8,585 research outputs found

    A novel Big Data analytics and intelligent technique to predict driver's intent

    Get PDF
    Modern age offers a great potential for automatically predicting the driver's intent through the increasing miniaturization of computing technologies, rapid advancements in communication technologies and continuous connectivity of heterogeneous smart objects. Inside the cabin and engine of modern cars, dedicated computer systems need to possess the ability to exploit the wealth of information generated by heterogeneous data sources with different contextual and conceptual representations. Processing and utilizing this diverse and voluminous data, involves many challenges concerning the design of the computational technique used to perform this task. In this paper, we investigate the various data sources available in the car and the surrounding environment, which can be utilized as inputs in order to predict driver's intent and behavior. As part of investigating these potential data sources, we conducted experiments on e-calendars for a large number of employees, and have reviewed a number of available geo referencing systems. Through the results of a statistical analysis and by computing location recognition accuracy results, we explored in detail the potential utilization of calendar location data to detect the driver's intentions. In order to exploit the numerous diverse data inputs available in modern vehicles, we investigate the suitability of different Computational Intelligence (CI) techniques, and propose a novel fuzzy computational modelling methodology. Finally, we outline the impact of applying advanced CI and Big Data analytics techniques in modern vehicles on the driver and society in general, and discuss ethical and legal issues arising from the deployment of intelligent self-learning cars

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Fuzzy logic traffic signal controller enhancement based on aggressive driver behavior classification

    Get PDF
    The rise in population worldwide and especially in Egypt, together with the increase in the number of vehicles present serious complications regarding traffic congestion and road safety. The elementary solution towards improving congestion is to expand road capacities by building new lanes. This, however, requires time and effort and therefore new methodologies are being implemented. Intelligent transportation systems (ITS) try to approach traffic congestion through the application of computational and engineering techniques. Traffic signal control is a branch of intelligent transportation systems which focuses on improving traffic signal conditions. A traffic signal controllers’ main objective is to improve this assignment in a way which reduces delays. This research proposes a new approach to enhancing traffic signal control and reducing delays of a single intersection, through the integration of an aggressive driving behavior classifier. Previous approaches dealt with traffic control and driver behavior separately, and therefore their successful integration is a new challenging area in the field. Multiple experiment sets were conducted to provide an indication to the effectiveness of our approach. Firstly, an aggressive driver behavior classifier using feed-forward neural network was successfully built utilizing Virginia Tech 100-car naturalistic driving study data. Its performance was compared against long short-term memory recurrent neural networks and support vector machines, and it resulted in better performance as shown by the area under the curve. To the best of our knowledge, this classifier is the first of its kind to be built on this 100-car study data. Secondly, a representation of aggressive driving behavior was constructed in the simulated environment, based on real life data and statistics. Finally, Mamdani’s fuzzy logic controller was modified to accommodate for the integration of the aggressive behavior classifier. The integration results were encouraging and yielded significant improvements at higher traffic flow volumes when compared against the built Mamdani’s controller. The results are promising and provide an initial step towards the integration of driver behavior classification and traffic signal control

    A Fuzzy-Logic Approach to Dynamic Bayesian Severity Level Classification of Driver Distraction Using Image Recognition

    Get PDF
    open access articleDetecting and classifying driver distractions is crucial in the prevention of road accidents. These distractions impact both driver behavior and vehicle dynamics. Knowing the degree of driver distraction can aid in accident prevention techniques, including transitioning of control to a level 4 semi- autonomous vehicle, when a high distraction severity level is reached. Thus, enhancement of Advanced Driving Assistance Systems (ADAS) is a critical component in the safety of vehicle drivers and other road users. In this paper, a new methodology is introduced, using an expert knowledge rule system to predict the severity of distraction in a contiguous set of video frames using the Naturalistic Driving American University of Cairo (AUC) Distraction Dataset. A multi-class distraction system comprises the face orientation, drivers’ activities, hands and previous driver distraction, a severity classification model is developed as a discrete dynamic Bayesian (DDB). Furthermore, a Mamdani-based fuzzy system was implemented to detect multi- class of distractions into a severity level of safe, careless or dangerous driving. Thus, if a high level of severity is reached the semi-autonomous vehicle will take control. The result further shows that some instances of driver’s distraction may quickly transition from a careless to dangerous driving in a multi-class distraction context

    Fuzzy System to Assess Dangerous Driving: A Multidisciplinary Approach

    Get PDF
    Dangerous driving can cause accidents, injuries and loss of life. An efficient assessment helps to identify the absence or degree of dangerous driving to take the appropriate decisions while driving. Previous studies assess dangerous driving through two approaches: (i) using electronic devices or sensors that provide objective variables (acceleration, turns and speed), and (ii) analyzing responses to questionnaires from behavioral science that provide subjective variables (driving thoughts, opinions and perceptions from the driver). However, we believe that a holistic and more realistic assessment requires a combination of both types of variables. Therefore, we propose a three-phase fuzzy system with a multidisciplinary (computer science and behavioral sciences) approach that draws on the strengths of sensors embedded in smartphones and questionnaires to evaluate driver behavior and social desirability. Our proposal combines objective and subjective variables while mitigating the weaknesses of the disciplines used (sensor reading errors and lack of honesty from respondents, respectively). The methods used are of proven reliability in each discipline, and their outputs feed a combined fuzzy system used to handle the vagueness of the input variables, obtaining a personalized result for each driver. The results obtained using the proposed system in a real scenario were efficient at 84.21%, and were validated with mobility experts’ opinions. The presented fuzzy system can support intelligent transportation systems, driving safety, or personnel selection
    • 

    corecore