Fuzzy logic traffic signal controller enhancement based on aggressive driver behavior classification

Abstract

The rise in population worldwide and especially in Egypt, together with the increase in the number of vehicles present serious complications regarding traffic congestion and road safety. The elementary solution towards improving congestion is to expand road capacities by building new lanes. This, however, requires time and effort and therefore new methodologies are being implemented. Intelligent transportation systems (ITS) try to approach traffic congestion through the application of computational and engineering techniques. Traffic signal control is a branch of intelligent transportation systems which focuses on improving traffic signal conditions. A traffic signal controllers’ main objective is to improve this assignment in a way which reduces delays. This research proposes a new approach to enhancing traffic signal control and reducing delays of a single intersection, through the integration of an aggressive driving behavior classifier. Previous approaches dealt with traffic control and driver behavior separately, and therefore their successful integration is a new challenging area in the field. Multiple experiment sets were conducted to provide an indication to the effectiveness of our approach. Firstly, an aggressive driver behavior classifier using feed-forward neural network was successfully built utilizing Virginia Tech 100-car naturalistic driving study data. Its performance was compared against long short-term memory recurrent neural networks and support vector machines, and it resulted in better performance as shown by the area under the curve. To the best of our knowledge, this classifier is the first of its kind to be built on this 100-car study data. Secondly, a representation of aggressive driving behavior was constructed in the simulated environment, based on real life data and statistics. Finally, Mamdani’s fuzzy logic controller was modified to accommodate for the integration of the aggressive behavior classifier. The integration results were encouraging and yielded significant improvements at higher traffic flow volumes when compared against the built Mamdani’s controller. The results are promising and provide an initial step towards the integration of driver behavior classification and traffic signal control

    Similar works