75 research outputs found

    On the Throughput of Large-but-Finite MIMO Networks using Schedulers

    Full text link
    This paper studies the sum throughput of the {multi-user} multiple-input-single-output (MISO) networks in the cases with large but finite number of transmit antennas and users. Considering continuous and bursty communication scenarios with different users' data request probabilities, we derive quasi-closed-form expressions for the maximum achievable throughput of the networks using optimal schedulers. The results are obtained in various cases with different levels of interference cancellation. Also, we develop an efficient scheduling scheme using genetic algorithms (GAs), and evaluate the effect of different parameters, such as channel/precoding models, number of antennas/users, scheduling costs and power amplifiers' efficiency, on the system performance. Finally, we use the recent results on the achievable rates of finite block-length codes to analyze the system performance in the cases with short packets. As demonstrated, the proposed GA-based scheduler reaches (almost) the same throughput as in the exhaustive search-based optimal scheduler, with substantially less implementation complexity. Moreover, the power amplifiers' inefficiency and the scheduling delay affect the performance of the scheduling-based systems significantly

    Multi-Antenna Techniques for Next Generation Cellular Communications

    Get PDF
    Future cellular communications are expected to offer substantial improvements for the pre- existing mobile services with higher data rates and lower latency as well as pioneer new types of applications that must comply with strict demands from a wider range of user types. All of these tasks require utmost efficiency in the use of spectral resources. Deploying multiple antennas introduces an additional signal dimension to wireless data transmissions, which provides a significant alternative solution against the plateauing capacity issue of the limited available spectrum. Multi-antenna techniques and the associated key enabling technologies possess unquestionable potential to play a key role in the evolution of next generation cellular systems. Spectral efficiency can be improved on downlink by concurrently serving multiple users with high-rate data connections on shared resources. In this thesis optimized multi-user multi-input multi-output (MIMO) transmissions are investigated on downlink from both filter design and resource allocation/assignment points of view. Regarding filter design, a joint baseband processing method is proposed specifically for high signal-to-noise ratio (SNR) conditions, where the necessary signaling overhead can be compensated for. Regarding resource scheduling, greedy- and genetic-based algorithms are proposed that demand lower complexity with large number of resource blocks relative to prior implementations. Channel estimation techniques are investigated for massive MIMO technology. In case of channel reciprocity, this thesis proposes an overhead reduction scheme for the signaling of user channel state information (CSI) feedback during a relative antenna calibration. In addition, a multi-cell coordination method is proposed for subspace-based blind estimators on uplink, which can be implicitly translated to downlink CSI in the presence of ideal reciprocity. Regarding non-reciprocal channels, a novel estimation technique is proposed based on reconstructing full downlink CSI from a select number of dominant propagation paths. The proposed method offers drastic compressions in user feedback reports and requires much simpler downlink training processes. Full-duplex technology can provide up to twice the spectral efficiency of conventional resource divisions. This thesis considers a full-duplex two-hop link with a MIMO relay and investigates mitigation techniques against the inherent loop-interference. Spatial-domain suppression schemes are developed for the optimization of full-duplex MIMO relaying in a coverage extension scenario on downlink. The proposed methods are demonstrated to generate data rates that closely approximate their global bounds

    Alocação de recursos para sistemas móveis multi-utilizador e multi-antena

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaThe thesis addresses the sum rate or spectral e ciency maximization problem in cellular systems with two main components, multiple antennas and multiple users. In order to solve such a problem, several resource allocation techniques are studied and developed for di erent cellular scenarios. The antennas at the transmitters are arranged in several con gurations, i.e., co-located or distributed and for such arrangements di erent levels of coordination and cooperation between transmitters are investigated. Accounting for more receiver antennas than transmitter antennas implies that system optimization must select the best transmitter-receiver match (combinatorial problem) which can be solved with di erent degrees of cooperation between transmitters. The system models studied can be classi ed either as interference limited or as power limited systems. In interference limited systems the resource allocation is carried out independently by each transmitter which yield power leakage to unintended receivers. For this kind of systems, the access network using distributed antenna architectures is examined. The properties of distributed antenna in cellular systems as well as the gains they provide in terms of frequency reuse and throughput are assessed. Accounting for multiple user scenarios, several techniques and algorithms for transmitter-receiver assignment, power allocation, and rate allocation are developed in order to maximize the spectral e ciency. In power limited systems the transmitters jointly allocate resources among transmit and receive antennas. The transmitters are equipped with multiple antennas and signal processing is implemented in order to suppress inter-user interference. Single-cell and multi-cell systems are studied and the problem of sum rate maximization is tackled by decoupling the user selection and the resource allocation (power and precoding) processes. The user selection is a function of the type of precoding technique that is implemented and the level of information that can be processed at the transmitter. The developed user selection algorithms exploit information provided by novel channel metrics which establish the spatial compatibility between users. Each metric provides a di erent trade-o between the accuracy to identify compatible users, and the complexity required to compute it. Numerical simulations are used to assess the performance of the proposed user selection techniques (metrics and algorithms) whose performance are compared to state-of-the-art techniques.Esta tese descreve o problema da maximização da taxa de transmissão ou e ciência espectral em sistemas moveis tomando em atenção duas características fundamentais destes, o número de antenas e utilizadores. A fim de resolver este tipo de problema, várias técnicas de alocação de recursos foram estudadas e propostas para diferentes cenários. As antenas nos transmissores estão organizadas em diferentes configurações, podendo ser localizadas ou distribuídas e para estes esquemas, diferentes níveis de cooperação e coordenação entre transmissores foram investigados. Assumindo mais antenas receptoras do que antenas transmissoras, implica que a otimização do sistema seleccione as melhores combinações de transmissor-receptor (problema combinatório), o que pode ser concretizado usando diferentes graus de cooperação entre transmissores. Os modelos de sistemas estudados, podem ser classificados como sistemas limitados por interferência ou sistemas limitados por potência. Em sistemas limitados por interferência a alocação de recursos e feita independentemente para cada transmissor o que resulta em perda de energia para os receptores não tomados em consideração. Para este tipo de sistemas, e considerado o caso em que a rede de acesso e constituída por antenas distribuídas. Os ganhos obtidos devido ao uso de antenas distribuídas, quer em termos do planeamento de frequências quer da maximização da taxa de transmissão são considerados. Assumindo esquemas multi-utilizador, várias técnicas e algoritmos de transmissão-recepção, alocação de potência e de taxa de transmissão foram desenvolvidos para maximizar a e ciência espectral. Para sistemas limitados em potência os transmissores alocam os recursos quer de antenas de transmissão quer de recepção conjuntamente. Os transmissores estão equipados com várias antenas e o processamento de sinal e implementado de modo a eliminar a interferência entre utilizadores. Sistemas de célula única e de múltiplas células foram estudados. Para estes foi considerado o problema da maximização de taxa de transmissão o qual foi resolvido heuristicamente, através do desacoplamento do problema em duas partes, uma onde se efectua a seleção de utilizadores e outra onde se considera a alocação de recursos. A seleção de utilizadores e feita em função do tipo de técnicas de pré-codificação implementadas e do nível de informação que o transmissor possui. Os algoritmos de seleção de utilizadores desenvolvidos verificam a compatibilidade espacial entre utilizadores, usando para tal métricas propostas. Cada uma das métricas oferece um trade-off diferente entre a precisão para identificar um utilizador compatível e a complexidade necessária para a implementar. Foram usadas simulações numéricas para avaliar a performance das técnicas de seleção de utilizadores propostas (métricas e algoritmos), performance que foi comparada com as técnicas mais inovadoras

    Cooperative Transmission for Downlink Distributed Antenna in Time Division Duplex System

    Get PDF
    Multi-user distributed antenna system (MU-DAS) systems play the essential role in improving throughput performance in wireless communications. This improvement can be achieved by exploiting the spatial domain and without the need of additional power and bandwidth. In this thesis, three main issues which are of importance to the data rate transmission have been investigated. Firstly, user clustering in MU-DAS downlink systems has been considered, where this technique can be effciently used to reduce the complexity and cost caused by radio frequency chains, associated with antennas while keeping most of the diversity advantages of the system. The proposed user clustering algorithm which can select an optimal set of antennas for transmission. The capacity achieved by the proposed algorithm is almost same as the capacity of the optimum search method, with much lower complexity. Secondly, interference alignment in MU-DAS downlink systems has been studied. The inter-cluster interference is uncoordinated and limits the system performance. The inter-cluster interference should be eliminated or minimized carefully. The interference alignment is proposed to consolidate the strong inter-cluster interference into smaller dimensions of signal space at each user and use the remaining dimensions to transmit the desired signals without any interference. The performance of single cluster is better than the proposed algorithm due to the absence of intercluster interference in the single cluster. The numerical shows that the proposed algorithm is more suitable in multi-cell DAS environment due to the presence of inter-cell interference. Finally, the impact of different user mobility on TDD downlink MUDAS has been studied. The downlink data transmission in time division duplex (TDD) systems is optimized according to the channel state information (CSI) which is obtained at the uplink time slot. However, the actual channel at downlink time slot may be different from the estimated channel due to channel variation in mobility environment. Based on mobility state information (MSI), an autocorrelation based feedback interval adjustment technique is proposed. The proposed technique adjusts the CSI update interval and mitigates the performance degradation imposed by the user mobility and the transmission delay. Cooperative clusters are formed to maximize sum rate. In order to reduce the computational complexity, a channel gain based antenna selection and signal-to-interference plus noise ratio (SINR) based user clustering are developed. A downlink ergodic capacity is derived in single user clustering. The derived analytical expressions of the downlink ergodic capacity are verified by system simulations. Numerical results show that the proposed scheme can improved sum rate over the non cooperative system and no MSI knowledge. The proposed technique has good performance for a wide range of user speed and suitable for future wireless communications systems

    Energy-aware resource allocation in next generation wireless networks : application in large-scale MIMO Systems

    Get PDF
    In this thesis, we investigate the resource allocation problem for wireless networks that incorporate large-scale multiple-input multiple-output (MIMO) systems. These systems are considered as key technologies for future 5G wireless networks and are based on using few hundreds of antennas simultaneously to serve tens of users in the same time-frequency resource. The gains obtained by large-scale MIMO systems cannot be fully exploited without adequate resource allocation strategies. Hence, the aim of this thesis is to develop energy-aware resource allocation solutions for large-scale MIMO systems that take into consideration network power cost. Firstly, this thesis investigates the downlink of a base station equipped with large-scale MIMO system while taking into account a non-negligible transmit circuit power consumption. This consumption involves that activating all RF chains does not always necessarily achieve the maximum sum-rate. Thus, we derive the optimal number of activated RF chains. In addition, efficient antenna selection, user scheduling and power allocation algorithms in term of instantaneous sum-rate are proposed and compared. Also, fairness is investigated by considering equal receive power among users. Secondly, this thesis investigates a large-scale MIMO system that incorporates energy harvesting that is a promising key technology for greening future wireless networks since it reduces network operation costs and carbon footprints. Hence, we consider distributed large-scale MIMO systems made up of a set of remote radio heads (RRHs), each of which is powered by both an independent energy harvesting source and the grid. The grid energy source allows to compensate for the randomness and intermittency of the harvested energy. Optimal on-line and off-line energy management strategies are developed. In addition, on-line energy management algorithm based on energy prediction is devised. The feasibility problem is addressed by proposing an efficient link removal algorithm and for better energy efficiency, RRH on/off operation is investigated. Thirdly, wireless backhauling was proposed as an alternative solution that enable low-cost connection between the small base stations and the macro base station in heterogeneous networks (HetNets). The coexistence of massive MIMO, HetNets and wireless backhauling is a promising research direction since massive MIMO is a suitable solution to enable wireless backhauling. Thus, we propose a new transmission technique that is able to efficiently manage the interference in heterogeneous networks with massive MIMO wireless backhaul. The optimal time splitting parameter and the allocated transmit power are derived. The proposed transmission technique is shown to be more efficient in terms of transmit power consumption than the conventional reverse time division duplex with bandwidth splitting. In this thesis, we developed efficient resource allocation solutions related to system power for wireless networks that incorporate large-scale MIMO systems under different assumptions and network architectures. The results in this thesis can be expanded by investigating the research problems given at the end of the dissertation

    Adaptive Communications for Next Generation Broadband Wireless Access Systems

    Get PDF
    Un dels aspectes claus en el disseny i gestió de les xarxes sense fils d'accés de banda ampla és l'ús eficient dels recursos radio. Des del punt de vista de l'operador, l'ample de banda és un bé escàs i preuat que s´ha d'explotar i gestionar de la forma més eficient possible tot garantint la qualitat del servei que es vol proporcionar. Per altra banda, des del punt de vista del usuari, la qualitat del servei ofert ha de ser comparable al de les xarxes fixes, requerint així un baix retard i una baixa pèrdua de paquets per cadascun dels fluxos de dades entre la xarxa i l'usuari. Durant els darrers anys s´han desenvolupat nombroses tècniques i algoritmes amb l'objectiu d'incrementar l'eficiència espectral. Entre aquestes tècniques destaca l'ús de múltiples antenes al transmissor i al receptor amb l'objectiu de transmetre diferents fluxos de dades simultaneament sense necessitat d'augmentar l'ample de banda. Per altra banda, la optimizació conjunta de la capa d'accés al medi i la capa física (fent ús de l'estat del canal per tal de gestionar de manera optima els recursos) també permet incrementar sensiblement l'eficiència espectral del sistema.L'objectiu d'aquesta tesi és l'estudi i desenvolupament de noves tècniques d'adaptació de l'enllaç i gestió dels recursos ràdio aplicades sobre sistemes d'accés ràdio de propera generació (Beyond 3G). Els estudis realitzats parteixen de la premissa que el transmisor coneix (parcialment) l'estat del canal i que la transmissió es realitza fent servir un esquema multiportadora amb múltiples antenes al transmisor i al receptor. En aquesta tesi es presenten dues línies d'investigació, la primera per casos d'una sola antenna a cada banda de l'enllaç, i la segona en cas de múltiples antenes. En el cas d'una sola antena al transmissor i al receptor, un nou esquema d'assignació de recursos ràdio i priorització dels paquets (scheduling) és proposat i analitzat integrant totes dues funcions sobre una mateixa entitat (cross-layer). L'esquema proposat té com a principal característica la seva baixa complexitat i que permet operar amb transmissions multimedia. Alhora, posteriors millores realitzades per l'autor sobre l'esquema proposat han permès també reduir els requeriments de senyalització i combinar de forma óptima usuaris d'alta i baixa mobilitat sobre el mateix accés ràdio, millorant encara més l'eficiència espectral del sistema. En cas d'enllaços amb múltiples antenes es proposa un nou esquema que combina la selecció del conjunt optim d'antenes transmissores amb la selecció de la codificació espai- (frequència-) temps. Finalment es donen una sèrie de recomanacions per tal de combinar totes dues línies d'investigació, així con un estat de l'art de les tècniques proposades per altres autors que combinen en part la gestió dels recursos ràdio i els esquemes de transmissió amb múltiples antenes.Uno de los aspectos claves en el diseño y gestión de las redes inalámbricas de banda ancha es el uso eficiente de los recursos radio. Desde el punto de vista del operador, el ancho de banda es un bien escaso y valioso que se debe explotar y gestionar de la forma más eficiente posible sin afectar a la calidad del servicio ofrecido. Por otro lado, desde el punto de vista del usuario, la calidad del servicio ha de ser comparable al ofrecido por las redes fijas, requiriendo así un bajo retardo y una baja tasa de perdida de paquetes para cada uno de los flujos de datos entre la red y el usuario. Durante los últimos años el número de técnicas y algoritmos que tratan de incrementar la eficiencia espectral en dichas redes es bastante amplio. Entre estas técnicas destaca el uso de múltiples antenas en el transmisor y en el receptor con el objetivo de poder transmitir simultáneamente diferentes flujos de datos sin necesidad de incrementar el ancho de banda. Por otro lado, la optimización conjunta de la capa de acceso al medio y la capa física (utilizando información de estado del canal para gestionar de manera óptima los recursos) también permite incrementar sensiblemente la eficiencia espectral del sistema.El objetivo de esta tesis es el estudio y desarrollo de nuevas técnicas de adaptación del enlace y la gestión de los recursos radio, y su posterior aplicación sobre los sistemas de acceso radio de próxima generación (Beyond 3G). Los estudios realizados parten de la premisa de que el transmisor conoce (parcialmente) el estado del canal a la vez que se considera que la transmisión se realiza sobre un sistema de transmisión multiportadora con múltiple antenas en el transmisor y el receptor. La tesis se centra sobre dos líneas de investigación, la primera para casos de una única antena en cada lado del enlace, y la segunda en caso de múltiples antenas en cada lado. Para el caso de una única antena en el transmisor y en el receptor, se ha desarrollado un nuevo esquema de asignación de los recursos radio así como de priorización de los paquetes de datos (scheduling) integrando ambas funciones sobre una misma entidad (cross-layer). El esquema propuesto tiene como principal característica su bajo coste computacional a la vez que se puede aplicar en caso de transmisiones multimedia. Posteriores mejoras realizadas por el autor sobre el esquema propuesto han permitido también reducir los requisitos de señalización así como combinar de forma óptima usuarios de alta y baja movilidad. Por otro lado, en caso de enlaces con múltiples antenas en transmisión y recepción, se presenta un nuevo esquema de adaptación en el cual se combina la selección de la(s) antena(s) transmisora(s) con la selección del esquema de codificación espacio-(frecuencia-) tiempo. Para finalizar, se dan una serie de recomendaciones con el objetivo de combinar ambas líneas de investigación, así como un estado del arte de las técnicas propuestas por otros autores que combinan en parte la gestión de los recursos radio y los esquemas de transmisión con múltiples antenas.In Broadband Wireless Access systems the efficient use of the resources is crucial from many points of views. From the operator point of view, the bandwidth is a scarce, valuable, and expensive resource which must be exploited in an efficient manner while the Quality of Service (QoS) provided to the users is guaranteed. On the other hand, a tight delay and link quality constraints are imposed on each data flow hence the user experiences the same quality as in fixed networks. During the last few years many techniques have been developed in order to increase the spectral efficiency and the throughput. Among them, the use of multiple antennas at the transmitter and the receiver (exploiting spatial multiplexing) with the joint optimization of the medium access control layer and the physical layer parameters.In this Ph.D. thesis, different adaptive techniques for B3G multicarrier wireless systems are developed and proposed focusing on the SS-MC-MA and the OFDM(A) (IEEE 802.16a/e/m standards) communication schemes. The research lines emphasize into the adaptation of the transmission having (Partial) knowledge of the Channel State Information for both; single antenna and multiple antenna links. For single antenna links, the implementation of a joint resource allocation and scheduling strategy by including adaptive modulation and coding is investigated. A low complexity resource allocation and scheduling algorithm is proposed with the objective to cope with real- and/or non-real- time requirements and constraints. A special attention is also devoted in reducing the required signalling. However, for multiple antenna links, the performance of a proposed adaptive transmit antenna selection scheme jointly with space-time block coding selection is investigated and compared with conventional structures. In this research line, mainly two optimizations criteria are proposed for spatial link adaptation, one based on the minimum error rate for fixed throughput, and the second focused on the maximisation of the rate for fixed error rate. Finally, some indications are given on how to include the spatial adaptation into the investigated and proposed resource allocation and scheduling process developed for single antenna transmission

    Operating multi-user transmission for 5G and beyond cellular systems

    Get PDF
    Every decade, a new generation of cellular networks is released to keep up with the ever-growing demand for data and use cases. Traditionally, cellular networks rely on partitioning radio resources into a set of physical resource blocks (PRBs). Each PRB is used by the base-station to transmit exclusively to one user, which is referred to as single-user transmission. Recently, multi-user transmission has been introduced to enable the base-station to simultaneously serve multiple users using the same PRB. While multi-user transmission can be much more efficient than its single-user counterpart, it is significantly more challenging to operate. Thus, in this thesis we study the operation, i.e., the Radio Resource Management (RRM), for two popular multi-user transmission technologies; namely, 1) Non-Orthogonal Multiple Access (NOMA) and 2) Multi-User Multiple-Input Multiple-Output (MU-MIMO). For NOMA RRM, we study a multi-cell, multi-carrier downlink system. First, we formulate and solve a centralized proportional fair scheduling genie problem that jointly performs user selection, power allocation and power distribution, and Modulation and Coding Scheme (MCS) selection. While such a centralized schedule is practically infeasible, it upper bounds the achievable performance. Then, we propose a simple static coordinated power allocation scheme across all cells for NOMA using a simple power map that is easily calibrated offline. We find that using a simple static coordinated power allocation scheme improves performance by 80% compared to equal power allocation. Finally, we focus on online network operation and study practical schedulers that perform user-selection, power distribution, and MCS selection. We propose a family of practical scheduling algorithms, each of them exhibiting a different trade-off between complexity (i.e., run-time) and performance. The one we selected sacrifices a maximum of 10% performance while reducing the computation time by a factor of 45 with respect to the optimal user scheduler. For MU-MIMO RRM, we focus on the study of the downlink of an OFDMA massive MU-MIMO single cell assuming ZFT (Zero Forcing Transmission) precoding. An offline study is initiated with the goal of finding the best achievable performance by jointly optimizing user-selection, power distribution and MCS selection. The best performance is analyzed by using both Branch-Reduce-and-Bound (BRB) global optimization technique for upper-bounding the achievable performance and a set of different greedy searches for lower bounding the achievable performance to find good feasible solutions. The results suggest that a specific search strategy referred to as greedy-down-all-the-way (GDAW) with full-drop (FD) is quasi-optimal. Afterwards, we design a simple practical scheduler that achieves 97% of the performance to GDAW with FD and has comparable runtime to that of the state-of-the-art benchmark that selects all users, performs ZFT precoding followed by power distribution using water-filling. The proposed scheme performs a simple round robin grouping to select users, followed by ZFT precoding and joint power distribution and MCS selection via a novel greedy algorithm with a possible additional iteration to take zero-rate users into account. Our solution outperforms the benchmark by 281%

    Resource allocation software algorithms for AMC-OFDM systems

    Get PDF
    PhD ThesisIn recent years, adaptive modulation and coding (AMC) technologies, resource allocation strategies and user scheduling for single-cell downlink orthogonal frequency division multiplexing (OFDM) and orthogonal frequency division multiple access (OFDMA) systems have been widely researched in order to ensure that capacity and throughput are maximised. In terms of AMC technologies, the correlation between the channel coefficients corresponding to the transmitted sub-carriers has not been considered yet. In the literature of resource allocation and user scheduling, either channel coding is not considered or only a fixed code rate is specified. Consequently, with a fixed number of data sub-carriers for each user, all these criteria restrict the flexibility of exploiting the available channel capacity, which reflects negatively on system throughput. At the same time, the presented scheduling algorithms so far managed the data of each user regardless the fair services of all users. The philosophy of this thesis is to maximise the average system throughput by proposing novel AMC, resource allocation and user scheduling strategies for OFDM and OFDMA systems based on developed software engineering life cycle models. These models have been designed to guarantee the scalability, extendibility and portability of the proposed strategies. This thesis presents an AMC strategy that divides the transmitted frame into sub-channels with an equal number of sub-carriers and selects different modulation and coding schemes (MCSs) amongst them rather than considering the same MCS for the entire frame. This strategy has been combined with a pilot adjustment scheme that reduces the pilots used for channel estimation in each sub-channel depending on the measured coherence bandwidth, signal to noise ratio (SNR), and SNR fluctuation values. The reduced pilots are replaced with additional data sub-carriers in order to improve the throughput. Additionally, a novel resource allocation strategy has been introduced in order to maximise the system throughput by distributing the users, transmission power and information bit streams over the employed sub-channels. The introduced method utilises the proposed AMC strategy in combination with pilot adjustment scheme to tackle the problem of channel capacity exploiting efficiently. It presents the throughput as a new cost function in terms of spectral efficiency and bit-error rate (BER), in which both convolutional coding rates and modulation order can be varied. The investigated throughput maximisation problem has been solved by producing two approaches. Firstly, optimised approach that solves the adopted problem optimally using the well known Lagrange multipliers method. This approach requires a huge search processes to achieve the optimal allocation of the resources, which yields a high computational complexity. To overcome the complexity issue, the second approach decouples the considered maximisation problem into two sub-problems based on the decomposition method on the cost of performance particularly for low SNR values. The proposed resource allocation strategy has been developed to work with multi-input-multi-output (MIMO) based AMC-OFDMA systems. In this project, two MIMO transmission criteria are considered, i.e. traditional and eigen-mode. In contrast, a user scheduling algorithm combined with the proposed resource allocation and AMC strategies is presented. The user scheduling algorithm aims to maximize the average system throughput by arranging the users in distinct queues according to their priorities and selecting the best user of each queue individually in order to guarantee a fair user service amongst different priority levels. When the involved users are scheduled, the scheduled users have been passed to the resource allocation to implement the distribution of the available resources. The proposed strategies have been tested over different international telecommunication union (ITU) channel profiles. The obtained simulation results show the superior performance of the introduced approaches in comparison with the related conventional methods. Furthermore, the gradually improvement in the throughput performance of the AMC-OFDM/ODMA system throughout the combination of the proposed strategies is clearly explained.Ministry of Higher Education and Scientific Research/IRAQ
    corecore