1,116 research outputs found

    On the Maximum Crossing Number

    Full text link
    Research about crossings is typically about minimization. In this paper, we consider \emph{maximizing} the number of crossings over all possible ways to draw a given graph in the plane. Alpert et al. [Electron. J. Combin., 2009] conjectured that any graph has a \emph{convex} straight-line drawing, e.g., a drawing with vertices in convex position, that maximizes the number of edge crossings. We disprove this conjecture by constructing a planar graph on twelve vertices that allows a non-convex drawing with more crossings than any convex one. Bald et al. [Proc. COCOON, 2016] showed that it is NP-hard to compute the maximum number of crossings of a geometric graph and that the weighted geometric case is NP-hard to approximate. We strengthen these results by showing hardness of approximation even for the unweighted geometric case and prove that the unweighted topological case is NP-hard.Comment: 16 pages, 5 figure

    Dimers and cluster integrable systems

    Get PDF
    We show that the dimer model on a bipartite graph on a torus gives rise to a quantum integrable system of special type - a cluster integrable system. The phase space of the classical system contains, as an open dense subset, the moduli space of line bundles with connections on the graph. The sum of Hamiltonians is essentially the partition function of the dimer model. Any graph on a torus gives rise to a bipartite graph on the torus. We show that the phase space of the latter has a Lagrangian subvariety. We identify it with the space parametrizing resistor networks on the original graph.We construct several discrete quantum integrable systems.Comment: This is an updated version, 75 pages, which will appear in Ann. Sci. EN

    Witness (Delaunay) Graphs

    Get PDF
    Proximity graphs are used in several areas in which a neighborliness relationship for input data sets is a useful tool in their analysis, and have also received substantial attention from the graph drawing community, as they are a natural way of implicitly representing graphs. However, as a tool for graph representation, proximity graphs have some limitations that may be overcome with suitable generalizations. We introduce a generalization, witness graphs, that encompasses both the goal of more power and flexibility for graph drawing issues and a wider spectrum for neighborhood analysis. We study in detail two concrete examples, both related to Delaunay graphs, and consider as well some problems on stabbing geometric objects and point set discrimination, that can be naturally described in terms of witness graphs.Comment: 27 pages. JCCGG 200

    Decomposition of multiple packings with subquadratic union complexity

    Get PDF
    Suppose kk is a positive integer and X\mathcal{X} is a kk-fold packing of the plane by infinitely many arc-connected compact sets, which means that every point of the plane belongs to at most kk sets. Suppose there is a function f(n)=o(n2)f(n)=o(n^2) with the property that any nn members of X\mathcal{X} determine at most f(n)f(n) holes, which means that the complement of their union has at most f(n)f(n) bounded connected components. We use tools from extremal graph theory and the topological Helly theorem to prove that X\mathcal{X} can be decomposed into at most pp (11-fold) packings, where pp is a constant depending only on kk and ff.Comment: Small generalization of the main result, improvements in the proofs, minor correction

    The State-of-the-Art of Set Visualization

    Get PDF
    Sets comprise a generic data model that has been used in a variety of data analysis problems. Such problems involve analysing and visualizing set relations between multiple sets defined over the same collection of elements. However, visualizing sets is a non-trivial problem due to the large number of possible relations between them. We provide a systematic overview of state-of-the-art techniques for visualizing different kinds of set relations. We classify these techniques into six main categories according to the visual representations they use and the tasks they support. We compare the categories to provide guidance for choosing an appropriate technique for a given problem. Finally, we identify challenges in this area that need further research and propose possible directions to address these challenges. Further resources on set visualization are available at http://www.setviz.net
    corecore