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Abstract: Dangerous driving can cause accidents, injuries and loss of life. An efficient assessment 1

helps to identify the absence or degree of dangerous driving to take the appropriate decisions while 2

driving. Previous studies assess dangerous driving through two approaches: (i) using electronic 3

devices or sensors that provide objective variables (acceleration, turns and speed), and (ii) analyz- 4

ing responses to questionnaires from behavioral science that provide subjective variables (driving 5

thoughts, opinions and perceptions from the driver). However, we believe that a holistic and more 6

realistic assessment requires a combination of both types of variables. Therefore, we propose a three- 7

phase fuzzy system with a multidisciplinary (computer science and behavioral sciences) approach 8

that on the one hand draws on the strengths of sensors embedded in smartphones and questionnaires 9

to evaluate driver behavior and social desirability. Our proposal combines objective and subjective 10

variables while mitigating the weaknesses of the disciplines used (sensor reading errors and lack of 11

honesty from respondents, respectively). The methods used are of proven reliability in each discipline, 12

and their outputs feed a combined fuzzy system used to handle the vagueness of the input variables, 13

obtaining a personalized result for each driver. The results obtained using the proposed system in 14

a real scenario were efficient at 84.21%, and were validated with mobility experts’ opinions. The 15

presented fuzzy system can support intelligent transportation systems, driving safety, or personnel 16

selection. 17

Keywords: AHP; dangerous driving; driver behavior; Dula dangerous driving index; fuzzy systems; 18

intelligent transportation systems 19

1. Introduction 20

Information systems based on fuzzy logic seek a classification result employing a 21

rule-based inference engine. Such systems, known as fuzzy systems, aim to deal with the 22

vagueness of human reasoning expressed linguistically by using formalisms. Linguistic 23

expressions must be assigned a quantitative value that determines the group to which a 24

variable belongs in the universe of discourse, so it is necessary to quantify the value of vari- 25

ables. This objectivity implies that electronic devices are often required for measurements 26

so that values can be considered as objective [1]. 27

However, there are many scenarios where users’ perceptions can be of great impor- 28

tance to feed the fuzzy system. For example, a diagnosis based on a doctor’s experience, 29

determination of the quality of a product or service based on the opinions of customers, 30

or people’s behavior assessment based on their self-evaluations. In such scenarios, the 31

values of the variables can not be obtained using measurement equipment, thus it is neces- 32

sary to use self-administered tools, such as questionnaires, for the participants to answer. 33

Consequently, these are subjective values [2]. 34
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To our best knowledge, there is a lack of research in the literature about fuzzy system 35

models that allow feeding a system combining objective and subjective values. We hypoth- 36

esize that a fuzzy system with a multidisciplinary approach that combines objective and 37

subjective variables can support solving complex social problems. Therefore, we propose a 38

fuzzy system model where: (i) devices with sensors obtain data to feed the objective vari- 39

ables, and (ii) questionnaire responses that will provide values to the subjective variables of 40

the system. We pre-processed the subjective data to quantify them as subjective variables 41

and use them as input variables or in the inference rules. 42

Our fuzzy system model with multidisciplinary approach is composed of three-stages. 43

The first stage consists of capturing objective data (numerical values) and subjective data 44

(perceptions). The second stage is the processing of the objective and subjective data 45

through two classification systems (OFS and SFS). Finally, the third stage consists of a fuzzy 46

system where the classification results of objective and subjective data are combined, and 47

a final output is obtained. The proposed model was applied to a case study on assessing 48

dangerous driving resulting from negative cognitive/emotional, aggressive, and risky 49

driving. 50

This paper has two contributions. 1. A three-stage fuzzy system model with multi- 51

disciplinary approach that combines objective and subjective variables. The values of the 52

objective variables are numerical and precise, while the subjective variables take values 53

from human perceptions or opinions and can be ambiguous and imprecise. The reference 54

model seeks to represent both the objective and subjective variables present in many clas- 55

sification scenarios. 2. A new way of assessing dangerous driving, which results from 56

aggressive, risky driving behaviors and negative thoughts towards other drivers. The new 57

assessment from implementing the reference model combines objective values obtained 58

with electronic engineering sensors (acceleration, cornering, location, and speed sensors) 59

and subjective values (from a self-applied questionnaire on dangerous vehicle driving and 60

another questionnaire on social desirability). 61

Questionnaires from behavioral science are useful to feed the fuzzy systems with user 62

opinions and perceptions. Therefore, applying our model implies considering objective 63

and subjective aspects to the evaluation of vehicular driving, making it more in line with 64

and representative of the factors that may intervene during driving. 65

The remaining of the paper is organized as follows. Section 2 explains the background 66

and related work. Section 3 provides the step-wise explanation of the proposed approach 67

in detail. Sections 4 and 5 present model implementation in the case study and report 68

the obtained results, respectively. Section 6 discusses the experimental results. Finally, 69

conclusions and final remarks are presented in Section 7. 70

2. Background and related works 71

2.1. Dangerous driving Assessment 72

The dangerous driving of a vehicle can cause injuries to the driver, passengers, and 73

other people on the road, as well as economic, property, and road infrastructure damages [3]. 74

Given the above, some previous works in the literature have investigated how to determine 75

the driver’s behavior during vehicle driving and how it contributes to decision-making. 76

There are technological solutions that rely on in-vehicle sensor data to evaluate driving 77

behavior. The CAN (Controller Area Network) bus is an example and has been used for 78

safety and driver fingerprinting purposes [4][5]. The CAN bus is a communication system 79

developed to exchange information between the electronic control units of an automobile. 80

This system is factory installed in some vehicles and captures data from various types of 81

sensors, it has the disadvantage of being an expensive solution because it is contained in 82

high-end vehicles. Some applications based on video camera data that employ artificial 83

intelligence techniques are driver distraction [6] and driving style recognition based on 84

vehicle trajectory [7] despite some dificulties of cameras usage like ilumination changes, 85

obstrusiveness and privacy issues. 86
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Research works concerning the use of sensors in transportation systems are becoming 87

more and more frequent. A great variety of experiments have analyzed vehicle movements 88

during driving and aim to increase the safety and comfort of users [8]. Some authors have 89

conducted experiments with a smartphone because it is an accessible, inexpensive tool with 90

sensors (accelerometer, gyroscope, and GPS), which allows analyzing vehicle movements 91

[9][10] [11]. Some of the variables that researchers have considered as input of artificial intel- 92

ligence algorithms [12] are speed, braking, potholes, bumps, and environmental conditions 93

[13][14][8]. 94

Artificial intelligence techniques and methods employed to analyze vehicle move- 95

ments obtained from sensors have proven to be efficient and effective. In the literature, 96

some authors were able to classify driver behavior as dangerous, aggressive, risky (reck- 97

less), safe, unsafe, erratic, distracted, among others [15][16][17][18]. Evidence shows that 98

the identification of driving styles for real scenarios is close to 80% [19]. Achieving higher 99

efficiency levels is difficult due to erroneous reading caused by calibration failures [20][10]. 100

In addition to the study of vehicle movements, the thoughts and actions of drivers can 101

be analyzed to carry out a classification of driving behavior. Some of the tools used to gather 102

subjective variables include questionnaires, interviews, and self-reports. Questionnaires 103

can be used to collect general data from respondents [21] or to validate measurements 104

obtained by sensors [22]; and self-reports can be used to learn information regarding 105

violations and accidents [23]. The primary motivator of some of the research of driver 106

behavior analysis is that dangerous driving is a predictor of road accidents [24]. 107

The advantages of using questionnaires are that they obtain personalized results and 108

assign values to variables of interest. The variables’ values result from a series of responses, 109

which together determine the value assigned to a variable. Thus, we do not ask users which 110

value they would assign to a given variable; else, we derive the value of a variable from the 111

answers to the questions that characterize the variable. The process of inferring the value 112

of the variable from the answers to related questions avoids biases in the face of possible 113

scenarios of social desirability. In behavioral sciences, studies related to traffic accidents 114

found that the human behavior factor is the most critical variable in the process of driving 115

a vehicle and its possible accident [8][25]. Researchers have developed self-applied tools 116

(questionnaires) that aim to determine driving styles from the answers provided by drivers. 117

Among the available questionnaires, some of the areas investigated are: classifying driving 118

style [26], dangerous behavior [27], driving with a propensity to anger [28], driving with 119

angry thoughts [29], and so on. However, the main shortcoming of these instruments in 120

terms of reliability and accuracy is the social desirability of the respondents [30][31]. 121

One way to provide reliability and formalism to drivers’ responses to questionnaires is 122

through tools such as the Analytical Hierarchy Process (AHP), wich is a support technique 123

used in Multi-Criteria Decision Analysis (MCDA) [32]. The purpose of this technique is to 124

support subjective evaluations, determining the relative importance between criteria by 125

employing Saaty’s pairwise scale (see Table 1) that allows them to be ranked [33]. AHP 126

employs pairwise comparison processes, hierarchical ranking, and calculating importance 127

weights [34]. AHP is used to represent the decision by establishing hierarchies. However, 128

designing hierarchies requires experience and knowledge of the situation to be solved, 129

therefore it is suggested to have experts’ knowledge or subject information. In AHP, 130

criteria priorities are obtained by comparing the importance pairwise concerning the goal 131

[35][36][37]. Given the reliability of multicriteria tools in decision-making, AHP is used in 132

this research to formalize subjective information from perceptions. The AHP has proven its 133

effectiveness in several areas [38], with vehicle driving safety being one example [39]. 134
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Table 1. Saaty’s pairwaise scale.

Verbal judgment Numeric Value

Extremely important 9
8

Very strongly more important 7
6

Strongly more important 5
4

Moderately more important 3
2

Equally important 1

As for proposals that capture the environment surrounding the vehicle and the driver, 135

in the approach presented by [40] ambient stereoscopic images are used to predict future 136

driver maneuvers some time before they occur, given information about the driving context. 137

[41] did a comparative study machine learning techniques for lane change detection, both 138

works with the limitations inherent to physical coverage that can be had with video cameras. 139

Approaches to assess driving behavior based only on the driver, the vehicle or the 140

environment are incomplete proposals, as [42] concluded that driver behavior should be 141

modeled and evaluated in terms of different dimensions established within a driver-vehicle- 142

environment system [43]. That is, in terms of the driver, physiological, psychological and 143

social profile (including gender, age, education and driving history) should be considered; 144

in terms of the vehicle, the circumstances to be observed are those where the vehicle 145

characteristics will somehow influence driving behavior; in terms of the environment, the 146

factors to be considered are road geometry, road condition, road type, weather condition, 147

light condition and traffic condition. 148

2.2. Fuzzy systems 149

The evaluation of dangerous driving is performed in a scenario that involves vague- 150

ness and imprecision, that is why fuzzy systems are useful in addressing ambiguous 151

conditions through fuzzy logic theory. The theory of fuzzy logic is inspired by the processes 152

of human perception and cognition. This theory assigns to a variable instance a certain 153

membership degree to a group from the set of fuzzy groups, representing the universe 154

of discourse for that variable [44]. Fuzzy logic can deal with uncertain, imprecise, vague, 155

partially true, or unbounded information arising from perception and cognition. 156

Fuzzy logic provides an effective means for multi-criteria conflict resolution and a 157

better evaluation of alternatives. Fuzzy logic-based systems can build intelligent systems 158

for decision-making [45] that include vague human evaluations [46] and these systems have 159

been employed to detect dangerous driving [47] and in general for automotive engineering 160

applications [48]. The benefits of fuzzy models are well supported, for instance, in [49] the 161

authors mention that fuzzy control is a nonlinear control technique that is relatively easy to 162

understand and transparent with respect to other nonlinear techniques since it incorporates 163

the knowledge and experience of the designer. 164

The approach presented in [50] is the closest to the one we propose. The authors 165

used triaxial accelerometers’ data to feed a fuzzy system for pronation and supination 166

assessment in Parkinson’s disease. Then, they contrasted the result of the system against 167

experts’ opinions. Thus, the authors used the AHP to apply it to the experts’ assessments 168

and compare the experts’ results against the results provided by the sensors. However, 169

they did not use expert experience or patient opinions/feedback to feed the fuzzy system 170

in the classification process. 171

3. Reference model 172

The reference model is a fuzzy system that allows combining objective and subjective 173

input variables. Objective values are obtained from readings made with sensors of various 174
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types, e.g., motion sensors, temperature, turns, location, etc. On the other hand, subjective 175

values are captured from the answers to questionnaires applied to users; the questionnaire 176

or group of selected questionnaires will depend on the specific scenario and application. 177

Perceptions, collected from users through questionnaires’ answers, are formalized using a 178

method that facilitates the quantification and value (hierarchization/classification) given 179

to the subjective data. Conventionally, fuzzy systems use quantitative input variables; 180

however, there are scenarios that should be modeled by a system that additionally has 181

qualitative input variables. 182

The proposed model offers a way to "convert", by an appropriate method, the subjec- 183

tive values into objective ones so that they can be quantified and fed to the fuzzy system. 184

The result is a fuzzy system model more in line with reality, where objective and subjective 185

variables are involved. The purpose of the model is to address a classification process 186

considering objective and subjective variables. The model comprises three phases: (i) data 187

collection, (ii) data processing and (iii) data evaluation (see Figure 1). 188

189

Figure 1. Reference model.

190

Case study 191

In the present study, we decided to use the DDDI questionnaire because it is oriented 192

to assess dangerous driving according to three dimensions: (i) Aggressive Driving (AD), 193

(ii) Negative Cognitive/Emotional Driving (NCED), and (iii) Risky Driving (RD). These 194

dimensions are relevant given the focus of the research, which aims to complement the 195

data from the sensors considered (accelerometer, gyroscope, speedometer) with expert 196

knowledge (obtained from the questionnaire). That is, the sensors considered can measure 197

real physical actions (sharp turns, sudden braking, steering or lane deviations, racing) 198
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resulting from aggressive driving and speeding over bumps potholes related to risky 199

driving. Therefore, there is a correspondence between the data collected from the sensors 200

and the specific dimensions evaluated by the DDDI questionnaire. 201

Considering the areas of technology and behavioral sciences briefly described in 202

the previous paragraphs, the main objective of this paper is to develop a model for the 203

evaluation of dangerous vehicle driving that uses as a source of data the measurements of 204

vehicle motion sensors and the answers to questionnaires that rate the driver’s reactions 205

to driving. The novelty of the method consists in the union of objective and subjective 206

measurements. 207

208

4. Model implementation in the case study 209

The implementation of the model requires a three-phase or stage process: (i) data 210

collection, (ii) data processing, and (iii) data evaluation. 211

The first stage of the model contemplates obtaining objective data through sensors, 212

which in other studies have proven to be effective with this type of measurements [51]. We 213

perform several tasks within this first stage, ranging from selecting the route that meets 214

the requirements to evaluate vehicular driving in a real environment, to collecting the data 215

obtained in a natural environment (see Figure 2). 216

217

Figure 2. Data collection stage.

218

In this same stage, we also obtained subjective data from the results of the application 219

of questionnaires to users. Questionnaires have proven to be effective in measuring people’s 220

behavior in various domains [26] [27] [28] [29]. In this same phase, we collected the opinions 221

and experiences of mobility experts regarding the importance of each dimension of the 222

DDDI questionnaire concerning the others. We used this expertise in phase two. 223

For the present investigation, the DDDI was used to assess dangerous driving be- 224

haviors, and the Marlowe-Crowne Social Desirability Scale (M-C SDS) was applied to 225
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know social desirability bias from drivers. As a result, we obtained qualitative answers of 226

the driver’s driving behavior with the DDDI and the degree of reliability of the driver’s 227

responses with the M-C SDS. 228

229

In the second stage of the study, we converted the objective values obtained by the sen- 230

sors to statistical measurements similar to those considered in related studies [52][53][54]. 231

Then, the most relevant features were selected to characterize the particular vehicular driv- 232

ing event. The chosen statistical values were input variables of an Objective Fuzzy System 233

(OFS) that classified vehicular driving as: "Not dangerous", "Moderately dangerous", or 234

"Very dangerous", considering only objective data (see Figure 3). 235

236

Figure 3. Data processing stage.

237

We formalized the DDDI responses by quantification resulting in three weights corre- 238

sponding to the aggressive, risky, and negative cognitive/emotional driving in this same 239

stage. The values of the dimensions represent the input variables of the Subjective Fuzzy 240

System (SFS). 241

242

Then, according to the experts’ opinions given in the first phase, we ranked the 243

subscales (aggressive, risky, and negative cognitive/emotional driving) using AHP. In this 244

case, we applied AHP to determine the importance of each of the DDDI dimensions. This 245

is because although AHP is used to assign weights to criteria and select the best alternative, 246

it can also be used only to assign weights to the dimensions of the questionnaire [33] [55], 247

as is done in our case. Also, we built the rules using the ranking obtained with AHP. The 248

result of the SFS was the level of dangerous driving considering only subjective data. 249
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The answers were interpreted and then ranked into low and high desirability weights 250

with respect to the M-C SDS questionnaire. Finally, we used the results from the M-C SDS 251

in the inference rules of the Combined Fuzzy System (CFS). 252

The third stage consisted of a fuzzy system that has the output of the OFS fed with 253

sensor data as a first input variable. The second input variable is the result of the SFS. 254

Once the values were fuzzified, we strengthened the inference engine with the de- 255

sirability weights obtained from the M-C SDS questionnaire. The weights are part of the 256

rules and are used to give credibility to the CFS input variables when they present discrep- 257

ancies. The result of the CFS will be the final hazard level given to the driving (see Figure 4). 258

259

Figure 4. Data evaluation stage.

260

A diagram of all the membership functions used in the fuzzy systems that integrate 261

the proposal is shown in Figures 5, 6 and 7. From a set of characteristics obtained to 262

feed the fuzzy systems (OFS and SFS), we analyzed and selected those characteristics 263

with values that presented more variability among them, i.e., that there were significant 264

differences between the values obtained for each characteristic. Then, according to the 265

maximum and minimum values recorded for each variable, the universe of discourse 266

(domain) was determined. It was decided that the shape of the membership functions 267

should be trapezoidal because the maximum value of membership (one) applied to a set 268

(range) of discrete values of the variables; therefore, trapezoidal functions are adequate [49] 269

to represent the case study. 270

In a first approximation, the universe of discourse was symmetrically divided into three 271

sets, since such a number of sets is usually common in fuzzy systems. The percentage of 272
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overlap between two neighboring sets was between 10% and 50%, ensuring that the sum 273

of the overlap membership values was not greater than unity. These groupings made it 274

possible to associate each input linguistic value with its respective fuzzy set. The ranks and 275

overlaps of the sets were optimized based on expert opinion. 276

The Pseudocode 1 contains the steps to build the whole OFS subsystem. The member- 277

ship functions for the OFS subsystem are shown in Figure 5. 278

Pseudocode 1 Driver classification (OFS)

Input: Raw data
Output: Objective driving behavior classification

1: Load raw data from sensors (accelerometer, gyroscope, and speedometer)
2: Compute features

RMS =

√
1
n

n

∑
i=1

x2
i (1)

Max peak (xi) (2)

3: Select relevant features
4: Define rules if RMS(x) is (Low/Medium/High) and/or AccY-RMS is

(Low/Medium/High) and/or GyrPmax is (Low/Medium/High) and/or Max
speed (Low/Medium/High) then OFS is (Not Dangerous/Moderately Danger-
ous/Very Dangerous)

5: Fuzzify (Design the membership groups). Trapezoidal function define a, b, c, d

f (x, a, b, c, d) =



0, x ≤ a
(x − a)/(b − a), a ≤ x ≤ b
1, b ≤ x ≤ c
(d − x)/(d − c), c ≤ x ≤ d
0, x ≥ d

(3)

6: Evaluate from rules
7: Defuzzify

xcentroid =
∑i µ(xi)xi

∑i µ(xi)
(4)

8: If the classification accuracy > 70%, go to step 10
9: Define membership group adequacies and go to step 5

10: End of OFS classification

279
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1

0

0

1

0

1

35 40 45 50 55 60 65 70

Max speed

Low Medium High

(km/h)

0.4 0.45 0.5 0.55 0.6 0.65 0.7

Pmax-G

Low Medium High

(rad/s)

0 0.2 0.4 0.6 0.8 1

OFS

Not Dangerous Moderately Dangerous Very Dangerous

0

1

Low Medium High

0

1

0.4 0.5 0.6 0.7 0.8 0.9

ACC-RMS (m/s²)

2.3 2.35 2.4 2.45 2.5 2.55 2.6

ACCyRMS

Low Medium High

(m/s²)

Figure 5. OFS Membership functions diagram.

The Pseudocode 2 contains the steps to build the whole SFS subsystem. The member- 280

ship functions for the SFS subsystem are shown in Figure 6. 281
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Pseudocode 2 Driver classification (SFS)

Input: data from answers to questionnaires
Output: Subjective driving behavior classification

1: Load data
2: Compute subjetive features from

- Hierarchize the DDDI dimensions (AHP)
- Hierarchize social desirability (M-C SDS)

3: Define rules if AD is (Low/Medium/High) and/or NCED is (Low/Medium/High)
and/or RD is (Low/Medium/High) then SFS is (Not Dangerous/Moderately Danger-
ous/Very Dangerous)

4: Fuzzify (Design the membership groups). Trapezoidal function define a, b, c, d

f (x, a, b, c, d) =



0, x ≤ a
(x − a)/(b − a), a ≤ x ≤ b
1, b ≤ x ≤ c
(d − x)/(d − c), c ≤ x ≤ d
0, x ≥ d

(5)

5: Evaluate from rules
6: Defuzzify

xcentroid =
∑i µ(xi)xi

∑i µ(xi)
(6)

7: End of SFS classification

10 15 20 25 30 35

AD

Low Medium High

0

1

10 15 20 25 30 35 40 45

NCED

Low Medium High

0

1

10 20 30 40 50 60

RD

Low Medium High

0

1

10 15 20 25 30 35 40

SFS

Not Dangerous Moderately Dangerous Very Dangerous

0

1

Figure 6. SFS Membership functions diagram.
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The Pseudocode 3 contains the steps to build the whole CFS subsystem. The member- 282

ship functions for the CFS subsystem are shown in Figure 7. 283

Pseudocode 3 Driver classification (CFS)

Input: output data from OFS, SFS and M-C SDS
Output: Driving behavior classification

1: Load data
2: Define rules if OFS is (Not Dangerous/Moderately Dangerous/Very Dangerous)

and/or SFS is (Not Dangerous/Moderately Dangerous/Very Dangerous) and/or M-C
SDS is (Low/High) then CFS is (Not Dangerous/Moderately Dangerous/Very Danger-
ous)

3: Fuzzify (Design the membership groups). Trapezoidal function define a, b, c, d

f (x, a, b, c, d) =



0, x ≤ a
(x − a)/(b − a), a ≤ x ≤ b
1, b ≤ x ≤ c
(d − x)/(d − c), c ≤ x ≤ d
0, x ≥ d

(7)

4: Evaluate from rules (weighting M-C SDS)
5: Defuzzify

xcentroid =
∑i µ(xi)xi

∑i µ(xi)
(8)

6: If the classification accuracy > 70%, go to step 8
7: Define membership group adequacies and go to step 3
8: End of CFS classification

284

The construction of the rules was based on the experts’ opinion. According to the 285

experts, all possible combinations for the variables involved in the fuzzy models were 286

considered, that is, the multiplicative rule was applied. Eighty-one rules (3x3x3x3) were 287

constructed for the OFS model, 27 rules (3x3x3) for the SFS model and 18 rules (3x3x2) for 288

the CFS model. The output value for each combination was determined by the experts. All 289

the rules constructed are necessary as they are required to cover all the driving scenarios 290

studied, according to expert opinion. The defuzzification method used was the centroid 291

method. 292
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0 0.2 0.4 0.6 0.8 1

OFS

Not Dangerous Moderately Dangerous Very Dangerous

0

1

10 15 20 25 30 35 40

SFS

Not Dangerous Moderately Dangerous Very Dangerous

0

1

M-C SDS

Low High

0

0 33

1

6.6 13.2 19.8 26.4

0 0.2 0.4 0.6 0.8 1

CFS Result

Not Dangerous Moderately Dangerous Very Dangerous

0

1

Figure 7. CFS Membership functions diagram.

4.1. Empirical evaluation of the solution 293

The experimental design contemplated aspects such as invitation of potential partici- 294

pants, selection of volunteers, choice of geographic location for the tests, placement of the 295

devices inside the vehicle, selection of sensors, applications used, evaluation of the data, 296

among others. 297

4.2. Participants 298

Participants consisted of a heterogeneous group of 19 drivers (5 women and 14 men). 299

The age range was between 17 and 67 years (mean = 43.42). The driving experience was in 300

the range of one and twenty years. Thus, the sample size used in the present investigation 301

proved to be adequate for this type of study [56]. We provided participants information 302

about the research, including a brief explanation of its purpose. We assured them their 303
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information would be anonymous, and confidential. All subjects provided written informed 304

consent prior to participating in the study. 305

4.3. Chosen Route 306

We chose a 3.6 km long circuit located on an avenue in the city of Villahermosa, 307

Tabasco, Mexico. The circuit has bumps, potholes, traffic lights, and maximum speed 308

indicators; the road has the right conditions to observe possible dangerous behaviors 309

during vehicular driving. During the experiments, the selected route was traveled twice by 310

each driver. This was for each driver to become accustomed to the vehicle and to avoid 311

biases in the measurements. The measurements collected from the second time the route 312

was completed were considered for data analysis. 313

4.4. Vehicle and smartphones 314

The vehicle used was a 2005 model common use vehicle. We made tests to select the 315

best position for the sensors considering the center of mass of the vehicle in order to obtain 316

more reliable readings [57]. Inside the vehicle, we made the necessary preparations to install 317

three smartphones very well fastened. The first phone was placed close to the vehicle’s 318

center of mass and gathered readings from the acceleration, gyroscope, and GPS sensors. 319

The second phone was placed between the steering wheel and the vehicle’s speedometer 320

and recorded video of speedometer variations during driving. Finally, the third phone was 321

attached to the pickup’s front rearview mirror and collected: video of the street the driver 322

was driving on, acceleration patterns when starting gears, and brake application patterns 323

when stopping the vehicle. 324

The technical specifications of two of the cell phones used are: Huawei Y6, model 325

MRD-LX3, Android 9 version, RAM 2.0 GB, with a total storage capacity of 32 GB (internal 326

storage). The third phone was Huawei Y9s, model STK-LX3, Android 10 version, RAM 6.0 327

GB, and a total storage capacity of 128 GB. 328

The X, Y, and Z-axis readings were taken at a sampling rate of 100 Hz for accuracy, 329

although previous studies have shown that 50 Hz is sufficient [58][59]. 330

4.5. Route video 331

We recorded the entire route on video with a camera aiming at the front of the vehicle 332

and the car’s speedometer so it could be observed, for example, if the driver braked 333

abruptly or accelerated too much when starting the car. The purpose of recording the route 334

was so that experts could evaluate the driving by observation as a means of validation (see 335

Figure 8). 336

Figure 8. Road way and speed video.
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4.6. Questionnaires 337

We applied two questionnaires to each driver; the first was the DDDI, and the second 338

was the Marlowe-Crowne Social Desirability Scale (M-C SDS). Participants answered both 339

questionnaires only once before or after the driving test. 340

The DDDI questionnaire is an instrument which assesses dangerous driving and 341

consists in its original version of 28 items grouped into three subscales, which measure 342

negative cognitive/emotional, aggressive, and risky driving (examples: I drive when I am 343

angry or upset; I will weave in and out of slower traffic; I make rude gestures). Each item 344

is in the form of a statement which is answered with a Likert-type scale, ranging from (0) 345

never, (1) almost never, (2) sometimes, (3) almost always, and (4) always. 346

The M-C SDS is a self-report questionnaire that assesses whether respondents are 347

concerned about social approval. The questionnaire measures the social desirability bias 348

that may be contained in survey responses and represents a common bias affecting research 349

[60]. 350

The MC-SDS consists of 33 items, 18 of which (direct items) reflect socially desirable 351

but infrequent behaviors and traits (e.g., I never hesitate to go out of my way to help 352

someone in trouble), while the remaining 15 items (inverse items) reflect undesirable but 353

widespread behaviors and traits (e.g., I like to gossip at times). 354

5. Results 355

This section presents the results for the three phases of the model, Data Collection 356

Stage, Data Processing Stage, and Data Evaluation Stage. 357

5.1. Data Collection Stage 358

5.1.1. Sensors’ readings 359

In the tests conducted during the route, we gathered data from the accelerometer and 360

gyroscope sensors. The number of records ranged between 53,000 and 111,000 for each 361

user. The records variation was due to the time spent for the ride depending on traffic 362

and driving style. The selected features obtained with the accelerometer were RMS of the 363

Y-axis (AccY-RMS) and RMS of the vector sum of the axes (Acc-RMS); from the gyroscope, 364

we chose the maximum peak of the vector sum of the axes (Gyr-Pmax), and finally, the 365

maximum velocity (Max speed) was considered (see Table 2). 366

Table 2. Selected features from Sensors.

Driver AccY-RMS Acc-RMS Max speed Gyr-Pmax Output

d1 2.4756 0.6586 52 0.5379 0.4500
d2 2.4155 0.6636 50 0.6011 0.6311
d3 2.4252 0.6248 60 0.5706 0.8084
d4 2.5366 0.8762 60 0.5497 0.8125
d5 2.3200 0.6100 69 0.6800 0.8130
d6 2.4534 0.6802 63 0.6397 0.8125
d7 2.4490 0.6810 47 0.5806 0.5564
d8 2.4405 0.6162 46 0.5056 0.4340
d9 2.4369 0.6403 42 0.4529 0.2008

d10 2.4449 0.6558 52 0.4573 0.4500
d11 2.3472 0.6867 40 0.4710 0.1650
d12 2.3984 0.6639 40 0.4781 0.3140
d13 2.5007 0.6666 51 0.5176 0.4500
d14 2.3398 0.5848 40 0.5119 0.1588
d15 2.4224 0.7091 47 0.4739 0.3838
d16 2.5802 0.4413 48 0.5794 0.4242
d17 2.4036 0.7017 46 0.5110 0.3492
d18 2.4039 0.7397 58 0.5712 0.5708
d19 2.4890 0.5850 46 0.7970 0.6540
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5.1.2. Questionnaires application 367

In this same stage, we collected the subjective data using questionnaires which were 368

applied to the drivers before or after performing the vehicle driving test. The responses 369

varied according to the Likert scale for the DDDI questionnaire, with values ranging from 370

1 (“Never”) to 5 (“Always”). DDDI-based classification was considered ND for scores 371

between 28-56, MD for scores between 57-84, and VD for scores between 85-140 (see 372

Table 3). 373

Table 3. DDDI responses.

Driver AD NCED RD Score DDDI-based
classification

d1 10 23 19 52 ND
d2 27 36 47 110 VD
d3 9 18 17 44 ND
d4 9 13 12 34 ND
d5 9 14 14 37 ND
d6 14 30 25 69 MD
d7 7 16 14 37 ND
d8 7 11 12 30 ND
d9 7 18 15 40 ND

d10 7 20 18 45 ND
d11 8 17 15 40 ND
d12 9 16 14 39 ND
d13 7 23 17 47 ND
d14 8 16 16 40 ND
d15 11 15 14 40 ND
d16 19 28 19 66 MD
d17 12 11 15 38 ND
d18 26 37 45 108 VD
d19 7 11 12 30 ND

In the M-C SDS questionnaire, the user can answer the item with true or false and 374

obtain a score. The sum of the item scores results in a total score between 0 and 33. A 375

higher score indicates greater social desirability, which is understood as response bias or 376

personality trait (defensiveness). For scores between 0-16, social desirability was considered 377

Low, and between 17-33 as High (see Table 4). 378
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Table 4. M-C SDS responses.

Driver Score Social Desirability Level

d1 17 High
d2 17 High
d3 11 Low
d4 22 High
d5 16 Low
d6 16 Low
d7 31 High
d8 16 Low
d9 25 High

d10 27 High
d11 16 Low
d12 19 High
d13 22 High
d14 29 High
d15 23 High
d16 23 High
d17 17 High
d18 4 Low
d19 29 High

5.1.3. Expert’s interview 379

We conducted a meeting with three experts in mobility to collect opinions on the 380

importance of each dimension from DDDI. Then, we averaged the views and used them in 381

the Data Processing Stage. 382

5.2. Data Processing Stage 383

5.2.1. Results obtained with sensors. 384

The variables AccY-RMS, Acc-RMS, Gyr-Pmax, and Max-speed fed the OFS subsystem. 385

From 81 applied rules, sensor data-based categorization of dangerous vehicular driving 386

was obtained. The results are as shown in Figure 9. 387

Figure 9. Objective Fuzzy System (OFS) results.

5.2.2. AHP 388

In AHP, we set the evaluation of dangerous driving as the objective, and we considered 389

the DDDI dimensions as criteria to generate the pairwise matrix (see Figure 10). Then, 390

the mobility experts assigned the level of importance of each dimension concerning the 391

others, using Saaty’s comparison scale [35]. The generated matrix can be seen in Table 5. 392
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Finally, we calculated the overall priorities or weights of the criteria (see Table 6) using the 393

approximate method due to its simplicity [61]. 394

Figure 10. Two hierarchy levels.

Table 5. DDDI pairwise matrix.

DDA AD NCED RD

AD 1 7 3
NCED 0.143 1 0.333

RD 0.333 3 1

Table 6. Subscales’ priorities.

DDA AD NCED RD Priorities

AD 0.678 0.636 0.692 0.669
NCED 0.097 0.091 0.077 0.088

RD 0.226 0.273 0.231 0.243

With the priorities, we calculated the weights for each driver’s test (see Table 7). 395

Table 7. DDDI responses weighted.

Driver Weighted

d1 13.331
d2 32.652
d3 11.736
d4 10.081
d5 10.655
d6 18.081
d7 9.493
d8 8.567
d9 9.912
d10 10.817
d11 10.493
d12 10.831
d13 10.838
d14 10.648
d15 12.081
d16 19.792
d17 12.641
d18 31.585
d19 8.567
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To avoid incosistencies we checked the consistency ratio defined as CR, which is 396

shown in Equation (9). 397

CR =
CI
RI

(9)

where CI is consistency index and RI is the consistency index of a random-like matrix. 398

CI is calculated as shown in Equation (10). 399

CI =
λmax − n

n − 1
(10)

where n is the number of compared elements. 400

(λmax) is calculated as shown in Equation (11). 401

λmax =
∑(WeightedSum)(Priority)

n
(11)

Considering the values n=3 (dimensions), λmax = 3.008 and RI = 0.58 (according to 402

Table 8, for n=3, RI = 0.58), we obtained the value of the Consistency Ratio [61][39]. 403

Table 8. Consistency indices for random matrices.

n 1 2 3 4 5 6 7 8

RI 0.00 0.00 0.58 0.9 1.12 1.24 1.32 1.41

The Consistency Ratio value was 0.007 (0.004/0.58), and since it is less than 0.10, the 404

pairwise matrix is reasonably consistent [61]. 405

5.2.3. Subjective Fuzzy System results. 406

The results obtained from evaluating the questionnaire with the Subjective Fuzzy 407

System (SFS) are presented in Figure 11. 408

Figure 11. Subjective Fuzzy System (SFS) results.

5.3. Data Evaluation Stage 409

In this stage, we implemented a Combined Fuzzy System (CFS), taking the results of 410

the OFS and SFS systems as input variables. We used the result of the M-C SDS question- 411

naire in the inference engine to determine the weights of the objective variable, derived from 412

OFS, and of the subjective variable from SFS. We combined both variable types in this CFS, 413

and the driver’s social desirability was the third crucial variable for final categorization. 414

The results are shown in Table 9 and illustrated graphically in Figure 12. 415
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Table 9. Combined Fuzzy System (CFS) results.

Driver M-C SDS CFS Result CFS Class

d1 0.5151 0.3960 MD
d2 0.5151 0.8282 VD
d3 0.3333 0.5000 MD
d4 0.6666 0.8470 VD
d5 0.4848 0.3479 MD
d6 0.4848 0.6038 MD
d7 0.9393 0.5199 MD
d8 0.4848 0.3479 MD
d9 0.7575 0.0153 ND

d10 0.8181 0.5000 MD
d11 0.4848 0.1702 ND
d12 0.5757 0.4094 MD
d13 0.6666 0.5000 MD
d14 0.8787 0.1530 ND
d15 0.6969 0.4835 MD
d16 0.6969 0.5000 MD
d17 0.5151 0.3960 MD
d18 0.1212 0.8417 VD
d19 0.8787 0.5000 MD

ND

MD

VD

Figure 12. Combined Fuzzy System (CFS) results.

5.4. Validation 416

Three mobility experts validated the efficiency of our proposal, the Combined Fuzzy 417

System (CFS). For this purpose, the experts viewed and analyzed the video of the test 418

drive for each driver, and we provided them with the results of the DDDI and M-C SDS 419

questionnaires answered by the driver. Based on the above, the experts consensually 420

classified each driver’s level of danger (ND, MD, and VD). Finally, we present the result of 421

the validation in Figure 13. 422

From the results obtained and further calculations, we have a 73.68% of coincidence 423

in classification, respect to experts opinion, when only considering the use of sensor data 424

to feed the fuzzy system (OFS). On the other hand, if the fuzzy system is fed only with 425

the answers from the questionnaires (SFS), the coincidence achieved is only 26.31%, which 426

we attribute to the high social desirability of most drivers evaluated and which is in line 427

with the results shown in Table 4. However, an agreement of 84.21% was achieved from the 428

combined fuzzy system (CFS), concerning the experts’ evaluation. This demonstrates the 429

benefits of the multidisciplinary approach to achieve a classification more in line with the 430

experts’ evaluation. 431
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ND

MD

VD

Figure 13. Comparisons against Expert opinion.

Figure 14 shows the confusion matrix between the true classification from expert 432

opinion and the classification predicted by our proposed approach. Statistical metrics 433

(sensitivity, balanced accuracy) that are appropriate for unbalanced multiclass classifications 434

are also shown. The latter also confirms the efficiency of the presented proposal. Although 435

the sensitivity value obtained to correctly classify VD driving represents a major drawback. 436

Figure 14. Confusion matrix, sensitivity and balanced accuracy.

The results obtained reflect the knowledge contained in the theory. That is, the sensors 437

used (accelerometer and gyroscope) were able to measure vehicle movements, although 438

in some cases the values obtained were erroneous. Regarding the questionnaires used to 439

obtain subjective information from the drivers, although the drivers freely expressed their 440

opinions, the results were biased by the social desirability present in several cases. The 441

fuzzy systems, on the other hand, modeled the ambiguities of the variables involved and 442

performed a mostly accurate classification, after defuzzification. 443
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6. Discussion 444

The most significant achievement of our proposed approach is to have demonstrated 445

that a multidisciplinary-based fuzzy system can evaluate dangerous driving, using the 446

strengths of each discipline and compensating the limitations of the disciplines involved. 447

The proposed three-phase fuzzy system includes input variables and inference rules, objec- 448

tive values from electronic engineering (sensors), and subjective values from behavioral 449

science (answers to questionnaires). Both types of values, were processed computationally 450

to generate categorization values with an efficiency higher than 84%. This efficiency is 451

outstanding as it is an experiment conducted in a real scenario with no control over traffic. 452

Additionally, the drivers who performed the driving sessions had complete freedom of 453

style without predefined events. To our knowledge, this is the first approach that combines 454

the selected disciplines to evaluate dangerous driving and allows an evaluation from a 455

holistic approach. 456

The efficiency of the CFS was validated with expert opinions from observing videos of 457

experiments, and from the results of questionnaires. Expert opinions have been used to 458

validate experiments in real scenarios [62]. 459

Our findings are well substantiated by similar studies divided into two major groups. 460

The first group of studies employed artificial intelligence and electronic devices with em- 461

bedded sensors, having the disadvantages of failures and errors in readings [63], predefined 462

and controlled events, and simulated scenarios, where sensors were used. In the second 463

group are the technological studies (sensors and fuzzy systems), which are supported by 464

self-reports, although the latter are not combined within the fuzzy system, they are only 465

used to categorize groups or to validate the results. 466

An example of the first group of studies is an investigation in which an application 467

based on smartphone sensors and supported by a fuzzy system was used to classify 468

aggressive driving in five groups. To validate their results, users were asked to evaluate 469

themselves by answering a question, where they had to indicate how they considered their 470

aggressive driving had been, on a scale of one to five. Only in 60% of the cases there was a 471

coincidence in the users’ self-assessment and fuzzy system classification [10]. 472

There was another study that used supervised machine learning and fuzzy logic to 473

detect aggressive events such as aggressive braking, aggressive acceleration, aggressive 474

turning, aggressive lane changes and non-aggressive events. In this work, the events 475

were controlled, since they were already defined, and an efficiency between 98 and 99% 476

was achieved. However, the drivers were not free to drive as they would have in a real 477

environment [59]. 478

Another work obtained a lower efficiency than our proposed approach, using a 479

smartphone and neural networks, achieving 77% efficiency in the classification of driving 480

styles such as aggressive, normal and quiet [19]. Unlike our approach, this one used an 481

OBD-II device for data capture, which substantially increased the equipment costs because 482

it was an additional piece of equipment to the sensors embedded in the smartphone (GPS 483

and accelerometer in this case). 484

In the second group of studies supported by self-reports, there is an approach [64] that 485

proposes a neuro-fuzzy system to classify driving behaviors taking into account similarities 486

with fuzzy patterns of driving maneuvers. They recognized driving maneuvers including 487

lane changes, left or right turns and U-turns. The validation of that approach was performed 488

with the Driver’s Angry Score (DAS) questionnaire, obtaining an efficiency of 87% [64]. 489

Another study, which also employed self-reports, analyzed driver behavior using 490

a hybrid of Discrete Wavelet Transformation (DWT), Adaptive Neuro Fuzzy Inference 491

System (ANFIS) and smartphone sensors (accelerometer, gyroscope and magnetometer). 492

The categorization included the following behaviors: safe, semi aggressive, and aggressive. 493

These three classes of behaviors have been extracted from the Driver Anger Scale (DAS) 494

self-reported questionnaire. The DWT was used to assess features, validating the results 495

with the DAS questionnaire and obtaining an efficiency of 84.2% on average [65]. In this 496

case, their efficiency results are similar to the ones we obtained. 497
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Our approach is in line with other studies where it is established that hybrid solutions 498

that combine data sources produce more reliable and accurate results, particularly in 499

assessments related to driving performance [66][62]. 500

In the specific case of the present research, the fact that the tests were personalized 501

allowed us to have adequate results regardless of the number of users. Personalized results 502

were sought, as is the case with the questionnaire, where personality is reflected. No 503

attempt was made to recognize a generalized pattern of a broad population. 504

There were some limitations during the driving tests; for example, because the exper- 505

iment was in a real scenario, it was complex to ensure that traffic conditions were very 506

similar for each test, despite the fact that the same day and time was established. Similarly, 507

we could not capture some situations with the implemented sensor design, i.e., additional 508

devices (weather sensors, proximity sensors, and cameras for a 360-degree approach) would 509

be needed to capture the entire driving environment. 510

In addition, a limitation of questionnaires is the known social desirability that may 511

arise when drivers provide answers according to current societal norms and values [67]. 512

As stated in [68], self-report measurements of driving behavior, like all self-report mea- 513

surements, are subject to respondent recall error as well as information validity (including 514

social desirability bias). Additionally, employing questionnaires where responses are based 515

on past behavior may be obsolete, as certain personal conditions of the driver may change 516

from day to day [69]. Nevertheless, another situation that could have arisen during the 517

driving tests, which is inherent to human beings, is the drivers’ attitude change when they 518

know they are being evaluated [70]. 519

During the development of the research we encountered some difficulties. For exam- 520

ple, properly holding the smartphones to capture the movements, i.e., that the captured 521

movements were not the result of improper holding. Additionally, during sensor measure- 522

ments, in at least two cases, we had erroneous readings. 523

The proposed approach is innovative because it addresses the need to evaluate danger- 524

ous driving from a multidisciplinary perspective. Multidisciplinarity is relevant for solving 525

complex social problems [71] [72]. The fuzzy system presented is an efficient alternative for 526

decision-making that can help to increase safety in intelligent transportation systems. 527

7. Conclusions 528

The proposed system represents an advancement in the current state of knowledge 529

since it addresses the need to evaluate vehicular driving from a multidisciplinary approach. 530

The materials and methods used are of proven reliability and efficiency in each discipline 531

involved. Furthermore, we combine the methods within a fuzzy system that allows 532

handling the inherent vagueness when the criteria’ values are not precise. Additionally, 533

subjective variables contribute to evaluating drivers in a personalized way. 534

The system’s categorization is the result of considering both objective (sensors) and 535

subjective (questionnaires) aspects of driving behavior, thus considering the diversity of 536

factors that intervene during the driving process. Therefore, we fulfill the objective of 537

having a system that combines objective and subjective variables, and we address the 538

absence of a combined system for the evaluation of dangerous driving. 539

Our model aims to take advantage of the benefits of each tool, compensating the 540

disadvantages and minimizing biases, in order to increase efficiency and reliability when 541

assessing dangerous driving. We found that the combination of disciplines to assess driving 542

behavior makes the accuracy of the classification closer to the assessment made by experts 543

than if the behavior were assessed only objectively or subjectively. Some possible uses of 544

the proposed approach are: as a tool for driving personnel selection, driver assistant, and 545

monitoring of driving styles and behaviors. 546

Future work on this approach may include increasing the variety of sensors to capture 547

driving conditions, such as more video cameras, weather sensors, proximity sensors, as well 548

as physiological information (electrocardiogram, electro dermal activity, and respiration), 549

and facial recognition sensors (for fatigue and distraction detection). The inclusion of more 550



Version May 13, 2022 submitted to Sensors 24 of 27

users and experiments to strengthen the validity of the proposal is convenient. Related to 551

fuzzy logic theory and with the purpose of improving the proposal, we can consider the 552

use of type 2 fuzzy systems for uncertainty management, as well as type 3 fuzzy systems 553

[73]. Another improvement opportunity for this approach is automatic optimal tuning 554

using metaheuristic optimization algorithms [49]. 555
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