging to acquire for extensive areas.

As mentioned above, many RS studies in the con-
text of forest monitoring have focused on deforesta-
tion rather than forest decline. The identification of 
deforestation (using optical RS) is based on the dis-
tinction of forest and non-forest land-cover types, 
such as open landscapes, bare soil, crops, and settle-
ments (Hoekman et al., 2020). Among several types of 
RS data, multi-spectral optical images are the most 
cost-effective option for monitoring large forest 
areas. Time series of multispectral optical satellite 
data, such as Landsat and Sentinel-2, have facilitated 
the development of various methodologies for map-
ping forest changes (Giannetti et al., 2020). In parti-
cular, the Landsat time series has been recognized as 
a valuable data source for tracking forest decline and 
disturbances due to their free accessibility, relatively 
high spatial resolution (30 m), long and consistent 
acquisition record, and accessibility (Diao et al.,  
2020; Dutrieux et al., 2015; Giannetti et al., 2020; 
Rodman et al., 2021; Senf et al., 2020; Zhu et al., 2020).

A variety of algorithms have been introduced for 
identifying forest disturbances throughout time, such 
as Continuous Change Detection and Classification 
(CCDC; Zhu & Woodcock, 2014), Landsat-based 
Trends in Disturbance and Recovery Detection 
(LandTrendr; Kennedy et al., 2010), and Breaks for 
Additive Season and Trend (BFAST; Verbesselt et al.,  
2010). Nevertheless, the majority of these algorithms 
are more advantageous for monitoring forest changes 
or deforestation than assessing forest decline or minor 
changes in forest status (Zhu et al., 2020). The 

difficulty of detecting subtle signals of degradation is 
a challenge for all algorithms, as spectral signals asso-
ciated with tree mortality depend on various factors, 
including the number of canopy layers and forest 
cover (FC) (Hoekman et al., 2020).

This study seeks to assess the effectiveness of well- 
established methods like random forest (RF), anomaly 
detection, and Sen’s slope analysis for identifying and 
mapping forest decline in the Zagros semi-arid forests.

Study area

The study area is located in the Chaharmahal and 
Bakhtiari provinces of Iran, in the Zagros semi-arid 
forests, with average rainfall of 250–800 mm and tem-
peratures ranging from 9–25°C (Attarod et al., 2016). 
The study area is located in the southwestern part of 
the province (Figure 1). The Zagros forests play an 
important role in preserving the unique vegetation 
and habitats indigenous to the region (Sagheb-Talebi 
et al., 2014; Shafeian et al., 2021). The most prominent 
and widespread tree species found in the area include 
Brant’s oak (Quercus brantii Lindl.), which is partially 
mixed with Quercus infectoria G.Olivier, Quercus 
libani G.Olivier, wild pistachio (Pistacia atlantica 
Desf.), and Acer monspessulanum L. In addition, one 
can commonly find Crataegus spp., Amygdalus spp., 
and Pyrus spp. in the area (Daneshmand Parsa et al.,  
2016; Erfanifard et al., 2014).

Methodology

The workflow for the study is outlined in Figure 2 and 
further described below.

Remote sensing analysis

In this study, we looked at a variety of methodical 
approaches developed for analyzing time series and 
image stacks of optical Landsat images to see if we 
could distinguish between declining and non- 
declining forest regions. In the following, we will first 
describe the pre-processing steps and then introduce 
the tested methodical approaches.

Landsat time series and image processing
The GEE platform was used to process the Landsat 
image time series. The analysis employed the Landsat 
Surface Reflectance Tier 1 data from Landsat 4 
Enhanced Thematic Mapper (ETM), Landsat 5 ETM, 
Landsat 7 ETM+, and Landsat 8 Operational Land 
Imager (OLI) (IDs, respectively: LANDSAT/LT04/ 
C01/T1; LANDSAT/LT05/C01/T1; LANDSAT/LE07/ 
C01/T1; and LANDSAT/LC08/C02/T1_L2). We fil-
tered the image collection to include all images that 
were available for the summer periods of 1986 to the 
summer periods of 2021. We examined three 
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definitions for the summer periods to see if there was 
any effect on the results: (1) Landsat data from the 
months between July and the end of September, (2) 
July and the end of August, and (3) only August, i.e. 
the dry season, with the highest spectral signal differ-
ences between trees and other vegetation, crops, and 
grass, as suggested by Symeonakis et al. (2018). Then 
we calculated the annual median reflectance value for 
each pixel and band from the remaining cloud-free 
image stack, which resulted in a cloud-free, high- 
quality mosaic. In order to detect forest decline, a set 
of VIs was computed using these annual composites 
(Martin-Ortega et al. 2020). The examined VIs are 
summarized in Table 1. In the case of the RF classifi-
cations (see below), we did not use the annual mosaics 
but calculated a single mosaic using all Landsat data 
from the corresponding time periods.

Table 1. Equations of the used vegetation 
indices (VIs)

Identifying forest decline

The datasets described in Section 4.1 were used as 
inputs to the following approaches:

Random Forest classification

The RF classifier (Breiman, 2001) was used to classify 
the study area into declining and non-declining 
classes. Previous studies (e.g. Belgiu & Dragut, 2016) 
successfully utilized the RF classifier for satellite data 
classification and forest disturbance analysis. In this 
study, several RF classifiers were trained with Landsat 
data covering various year intervals, and each classifier 

was validated using iterative splitting of the reference 
data (see below) into training and validation sets (with 
100 repetitions) to distinguish between declining and 
non-declining areas throughout the study area. This 
was done using the randomForest package in R with 
the number of trees (ntree) set to 500 and the second 
parameter, mtry, set to default settings. In order to 
prevent the issue of having two different classes in one 
pixel (a few of the available field plots were located too 
close to each other), we built a function during the RF 
classification training to eliminate any duplicated 
reference pixels, resulting in the removal of 164 points. 
As a result, a total of 719 reference points remained. 
As inputs, we initially used the Landsat time series 
with images from summer 1986 to summer 2021 as 
well as from 2000–2021 and from 2010–2021 and 
examined the three input options described above: 
(1) images from July to the end of September; (2) 
images from July to the end of August; and (3) images 
from August. We examined several time periods since 
we did not have a clear idea of when the field-observed 
decline processes had started. According to local 
experts and previous literature, the decline accelerated 
after the year 2000 (e.g. Ghanbari Motlagh & Kiadaliri,  
2021), but no detailed information exists. Since the RF 
was showing very stable results, we then examined 
even more time periods reaching further in the past 
(1986–1990, 1986–1999, 1991–1995, 1996–2000, 
2001–2005, 2006–2010, 2011–2015, and 2016–20201).

We used all of the VIs listed in Table 1 as predic-
tors, as well as the seven original bands of the Landsat 
data. Then, in addition to using all the predictors 
separately for each input period, we also applied the 

Figure 1. (A) location of Iran; (B) digital elevation model of Chaharmahal and Bakhtiari province; (C) sampled area covered in the 
green square (AOI); (D) an example UAV image of the study region.
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feature selection algorithm VSURF in R (Genuer et al.,  
2015). The first step in the variable selection process 
with VSURF is to remove all non-essential, i.e. highly 
interrelated variables, from the dataset. The second 
step is to select all variables that are related to the 
response and help the model perform well. The third 
step refines the collection for prediction purposes by 
removing redundancy in the range of variables chosen 
in the second step (Genuer et al., 2015). Table 2 shows 

the predictor variables that were selected for each of 
the three input options. To obtain the final maps, we 
used all available reference data for classification. The 
result was a binary map of binary raster layers showing 
two classes (non-declining, and declining). To validate 
the RF model, the reference data set was repeatedly 
divided into 70% training samples and 30% validation 
samples (Shafeian et al., 2021). We obtained kappa 
and overall accuracy from the validation samples.

Figure 2. The workflow of the present study (steps 1, 2, and 3 were performed in GEE, and step 4 was performed in R.).

Table 1. Equations of the used vegetation indices (VIs).
VI Name Equations Reference

NDVI Normalized Difference Vegetation Index (NIR – RED)/(NIR + RED) Rouse et al. (1973)
GNDVI green NDVI (NIR- GREEN)/(NIR+ GREEN) Gitelson et al. (1996)
kNDVI Kernel NDVI tanh ((NIR-RED)^2/2 sigma) 

sigma = NIR + RED (0.5)
Camps-Valls et al. (2021)

NRGI Normalized Green-Red Vegetation index (GREEN – RED)/(GREEN + RED) Buce Saleh et al. (2019)
EVI Enhanced Vegetation Index 2.5 ((NIR – RED)/(NIR + C1 × RED − 7.5 × BLUE + 1)) Liu and Huete (1995)
SR Simple Ration (NIR)/(RED) Jordan (1969)
SLAVI Specific Leaf Area Vegetation Index (NIR)/(RED+SWIR) Lymburner et al. (2000)
NDWI Normalized Difference Water Index (GREEN-NIR)/(GREEN+NIR) Hardisky et al. (1983)
NDMI Normalized Difference Moisture Index (NIR – SWIR)/(NIR + SWIR) United States Geological Survey
NDTI Normalized Difference Tillage Index (SWIR1 - SWIR2)/(SWIR1 + SWIR2) van Deventer et al. (1997)
NBR Normalized Burn Ratio (NIR- SWIR2)/(NIR + SWIR2) United States Geological Survey
ARVI Atmospherically Resistant Vegetation Index (NIR-(2×RED)-BLUE)/(NIR+(2×RED) +BLUE) Kaufman and Tanre (1992)
GCI Green Chlorophyll Index NIR/GREEN − 1 Gitelson et al. (2005)
GLI Green Leaf Index (GREEN-RED-BLUE)/(2× RED+GREEN+BLUE) Gitelson et al. (2002)
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In addition to the Landsat series, we also applied an 
RF classification to Sentinel-2 imagery captured 
between 2015 and 2021 using the same procedure 
(see Appendix 1). The spatial resolution of Sentinel-2 
imagery is higher than that of the Landsat series at 
10 × 10 m, making it a good option for forest decline 
detection. However, these images have only been 
available since 2015, limiting the ability to perform 
time series analysis such as anomaly detection over 
a longer period.

Anomaly analysis
As a second approach, we applied a pixel-wise anom-
aly analysis using the vegetation indices. For this pur-
pose, we used the annual Landsat mosaics from 1986– 
2021. Again, we examined the three input options to 
define the summer period. Following the calculation 
of the vegetation indices for each image collection as 
described above, a median value filter of a temporal 
moving window with a three-year interval was applied 
to the annual time series of the indices, that is, 1986– 
1989, 1987–1990,. . . 2018–2021. Then all these images 
were stacked into one single image time-series stack. 
This step was conducted to smooth the datasets and 
avoid the potential influence of particularly high or 
low values in an individual year, which may have been 
related to extraordinary weather conditions or 
a limited number of cloud-free sample pixels. For 
each pixel of this time series stack, the “all-time 
high” and “all-time low” values, defined as the 90th 

and 10th percentiles, respectively, were calculated. 
Then the 10th percentile was subtracted from the 90th 

percentile to check how widely the VI value of a given 
pixel varied over the whole time period. This range 
was then used to define an anomaly threshold. For 
example, the range was multiplied by 0.5, and the 
resulting value was added to the value of the 10th 

percentile of the VI time series. We then considered 
an area to be declining if the current VI value (see 
below) was below the 10th percentile plus the 0.5 ×  
range value. The corresponding areas were identified 
by applying the pixel-specific thresholds, resulting in 
a binary raster layer (zero or black = non-declining, 
and one or orange = declining) for each VI. We varied 

the factor with which the range was multiplied and 
examined the results for all factors from 0.15 to 0.9 
with steps of 0.05. The current VI value for each pixel 
was obtained from a cloud-free mosaic image of the 
current status of the area calculated from Landsat 
images of the years 2018–2021. These calculations 
were performed for all indices given in Table 1.

Sen’s slope analysis
Sen’s slope, or Theil-Sen’s slope (Sen, 1968), is 
a non-parametric trend analysis that is resistant to 
outliers and rejects odd values without changing 
the slope (Correa‐Díaz et al., 2019). We used this 
approach because it is useful to identify whether 
a regular time series has a statistically significant 
positive or negative trend. The Sen’s slope can 
account for the magnitude of changes (Reygadas 
et al., 2019). Thus, after importing a cloud-free 
Landsat time series and calculating the aforemen-
tioned VIs (e.g. KNDVI, ARVI, etc.), the Sen’s 
slope was calculated using the ee.Reducer. 
sensSlope() function available in GEE. With this 
algorithm, we could estimate the trend of changes 
in the region over the previous 36 years using 
mosaics of Landsat imagery. We again examined 
all three input options with respect to the summer 
period. The results were then exported as a raster 
layer for each summer period and VI (14 VIs and 
three summer periods gave a total of 42 single- 
band raster layers). To translate the Sen’s slope 
results into a binary map that we could compare 
with our reference data, we defined a function to 
calculate 500 different threshold values for each VI 
(based on the range of Sen’s slope values obtained 
for the VI) and determined the best threshold for 
detecting the declining areas (according to our 
reference data). We calculated the thresholds for 
each VI individually since each index had 
a different range of values. We ran this for each 
index separately over three summer seasons. And 
finally, the threshold with the highest overall accu-
racy was recorded (the results of the selected 
threshold for each index are summarized in Table 
S3 in Appendix 3).

Table 2. The results of VSURF on RF for each season. The selected predictors of Landsat 8 
images are written with a suffix (_LS8).

Landsat data for summer periods Selected predictors

August 1986–2021 B1, B2, B3_LS8, NDVI, B2_LS8, B3, NDWI, B5, NRGI, NDTI
August 2000–2021 B2, B1, B3_LS8, B3, NDMI, NDWI, B6, B1_LS8, NDTI
August 2010–2021 B2, B1, B3_LS8, B3, B2_LS8, NDWI, B1_LS8, B6, B5
July- August 1986–2021 B1, B2, B3_LS8, B3, NDVI, NDWI, NRGI, B5, B6, NDTI
July- August 2000–2021 B1, B2, B3, NRGI, NDTI, NDWI
July- August 2010–2021 B2, B1, B2_LS8, NDWI, B6, B5, NRGI, B1_LS8
July- September 1986–2021 B1, NDMI, B3, B2_LS8, NDWI, B6, NDTI
July- September 2000–2021 B2, B1, NDMI, B3, B2_LS8, NRGI, NDWI, NDTI
July- September 2010–2021 B2, B1, NDMI, B3_LS8, B2_LS8, B3, B6, NDWI
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Visualization of vegetation indices time series

To guide the interpretation of the results, particularly 
with respect to the anomaly and Sen’s slope analysis, 
we additionally visualized the VI time series from 
1984–2022 for the two most accurate (according to 
overall accuracy) VIs using the pixels representing the 
reference data locations for declining and non- 
declining areas from the spring 2022 campaign. We 
calculated the median and standard deviation of all 
pixels coinciding with the corresponding reference 
plots.

Reference data

So far, no official and regular forest inventories exist 
for the majority of the Zagros region. Therefore, we 
tried to maximize the number of field samples from 
which the state of the forest is known by merging 
various datasets collected between 2021 and 2022 in 
the region.

The first part of our reference data was collected 
during a field campaign in the spring of 2022, during 
which declining and non-declining areas were inven-
toried. After consultation with local experts to define 
the study area, a stratified random sampling approach 
was used to select areas for sampling. Two factors were 
considered to stratify the study area: Illumination 
Condition (IC) and Forest Cover (FC). The IC for 
each pixel in the study area was calculated using 
NASA SRTM Digital Elevation imagery available on 
Google Earth Engine (ID: USGS/SRTMGL1_003). 
Although IC is not directly related to forest decline, 
it was assumed that it could affect satellite signals. In 
addition, an existing forest cover map for the area 
provided by Shafeian et al. in 2021 was used. FC is 
known to significantly affect remote sensing signals. 
The study area was divided into four classes each for 
IC and FC, resulting in a total of sixteen layers (com-
binations of IC and FC classes). To further account for 
accessibility, a 400-meter buffer was applied around 
roads, and random points were generated within these 
buffers with a minimum distance of 100 meters 
between each point. Nine random points were selected 
for each stratum, for a total of 144 candidate positions 
for field verification. Approximately half of these 
points were eventually visited and field recorded. 
During the field campaign, information on the condi-
tion of the forests was collected and classified into two 
general categories: “declining” and “not declining”. 
Overall, this process allowed the collection of refer-
ence data that can be used to validate and calibrate 
remote sensing data to accurately assess forest decline 
in the study area.

The second source of reference data was a field 
campaign conducted in September 2021. The loca-
tions of the field surveys were determined by first 

stratifying the study area into two zones of declining 
and non-declining areas according to an EVI time 
series as observed for the last 36 years using Landsat 
data. To identify these zones, we applied an EVI 
anomaly approach based on data between 1986 and 
2021. The resulting binary image indicated declining 
(orange color) and non-declining (black color) areas. 
The field plot locations were chosen at random within 
the defined declining area. Plots in inaccessible areas 
were dropped and replaced with plots that were 
located closer to the roads. During the field campaign, 
we visited and recorded 43 sites. Any signs of dete-
rioration, such as foliar deficiencies, branch mortality, 
or unusual leaf coloration, were documented (Figure 3 
shows some examples of the decline signs).

The third source of data is a set of additional GPS 
locations for declining and non-declining tree groups 
collected by local forest service officers in 
September 2022. All the reference points used in this 
study are jointly plotted in Figure 4. In total, we had 
positions for 461 declining and 422 non-declining plots.

Results

Figure 5 displays binary decline maps from all three 
approaches (Figure 5a: Sen´s slope, Figure 5b: anom-
aly, and Figure 5c: RF). To ensure that the analysis 
focused only on relevant land cover (LC) types, we 
used an LC map to mask out irrelevant classes such as 
water, bare soil, and agriculture, using the LC map of 
Shafeian et al. (2021) (Figure 5d). This left only range-
land, forest, and plantations for further analysis, 
allowing for a more accurate and targeted assessment 
of the study area.

Visual inspection revealed that certain areas in the 
southwest were consistently detected as declining 
zones in all approaches, but each approach contained 
some errors. RF performed better than the other two 
approaches. However, overall, the examined 
approaches performed moderately to poor, as also 
reflected in the noticeable differences between the 
maps.

Validation and accuracy of forest decline 
detection

Random forest
The RF accuracy for different summer seasons was 
stable, with the median overall accuracy out of 100 
iterations for splitting training and testing reference 
points ranging between 0.72 and 0.76 (Figure 6). The 
best accuracy was achieved using input datasets con-
taining images taken between July 1 and the end of 
August for the years between 2000 and 2021 (overall 
accuracy = 0.76, kappa = 0.50). The user’s accuracy for 
the non-declining class was approximately 0.80, 
whereas it was approximately 0.72 for the declining 
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class. The producer’s accuracies for the two classes 
were 0.78 and 0.72, respectively (see Figure 7). 
Images for the period between 1986 and 2021 had 
the second-highest median values for overall accuracy 
and kappa with 0.75 and 0.48, respectively (see 
Figure 6). The user´s and producer´s accuracies for 
the non-declining class of this analysis were around 
0.76 and 0.77, respectively, and for the declining class, 
0.70 and 0.69, respectively (see Figure 7).

More detailed RF results for the years 1986–2021, 
2000–2021, and 2010–2021 for all the summer seasons 
are shown in Figure S3 in Appendix 1 (i.e. specificity, 
F1 Score, etc.). The RF results for the years further in 
the past, including 1986–1999, 1990–1995, and 1996– 
2000, for the three examined summer periods and 
their comparison with other year interval results are 
shown in Figure 6. The highest accuracy was obtained 
for the input dataset with images from July 1 to the 
end of August for the years between 1996 and 2000 
(overall accuracy = 0.76, kappa = 0.50). Also, the user 
´s accuracy of the non-declining class and the declin-
ing class for this analysis was almost 0.78 and 0.72, 
respectively, and the producer´s accuracy of the non- 
declining and declining classes was almost 0.80 and 

0.71, respectively (Figure 7). The user´s accuracy of 
the non-declining class and the declining class for this 
analysis for other summer seasons (August and July- 
September) can be found in Figures S1 and S2 in 
Appendix 1.

The RF results based on VSURF-selected predictors 
hardly improved accuracy and kappa values. The 
selected predictors are summarized in Table 2.

Table 2. The results of VSURF on RF for each 
season. The selected predictors of Landsat 8 images 
are written with a suffix (_LS8).

Anomaly analysis
The best results for anomaly analysis were obtained 
when using the annual composite time series compris-
ing images from July to August. In this configuration, 
the GLI (30th percentile) achieved a kappa value of 
0.30 and an overall accuracy of 0.65. The user accura-
cies for the non-declining and declining classes were 
0.61 and 0.69, respectively, while the producer accura-
cies for these classes were 0.71 and 0.59, respectively. 
In contrast, when using images from July and 
September, the NDWI (15th percentile) and the 
NDWI (20th percentile) had the lowest accuracy 

Figure 3. Example of declining trees in the study area. Images are taken during the field campaign in September 2021. The exact 
reasons for the decline were often unknown. In some cases signs of the presence of damaging insects or pathogens were visible, 
but it was impossible to determine whether these were a consequence or the reason for the decline.
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values, with kappa values and overall accuracy of 
−0.13 and 0.45, respectively. The Kappa values of 
anomaly analyses for three summer periods at differ-
ent percentiles for all the VIs are shown in Figure 8, 
and the overall accuracies are shown in Figure S9, 
Appendix 2. Further details on the results can be 
found in Table 3. The detailed results of this analysis 
for user´s and producer´s accuracies for declining and 
non-declining classes can be found in Table S2, 
Appendix 2.

Table 3. A summary of the results (overall accuracy 
(in bold) and kappa value) of the anomaly approach 
for different VIs at different threshold percentiles (15– 
90) for July to August. The percentile (P) with the 
highest overall accuracy is marked with an asterisk, 
and the percentile with the highest overall accuracy is 
underlined.

Sen’s slope
The highest overall accuracy for Sen´s slope was 
achieved by GLI and NDMI for August, with 
approximately 0.64 (kappa = 0.53) and 0.63 (kappa  
= 0.56), respectively. The Kappa values of the Sen´s 
slope for all the VIs of three summer periods at 
different thresholds are shown in Figure 9; the over-
all accuracies are shown in Figure S10, Appendix 3. 
The lowest overall accuracy (0.39) was obtained by 
GCI and GNDVI for both August and July – 
August. Detailed information for the median overall 
accuracy and kappa values for each VI is shown in 
Table 4. The corresponding results for user´s and 

producer´s accuracies for declining and non- 
declining classes can be found in Table S4, 
Appendix 3.

Table 4. A summary of the most accurate results of 
Sen’s slope for different VIs for August after trying 500 
different VI-specific thresholds; the highest overall 
accuracies among all the VIs are marked with an 
asterisk sign.

Time series of NDMI and GLI

NDMI and GLI were the best VI indicators of forest 
decline in the semi-arid forests studied. Figure 10 
shows the time series (1984–2022) of Landsat-based 
NDMI and GLI values with median and standard devia-
tion values for non-declining and declining reference 
points. Differences in VI over time for declining and 
non-declining regions were subtle, with no clear trend 
visible. GLI showed a downward trend after 2000, but it 
was visible in both declining and non-declining areas, 
making it hard to interpret. The trend also coincided 
with the launch of Landsat-7 and may relate to 
a technical artifact.

Discussion

In this study, we investigated whether well-established 
methods such as RF, anomaly detection, and Sen’s 
slope analysis can detect and map forest decline in 
sparse and patchy semi-arid forests using the Landsat 
time series. In the following, we will discuss the 

Figure 4. The reference points, declining areas in red and non-declining in green.
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technical results for the applied VIs and examined 
approaches, followed by a general discussion explor-
ing challenges in detecting and mapping vegetation 
decline in mountainous semi-arid regions.

Spectral bands and vegetation indices

Choosing appropriate RS indicators is critical for suc-
cessfully detecting forest decline. In our study, the 
performance of VI-based approaches varied signifi-
cantly depending on the VI used. This finding is con-
sistent with previous studies on forest decline (Yu 
et al., 2021). Certain VIs, such as NDMI and GLI, 
appear to be more effective at detecting subtle spectral 
changes in (semi-)arid forests than other VIs. Such 
indices, which include a SWIR band, are more closely 
related to physiological variables such as hydraulic 
conductivity and water potential than greenness 
indices, particularly in (semi-)arid regions (e.g. 
Marusig et al., 2020; Moreno-Fernández et al., 2021). 

However, the usefulness of NDMI has also been 
demonstrated in studies of ecosystem types other 
than (semi-)arid regions. For example, Li et al. 
(2022) successfully used the NDMI to detect forest 
disturbance in a subtropical forest.

The NDMI is calculated using both NIR and 
SWIR bands. Both bands are known to be directly 
related to key vegetation properties, including the 
high NIR reflectance of parenchyma cells and the 
high sensitivity of the SWIR band to leaf water 
content. Hence, NIR and SWIR bands are frequently 
reported to be important predictors in studies exam-
ining vegetation dynamics using satellite data. For 
example, Meyer et al. (2019) found the NIR and 
SWIR bands as important variables for tracking 
changes in leaf area in satellite data time series. 
Similarly, Moreno-Fernández et al. (2021) found 
for Landsat time series data that forest decline was 
linked to the trend component of the spectral index 
series, with the wetness index NDMI exhibiting 

Figure 5. A) Sen’s slope (NDMI index with threshold = 107.93 (August)), B) anomaly (NRGI 20th percentile (July-August)), and C) RF 
(July-August) for 1986 to 2021. Declining forest areas are marked in orange, while non-declining areas are depicted in black. D) LC 
map (masked classes in white and the relevant classes in green), E) google Earth view of the study area.
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declines earlier than the greenness indices (EVI, and 
NDVI). Negative trends occurred earlier for wetness 
indices like NDMI than for greenness indices, indi-
cating that the former may be better suited for 
detecting declines.

Gu et al. (2008) and Li et al. (2022) emphasized the 
significance of SWIR bands in identifying forest 
decline. Li et al. (2022) observed a decline in accuracy 
of up to 26% when excluding SWIR bands from their 
modified continuous monitoring of land disturbance 
approach. In our study, the SWIR bands and VIs that 
included SWIR bands were frequently chosen by the 
VSURF variable selection for various RF classifica-
tions, underscoring the importance of SWIR spectral 
bands in detecting semi-arid tree decline. 
Furthermore, the NDWI index, calculated from the 
green and NIR bands, was frequently selected but 
performed poorly in detecting anomalies during the 
July to August and July to September periods. Previous 
research, such as that by Das et al. (2023), has reported 
the relevance of NDWI in identifying declining and 
stressed forests.

In addition to NDMI and NDWI, GLI showed 
promising results in our study area, despite being 
rarely used in prior studies to detect forest decline. 
GLI has been utilized successfully for other vegetation 
monitoring purposes, such as detecting vegetation 
using aerial images (e.g. Eng et al., 2019). The GLI 
uses blue, green, and red bands. It was one of the best 
indices in anomaly and Sen´s slope approaches but 
was not selected by VSURF as an important variable 
for the RF classifications. However, all the bands that 
are required to calculate GLI were frequently selected 
by VSURF for the RF classifications in all summer 
periods. The selection of the green band partly agrees 
with Higginbottom et al. (2018), who reported the 
green band as the second-best individual band for 
monitoring canopy properties in sparse woody 
vegetation.

NDVI was only considered a medium-important 
index in anomaly and Sen’s slope approaches and 
was not selected in any of the VSURF runs. 
Therefore, NDVI does not appear to be a reliable 
indicator of forest decline in semi-arid vegetation, 

Figure 6. The upper row of the plot shows the overall accuracy and the kappa values of the RF forest classifications for the years 
1986–2021 (86–21), 2000–2021 (00–21), and 2010–2021 (10–21) for the three examined summer periods shown in different colors 
(August, July–August, and July–September). The lower row of the plot shows the same analysis for the years 1986–1999 (86–99), 
1991–1995 (91–95), and 1996–2000 (96–00). The fine dashed lines indicate the overall mean across all bean plots.
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Figure 7. The upper row of the plot shows the user and producer accuracies for declining and non-declining classes of RF 
classifications for the years 1986–2021 (86–21), 2000–2021 (00–21), and 2010–2021 (10–21) for the July–August summer period. 
The lower row of the plot shows the same analysis for the years 1986–1999 (86–99), 1991–1995 (91–95), and 1996–2000 (96–00). 
The fine dashed lines show the overall mean across all bean plots.

Figure 8. Kappa values of anomaly analysis at different percentiles for all the VIs of August (left panel), July to August (center 
panel), and July to September (right panel).
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which is consistent with Madonsela et al. (2018) but 
contrasts with Camarero et al. (2015), who suggested 
that NDVI is a dependable indicator of drought- 
induced productivity decline.

It should be noted that leaf structure and vegetation 
type are also important to be considered when choos-
ing the appropriate VIs. Only a few studies have 
investigated VIs for different leaf structures. Croft 
et al. (2014) evaluated several VIs to estimate leaf 
chlorophyll content in different leaf and canopy struc-
tures, including broadleaf and coniferous trees across 
a Canadian test site. They found that the canopy-scale 
relationship between spectral indices and foliar chlor-
ophyll content was particularly strong for broadleaf 
samples compared to coniferous trees. However, in 

our study area, the tree species are mostly broad- 
leaved Brant oaks, so this was not an issue to consider. 
But, in heterogeneous forests with both types of leaf 
structure, this could be an important factor in select-
ing appropriate VIs.

The importance of acquisition time windows of 
satellite images

This study found that the best time window for detect-
ing forest decline differed slightly depending on the 
approach used. The RF and anomaly approaches were 
more accurate in detecting declines in images captured 
from July to August, while Sen’s slope was most accu-
rate for images captured in August only. This may be 

Table 3. A summary of the results (overall accuracy (in bold) and kappa value) of the anomaly approach for different VIs at 
different threshold percentiles (15–90) for July to August. The percentile (P) with the highest overall accuracy is marked with an 
asterisk, and the percentile with the highest overall accuracy is underlined.

P 
VI 15 20 25 30 40 50 60 70 80 90

NDVI 0.54 
0.11

0.54 
0.11

0.56 
0.15

0.56 
0.15

0.59 
0.20

0.59 
0.21

0.60 
0.22

0.60 
0.21

0.61* 
0.24

0.60 
0.20

GNDVI 0.47 
−0.002

0.47 
−0.002

0.47 
−0.002

0.47 
−0.002

0.47 
0

0.48 
0.02

0.53 
0.09

0.55 
0.14

0.58 
0.19

0.58 
0.18

KNDVI 0.50 
0.04

0.52 
0.09

0.53 
0.10

0.53 
0.10

0.54 
0.13

0.56 
0.15

0.57 
0.17

0.57 
0.17

0.59 
0.20

0.58 
0.18

NRGI 0.62* 
0.25

0.63* 
0.26

0.62* 
0.23

0.60 
0.18

0.57 
0.12

0.57 
0.11

0.55 
0.07

0.54 
0.04

0.53 
0.02

0.52 
0.009

EVI 0.53 
0.10

0.53 
0.10

0.54 
0.11

0.55 
0.12

0.55 
0.13

0.55 
0.14

0.57 
0.16

0.59 
0.19

0.59 
0.20

0.61* 
0.23

SR 0.50 
0.04

0.52 
0.07

0.53 
0.10

0.53 
0.10

0.54 
0.12

0.56 
0.15

0.57 
0.16

0.57 
0.16

0.59 
0.20

0.58 
0.18

SLAVI 0.52 
0.07

0.54 
0.12

0.55 
0.14

0.55 
0.14

0.56 
0.15

0.58 
0.18

0.58 
0.19

0.59 
0.20

0.60 
0.22

0.60 
0.22

NDWI 0.47 
−0.007

0.49 
−0.005

0.50 
−0.003

0.50 
−0.002

0.52 
0.007

0.52 
0.004

0.52 
0.002

0.52 
0.002

0.52 
0.002

0.52 
0

NDMI 0.52 
0.08

0.55 
0.14

0.56 
0.15

0.56 
0.15

0.59 
0.20

0.60 
0.22

0.61* 
0.24

0.61 
0.23

0.60 
0.22

0.59 
0.18

NDTI 0.47 
−0.002

0.47 
−0.001

0.47 
−0.002

0.47 
−0.006

0.47 
−0.009

0.47 
−0.007

0.47 
−0.007

0.47 
−0.006

0.47 
−0.002

0.48 
0

NBR 0.47 
−0.006

0.47 
−0.002

0.47 
−0.01

0.47 
−0.01

0.46 
−0.002

0.47 
−0.008

0.47 
−0.005

0.46 
−0.02

0.47 
−0.01

0.50 
0.03

ARVI 0.50 
0.04

0.50 
0.04

0.50 
0.05

0.52 
0.08

0.53 
0.10

0.54 
0.12

0.55 
0.14

0.56 
0.15

0.57 
0.16

0.56 
0.14

GCI 0.47 
0

0.47 
−0.002

0.47 
−0.002

0.47 
−0.002

0.47 
−0.002

0.47 
−0.006

0.47 
−0.002

0.49 
0.02

0.50 
0.04

0.53 
0.09

GLI 0.56 
0.14

0.60 
0.22

0.62* 
0.26

0.65* 
0.30

0.61 
0.22

0.60 
0.19

0.60 
0.19

0.60 
0.12

0.57 
0.07

0.55 
0.05

Figure 9. Kappa values of the Sen´s slope for all the VIs of August (left panel), July to August (center panel), and July to September 
(right panel).
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due to the particularly dry conditions during these 
months, which lead to greater spectral differences 
between trees and other vegetation. This finding is 
supported by a study by Symeonakis et al. (2018). 
We observed that RF performed better for the predic-
tors based on July and August images compared to 
Sen’s slope, which worked slightly better for only 
August images. However, we did not find any expla-
nation for this observation, and the performance dif-
ferences were subtle.

Differences in performances between the 
examined approaches

In our study, RF outperformed other methods in 
terms of accuracy, which may be due to its use of 
multiple predictor variables. Although the overall per-
formance was moderate, the balanced class-specific 
accuracy suggests that RF was able to capture spectral 
information related to declining forest areas. 

Interestingly, we observed no notable differences in 
performance between RF models trained with Landsat 
data from different time periods (1986–2021, 2000– 
2021, and 2010–2021), despite the reference data being 
collected in 2021 and 2022. This observation was 
unexpected, as we expected that using more recent 
data would lead to better results. Results for different 
RF models with various additional year intervals are 
provided in Appendix 1. According to local experts, 
the widespread severe oak decline in the study area 
only emerged after 2010, which may indicate that the 
subtle spectral differences enabling to differentiate 
declining from non-declining areas in this study may 
not necessarily relate to changes in the spectral signal 
due to decline of the trees but rather to general differ-
ences in the site conditions on which declining and 
non-declining forest areas are located. This may very 
well relate to other environmental parameters such as 
differing soil conditions, co-occurring vegetation, 
topography, or a combination of both.

The anomaly detection and Sen’s slope analysis 
approaches performed notably worse than RF in the 
study. A direct comparison between RF and the other 
two approaches (anomaly and Sen’s slope) is not fea-
sible due to the distinct methodologies employed in 
these analyses, in particular concerning the input data 
and the validation. RF, as a supervised classification 
method, a portion of the reference data (equal to 70% 
of all reference data) is directly utilized for model 
training. Contrarily, in the anomaly analysis and 
Sen’s slope approach the reference data is only used 
for the validation and accuracy assessment; even 
though determining the optimal threshold based on 
the reference data is similar to applying the reference 
data as training data. Nevertheless, the better perfor-
mance of RF is somewhat expected due to the notably 

Table 4. A summary of the most accurate results of Sen’s slope 
for different VIs for August after trying 500 different VI-specific 
thresholds; the highest overall accuracies among all the VIs are 
marked with an asterisk sign.

VI Overall Accuracy Kappa

NDVI 0.51 .01
GNDVI 0.47 −.02
KNDVI 0.51 −.004
NRGI 0.52 .04
EVI 0.51 .004
SR 0.51 .48
SLAVI 0.52 .06
NDWI 0.52 .02
NDMI 0.55* .13
NDTI 0.49 .002
NBR 0.52 .009
ARVI 0.51 −.01
GCI 0.47 −.014
GLI 0.53 .065

Figure 10. Time series of NDMI and GLI for August: the median (solid line) and standard deviation (dashed line) of declining pixels 
(red) and non-declining pixels (blue) are depicted.
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increased number of predictors as compared to the 
other two tested approaches relying on a single VI.

Several earlier studies found Sen’s slope approach 
useful for trend detection in vegetation degradation. 
For instance, Zhang et al. (2022) used three trend 
analyses, including Sen’s slope and Mann-Kendall 
tests, to assess the changing trend and degradation of 
the environmental quality of the Loess Plateau in 
China. Sen’s slope and Mann-Kendall analysis were 
observed to be robust and insensitive to outliers, and 
their combination was suggested to offer advantages 
over a simple linear regression. The Loess Plateau has 
experienced serious erosion processes, resulting in 
clearer spectral change signals in satellite imagery, 
which may explain the successful application of trend- 
analysis techniques in this area.

Our study found that anomaly detection and Sen’s 
slope approach, which are based on temporal analysis, 
perform poorly. This suggests that we may not be able 
to detect a clear change in the spectral signal caused by 
forest decline. This though is also backed up by the 
visualization of the time series of the two most accu-
rate VIs which showed similar signals for declining 
and non-declining areas, which makes a reliable 
separation with only one single VI’s information diffi-
cult (Figure 10). The downward trend observed for 
GLI after 2000 may relate to the start of a general 
vegetation decline but could also be an artifact related 
to the launch of Landsat 7 in 1999 with slightly deviat-
ing spectral properties. This finding supports the idea 
that spectral differences due to differing environmen-
tal conditions, rather than spectral changes caused by 
forest decline, enable us to at least partly distinguish 
declining from non-declining areas in our semi-arid 
study area.

Environmental variables with a potential 
influence on forest decline

Earlier studies showed that topography is occasionally 
related to forest decline in the Zagros forests 
(Goodarzi et al., 2016). Adding topographic informa-
tion to the remote sensing predictors may be one way 
to improve the detection of declining areas. However, 
we utilized elevation, slope, and aspect data derived 
from a 30-meter DEM (see Hawker et al., 2022 for 
more data details) for one of the RF classifications 
(1986–2021 July 2001to August), and the results were 
not significantly improved (Appendix 1).

Differences in regional climatic conditions could be 
further important variables affecting forest decline. 
Multiple studies revealed an increase in forest decline 
worldwide associated with global warming and a more 
pronounced drought. Moreno-Fernández et al. (2019) 
found that warmer conditions are directly linked to 
worse vegetation health in open, evergreen oak wood-
lands. Ahmadi et al. (2014) showed that climatic 

variables such as yearly precipitation, temperature, 
and moisture were strongly correlated with the risk 
of forest decline within Zagros forests. Similarly, Kooh 
Soltani et al. (2018) showed that these three elements 
were most crucial in the emergence of forest decline. 
Hence, one way to further improve the detection of 
declining oak stands may be to integrate climatic data. 
However, it is not fully clear whether our study area is 
large enough to span a sufficiently large climate gra-
dient (independent from topography) to improve our 
results. The highly clustered occurrence pattern of 
declining areas in our reference dataset (Figure 4) 
suggests that the use of standard climatic datasets 
such as Bioclim at a spatial resolution of 1 km may 
lead to notably improved accuracy (Appendix 1), 
which is, however, mostly due to the spatial autocor-
relation in our reference data. Thinning out the refer-
ence dataset could be accomplished but would likely 
lead to a too-small dataset to draw meaningful con-
clusions, whereas field inventory of larger sample sizes 
would entail a high level of logistics and financial 
means. Uncrewed aerial vehicles may contribute to 
making the corresponding effort more efficient 
(Latifi, 2023).

The influence of different soils and co-occurring 
vegetation communities on the observed decline pro-
cesses remains unclear and requires further investiga-
tion. These variables could potentially lead to changes 
in the observed spectral signal. While we currently 
have limited information on these two variables for 
our study region, we plan to explore their influence in 
future work.

Technical challenges of detecting forest decline in 
semi-arid areas

Future work on detecting and mapping forest decline 
in arid and semi-arid areas could also benefit from 
technical improvements addressing some of the chal-
lenges that may have impacted the results of the pre-
sent study. For example, in (semi-)arid regions, 
detecting subtle decline processes is complicated by 
mixed pixels with bright soil backgrounds, as noted by 
Wang et al. (2022) and Maier et al. (2022). To address 
these challenges, we utilized blue bands and VIs that 
incorporated the soil background, such as GLI and 
ARVI. However, it should be noted that even with 
this approach, the correction for the soil background 
is not entirely accurate, and more sophisticated 
approaches may be needed.

A further, often-neglected influential factor on 
the spectral signal is the influence of the cast sha-
dows of trees. Depending on spatial resolution and 
acquisition geometries, tree shadows can negatively 
impact the quality of RS data and negatively affect 
vegetation monitoring through mixed pixels (Wang 
et al., 2022), particularly in low-density forests with 
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potentially large shadow fractions. To address this 
issue, Larsen and Salberg (2010) proposed tree 
shadow removal approaches. Although not the 
focus of this study, developing an algorithm to 
quantify and correct the influence of shadows 
could be useful for monitoring Zagros’ semi-arid 
forests via RS.

Other technical challenges that could have affected 
the identification and mapping of declining forest 
areas include the lack of correction factors to calculate 
VIs across different Landsat sensors. Landsat 4–7 and 
Landsat 8 have slight spectral band offsets, which can 
result in small changes in the spectral signal that are 
not related to underlying changes in the forest. 
Additionally, some spectral bands used in this study 
(red, NIR, and SWIR) are narrower for Landsat 8 than 
for Landsat 4–7. These challenges should be consid-
ered in future work to improve the accuracy of forest 
decline detection and mapping.

In an ideal scenario, satellite images would be 
acquired using identical technology and acquisition 
conditions, but this is not possible to achieve retro-
spectively. To address the differences between images 
in a time series, correction factors could be applied. 
However, in regions with limited information on the 
stability of the spectral signal over the last few decades, 
reference data or prior knowledge of spectrally stable 
areas would be necessary to successfully implement 
such corrections. Unfortunately, this was not feasible 
for our study due to the lack of corresponding 
information.

Conclusion

We evaluated three approaches in order to map 
declining forest areas in a semi-arid region using the 
Landsat time series from 1986 to 2021. These 
approaches were RF, anomaly detection, and Sen’s 
slope analysis. RF outperformed the other two meth-
ods. Sen’s slope and anomaly approaches produced 
unsatisfactory results, which did not result in maps 
that could serve as valuable input to forest managers. 
We found that VIs, including NIR and particularly 
SWIR, were crucial for all methods. Interestingly, the 
RF classification was not sensitive to the Landsat data’s 
acquisition time periods, suggesting that the ability to 
distinguish declining from non-declining forest areas 
was likely due to general environmental differences 
rather than due to spectral changes caused by the 
decline process. Further research is required to iden-
tify the environmental factors that contribute to these 
variances. In conclusion, mapping forest decline in 
semi-arid sparse cover forests using medium- 
resolution Landsat data is challenging, and technical 
improvements are needed to address issues with bright 
soil backgrounds and tree-cast shadows.
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