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trotécnica, realizada sob a orientação cient́ıfica do Doutor At́ılio Manuel da
Silva Gameiro, Professor Associado do Departamento de Electrónica, Tele-
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Resumo Esta tese descreve o problema da maximização da taxa de transmissão ou
eficiência espectral em sistemas moveis tomando em atenção duas carac-
teŕısticas fundamentais destes, o número de antenas e utilizadores. A fim
de resolver este tipo de problema, várias técnicas de alocação de recursos
foram estudadas e propostas para diferentes cenários. As antenas nos trans-
missores estão organizadas em diferentes configurações, podendo ser local-
izadas ou distribúıdas e para estes esquemas, diferentes ńıveis de cooperação
e coordenação entre transmissores foram investigados. Assumindo mais an-
tenas receptoras do que antenas transmissoras, implica que a otimização do
sistema seleccione as melhores combinações de transmissor-receptor (prob-
lema combinatório), o que pode ser concretizado usando diferentes graus
de cooperação entre transmissores. Os modelos de sistemas estudados, po-
dem ser classificados como sistemas limitados por interferência ou sistemas
limitados por potência.
Em sistemas limitados por interferência a alocação de recursos é feita in-
dependentemente para cada transmissor o que resulta em perda de energia
para os receptores não tomados em consideração. Para este tipo de sis-
temas, é considerado o caso em que a rede de acesso é constitúıda por an-
tenas distribúıdas. Os ganhos obtidos devido ao uso de antenas distribúıdas,
quer em termos do planeamento de frequências quer da maximização da taxa
de transmissão são considerados. Assumindo esquemas multi-utilizador,
várias técnicas e algoritmos de transmissão-recepção, alocação de potência
e de taxa de transmissão foram desenvolvidos para maximizar a eficiência
espectral.
Para sistemas limitados em potência os transmissores alocam os recursos
quer de antenas de transmissão quer de recepção conjuntamente. Os trans-
missores estão equipados com várias antenas e o processamento de sinal é
implementado de modo a eliminar a interferência entre utilizadores. Sis-
temas de célula única e de múltiplas células foram estudados. Para estes foi
considerado o problema da maximização de taxa de transmissão o qual foi
resolvido heuristicamente, através do desacoplamento do problema em duas
partes, uma onde se efectua a seleção de utilizadores e outra onde se con-
sidera a alocação de recursos. A seleção de utilizadores é feita em função do
tipo de técnicas de pré-codificação implementadas e do ńıvel de informação
que o transmissor possui. Os algoritmos de seleção de utilizadores desen-
volvidos verificam a compatibilidade espacial entre utilizadores, usando para
tal métricas propostas. Cada uma das métricas oferece um trade-off difer-
ente entre a precisão para identificar um utilizador compat́ıvel e a complex-
idade necessária para a implementar. Foram usadas simulações numéricas
para avaliar a performance das técnicas de seleção de utilizadores propostas
(métricas e algoritmos), performance que foi comparada com as técnicas
mais inovadoras.





keywords Cellular Systems, Distributed Antenna System, Multiuser Systems, Linear
Precoding, User Selection, SDMA grouping, Multiple Access Technology,
Broadcast MIMO Channels, Interference Channels, Multiuser MIMO, Dis-
tributed Precoding

abstract The thesis addresses the sum rate or spectral efficiency maximization prob-
lem in cellular systems with two main components, multiple antennas and
multiple users. In order to solve such a problem, several resource allocation
techniques are studied and developed for different cellular scenarios. The
antennas at the transmitters are arranged in several configurations, i.e.,
co-located or distributed and for such arrangements different levels of coor-
dination and cooperation between transmitters are investigated. Accounting
for more receiver antennas than transmitter antennas implies that system
optimization must select the best transmitter-receiver match (combinatorial
problem) which can be solved with different degrees of cooperation between
transmitters. The system models studied can be classified either as inter-
ference limited or as power limited systems.
In interference limited systems the resource allocation is carried out in-
dependently by each transmitter which yield power leakage to unintended
receivers. For this kind of systems, the access network using distributed
antenna architectures is examined. The properties of distributed antenna
in cellular systems as well as the gains they provide in terms of frequency
reuse and throughput are assessed. Accounting for multiple user scenar-
ios, several techniques and algorithms for transmitter-receiver assignment,
power allocation, and rate allocation are developed in order to maximize
the spectral efficiency.
In power limited systems the transmitters jointly allocate resources among
transmit and receive antennas. The transmitters are equipped with multiple
antennas and signal processing is implemented in order to suppress inter-user
interference. Single-cell and multi-cell systems are studied and the problem
of sum rate maximization is tackled by decoupling the user selection and
the resource allocation (power and precoding) processes. The user selec-
tion is a function of the type of precoding technique that is implemented
and the level of information that can be processed at the transmitter. The
developed user selection algorithms exploit information provided by novel
channel metrics which establish the spatial compatibility between users.
Each metric provides a different trade-off between the accuracy to identify
compatible users, and the complexity required to compute it. Numerical
simulations are used to assess the performance of the proposed user selec-
tion techniques (metrics and algorithms) whose performance are compared
to state-of-the-art techniques.





Contents

Contents i

List of Figures v

List of Tables ix

List of Acronyms xi

List of Acronyms xi

List of Symbols xv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Multiple Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Multiple Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Research Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Overview on Multiple User - Multiple Antenna Systems 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Multiple User MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Capacity of Multi-User MIMO Systems . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Capacity of Broadcast Channels . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Uplink-Downlink Duality . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Transmission Methods for Broadcast Channels . . . . . . . . . . . . . . . . . 13

2.4 Cellular MU-MIMO Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Interference Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Distributed Antenna Systems and Cellular Architectures 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Frequency Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Fixed Channel Allocation (FCA) . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Dynamic Channel Allocation (DCA) . . . . . . . . . . . . . . . . . . . 23

3.3 Cellular Architecture and DAS . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

i



3.3.2 Propagation and signal models . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 Outage probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.2 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Numerical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.1 Outage Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.2 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 User Selection and Rate Allocation in Interference Channels 35

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 The User-Antenna Matching Problem . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 The Matching Problem Formulation . . . . . . . . . . . . . . . . . . . 39

4.2.2 Greedy and Minimum Rate Loss Matching . . . . . . . . . . . . . . . 40

4.2.3 Rate Maximization with Equal Power Allocation . . . . . . . . . . . . 42

4.2.3.1 Minimum Rate Contribution Selection . . . . . . . . . . . . . 43

4.2.4 Numerical Results for the Matching Problem . . . . . . . . . . . . . . 43

4.3 Power Allocation and Link Adaptation . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Resource Allocation Problem . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.2 Optimal Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.3 Perron-Frobenius root based Optimization . . . . . . . . . . . . . . . . 52

4.3.3.1 Target Relaxation for a Non-Fixed Set of Links . . . . . . . . 53

4.3.3.2 Target Increment for a Fixed Set of Links . . . . . . . . . . . 55

4.3.4 Power Consumption based Optimization . . . . . . . . . . . . . . . . . 55

4.3.5 Target-to-SINR Ratio based Optimization . . . . . . . . . . . . . . . . 57

4.3.6 SINR Target Increment based Optimization . . . . . . . . . . . . . . . 58

4.4 Performance Evaluation for a DAS Scenario . . . . . . . . . . . . . . . . . . . 60

4.4.1 Examples of the MCS selection . . . . . . . . . . . . . . . . . . . . . . 60

4.4.2 PF-root based optimization: Fixed vs Non-Fixed Set . . . . . . . . . . 61

4.4.3 Sum Rate and Outage Probability . . . . . . . . . . . . . . . . . . . . 62

4.4.4 Optimal Joint Link Selection and Resource Allocation . . . . . . . . . 64

4.4.5 Performance Evaluation for the Low-High SINR Regimes . . . . . . . 66

4.4.6 Application for User-Removal . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 User Selection and Signal Design In Single Cell Systems 71

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 The User Selection Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 Multiuser scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Linear Precoding Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.1 Zero Forcing Beamforming (ZFBF) . . . . . . . . . . . . . . . . . . . . 77

5.4.2 Zero Forcing Dirty Paper (ZFDP) . . . . . . . . . . . . . . . . . . . . 77

ii



5.5 Metrics of Spatial Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5.1 Null Space Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.5.1.1 Orthogonal Projector for ZFBF . . . . . . . . . . . . . . . . 80

5.5.1.2 Orthogonal Projector for ZFDP . . . . . . . . . . . . . . . . 81

5.5.2 Approximation of the NSP for ZFBF . . . . . . . . . . . . . . . . . . . 82

5.5.3 ε-orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5.4 Orthogonality Defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5.5 Condition number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Power Projection Based User Selection . . . . . . . . . . . . . . . . . . . . . . 85

5.6.1 Iterative Power Projection (IPP) . . . . . . . . . . . . . . . . . . . . . 85

5.6.2 An Integer Linear Program (ILP) Approach . . . . . . . . . . . . . . . 88

5.6.3 Sub-optimality of IPP and ILP . . . . . . . . . . . . . . . . . . . . . . 90

5.7 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.7.1 Optimality of the Channel Metrics . . . . . . . . . . . . . . . . . . . . 91

5.7.2 Throughput (R) vs number of active users (K) . . . . . . . . . . . . . 92

5.7.3 Sum rate (R) vs SNR (P ) . . . . . . . . . . . . . . . . . . . . . . . . 94

5.7.4 Cardinality of S and Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.7.5 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 User Selection and Signal Design In Multi-Cell Systems 101

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 System Setup and Problem Formulation . . . . . . . . . . . . . . . . . . . . . 104

6.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Distributed Linear Precoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.1 Distributed Zero Forcing (DZF) . . . . . . . . . . . . . . . . . . . . . . 105

6.3.2 Distributed Virtual SINR (DVSINR) . . . . . . . . . . . . . . . . . . . 106

6.4 The Multicell User Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4.1 Linear Precoding and User Selection . . . . . . . . . . . . . . . . . . . 108

6.4.1.1 DZF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4.1.2 DVSINR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4.2 Metric for user selection: Nt ≥ B . . . . . . . . . . . . . . . . . . . . . 109

6.4.3 Metric for user selection: Nt < B . . . . . . . . . . . . . . . . . . . . . 109

6.4.4 NSP Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4.5 Exhaustive Search Selection over the Metrics . . . . . . . . . . . . . . 111

6.4.6 Search Space Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.5.1 Sum rate vs SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.5.2 Sum rate vs K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Conclusions 119

Appendices 126

iii



A Interference Channels in Multi-Cell Systems 126
A.1 Proof of Proposition 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
A.2 Proof of Proposition 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.3 Proof of Proposition 6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
A.4 Proof of Proposition 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.5 Proof of Proposition 6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.6 Proof of Proposition 6.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

References 133

iv



List of Figures

2.1 BC and MAC for indoor and outdoor scenarios. . . . . . . . . . . . . . . . . . 8

2.2 Capacity Regions of a two-user MAC and BC for H1 = [1, 0.5], H2 = [0.5, 1],
P = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Uplink-Downlink Precoding Duality . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Models of Interference Channels. (a) is a K-cell MISO IFC system with signal
design capabilities, i.e., beamforming design and power allocation can efficiently
suppress interference; (b) is an IFC system with fixed channel gains (e.g., pre-
defined beamforming weights) and interference can be mitigated only by power
allocation and scheduling. The solid arrows refer to the useful signal directions,
while the dashed arrows refer to interference directions. Coordination through
a CU depends on the kind of processing, i.e., centralized or distributed. . . . 17

3.1 Fractional Frequency Planning with conventional cellular deployment . . . . . 22

3.2 Soft Frequency Planning with boundary frequency reuse KF = 3 . . . . . . . 22

3.3 Cellular Architecture with DAS and MRC receivers . . . . . . . . . . . . . . . 24

3.4 Transmission Schemes: a) conventional cellular system, b) blanket transmission
where all nodes transmit to one user, c) single transmission where the user is
served by the best node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Outage Probability Pout vs. SINRref of conventional cellular and distributed
systems (blanket DASb and single antenna transmission DASs) with Nr = 1
and different values of KF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Outage Probability Pout vs. SINRref of conventional cellular and DAS (blan-
ket DASb and single antenna transmission DASs) considering an MRC receiver
Nr = 2 with uncorrelated channels and different values of KF . . . . . . . . . . 30

3.7 Average throughput as a function of SINRref for conventional and DAS (blan-
ket DASb and single DASs transmission schemes) using different values of KF

and Nr = 2 receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.8 CDF of the throughput for conventional and DAS (blanket DASb and single
DASs transmission schemes) for different KF and Nr = 2 receiver. . . . . . . 32

3.9 Average throughput as a function of Nr for conventional and DAS (blanket
DASb and single DASs transmission schemes) with SINRref = 0(dB) and
KF ∈ {1, 3}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 (a) System model for two wireless links k and i. (b) Distributed Antenna
System Scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

v



4.2 A wireless network with N = 3 RAUs {a, b, c} and K = 3 users {1, 2, 3}. V1 is
the set of all RAUs in the system and V2 is the set of active users in the system. 41

4.3 Sum rate for N = 4, different values of K. . . . . . . . . . . . . . . . . . . . . 45

4.4 Percentage of user assignment E[|S(e)
(K)|/N ] for several values of K and different

sets S
(e)
(K). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 CDF of the Fairness Gini Index for K = 10 and N = 4. . . . . . . . . . . . . 47

4.6 CDF of the sum rate for K = 30 and N = 4. In this case the set S
(e)
(K) = K

found by Alg. 4.1a-b can be scheduled with only 4% sum rate gap w.r.t. the

optimum S
(e)
(K). As K →∞ this sum rate gap becomes negligible. . . . . . . . 47

4.7 For a given V, z,M, and Pt this is an example of the boundaries for the SINR
target region for two cases: γ ∈ R++ (dashed line) and γ ∈ M (solid line).
The vectors (•) represent the combinations of γ that are jointly achievable for
a two-link channel realization. The vectors (◦) cannot be jointly achieved by
any feasible power allocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.8 Example of the search of the maximum vector of targets γ. . . . . . . . . . . 61

4.9 MCS selection based on target relaxation and target increment. . . . . . . . . 61

4.10 Cumulative Distribution Function of the average sum rate for K = 8. . . . . . 62

4.11 Outage probability versus user diversity K. . . . . . . . . . . . . . . . . . . . 63

4.12 Total sum rate as a function of K for N = 7, M = 8, and Pt = 43(dBm). . . 64

4.13 Total sum rate as a function of K for N = 7, M = 8, with p̄1 = 39(dBm) for
the central RAU, and p̄j = 33(dBm) for ∀j 6= 1, the rest of the RAUs. . . . . 64

4.14 Outage probability as a function of K for N = 7, M = 8, and Pt = 43(dBm). 65

4.15 Total sum rate as a function of K for N = 7, M = 8, with p̄1 = 39(dBm) for
the central RAU, and p̄j = 33(dBm) for ∀j 6= 1, the rest of the RAUs. . . . . 65

4.16 Average number of iterations vs K for N = 7, M = 8, and any definition of P. 66

4.17 CDF of the sum rate for N = 4, M = 8, K = 10, and Pt = 36.9(dBm). . . . . 66

4.18 CDF of the sum rate for N = 4, M = 8, K = 10, with p̄1 = 39(dBm) for the
central RAU, and p̄j = 36(dBm) for ∀j 6= 1, the rest of the RAUs. . . . . . . 67

4.19 Outage probability vs the constrained transmit power Pt for N = 7 and M = 8. 67

4.20 Outage probability vs the constrained transmit powers p̄ for N = 7 and M = 8. 68

4.21 Outage probability for a fixed SINR target for all links with N = 7 and Pt =
28.5(dBm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 MISO Downlink System with Nt antennas at the BS and K single antenna
users. The scheduler uses the fedback CSI and for a given set of users the BS
performs power allocation and downlink transmission with beamforming. . . 75

5.2 The spatial relationship between the components of vector hi and Vi. . . . . . 79

5.3 Interaction of two selected users i and j with third unselected user k . . . . . 85

5.4 Average sum rate as a function of the number of users (K) with SNR=18(dB)
and Nt = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Average sum rate as a function of the SNR with K = 20 and Nt = 4. . . . . . 93

5.6 Average Sum Rate as a function of the number of users K for the ZFBF scheme
with SNR = 18(dB) and Nt = 4. . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.7 Average Sum Rate as a function of the number of users K for the ZFDP scheme
with SNR = 18(dB) and Nt = 4. . . . . . . . . . . . . . . . . . . . . . . . . . 95

vi



5.8 Average Sum Rate as a function of the SNR for ZFBF scheme with K = 10
and Nt = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.9 Average Sum Rate as a function of the SNR for ZFDP scheme with K = 10
and Nt = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.10 The metric E{|S|/Nt} measures the degree of spatial multiplexing that is ex-
ploited for each scheduling algorithm considering SNR = 18(dB) (a) ZFBF
and (b) ZFDP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.11 Average cardinality of the set of unselected users (E{|Ω|}) each iteration of the
IPP algorithm with SNR = 18(dB) (a) Nt = 3 and (b) Nt = 4. . . . . . . . . 97

6.1 Deployment with B = 3, cell radius r = 1(km), and cell-edge cooperation area
of radius rcoop = 300(m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Average Sum Rate as a function of ρ(dB) for DZF precoding with K = 10,
B = 3 and Nt ∈ {3, 4}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Average Sum Rate as a function of ρ(dB) for DVSINR precoding with K = 10,
B = 3 and Nt ∈ {2, 3}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4 Average Sum Rate as a function of the number of users per BS (K) for DZF
with ρ = 10(dB), B = 3, and Nt ∈ {3, 4}. . . . . . . . . . . . . . . . . . . . . 116

6.5 Average Sum Rate as a function of the number of users per BS (K) for DVSINR
with ρ = 10(dB), B = 3, and Nt ∈ {2, 3, 4}. . . . . . . . . . . . . . . . . . . . 116

A.1 Normalized values of the effective channel gain of DVSINR precoder and its
approximation for B = 3 and Nt ∈ {3, 4, 6}. . . . . . . . . . . . . . . . . . . . 129

A.2 Approximation, and exact value of the average leakage E
[
|hH2 w1|2

]
for B ∈

{3, 4} and Nt ∈ {3, 4, 8}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

vii



viii



List of Tables

3.1 WiMAX modulation and coding schemes . . . . . . . . . . . . . . . . . . . . 28

4.1 Simulation Parameters for user selection in the DAS Scenario . . . . . . . . . 44
4.2 Comparison between Alg. 4.1a-b and DUG for R(S

(e)
(K)) and E[|S(e)

(K)|/N ] for

low values of K and S
(e)
(K) = K. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Set of available SINR Targets M in (dB) and its associated R in (bps/Hz) . . 60

5.1 NSP for the ith user of S in Algorithms for User Selection . . . . . . . . . . . 82
5.2 Metric Properties. λi is the ith eigenvalue of H̄, f(H) is a function of λ.

HHH , H−1, eig(H) are matrix product, inverse, and eigenvalue decomposition
operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Complexity comparison of user selection algorithms . . . . . . . . . . . . . . . 98

ix



x



List of Acronyms

3GPP 3rd Generation Partnership Project.

AMC Adaptive Modulation and Coding.

AWGN Additive White Gaussian Noise.

BC Broadcast Channel.

BER Bit Error Rate.

BF Beamforming.

BLER Block Error Rate.

BS Base Station.

CAS Co-located Antenna System.

CBF Coordinated Beamforming.

CDF Cumulative Distribution Function.

CDMA Code Division Multiple Access.

CoMP Coordinated Multi-Point.

CSI Channel State Information.

CU Central Unit.

DAS Distributed Antenna System.

DCA Dynamic Channel Allocation.

DisPC Distributed Power Control.

DoF Degrees-of-Freedom.

DPC Dirty Paper Coding.

DSL Digital Subscriber Lines.

DVSINR Distributed Virtual Signal-to-Interference-plus-Noise Ratio.

xi



DZF Distributed Zero Forcing.

EPA Equal Power Allocation.

FCA Fixed Channel Allocation.

FDD Frequency Division Duplex.

FDMA Frequency Division Multiple Access.

FFP Fractional Frequency Planning.

GP Geometric Programming.

GSO Gram-Schmidt Orthogonalization.

HetNet Heterogeneous Network.

IA Interference Aware.

ICI Inter-cell Interference.

IFC Interference Channel.

IPC Individual Power Constraints.

JT Joint Transmission or Processing.

LAN Local Area Network.

LSAP Linear Sum Assignment Problem.

LTE Long Term Evolution.

LUT Look Up Table.

MAC Multiple Access Channel.

MCS Modulation and Coding Schemes.

MIMO Multiple Input Multiple Output.

MISO Multiple Input Single Output.

MMSE Minimum Mean Square Error.

MRC Maximum Ratio Combining.

MU-MIMO Multi-User Multiple Input Multiple Output.

MU-MISO Multi-User Multiple Input Single Output.

MUDiv Multi-User Diversity.

NSP Null Space Projection.

OFDMA Orthogonal Frequency Division Multiple Access.

xii



PFS Proportional Fairness Scheduling.

PRB Physical Resource Block.

QAM Quadrature Amplitude Modulation.

QoS Quality of Service.

QPSK Quadrature Phase Shift Keying.

RAU Remote Antenna Units.

RHS Right Hand Side.

RRM Radio Resource Management.

RRS Round Robin Scheduling.

SCA Successive Convex Approximation.

SDMA Spatial-Division Multiple Access.

SFR Soft Frequency Reuse.

SIC Successive Interference Cancellation.

SINR Signal to Interference plus Noise Ratio.

SLNR Signal to Leakage plus Noise Ratio.

SNR Signal to Noise Ratio.

SU-MIMO Single-User Multiple Input Multiple Output.

SVD Singular Value Decomposition.

TDD Time Division Duplex.

TDMA Time Division Multiple Access.

THP Tomlinson-Harashima Precoding.

TPC Total Power Constraint.

TTI Transmission Time Interval.

Wi-Fi Wireless Fidelity.

WiMAX Worldwide Interoperability for Microwave Access.

ZF Zero-Forcing.

ZFBF Zero Forcing Beamforming.

ZFDP Zero Forcing Dirty Paper.

xiii



xiv



List of Symbols

(·)H Hermitian transpose operator

(·)T Transpose operator

(x)+ max{x, 0}

[A]ij The element aij of matrix A

αpl Path-loss exponent

\ Set subtraction operator

(
k
n

)
Number of ways of picking n unordered outcomes from k possibilities

λmax(A) The maximum eigenvalue of matrix A

λmin(A) The minimum eigenvalue of matrix A

λi(A) The ith eigenvalue of matrix A

〈a,b〉 Inner product between vectors a and b

E[·] Expectation operator

R++ The set of strictly positive real numbers

R+ The set of nonnegative real numbers

Z+ The set of nonnegative integer numbers

A Upper case bold symbols represent matrices

A[i] The ith principal submatrix of A whose ith row and column are removed

eig(A) The vector that contains all the eigenvalues of the matrix A

ek The kth unit coordinate vector, with all elements equal to zero and the
kth element equal to one

In Identity Matrix of size n

x Lower case bold symbols represent vectors

x ≥ y Componentwise inequality given two vectors x and y

xv



CN (a, b) Circular Complex Gaussian random variable with mean a and variance b

| S | Cardinality of set S

| A | Determinant of the square matrix A

‖ x ‖p The p norm of vector x

ρ(A) The Perron-Frobenius root (PF-root) or the largest modulus eigenvalue of
the matrix A

σ2 Noise variance

Conv(·) Convex-hull operator

det(·) Determinant operator

diag(x) The diagonal matrix whose main diagonal is x

K Number of user in the system

KF Frequency Reuse Factor

N Number of distributed antennas or remote antenna units

Nr Number of antennas at the receiver

Nt Number of antennas at the transmitter

null(A) The null space of matrix A

P Available power for transmission

rank(·) Rank operator

Sp(A) Subspace spanned by matrix A

Sp(A)⊥ Orthogonal subspace spanned by matrix A

Tr(·) Trace operator

yi = [y]i Entry i of vector y

xvi



Chapter 1

Introduction

T
his dissertation is focused on different resource allocation techniques for multiple an-
tenna - multiple user wireless communication systems. The research on this topic is

motivated by several open problems in the current literature and standardized technologies.
Multiple-antenna systems allow a plethora of mighty signal processing techniques that en-
hance the overall system performance by efficiently exploiting a multi-dimensional pool of
resources. Such a pool can be compound of signal spaces, angles and powers of transmission,
time-slots, subcarriers, codes, users, and the like. The optimization over such a large set
of resource implies that an ineluctable trade-off between optimality and feasibility must be
found by resource allocation policies. On the one hand, optimality can be reached by solving
problems mathematically described as the optimization over a set of integer and continuous
variables, which may be a thoroughly complex task. Feasibility, on the other hand, implies
that suboptimal resource allocation takes place by relaxing and reformulating optimization
problems whose solutions can be found by practical reliable algorithms. The research pre-
sented in this dissertation is devoted to design close-to-optimal and feasible resource allocation
policies for wireless communication systems at the sub-carrier level.

1.1 Motivation

Ubiquitous connectivity of mobile communications is becoming a reality with global tech-
nological, social, economical, and environmental impact. Currently, the number of mobile
users worldwide reaches almost 7 billion [1] while massive mobile internet access is expected
to exceed wired devices access by 2018 [2]. Moreover, the number of networked devices is
expected to top 25 billion by 2020 [3], which means that the internet of everything will bring
huge challenges in terms of operational capabilities and global standardization. In order to
meet the continuous market growth and the emerging data-demanding mobile applications,
the deployment of mobile broadband networks (3G and 4G) has been increasing at sustained
rates over the last years. Under the umbrella of heterogeneous networks (HetNet) [4], seam-
lessly connectivity appears to be feasible and current research efforts attempt to operate
mobile devices across different wireless technologies, e.g., cellular and Wi-Fi [3]. The fourth
generation of mobile communications is already under operation and is achieving maturity
from the industry and academic view points. Nevertheless, the future generation of commu-
nications will bring service demands that current wireless networks are far from being capable
to handle [5]. A group of emerging technologies promise to solve the practical challenges of
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current and future wireless communication systems [6, 7]. Among these technologies, signal
processing and infra-structure based on multiple-antenna systems, also known as multiple in-
put - multiple output (MIMO), will play a crucial role. The deployment of a large number of
antennas [8] in cellular architectures will yield extremely densified small serving areas where
high data rates can successfully be transmitted [5].

The enormous relevance of multiple-antenna systems lies in the fact that they provide
manifold gains, just to name a few: the achievable rates scaled in proportion to the number
of deployed antennas, thus the radio spectrum is exploited more efficiently; interference can be
mitigated by signal design and power control mechanisms; signal and spatial dimensions can
be efficiently used to serve multiple users simultaneously; and MIMO can be used to model
and study a large number of scenarios, e.g., cellular systems, distributed antenna systems,
or HetNet. The work presented in this thesis is motivated by the mighty characteristics of
MIMO, their full integration in current standardized wireless technologies, and the fact that
there exists a number of open problems in the field of resources allocation with multiple user
- multiple antenna scenarios. The systems studied in the thesis are particularly focused on
cellular systems and access network architectures based on distributed antennas.

1.1.1 Resource Allocation

The concept of resource allocation in multiple-antenna systems is defined as allocating
transmit power among specific users and spatial directions, while meeting a system objective
function under a set of power constraints. Finding the optimum resource allocation for a
wireless system is a highly complex task, even for a small number of transmitters and receivers.
The system optimization must be performed over several dimensions such as antennas, powers,
and users, which together form a multi-dimensional pool of resources (a very large solution
space). In the literature of wireless communications there exist different approaches to solve
the resource allocation problem. One approach consists of modeling the resource allocation
as a convex optimization problem so that standard optimization techniques [9, 10] can be
used to solve it. By taking this approach one must assume that the optimized variables
take continuous values, and that the number of spatial resources at the transmitters and
receivers meet certain conditions, i.e., all users can simultaneously use the same medium
achieving successful communication. The work presented in this dissertation diverges from
that approach due to the following reasons. 1) The sets of antennas and users are finite sets
which renders the resource allocation into a combinatorial problem, i.e., the optimal solution
is given by exhaustive searching over a search space that grows geometrically. 2) Feasibility
of resource allocation is not guaranteed, i.e., it may not exist a solution to the constrained
optimization problem. In such a case, verifying the feasibility of the optimization problem is
as complex as solving it, therefore, sub-optimal strategies must be adopted.

A sub-discipline of optimization theory known as heuristic search provides solutions to
problems that either could not be solved any other way or whose solutions take a very long
time to be computed. The approach considered in this dissertation is to design, implement,
and assess heuristic search algorithms that handle the combinatorial nature and feasibility
issues of the resource allocation in multiple-user multiple-antenna systems.
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1.1.2 Multiple Antennas

The amount of data rate per unit bandwidth that can be transferred in a given wireless
channel is referred in the literature as spectral efficiency, and for a single communication link
is fundamentally limited by the available transmit power [11]. Accounting for multiple anten-
nas at the transmitter and the receiver sides provides spatial diversity and naturally yields
a MIMO channel. For this kind of channels the spectral efficiency can be enhanced since
several independent data streams can be transmitted simultaneously, achieving the so-called
multiplexing gain. Resource allocation may become a complex task when multiple antennas
transceivers are employed because system performance can be improved only if the spatial
domain is exploited in a smart way. In multi-user systems, multiplexing gains can be obtained
as long as the users are properly separated in space by steering data signals toward specific
receivers. In this way, the signal power to intended users is improved whilst interference to
other unintended users is partially or completely suppressed. The spatial steering of indepen-
dent signals consists of manipulating their amplitude and phases (the concept of beamforming
in classic array signal processing), in order to add them up constructively in desired directions
and destructively in undesired directions [12].

Every system requires a particular resource allocation strategy, which can be mathemat-
ically described by an objective function either system-oriented (e.g. fairness or sum rate),
user-oriented (e.g. user satisfaction), or operative (e.g. power consumption). This means
that each system will have a different objective function and set of constraints according to
its resource allocation policy. The impact of such a policy is reflected immediately in the way
that beamforming must be done, i.e., it does not exist an universal way to achieve optimal
beamforming. Since optimality most of the times implies high complexity, sub-optimal beam-
forming strategies that still achieve multiplexing gains will be studied in this dissertation.

1.1.3 Multiple Users

Provided multiple antenna at the transmitter, a large number of users yields high spectral
efficiency and multiplexing gains that scale with the number of antennas at the transmitter.
This is because the channels of users located in different positions within a serving area will
experience independent fading processes (user diversity) [13]. The spatial signature of a user
defines its compatibility with other users, i.e., the spatial separability and the effectiveness
of the signal steering depend on the characteristics of the multi-user channels. The proba-
bility that there exists a subset of spatially compatible users (spatially separable) increases
with the total number of competing users, and proper signal steering yields system perfor-
mance enhancement. Yet, such improvement comes at a price, the so-called user selection
or scheduling. The resource allocation in multi-user systems requires to select a subset of
compatible users in order to achieve several goals: meeting beamforming constraints (based
on each particular steering technique), fully exploiting spatial resources, and increasing the
power efficiency (inter-user interference suppression). Determining the optimal subset of user
is a combinatorial problem that depends on many variables: the number of deployed antennas,
the channel quality after beamforming, the power allocation, and the amount of inter-user
interference resulting from a given signal steering technique. Moreover, changing the re-
source allocation (power and signal steering) for a single user will impact the performance of
other users, i.e., the optimization problem has either objective or constrained functions that
are coupled in their optimized variables. For every beamforming technique (for the sake of
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tractability sub-optimal techniques are used in practice) there exists a variety of strategies
(optima and sub-optimal) to select the set of compatible users that maximize the system
performance. Such strategies depend on the number of deployed antennas, the power regime
(noise or interference limited system), and the objective function that must be optimized.
The following chapters will present heuristic search algorithms whose objective is to iden-
tify a close-to-optimal set of transmitter-receiving pairs or users, that can be simultaneously
scheduled taking into account the beamforming structures and power constraints so that the
overall system performance is optimized.

1.2 Research Publications

The work presented in this dissertation has produced a number of scientific publications:
1 book chapter, 4 journals, and 5 conference papers listed below.

Ch1 E. Castañeda, A. Silva, and A. Gameiro, User Selection and Precoding Techniques for Rate
Maximization in Broadcast MISO Systems, Contemporary Issues in Wireless Communications,
ed. M. Khatib, InTech, 2014.

J1 E. Castañeda, R. Samano-Robles, and A. Gameiro, Frequency-Reuse Planning of the Down-Link of
Distributed Antenna Systems with Maximum Ratio Combining Receivers, IEEE Latin America
Transactions, vol. 3, pages 1703-1709, April, 2012.

J2 E. Castañeda, R. Samano-Robles, and A. Gameiro, Sum Rate Maximization via Joint Scheduling
and Link Adaptation for Interference-Coupled Wireless Systems, EURASIP Journal on Wireless
Communications and Networking, vol. 2013, no. 1, p. 268, 2013.

J3 E. Castañeda, A. Silva, R. Samano-Robles, and A. Gameiro, Low-Complexity User Selection for
Rate Maximization in MIMO Broadcast Channels with Downlink Beamforming., The Scientific
World Journal., vol. 2014, Jan. 2014.

J4 E. Castañeda, A. Silva, R. Samano-Robles, and A. Gameiro, Distributed Linear Precoding and
User Selection in Coordinated Multicell Systems, IEEE Transactions on Vehicular Technology,
2014 (submitted).

C1 E. Castañeda, Sámano R., Gameiro A., Frequency-Reuse Planning of the Down-Link of Dis-
tributed Antenna Systems with Maximum-Ratio-Combining (MRC) Receivers, IEEE Latin-
American Conference on Communications, Oct., 2011.

C2 E. Castañeda, Sámano R., Gameiro A., Cooperative Scheduling for Distributed Antenna Systems,
IEEE European Signal Processing Conference, 2012.

C3 E. Castañeda, Sámano R., Gameiro A., Low Complexity Scheduling Algorithm for the Downlink
of Distributed Antenna Systems, IEEE Vehicular Technology Conference, June, 2013.

C4 E. Castañeda, R. Samano-Robles, and A. Gameiro, Power and Modulation Assignment via Perron-
root Optimization for Interference Limited Systems, IEEE International Symposium on Per-
sonal, Indoor and Mobile Radio Communications, pages 1899-1903, Sept., 2013.

C5 E. Castañeda, A. Silva, R. Samano-Robles, and A. Gameiro, Metrics for Rate Maximization in
Multiuser-MISO Systems with Zero-Forcing Beamforming, IEEE International Conference on
Telecommunications, May, 2014.

1.3 Outline of Dissertation

The dissertation is focused on the design of resource allocation algorithms that jointly
perform user selection, beamforming, rate, and power allocation in multiple antenna systems.
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The studied scenarios cover distributed antenna systems, single and multiple cell systems for
which centralized an semi-centralized algorithms are designed.

Chapter 2 presents a brief overview of the main theoretical concepts that will be studied
along the thesis. The general characteristics of multiple antenna - multiple user system are
presented, and fundamental concepts such as capacity region and uplink-downlink duality are
introduced. The definitions of broadcast channels and interference channels are also provided,
which are of central importance to understand the scope of the research and results in this
dissertation.

Chapter 3 introduces the concept of distributed antenna system and investigates the
advantages of this sort of antenna configurations [J1, C1]. These systems are compared to
conventional cellular systems where the transmit antennas are co-located. The objective of a
distributed antenna system is to provide diversity and combat interference, and the research
objective is to determine the performance gains in terms of frequency reuse planning and
spectral efficiency. The main goal of this chapter is to quantify how resilient to interference
are systems with distributed antennas, as well as the coverage and throughput enhancement
that can be achieved using different transmission schemes.

Chapter 4 introduces several strategies of resource allocation in interference channels. The
chapter can be divided in two parts. The first part studies how to associate a given set of
transmitters with a larger set of receivers, which is a modeled as an assignment problem [C2,
C3]. The second part studies the resource allocation problem once that every transmitter
is matched with a unique receiver [J2, C4]. The tackled problem is how to identify which
transmitter-receiver pairs (links) can be simultaneously scheduled and which rates must be
allocated to them so that the total sum rate is maximized. The problem has a combinatorial
nature since the rates that can be allocated are elements of a finite set of valid rates. As a
means to solve such a problem, several algorithms are designed exploiting the characteristics
of the achievable rate region and estimations of the power consumption.

Chapter 5 is focused on finding a set of close-to-optimal compatible users in order to
maximize the achievable sum rates in single cell systems. The chapter can be divided in two
parts. The first part is devoted to describe channel metrics that quantitatively measure the
spatial compatibility between channels of independent users [Ch1, C5]. In the second part,
the combinatorial problem of user selection for the sum rate maximization is addressed [Ch1,
J3]. By employing metrics of compatibility and exploiting the structure of linear beamforming
techniques, two heuristic search algorithms are designed to find sub-optimal solutions to the
user selection problem and an acceptable trade-off between performance and complexity.

Chapter 6 generalizes the user selection problem for coordinated multi-cell systems [J4].
The goal is to maximize the achievable sum rates in scenarios where limited communica-
tion (message exchange) between cells is allowed. The chapter extends the channel metrics
introduced in Chapter 5 for the multi-cell scenario. Close-to-optimal semi-distributed user se-
lection algorithms are proposed and assessed for systems that operate with linear distributed
beamforming. The proposed metrics of compatibility and heuristic search algorithms provide
manifold gains: transform the search space of the combinatorial problem reducing its com-
plexity; exploit the properties of each multi-cell beamforming technique in order to improve
user selection; exploit metrics of selection that handle different ratio between the number of
transmit and receive antennas; and provide upper bounds of the achievable performance in
practical multi-cell scenarios.

Chapter 7 concludes the dissertation summarizing the main achieved results and presents
future lines of work.
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Chapter 2

Overview on Multiple User -
Multiple Antenna Systems

This chapter presents a brief overview of the main theoretical concepts that will be studied
along the thesis. The notion of multiple antenna - multiple user system is introduced and
fundamental concepts such as capacity region and uplink-downlink duality are presented.
Accounting for multiple antennas at both the receiver and transmitter sides, increases the
degrees of freedom in which resource allocation can be performed. Multiple users provide
an extra degree of freedom to the optimization domain and finding optimal operating
points for a given global utility function is a highly complex task. The chapter provides a
brief description of the kind of optimization problems in systems with a large optimization
domain (users, antennas, power allocation, beamforming weights, time-slots, etc.) and
describes their relationships with the work presented in the following chapters. Since
the work developed in the next chapters is focused on the downlink transmission, the
theoretical results covered in this chapter pay particular attention to such regime. It is
also established the system model of the downlink transmission in interference channels,
i.e., where the individual utility function for a given link (transmitter-receiver pair) is a
function of the resource allocation in other concurrent links.

2.1 Introduction

A
multiple-input multiple output (MIMO) system employs multiple antennas at both,
transmitter (Nt) and receiver (Nr) sides in order to improve communication performance

by means of signal processing techniques. The seminal works of [14, 15] provide a mathemat-
ical motivation behind multi-antenna communications, the spectral efficiency 1 measured in
bits per second per Hertz (bps/Hz) increases by a factor of min(Nt, Nr) without increasing
the power budget or bandwidth requirements. The signal processing techniques in multi-
antenna systems can be classified in two categories, antenna diversity techniques and spatial
multiplexing techniques [17]. On the one hand, antenna diversity provides transmission reli-
ability by transforming a fading wireless channel into a more stable additive white Gaussian
noise (AWGN) - like channel without signal degradation due to fading. The probability that
multiple statistically independent fading channels experience deep fading is very low, which
is exploited by diversity schemes. The antenna diversity techniques can be applied in both

1The spectral efficiency can bee seen as the channel capacity from the information theoretic point of view.
The channel capacity is defined as the maximum rate in which an input message can be reconstructed at the
output of a given communication link with a negligible probability of error [16].
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the transmission and the reception. Transmission diversity schemes include space diversity,
polarization diversity, time diversity, frequency diversity, and angle diversity. Examples of re-
ceive diversity schemes are selection combining, maximum ratio combining (MRC), and equal
gain combining. On the other hand, spatial multiplexing techniques exploit the degrees-of-
freedom (DoF) gains provided by MIMO so that different data streams are simultaneously
transmitted, which increases the transmission speed by reusing the spatial dimension provided
by multi-antenna transceivers [18].

2.1.1 Multiple User MIMO

In multi-user (MU-MIMO) systems, the available resources (power, bandwidth, anten-
nas, codes, or time-slots) must be assigned simultaneously to K active users. There are two
kinds of multiuser channels illustrated in Fig. 2.1: the downlink channel also known as broad-
cast channel (BC) where one transmitter communicates with many receivers; and the uplink
channel also called multiple access channel (MAC) where many transmitters communicate
with a single receiver. There are several differences between BC and MAC. In the former,
the transmitted signal is a linear combination of the signals intended for each user affected
by the same channel and the transmission is constrained in the total power P . In contrast,
in the MAC channel, the signal from different users are affected by different channels and
each user k has its individual power constraint Pk [18]. Most communication systems are bi-
directional and operate in both BC and MAC channels. In order to avoid interference, each
transmission is performed in orthogonal signaling dimensions, which is a signal separation
called duplexing [11]. This separation can be done by allocating BC and MAC communi-
cations in different time-slots also known as time-division duplexing (TDD), or in separated
frequency bands known as frequency-division duplexing (FDD). An advantage of TDD over
FDD is that bi-directional channels are typically symmetrical in their channel gains, which
allows the estimation of one channel direction if the other is known. In other words, channel
state information (CSI) can be obtained in TDD, where the reciprocal uplink and downlink
channels are time-multiplexed on the same physical wireless channel [19].

Figure 2.1: BC and MAC for indoor and outdoor scenarios.

In MU-MIMO BC systems, the performance depends on the efficient assignment of the
resources at the transmitter or base station (BS). Moreover, if CSI is known at the transmitter
the gain is twofold: full spatial degrees of freedom can be attained [18] and the system can
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be optimized over a new degree of freedom given by the users. In the literature of MU-
MIMO, two dimensions of optimization are studied: multiplexing diversity and multiuser
diversity (MUDiv). The former is a consequence of the independent fading across all MIMO
links, which yields a set of parallel spatial channels where different data streams can be
transmitted increasing the system capacity [20]. The latter is given when users that are
geographically far apart have channels that fade independently at any point in time. For a
specific system performance optimization, e.g., sum rate maximization, such an independent
fading process is exploited so that the user with specific channel characteristics (e.g., large
channel gains and/or spatially uncorrelated channels) will be selected for transmission most
likely [21]. Notice that the sum rate is a single number that defines the maximum throughput
(amount of error free information successfully transmitted) of the system achieved by the the
simultaneously scheduled users, regardless of fairness [11]. MU-MIMO techniques provide
manifold gains [22]: multiple antennas attain diversity gain which improves bit error rates
(BER); directivity gains are realized by MUDiv since the spatial signatures of the users are
uncorrelated, which mitigates inter-user interference; immunity to propagation limitations in
single-user MIMO (SU-MIMO) such as rank loss or antenna correlation; and multiplexing
gains scale at most Nt (if full CSI is available at the transmitter), which increases the system
achievable rates [23].

The achievable rates can be increased when MIMO techniques are combined with signal
processing so that independent messages are transmitted to different users by controling power
allocation and mitigating/suppressing inter-user interference. Multiple access techniques di-
vide the total signal dimensions into channels which can be assign to different users. The
channels are created by a division that can be orthogonal or non-orthogonal along different
dimensions. Time-division multiple access (TDMA) and frequency-division multiple access
(FDMA) are techniques that create orthogonal channels, whilst code-division multiple access
(CDMA) can be orthogonal or non-orthogonal depending on the code design [11]. The spa-
tial dimension provided by the multi-antenna transceivers can be used to create orthogonal
or non-orthogonal channelization schemes which is known as spacial-division multiple access
(SDMA) [18]. Multiple access techniques are usually combined to exploit different dimensions
of optimization. For instance, to achieve orthogonality in time, all the spatial resources at
the BS (Nt antennas) are used to communicate with one user (Nr antennas) at a time which
is known as SU-MIMO with TDMA. This technique avoids inter-user interference, achieves
power gains that scale with Nt, enhances data rates for a single user specially at low signal-
to-noise ratio (SNR) regime, and is robust to CSI uncertainty [13, 18, 22]. SDMA exploits
CSI at the BS allowing K > 1 users to be scheduled at the same time achieving multiplexing
gains of at most min(Nt,KNr) at the high SNR regime, where the system capacity is limited
by the spatial DoF and not by power.

2.2 Capacity of Multi-User MIMO Systems

In multi-user systems, multiple access techniques refer to the assignment of signal dimen-
sions to specific users by exploiting the fact that different users impinge different signatures
in time, frequency, code, or space. Since the assignment of the system resources can be given
in an infinite number of ways, the capacity of the entire system is given by a rate region
rather by a single number. The rate region describes all the rates that can be simultaneously
supported by the channel with an arbitrary small error probability [11]. The union of the
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all the achievable rate vectors under all multi-user transmission strategies is called the ca-
pacity region of the multi-user system. The fundamental differences between BC and MAC
channels, discussed below, imply that their capacity regions are different. However, there is a
duality between these channels which allows to find the capacity region of one channel from
the capacity region of the other one.

2.2.1 Capacity of Broadcast Channels

The capacity region of the degraded BC is known [16], where the Gaussian channel has
a scalar input and a scalar output (single antenna transceivers). In such case, the capacity
region is achieved by superposition coding at the transmitter and interference subtraction
at the receivers [19]. For the case of non-degraded BC, the capacity region is only known
for special cases. Since the BS has knowledge of the data symbols and CSI, the multi-
user transmission can be optimized using coding techniques. The achievable rate region in
BC is based on dirty paper coding (DPC) [24]. The principle behind this optimum coding
technique is that the BS knows the interference for a given user and can pre-subtract it
before transmission, which yields the capacity of an interference free channel. The seminal
work of Caire and Shamai [25] established an achievable rate region for a two-users MIMO
scenario and it was proved that a generalization of such a scheme with DPC achieves the
entire capacity region of the MIMO BC [26].

Consider a system with a single BC with K users where the Nr ×Nt channel matrix Hk

summarizes the channel gains between the antennas at the BS and each antenna at the kth
user. The received signal for the kth user is defined as

yk = Hkx + nk,

where x is the input to the transmit antennas and Σx = E[xxH ] denotes its covariance
matrix. It is assumed that the noise vector nk is circular symmetric complex Gaussian with
covariance E[nnH ] = σ2I. When Nt > 1, the BC is called non-degraded, which means that the
receivers cannot be ranked by their channel quality since there are multiple gains associated
with each transmit-receive antenna pair. Let π(·) denote a permutation of the user indices,
Σ = [Σ1, . . . ,ΣK ] denote the set of positive semi-definite covariance matrices meeting a total
power constraint, i.e., Tr(Σ1 + . . .+ ΣK) ≤ P . By employing DPC the user π(k) is encoded
after user π(k − 1), thus the following rate vector is achievable [11, 26]:

R(π,Σ) : Rπ(k) = log2

|I + Hπ(k)(
∑

j≥k Σπ(j))H
H
π(k)|

|I + Hπ(k)(
∑

j>k Σπ(j))H
H
π(k)|

, k ∈ {1, . . . ,K}. (2.1)

The BC capacity region is the convex hull of the union of all rate vectors over all permu-
tations and all covariance matrices satisfying the average power constraint:

CBC(P,H) = Conv


⋃

π,Σ

R(π,Σ)


 . (2.2)

The DPC implies that the components of x = x1, . . . ,xK are uncorrelated, so that Σ1 +
. . .+ ΣK ≤ P . The rate equations defined in (2.1) are neither convex nor concave functions
of the covariance matrices. This implies that the computation of the capacity region must be
done by exhaustive searching over the entire space of covariance matrices that meet the power
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constraint [25]. However, there exists a strong connection between BC and MAC that has
been used in the literature to define the capacity region in the downlink direction [11, 18, 26].

2.2.2 Uplink-Downlink Duality

The duality between the DPC for the MIMO BC and the capacity region of the MIMO
MAC [18, §10] was established by taking into account the reciprocity of both channels and
the duality between scalar Gaussian BC-MAC [27]. Unlike BC, in MAC the rate maximiza-
tion can be formulated as a concave function of the covariance matrices. In other words,
the MAC capacity region can be fully characterized as a convex optimization problem [27].
The connection between both channels allows the DPC region (2.5) to be found using convex
optimization techniques. The achievable rate of the kth user computed in (2.1) can be refor-
mulated as a function of Wk and Gk the precoder matrix and the receive filter matrix of the
kth user ∀k = 1, . . . ,K, respectively, with an upper bound established as follows [28]:

Rπ(k)(π,W) ≤ log2

∣∣∣INr +
(
Aπ(k)

)−1
Hπ(k)W

H
π(k)Wπ(k)H

H
π(k)

∣∣∣ (2.3)

= log2

∣∣∣INt +
(
Bπ(k)

)−1
HH
π(k)Wπ(k)W

H
π(k)Hπ(k)

∣∣∣ (2.4)

where

Aπ(k) = σ2INr +
∑

π(j)>π(k)

Hπ(k)W
H
π(j)Wπ(j)H

H
π(k)

Bπ(k) = σ2INt +
∑

π(j)<π(k)

HH
π(j)Gπ(j)G

H
π(j)Hπ(j)

are the interference plus noise components of the downlink and uplink respectively. The
expression in (2.4) is equivalent to the uplink rate bound for a MAC, given fixed transmit
filters Gk and a reverse decoding order π̄. The computation of the optimal precoders that
maximize a particular weighted sum rate is highly complex since (2.3) is not convex in W2.
In fact, such optimal precoders require SINR balancing [31–33] and its evaluation is achieved
by computationally demanding algorithms [34, 35]. The equality in (2.4) holds for all users if
and only if reciprocal channels are assumed (HBC = HH

MAC) and the sum power is the same
in both cases, i.e., Tr(

∑
k GkG

H
k ) = Tr(

∑
k WkW

H
k ) which is equivalent to the constraint

over the covariance matrices in (2.1). The MIMO MAC is typically subject to a per-user
power constraint Pk, and the capacity region of MIMO BC is obtained by taking the convex
hull around all possible MAC regions with different per-user powers summing up to the same
overall power, i.e.,

∑
k Pk = P . Mathematically, the BC capacity region can be expressed as

the union of the capacity regions for its dual MAC with a pool power constraint as [27]:

CBC(P,H) =
⋃

{P1,...,PK}:
∑K
k=1 Pk=P

CMAC(P1, . . . , PK ; H), (2.5)

2The computation of the optimal downlink precoders W can be reformulated as a number of optimization
problems, e.g. semi-definite program, second-order cone program, and Lagrangian dual which transforms the
original non-convex problem into a very specific constrained convex optimization problem, cf. [29, 30] and
references therein.
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where CBC is the AWGN BC capacity region with total power constraint P and channel
matrix H, and CMAC is the AWGN MAC capacity region with individual power constraints
P1, . . . , PK and the same channel matrix. The geometric interpretation of (2.5) is illustrated
in Fig. 2.2 for a system with two users where the BC capacity region is formed from the union
of the MAC capacity regions with different power allocations between the uplink transmitters
that sum up the total power P of the dual BC [11]. The exact shape of the capacity, rate,
or another performance region depends on the power constraints, the channel gains, and
the correlation between the channel vectors of the scheduled users, which will be elaborated
upon in Chapter 4. Understanding the geometry of the BC capacity region is fundamental to
achieve operation points where either the weighted sum rate is maximized, power consumption
is minimized, time-sharing between user is defined, or any other global system goal is achieved
[36][37, §5]. The main results in Chapter 4 are derived from the properties of the BC capacity
region under individual SINR constraints, where optimal and sub-optimal power and rate
allocation schemes for sum rate maximization are designed. It is worth mentioning that a
large amount of theoretical and practical (algorithms) research is built on the basis provided
by the uplink-downlink duality and the characteristics of the capacity or achievable SINR
region in downlink transmission, cf. [12, 32, 36–38].
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Figure 2.2: Capacity Regions of a two-user MAC and BC for H1 = [1, 0.5], H2 = [0.5, 1], P = 10.

The optimal precoding matrices Wk in (2.3) can be calculated if the dual transmit filters
Gk are known and viceversa, which is illustrated in Fig. 2.3. This can be achieved com-
puting Bk ∀k from Gk and determining Ak and Wk iteratively [27, 28]. Uplink-Downlink
duality can be also used to calculate capacity regions and precoding matrices Wk for the
MIMO BC transmission with per-antenna power constraints [29]. In the uplink the optimal
receiver implements successive interference cancellation (SIC) decoding, which achieves the
MAC capacity region [18] and can be implemented with reasonable effort [39] by using only
receiver-side CSI. The DPC encoding is the dual of SIC decoding but it is mainly a theoreti-
cal construct since its implementation requires sophisticated random coding and other signal
processing techniques which are highly complex to implement [40]. Nevertheless, the DPC
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rate region establishes the fundamental performance limits for MU-MIMO in the downlink
transmission. Sub-optimal yet practical non-linear precoding schemes have been proposed
in order to reduce complexity of DPC, such as the Tomlinson-Harashima precoding (THP)
[18] or vector-perturbation [41] which require highly accurate CSI at the transmitter-side.
Linear precoding techniques are also feasible sub-optimal alternatives to DPC and they will
be used in Chapter 5 and Chapter 6 to maximize the average sum rate in scenarios where
user selection is required, i.e., Nt < KNr.

Figure 2.3: Uplink-Downlink Precoding Duality

2.3 Transmission Methods for Broadcast Channels

DPC is a nonlinear process that requires successive encoding and decoding whose com-
plexity is prohibitive in practical systems and alternative SDMA transmission schemes are
preferred instead. In the literature, DPC has been interpreted as beamforming (BF) [25] which
is a transmission scheme where data streams of different users are encoded independently and
multiplied by weight vectors W in order to mitigate mutual interference. BF can be defined
as the steering of data signals towards intended/selected users by means of array processing
(modifying signal amplitudes and phases) so that the received signal power is increased and
the inter-user interference is mitigated [12]. Although practical BF schemes are sub-optimal,
several works (e.g., [13, 25]) have shown that they can achieve a large portion of the DPC rate
and their performance is close-to-optimal for large Nt and K [40]. The specific selection of the
weight vector of a given user may affect the performance of other users, i.e., the achievable
SINR of one user is coupled with the other users weight vectors and transmit powers [35].
Since the optimum BF weight vectors must be jointly optimized with power allocation [12],
sub-optimal weights based on zero-forcing (ZF) or minimum mean square error (MMSE) can
be used [25, 42] in order to reduce complexity.

The joint optimization of the beamforming weights, the power allocation, and the set of
links that are scheduled under SDMA transmission is performed for a given global objective
function. A common global figure of merit in the downlink transmission is the total achievable
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sum rate because it quantifies how much total data flow is possible in a BC [43]. The achievable
rate defines the number of bits that can be conveyed to a given user with an arbitrary
low probability of error [16]. In the literature, the achievable rate is usually given by the
Shannon capacity formula, and the performance figures are built on idealized decoding, infinite
symbol constellations, and error-control coding over a large number of channel instances,
which provides insight w.r.t. the maximum achievable performance and its upper bounds
[12]. In the literature of BC systems a large body of research (see Chapter 5 and Chapter 6)
is focused on maximizing the sum rate for a specific BF scheme, and the open problems are
power allocation and user selection. If the inequality Nt ≥ KNr is fulfilled, power allocation
can be computed straightforwardly either by Lagrangian methods (water-filling based on
convex optimization [9, 10]) or by equal power allocation (close-to-optimal for the high SNR
regime [33, 44–47]). However, when the number of total receive antennas is larger than the
number of spatial resources at the BS, i.e., Nt < KNr, user selection is required prior to power
allocation if linear precoding is used. For non-linear precoding, studies show that the optimal
number of scheduled users with nonzero allocated power at every channel instance is upper
bounded by N2

t [48]. The selection of the optimum set of users that maximizes the sum rate for
a given BF scheme with optimum power allocation is a mixed binary non-convex problem. A
mixed binary problem is one where some of the decision variables are constrained to be either
0 or 1. This kind of problems are hard to solve and the computational complexity required
to find their solutions will be discussed and illustrated in Chapter 5. In systems where users
must be allocated in different radio resources (time-slots or sub-channels) finding the optimum
subsets of users under SDMA transmission for each radio resource is a NP-complete problem
whose optimum solution can be found via exhaustive search [49]. Recent works reviewed in
Chapter 4, Chapter 5, and Chapter 6 have proposed a number of feasible heuristics algorithms
that find a sub-optimal yet acceptable solution to the sum rate maximization problem with
SDMA communication.

The literature of MU-MIMO has been focused on single-carrier scenarios with ZF-based
BF schemes due to their tractability and the fact that some channels characteristics can
be used to estimate the reliability of joint transmission for a given set of users. The main
objective of joint scheduling and BF is to make better decisions at the medium access control
layer by exploiting information from the physical layer (wireless channels knowledge) [50].
Cross-layer scheduling designs usually consider limited information from physical layer and
constraints of upper layers related with queuing theory, quality of service (QoS), and delay
constraints [51]. The proposed algorithms and literature reviewed in the following chapters
addresses the scheduling process in the medium access control layer using exclusively physical
layer information, i.e., CSI at the transmitter.

2.4 Cellular MU-MIMO Systems

The fixed deployment of transmitters (base stations or access points) throughout a given
area has the objective of providing reliable communication to mobile terminals to a backbone
wire network. This kind of infra-structure based networks include cellular systems and wireless
local area networks (LAN). Such kind of systems are controlled by a centralized processing
unit (CU) in charge of the resource allocation (power, space, time, frequency, and code),
provided some known information regarding to the CSI and the interference structure at
the transmitter [19]. The premise behind cellular systems is to exploit the power falloff with
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distance of signal propagation to reuse the same channel at spatially-separated locations. The
cellular TDMA, FDMA, and non-orthogonal CDMA systems can be designed as virtually
interference-free by planning the frequency-reuse distance. This means that the serving area
is divided into non overlapping cells and any cell site within a neighborhood (cluster) cannot
use the same frequency channel, which makes the same reused frequency channels sufficiently
far apart [52]. Recent work in the area of distributed antenna systems (DAS) [53–56] shows
the potential of combining such access network infra-structure with both frequency reuse
(described in detail in Chapter 3) and coordinated multi-cell downlink transmission (briefly
described below and in Chapter 6). The integration of these two components is fundamental
to enhance performance in terms of throughput and coverage in current cellular systems and
in their successors, the HetNet [55]. The characteristics of this kind of frequency separation
techniques combined with distributed antenna deployments and different transmission and
reception schemes will be further elaborated upon in Chapter 3. The same system model
employing distributed antennas at the access network will be used in Chapter 4 and efficient
resource allocation algorithms will be tasted for such architectures.

In cellular systems, interference is generated by two sources [57]: other devices in the
same cell (intra-cell interference) and co-channel interference from other cells , i.e., inter-cell
interference (ICI). In traditional cellular systems, each user belongs to one cell at a time
and resource allocation is performed unilaterally by its respective BS. If frequency reuse is
employed, the BS can make autonomous resource allocation decisions and be sure that no
uncoordinated ICI appears within the cell [12]. In the literature it is common to find single-
cell models where the BS is equipped with several antennas and a set of K users compete for
radio resources. In such a MU-MIMO scenario the ICI is either negligible or it is assumed
to be part of the additive background noise. Therefore, intra-cell interference is the main
limiting performance factor, and precoding techniques such the ones describe in Chapter 5
can be used to enhanced the achievable sum rate in BC. In multi-cell systems, the mitigation
of ICI is a fundamental problem since the transmit strategy chosen by one BS will affect the
reception of the users served by adjacent BSs. Systems with static frequency-reuse (cluster
organization) achieve limited spectral efficiency when the user distribution is heterogeneous
and suffer from severe ICI [28, 30]. However, dynamic and flexible multi-cell coordination
can be performed in a user-centric perspective. This implies that the set of base stations
that serve a given user is based on the particular needs of this user. Under this approach,
each BS will coordinate ICI mitigation to a specific group of users and only send data to it.
A BS within a cluster coordinates its resource allocation decisions with the rest of the BSs
that affect the same user. In this way, each BS cooperates with its neighbors and dynamically
forms a user oriented cluster. Dynamic clustering and user-centric communication are ongoing
research topics (e.g., [12, 52] and references therein) which promise to meet the requirements
established in the third generation partnership project (3GPP) standards [58].

Different forms of ICI control have been proposed in the literature over the last years.
An extension of SDMA for multi-cell systems that has received several names, coordinated
multi-point (CoMP) [28, 58, 59], network MIMO [60], or joint signal transmission/processing
(JT) [52], attempts to exploit the spatial dimensions serving multiple users (specially cell
edge users [12]) while canceling ICI of BSs within a cluster. In this approach, a cluster of
BSs is treated as a super cell where mathematical models from the single-cell scenario can be
applied straightforwardly [61]. The fact that user data is shared among BSs allows the use of
proactive interference mitigation within a cluster. A proactive treatment of interference means
that coordinated BSs do not tune separately their physical layer/multiple access control layer
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parameters but instead coordinate their coding and decoding, exploiting knowledge of global
data and CSI [30]. However, to guarantee the high performance for this kind of systems,
several conditions must be met [12, 52]: global CSI and data sharing are required, which
scales the demands on the channel estimation, feedback links, backhaul networks, and tight
BS cooperation3; coherent joint transmission and accurate synchronization (increasing the
delay spread); and finally, complex centralized resource allocation algorithms which may be
infeasible in terms of computation load, delays, and scalability. There is another approach
of cooperation defined in the 3GPP standards called coordinated beamforming (CBF) which
is a form of interference coordination [52, 58]. Interference coordination refers to the partial
or total sharing of CSI among BSs to estimate beamforming weights, power allocation, and
scheduling without sharing data or signal-level synchronization [30]. CBF implies that each
BS has a disjoint set of users to serve with data but selects transmit strategies jointly with all
other BSs to reduce ICI. In this approach user data is not exchanged among BSs in a cluster
but control information and CSI are exchanged in order to perform simultaneous transmission
to an arbitrary number of users [59]. Each user receives data from one BS and its performance
is enhanced by jointly designing the beamforming weights which steers the interference toward
a specific spatial dimension, e.g., the null space spanned by the unintended user channel. CBF
requires less signaling load than CoMP, but in practice it needs accurate CSI (feedback and
backhaul requirements) and scheduling coordination. The special case where only one user is
served per BS is called the interference channel and it is of particular interest due to the fact
that multi-cell coordination can be performed in an user-centric fashion with a low price in
terms of message exchanged between BSs.

2.4.1 Interference Channels

The system model of interference channels (IFC) arises in scenarios with at least two
transmitters that may belong to independent wireless systems, using concurrently the same
spectral band to send information to different users. IFC can be used to characterize cellular,
ad hoc, digital subscriber lines (DSL), and cognitive radio systems (illustrated in Fig. 2.4)
and it has been an active research field over the last years [63–67]. The capacity region
for an arbitrary number of transmitter-receivers pairs equipped with multiple antennas is
still an open problem, and it is only well understood for some particular cases. However,
valuable progress has been achieved in the field, for instance the works in [65, 66] studied
multiple-input single-output (MISO) for a Gaussian IFC with two single antenna users and
analytical results showed that: interference may have a structure that can be actually used to
improve performance instead of simply adding it to the background noise; and by restricting
each receiver to implement single-user detection, transmitter beamforming can be sufficient
to achieve all boundary points of the rate region. Single-user detection means that users
treat co-channel interference as noise, i.e., they make no attempt to decode and subtract the
interference. This is a widely used assumption in the literature of the downlink transmission
(this will also be assumed in Chapter 5 and Chapter 6), whilst multi-user detection is well
understood and has practical applications in the uplink transmission [57].

The authors in [64] studied MISO IFC and they showed that when multiple antennas are
employed at each transmitters, there exists a fundamental need for cooperation in order to

3Recent research [62] shows that in the high SNR regime of practical multi-cell systems with clustered cells
performing coordinated/cooperative transmission, the achievable system capacity is fundamentally interference
limited due to the out of cluster interference.
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achieve maximum spectral efficiency when the transmitters belong to different communica-
tion systems. Theoretical results show that maximizing the proportional rate allocation, i.e.∑

k log(Rk) ∀k, in scenarios with independent systems (e.g. heterogeneous networks) yields
a close-to-optimal joint transmission strategy (beamforming design and power allocation).
And when Nt ≥ KNr the maximization of the proportional fairness utility function in [64]
is closely connected with a Nash bargaining in the context of game theory and resource allo-
cation theory [68]. However, even for fully centralized systems, authors in [61] showed that
the optimal coordinated beamforming is a NP-hard problem for multiple antennas at the
transmitter. Moreover, complexity analysis suggest that the computation of global optimal
beamforming vectors should be reconsidered (avoided) for general MU-MISO IFC scenario
unless the global system goal is described by the max-min problem4 since such an objective
function can be optimized in polynomial time. The authors in [61] analyzed the problem of
maximizing the weighted sum rate, proportional rate allocation, harmonic-mean utility, and
max-min rate allocation for MISO systems, where only the last one can be solved by standard
convex optimization techniques. Nevertheless, for the general MIMO case all four problems
are NP-hard [67].
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Figure 2.4: Models of Interference Channels. (a) is a K-cell MISO IFC system with signal design
capabilities, i.e., beamforming design and power allocation can efficiently suppress interference; (b) is
an IFC system with fixed channel gains (e.g., predefined beamforming weights) and interference can be
mitigated only by power allocation and scheduling. The solid arrows refer to the useful signal directions,
while the dashed arrows refer to interference directions. Coordination through a CU depends on the
kind of processing, i.e., centralized or distributed.

In this thesis multi-user IFC scenarios will be studied in two different perspectives for the
sum rate maximization problem: 1) one approach that allows rate and power allocation, 2) a
second approach that performs signal design, and both approaches implement user selection.
Fig. 2.4(b) illustrates a widely studied system model used to solve the QoS (measured by
the achievable rate) constrained power minimization [32, 36, 37, 69, 70]. This problem has

4This utility function maximizes the fairness over the rate distribution among users since the minimum
instantaneous rate is maximized which generally requires to transmit less power to users with good channels.
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been studied in several scenarios (MIMO, MISO, etc.) and for both regimes BC and MAC.
The algorithms to solve such a problem implement sophisticated optimization techniques
to determine the optimal resource allocation, i.e., the optimal set of scheduled links, and
their respective beamforming weights and power allocation [67, and references therein]. In
Chapter 4 the same problem will be analyzed albeit with a particular set of constraints over
the rates that can be assign to each link. Given a set of links in the IFC regime the questions
to be answered are, how to decide which links must be active? and which data rates must be
allocated to the subset of active links in order to maximize the sum rate?. It will be shown
that the problem has a complex combinatorial nature and resource allocation algorithms will
be designed so that close-to-optimal solutions for such a complex problem can be found.

Fig. 2.4(a) shows a widely used multi-cell MISO BC/IFC system model [12, 63, 64, 71]
where a set of BSs can cooperate/coordinate their transmission in order to find optimal
operational points. This implies the joint design of beamforming weights and power allocation
to optimize an utility function (maximum sum rate or proportional fairness), which turns the
problem NP-hard [61]. The results in [63] show that when the transmitters belong to the same
system, e.g., a clustered multi-cell system, the cooperation between them reduces exclusively
to control message exchange avoiding user data or CSI sharing. This means that optimal
operational points of the system can be achieved by designing beamforming weights based on
local CSI. In Chapter 6 close-to-optimal solutions to the sum rate maximization problem are
found by using linear beamforming techniques (cf. [63, 72]) in clustered multi-cell MU-MISO
systems. The multi-user factor (Nt < KNr) transforms the problem of finding an optimal
operational point into a mixed non-convex problem. It will be shown that close-to-optimal
operation points can be found by combining sub-optimal yet efficient user selection algorithms
and distributed signal design.
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Chapter 3

Distributed Antenna Systems and
Cellular Architectures

This chapter presents a comparative study of the distributed antenna systems (DAS) and
conventional cellular systems with co-located antennas (CAS) and the impact of such ar-
chitectures in frequency planning. The main characteristics of DAS and a brief discussion
about frequency planning are presented. Two performance metrics, the throughput and
outage probability are defined for different download transmission schemes. Numerical
results show that DAS can increase the spectral efficiency of cellular systems since they
can support intensive frequency reuse. This also implies that inter-cell interference can be
suppressed in a more efficient way than in conventional CAS systems. The effects of mul-
tiple antenna receivers is also studied. Numerical simulations [J1, C1] show that MRC
processing is complementary to DAS architecture and it can highly improve performance
specially in the low SNR regime.

3.1 Introduction

A
cellular distributed antenna system (DAS) consists of several antennas geograph-
ically distributed within the cell in order to accomplish several goals: increase coverage

area, reduce the access distance to the users, and make a more resilient system to ICI [73].
Each distributed antenna is connected to a central controller via a dedicated link, either by a
wireless or an optical connection [74]. This architecture mimics a macroscopic multi-antenna
system which can achieve low values of signal correlation [75]. As a consequence, DAS al-
lows the implementation of efficient signal processing schemes which may be inefficient in
co-located antenna systems (CAS) due to the severe signal correlation [76]. DAS systems
were initially designed to solve indoor coverage problems [77]. Nonetheless, due to the huge
potential of such an access architecture, a considerable amount of theoretical and practical
research has been done in the last decade in order to find applications in outdoor scenarios
(cf., [76, 78] and references therein). As a matter of fact, DAS are tightly integrated into cellu-
lar architecture, and current wireless standards already consider access network deployments
combined to physical layer technologies like MU-MIMO [55].

DAS systems have been studied in the literature using different performance metrics. In
[79, 80] the authors studied the ability of DAS to minimize power consumption considering
different antenna configurations. In [75] the authors showed that DAS can highly improve
fairness and spectral efficiency. Numerical results showed that since DAS provide macro-
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diversity (independent fading channels) the minimum allocated rate per user increases since
ICI can be mitigated efficiently. The work in [81] studied adaptive modulation in DAS and
showed that significant power savings and capacity gains can be attained w.r.t. conventional
systems. Channel capacity and outage probability of DAS with fixed antenna location has
been addressed in [78, 82], while the case of random antenna location considering multicell
scenarios and universal frequency reuse was studied in [83].

Universal frequency reuse means that the frequency reuse factor (KF ) is equal to 1 which
is one of the possible frequency planning configurations in Worldwide Interoperability for
Microwave Access (WiMAX) and Long Term Evolution (LTE) systems [84]. KF specifies the
way in which spectral resources (sub-channels) are allocated in a cellular deployment and is
a function of the tolerated interference in the system. KF can be defined as the number of
adjacent cells which cannot use the same frequencies for transmission. Its inverse, 1/KF , is
a factor to indicate how efficiently the bandwidth is used in the cellular system [17]. The
spectral efficiency is enhanced when the available bandwidth in the cellular system is reused
by neighboring cells, i.e., when the frequency reuse factor is as small as possible [85]. For
instance, if KF is reduced while capacity over a given coverage area remains constant, then
less radio resources are required and higher spectral efficiency is achieved.

Despite the recent advances in the field of multiple antenna systems, the influence of
frequency reuse planning on the downlink performance of DAS has not been fully investigated
in the literature. Moreover, multiuser multi-carrier systems such as Orthogonal Frequency
Division Multiple Access (OFDMA) do not have a processing gain as the CDMA systems
and a fundamental problem is to achieve both, universal frequency reuse and ICI suppression
[84]. In [86] Simonsson explored interference cancellation using different frequency planning
techniques and investigated the effects of receivers with multiple antennas to combat ICI for
cell-edge users. The results showed that implementing MRC processing at the receivers and
frequency planning at cellular level can improve the SINR for users located far from the BS
and reduce interference significantly.

This chapter explores the main advantages of DAS over conventional cellular systems in
terms of frequency reuse factor. The achieved results shed light on how spatial diversity
and macro diversity affect the transmission and reception schemes. A comparative analysis
of the different scenarios is provided using outage probability and throughput as the main
performance metrics. Numerical results show that DAS overcomes the spectral efficiency
of conventional cellular systems and increases throughput figures in deployments where the
frequency reuse factor is fixed. Further improvements are achieved when MRC is implemented
at the user terminal considering that number of receive antennas is Nr ≥ 2. An interesting
result indicates that in some cases DAS achieves performance levels that conventional systems
cannot attain even if its frequency reuse factor is larger that the one used by DAS.

3.2 Frequency Planning

Frequency planning is the distribution of the radio resources over a given service area
in cellular systems. This radio resource distribution is essential to achieve high Quality of
Service (QoS), efficient power management, ICI suppression, and efficient user scheduling.
Its main objective is to maximize the spectral efficiency and its characteristics define the
power allocation and scheduling schemes in the access network. The assignment of the radio
resources is a key component in the design of cellular systems and can be implemented in two
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different approaches [87]: Fixed Channel Allocation (FCA) and Dynamic Channel Allocation
(DCA).

3.2.1 Fixed Channel Allocation (FCA)

Under this scheme, a set of radio resources (channels) is permanently allocated in a cellular
system. If there is a traffic fluctuation, this scheme may not maintain a minimum required
QoS which might yield a capacity degradation. Due to the fact that in cellular systems
the traffic can be non-uniform with temporal and spatial fluctuations, a fixed and uniform
channel allocation may result in high blocking probability in some cells while others might
have a large number of available channels. A frequency planning technique estimates the
expected traffic of a set of cells and allocate more radio resources to the cells that will serve
more users, i.e., it implements an asymmetric fixed frequency assignment. This approach has
been implemented allocating channels in such a way that the average blocking probability in
the system is minimized [88].

One approach of the radio resource allocation is the Fractional Frequency Planning (FFP).
This scheme is based on the concept of reuse partitioning [89] where the users with the
highest signal quality use a lower reuse factor while users with low SINR use a higher reuse
factor to mitigate ICI. The most common implementation of FFP in a network is a blend
of frequency reuse factors: universal reuse in the cell center (KF = 1) and less intensive
frequency reuse at the cell-edge areas (KF > 1). In most of these schemes, high power is
allocated to the resources used for cell-edge users in order to guarantee coverage and minimum
QoS requirements. Fig. 3.1 shows the radio resources distribution in a deployment with FFP.
The radio resources are divided into four frequency segments. The first segment is used to
serve users with high SINR at the center area of each cell and the rest of the segments are
used considering KF = 3. FFP is a particularly effective strategy to mitigate ICI for the
cell-edge users and there exist a large number of variations of it, which employ similar reuse
partitioning in sectorized cellular systems [84, §5].

In [90, 91] the authors considered a reuse partitioning scheme as the one shown in Fig. 3.1.
The objective of the authors was to classify the Physical Resource Blocks (PRB) with KF = 1
in the center of the cells and KF = 3 at the cell-edge. In this way, more power is allocated
to the PRB with KF = 3 increasing the throughput of the users at the cell-edge in OFDMA
- LTE systems. A variation of FFP is proposed in [92] where higher power allocation is
performed in 2 of the 3 frequency blocks used in the deployment. By assigning two sub-bands
to the cell-edge area, the spectral efficiency is improved when two users in the cell-edge of
adjacent cells use the same channels but with different data rates.

A similar approach to FFP is the soft frequency reuse (SFR). For a SFR with KF = 3,
the total frequency resource is divided into three segments (f1,f2,f3) as shown in Fig. 3.2.
In order to reduce ICI generated by the use of intensive frequency reused in the center of
the cell, less power is allocated for such radio resources. Each block of radio resources used
in the cell-edge areas has higher power levels in order to improve the achievable SINR. Lu
et al. [93] implemented a SFR scheme for an OFDMA system that allows the optimization
of the radio resource allocation. Different cases of resource management were considered
along with SFR: 1) when all the resources of a cell-edge are occupied and there are available
resources in the central area; 2) when resources at the central area are not enough to provide
a service and there are free resources in the cell-edge area. The proposed solution performs
a resource borrowing mechanism that manage radio resources in the BS and is implemented
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Figure 3.1: Fractional Frequency Planning with conventional cellular deployment

in a sectorized deployment. The work in [83] is a reference for SFR and its integration with
the scheduling process. The authors proposed a proportional fairness scheduling (PFS) [94]
where the power allocation depends on the frequency reuse. The numerical results show that
improving the performance of the cell-edge users may decrease the spectral efficiency of users
with better channel conditions. This means that a fair trade-off between center and edge cell
achievable data rates must be considered when radio planning designs are implemented in
cellular systems.

For networks based on OFDMA such as LTE, the management of radio resources implies
also the control of power and data rates. Authors in [95] implemented a different approach for
SFR considering a more flexible way to classify the users within the cell. Users are classified
according to their required data rates and the number of scheduled users is larger if modulation
and coding schemes (MCS) are used, which increases the overall spectral efficiency. In this
scenario, the total number of resources are classified in sub-bands that can provide better
throughput to the users in both cell zones according to the proposed SFR scheme. Numerical
results show that for some scenarios SFR provides a better interference control and a more
effective MCS selection compared to universal frequency reuse, which increases the average
throughput without degrading the performance at the cell-edge.
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Figure 3.2: Soft Frequency Planning with boundary frequency reuse KF = 3
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3.2.2 Dynamic Channel Allocation (DCA)

Under this scheme a set of channels is allocated in a cell temporarily depending on the
traffic load or other system metrics. This scheme allows the network to utilize radio resources
more efficiently based on certain parameters such as channel or traffic load statistics, improv-
ing QoS and optimizing resource allocation. Radio resources are kept in a central pool and
are assigned dynamically to cells as new users require service. As soon as the user service is
completed, its radio resources return to the central pool. The channels are assigned according
to some interference constrains, if more than one channel can be used in a cell, a CU evaluates
the cost of using each channel and assigns the one with the minimum cost or higher profit to
the system. Each DCA scheme differentiates from each other according to its cost function
which may consider the blocking probability, traffic measurements, channel statistics, etc.

In [96] and references therein, the achievable SINR and load information are used to imple-
ment DCA scheme which was found to be more efficient in terms of throughput and blocking
probability w.r.t. FCA. The DCA scheme accepts a service requirement whenever a channel
can be found that satisfies the minimum QoS constraints such as SINR. Numerical results
show that DCA outperforms FCA for deployments where there is a non-uniform load among
the cells and they suggest that hybrid approaches can be used to reduce the complexity of
DCA. If two or more network architectures have to share radio resources, DCA can be also
implemented. For instance, in [97] macro-cell and femto-cell OFDMA systems are coordi-
nated and operate in the same bandwidth using adaptive fraction frequency reuse according
to a specific access protocol. The DCA schemes can be implemented using distributed or
centralized architectures in the access network. In the centralized architecture DCA requires
a large amount of signalling [28] and communication between BSs leads to large system laten-
cies [17], while in the distributed approach resource allocation decisions are made by each cell
based on the local available information. The distributed approach yields a trade-off between
performance and signaling overhead [98], whilst in the centralized approach performs a more
accurate signal processing and coordination at a higher complexity price.

3.3 Cellular Architecture and DAS

3.3.1 System Model

Consider the distributed antenna system depicted in Fig. 3.3. Each hexagonal cell has a
radius r and consists of a total of N + 1 radiating nodes (or distributed antennas): one node
located at the center of the cell (n = 0), and N distributed nodes (n = 1, . . . , N) located
at a fixed distance Dr from the center of the cell and spaced at uniform angles given by
θn = 2(n−1)π

N . A conventional cellular (CAS) system can be characterized by substituting
N = 0 in the expressions presented in this section. Two transmission modes will be studied
in this chapter. The first one is called blanket transmission with repetition coding, where all
the nodes within a cell transmit the same information towards a single user (see Fig. 3.4b).
Each node uses a transmit power P

N+1 , where P is the total transmit power in the cell. In
the second transmission mode, called single transmission scheme, only a single antenna is
selected for transmission by the criterion of minimizing propagation path-loss (see Fig. 3.4c).
The selected node uses full power P while the remaining nodes are deactivated. Each user
terminal is equipped with Nr antennas followed by MRC processing. In order to combat ICI,
different frequency reuse factors will be evaluated considering that there is only one single user

23



transmission in any given time/frequency/code dimension. In a hexagonal cellular network,
the available frequency reuse factors required to have a symmetric deployment are given by
the formula KF = (a+ b)2 − ab, where a and b are two positive integers [85]. For simplicity,
only the central cell (i = 0) will be used for performance metric calculation and only one tier
of 6 outer cells (i = 1, . . . , 6) will be considered as source of interference adopting the system
model studied in [78, 99]. All these interfering cells are located at a reuse distance from the

central cell given by Dc = r
√

3KF [85], and spaced at uniform angles given by φi = (i−1)π
3 .

The distance between the nth node in the ith cell of the network and the user of analysis u

in the central cell with coordinates (xu, yu) is denoted by d
(u)
i,n and is given by the following

expression:

d
(u)
i,n =

√
∆xu(i, n)2 + ∆yu(i, n)2, (3.1)

where
∆xu(i, n) = δ(i)Dc cosφi + δ(n)Dr cos θn − xu, (3.2)

∆yu(i, n) = δ(i)Dc sinφi + δ(n)Dr sin θn − yu, (3.3)

and δ(k) is a binary variable which takes a value δ(k) = 0 when k = 0, and δ(k) = 1 when
k 6= 0.
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Figure 3.3: Cellular Architecture with DAS and MRC receivers
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Figure 3.4: Transmission Schemes: a) conventional cellular system, b) blanket transmission where all
nodes transmit to one user, c) single transmission where the user is served by the best node.

3.3.2 Propagation and signal models

The channel between the mth antenna of user u in the central cell and the nth node of
the ith cell of the network is denoted by h

(u)
m,i,n. Channels of different users and different
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distributed antennas are assumed to be statistically independent, Rayleigh distributed, and

affected by a propagation path-loss component defined by L
(u)
i,n =

(
d

(u)
i,n

)−αpl
, where αpl is

the path-loss exponent. The channel h
(u)
m,i,n can be written as h

(u)
m,i,n =

√
P

N+1L
(u)
i,nψm, for

the blanket transmission scheme, or h
(u)
m,i,n =

√
PL

(u)
i,nψm, for the single transmission scheme,

where ψm is a circularly complex and zero-mean Gaussian random variable with unitary power
ψm ∼ CN (0, 1).

The signal transmitted by the ith cell, denoted by si, is assumed to has unitary power
E[|si|2] = 1 and the signal received by the mth antenna of user u under blanket transmission
is given by:

ru,m =

N∑

n=0

h
(u)
m,0,ns0 +

6∑

i=1

N∑

n=0

h
(u)
m,i,nsi + νu,m, (3.4)

while for the single transmission scheme it can be written as

ru,m = h
(u)
m,0,zs0 +

6∑

i=1

h
(u)
m,i,qi

si + νu,m (3.5)

where z = arg maxn∈{0,1,...,N}{L(u)
0,1 , L

(u)
0,2 , . . . , L

(u)
0,N} and qi is an integer randomly selected

among {0, 1, . . . , N} assuming that the same transmission scheme is used in all the cells.
This assumption is used in several works in the literature of distributed antenna systems,
e.g., [76, 78, 99]. The term νu,m in (3.4) and (3.5) is the noise with normalized power,
νu,m ∼ CN (0, 1). Expressions in (3.4) and (3.5) can be rewritten as

ru,m = Su,m + Iu,m, (3.6)

where Su,m stands for all the contributions of the nodes inside the central cell, and Iu,m
represents the inter-cell-interference-plus-noise term. Due to the central limit theorem and
according to the theoretical work presented in [78, 99], the interference-plus-noise term Iu,m
can be considered as Gaussian distributed with variance

σ2
Iu,m =

6∑

i=1

N∑

n=0

E[|h(u)
m,i,n|2] + 1 (3.7)

for the blanket transmission scheme, and

σ2
Iu,m =

6∑

i=1

E[|h(u)
m,i,q|2] + 1 (3.8)

for the single transmission scheme, respectively.

Since all channels are Rayleigh-distributed and the interference-plus-noise term is assumed
to have Gaussian distribution1, then the SINR at each antenna element is methematically
defined as:

γu,m =
|Su,m|2
σ2
Iu,m

(3.9)

1This means that the term σ2
Iu,m

is seen as a constant for user u and antenna m
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and it can be proved that γu,m has exponential distribution [100]:

fγu,m(γu,m) =
1

γu,m
e
− γu,m
γu,m (3.10)

where γu,m is the average SINR. Since the denominator of the SINR (3.9) is assumed to
be a constant, the average SINR can be calculated by applying the expectation operator to
the numerator only while using in the denominator the variance of the Gaussian-distributed
interference-plus-noise term. This assumption has been used in research works dealing with
the analysis of multicell systems, e.g., [100]. The expression of the average SINR for the
blanket transmission scheme is given by:

γu,m =
E[|Su,m|2]

σ2
Iu,m

=
E[|∑N

n=0 h
(u)
m,0,n|2]

∑6
i=1

∑N
n=0 E[|h(u)

m,i,n|]2 + 1

=

∑N
n=0

P
N+1

(
d

(u)
0,n

)−αpl

∑6
i=1

∑N
n=0

P
N+1

(
d

(u)
i,n

)−αpl
+ 1

(3.11)

and for the single transmission scheme by:

γu,m =

(
d

(u)
0,z

)−αpl

∑6
i=1

(
d

(u)
i,q

)−αpl
+ 1

P

(3.12)

Since (3.11) and (3.12) are independent of m then the term γu,m will be simply denoted by
γu.

3.4 Performance Metrics

3.4.1 Outage probability

For the uth user in a particular location in the central cell, the outage probability is
defined as the probability that the instantaneous SINR, γu, is below a required target value
γT . The outage probability is a metric used to evaluate system coverage performance and
can be written in mathematical form as:

P
(u)
out = Pr{γu ≤ γT }, (3.13)

which is equivalent to the cumulative density function (CDF) of the SINR of user u: Fγu(γT ).

Using the signal model in the previous section, P
(u)
out can be calculated in closed-form for a

single antenna receiver using the CDF of the exponential distribution [101]:

P
(u)
out = 1− e−

γT
γu . (3.14)
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Recall that in this section MRC receivers are considered whose main characteristic is that
their output SINR are the sum of the SINRs of the individual antennas, γu =

∑
m γu,m. As-

suming no correlation between the receive antennas, Nr exponentially identical and indepen-
dently distributed random variables are added, which yields a central Chi-square distributed
variable with 2Nr degrees of freedom whose CDF is given by the following expression [101]:

P
(u)
out = 1− e−

γT
γu

Nr−1∑

k=0

1

k!

(
γT
γu

)k
(3.15)

With the help of (3.15), it is possible to calculate the average outage probability across
the cell by integrating the previous expression across the set of all user positions in the cell,
denoted by U0, as follows:

Pout =

∫

u∈U0

P
(u)
outPr{u}du, (3.16)

where Pr{u} is the probability of occurrence of the user location u. Assuming uniform user
distribution across the central cell (all user positions are equally likely) allows to evaluate
numerically the above integral as an averaging operation:

Pout =
1

Nu

Nu∑

u=1

P
(u)
out , (3.17)

where Nu is the number of user positions considered in the numerical evaluation.

3.4.2 Throughput

The throughput of a system can be defined as the long term ratio of the total number
of bits correctly received by the users to the total time spent to transmit such information.
In systems with fixed transmission intervals, the throughput can be expressed as the ratio of
E[Ib] the average number of bits correctly transmitted per transmission time interval (TTI),
divided by the duration of the TTI denoted by LT :

T =
E[Ib]

LT
. (3.18)

Since the transmission of information bits in a real network commonly takes place in
blocks or packets, the average number of correctly transmitted bits per TTI can be expressed
as the product of the correct packet or block reception probability, times the number of bits
transported by each packet Bp:

E[Ib] = BpPr{correct packet reception}, (3.19)

and the probability of correct packet reception is given by:

Pr{correct packet reception} = Pr{t = 1}, (3.20)

where t is a binary random variable with value 0 if the packet is incorrectly received, and
t = 1 if it is correctly received. The conditional probability of correct packet reception at
a particular user location can be approximated by the probability that the SINR of the uth
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user achieves a given threshold γTmcs . The SINR target γTmcs is associated to a particular
modulation and coding scheme being used in the current channel instance, so that:

Pr{t = 1|u} = Pr{γu > γTmcs}. (3.21)

This SINR reception model considers that all bits in a packet have been correctly received
if the SINR exceeds the threshold γTmcs , which is an optimistic assumption. Nevertheless,
system level simulations confirm that this SINR packet reception model provides a good
approximation to the real system performance using look-up tables (LUTs). It is worth
mentioning that this assumption has been extensively used in literature, e.g. [89, 102, 103],
and it is used here to simplify the analysis without sacrificing the accuracy of the final results.

The SINR thresholds can be obtained from standard MCS tables of different wireless tech-
nologies. In the following, LUTs of WiMAX are used to evaluate the system performance.
Table 3.1 shows an example of MCSs used in WiMAX systems [104]. The MCS level 0 corre-
sponds to a SINR lower than the minimum threshold, therefore no service can be provided.
Observe that the analysis can be applied to other MCS sets for different wireless technologies.

The global throughput for a single fixed MCS can be expressed as:

T =

∫

u∈U0

BsRcNp

LT
(1− Fγu(γT ))Pr{u}du (3.22)

where Bs is the number of bits per symbol, Rc is the coding rate, and Np is the number of sym-
bols per block. The throughput expression to systems with adaptive MCS is straightforward
and is given by:

T =

∫

u∈U0

Mmcs∑

mcs=0

B
(mcs)
s R

(mcs)
c Np

LT
×
(
Fγu(γTmcs+1)− Fγu(γTmcs)

)
Pr{u}du, (3.23)

where Mmcs is the number of available MCS.

Table 3.1: WiMAX modulation and coding schemes

MCS level BLER AMC (Rc) γT dB Bits (Bp)

1 4.10e-3 QPSK - 1/3 -1.14 2

2 4.12e-3 QPSK - 1/2 1.32 2

3 7.15e-3 16QAM - 1/3 6.52 4

4 3.30e-3 16QAM - 4/5 11.67 4

3.5 Numerical Evaluation

This section presents the results of the numerical evaluation of the analytical expressions
derived above. The results were obtained by using 10e3 user positions within the cell of
analysis. The distributed nodes are located at a distance Dr = 2

3r in order to have a uniform
distribution across the cell. The number of radiating nodes simulated is N = 4 with path-
loss exponent αpl = 4. The throughput evaluation was performed assuming the following
transmission parameters of WiMAX: one single block of Np = 7200 symbols is transmitted
to one single user per TTI with a frame duration of LT = 5 (ms).
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The total transmit power per cell P used in (3.11) and (3.12), is obtained by defining a
reference average SINR value (SINRref ) that must be achieved at the edge of the cell of a
conventional system without considering interference:

P

σ2
Iuref

=
10SINRref/10

rαpl
(3.24)

where σ2
Iuref

= 1 is the variance of the interference-plus-noise term of a reference user located

at the edge of the cell.

3.5.1 Outage Probability

Fig. 3.5 shows the average outage probability across the cell Pout in (3.17) as a function
of SINRref defined in (3.24). One antenna is considered at the receiver (Nr = 1) for both
conventional and DAS systems. The results are obtained by using the threshold γT for 16-
QAM modulation, which corresponds to MCS level 4 in Table 3.1. The DAS transmission
modes are denoted as DASb for blanket transmission, and DASs for single transmission. It
can be observed that for SINRref < 9(dB), DASs with frequency reuse factor KF = 1
attains a smaller outage probability than conventional systems with KF = 7. This means
that DASs can improve spectrum usage by reducing the required reuse factor to provide a
given service. Consider a target value of Pout = 10−1 in Fig. 3.5. To achieve the target
probability, DASs with KF = 3 requires SINRref = 5(dB), whilst DASb with KF = 3
requires SINRref = 20(dB). The conventional cellular system with frequency reuse factor of
KF = 7 achieves the target probability with SINRref = 18(dB) while in all other cases of KF

and SINRref it fails to reach the target Pout. In the particular case of DASs with KF = 7, it
can be observed that DAS can reach performance levels that conventional architectures cannot
achieve, independently of the implemented KF . This result demonstrates the effectiveness of
DAS to improve spectral efficiency of cellular systems with intensive frequency reuse.

Fig. 3.6 shows the average outage probability across the cell Pout as a function of SINRref
considering MRC receivers with two antennas (Nr = 2). In this case, DASs system with
KF = 1 achieves a better outage probability than the conventional system for values of
SINRref < 6(dB), even if the frequency reuse factor KF of the conventional system is as
large as 21. The improvement in outage probability by implementing MRC at the receiver is
more significant for large values of SINRref w.r.t. results in Fig. 3.5.

3.5.2 Throughput

Fig. 3.7 shows the average throughput T as a function of the reference SINRref consid-
ering different values of the frequency reuse factor KF and MRC receivers with Nr = 2. In
order to achieve a target throughput of 4(Mb/s) for KF = 3, DASs and DASb require a
SINRref of -8(dB) and -2(dB), respectively. In contrast, the conventional system requires
SINRref > 5(dB). This implies that DAS can achieve the same throughput figures of the
conventional system using lower values of transmit power. For a fixed SINRref = −1(dB)
and KF = 3, the average throughput achieved by DASs and DASb surpasses the average
throughput of the conventional system by 150% and 137% respectively. Fig. 3.8 shows the
CDF of the user throughput assuming SINRref = 0(dB) and Nr = 2 at the receiver. If the
minimum required throughput is 2(Mb/s), DASs with KF = 1 achieves higher throughput
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Figure 3.5: Outage Probability Pout vs. SINRref of conventional cellular and distributed systems
(blanket DASb and single antenna transmission DASs) with Nr = 1 and different values of KF .
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Figure 3.6: Outage Probability Pout vs. SINRref of conventional cellular and DAS (blanket DASb and
single antenna transmission DASs) considering an MRC receiver Nr = 2 with uncorrelated channels
and different values of KF .
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gains w.r.t. the conventional system with KF = 3 and KF = 7. If the frequency reuse is fixed
in both systems for KF = 3, the minimum average throughput attained in DASs and DASb
is 2.9(Mb/s) and 2.4(Mb/s) whilst the conventional system achieves at most 1.3(Mb/s).
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Figure 3.7: Average throughput as a function of SINRref for conventional and DAS (blanket DASb

and single DASs transmission schemes) using different values of KF and Nr = 2 receiver.

Fig. 3.9 shows the average throughput as a function of the number of antennas Nr at the
MRC receiver. The numerical evaluation considered more than 4 antennas at the receiver.
Although this configuration is hard to implement in practice due to the characteristics of the
user terminals, it illustrates the asymptotical behavior of the achievable throughput as the
number of antennas at the receiver increases. The average throughput achieved by DASb for
KF = 1 with Nr ∈ {1, 2} is similar to the one achieved by conventional system with KF = 3.
DASs achieves the highest average throughput, specially when the number of antennas at the
MRC receiver is Nr < 4.
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3.6 Conclusions

This chapter presented an analysis of the achievable gains of distributed antenna systems
w.r.t. conventional cellular systems, as well as the impact of frequency reuse planning in the
achievable outage probability and average throughput. Both cellular systems were enhanced
by MRC processing at the mobile terminals considering different values of Nr. Numerical
results showed that the distributed antenna architecture can be used to increase the average
throughput w.r.t. conventional cellular systems by more than 180% and 220% for blanket
(DASb) and single transmission scheme (DASs), respectively. DASs has shown to be the best
transmission scheme since it improves Pout and T figures with less power consumption and
smaller KF compared to the conventional system. The average throughput can be further
improved by MRC processing at the receiver for both access architectures. The distributed
antennas architecture can be used to reduce the frequency reuse which enhances the spectrum
efficiency and increases the coverage area or cell size with the same power budget. The results
show that in some particular cases DASs outperform conventional cellular systems regardless
the frequency reuse factor used by the co-located antenna system.
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Chapter 4

User Selection and Rate Allocation
in Interference Channels

This chapter addresses the sum rate maximization problem for the downlink of a wireless
network where multiple transmitter-receiver pairs (links) share the same medium and thus
potentially interfere with each other. The rate maximization can be decoupled in two opti-
mization problems: the first one is to find the set of links that can be jointly scheduled [C2,
C3], and the other one is to allocate the set of MCSs that maximize the sum rate [J2, C4].
Since the combination of users and available MCSs form a finite set, the rate maximiza-
tion problem has a combinatorial nature for which sub-optimal yet efficient algorithms are
designed so that an acceptable solution to the combinatorial problem can be provided. The
user selection problem is reformulated as a matching problem and an efficient algorithm
for user-antenna matching is designed. The power and rate allocation problem is tackled
by different approaches: casting the allocation problem into an eigenvalue optimization
problem, assigning MCSs based on power consumption, and performing a heuristic low-
complexity MCS assignment. Numerical results show that the proposed algorithms achieve
a good trade-off between sum rate performance and computational complexity.

4.1 Introduction

T
he efficient resource allocation in wireless networks is fundamental to fulfill sev-
eral practical QoS measures such as data rate or outage probability. The number of

wireless users and data services has increased dramatically over the last few years and op-
timization of the resource allocation has become fundamental to guarantee both users and
operators satisfaction without increasing system requirements (bandwidth and power bud-
get). Moreover, there are many common scenarios where the set of transmitter-receiver pairs
(links) operate simultaneously in a shared medium and interference mitigation techniques
must be employed. The QoS is measured in practice by the SINR, and recent works on re-
source allocation optimization for interference coupled networks [36, 37, 70, 105–109] show
the relation between the SINR maximization and the efficient power and rate allocation.
Bear in mind that the achievable data rate depends on the SINR which is a global function
of all transmit powers in systems where signal processing schemes such as beamforming or
signal design are fixed or not implemented. Efficient power control schemes are fundamental
to maximize either a global system utility [70, 107–109] or individual rates [32, 36, 105] in
networks where interference cannot be eliminated. In multiuser systems with less antennas at
the transmitter than the number of competing single antenna users, the system performance
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measured by the total sum rate can be optimized by solving two problems sequentially:

1. The selection of a set of users (scheduling) that has the potential to maximize the total
sum rate, i.e., finding the optimal transmitter-receiver pairs (links).

2. The efficient rate and power allocation for such a set of users to take into account a
given set of system constraints.

In interference coupled systems the successful scheduling of a set of interfering links is
conditioned to the fulfillment of all individual QoS requirements and power constraints. An
efficient scheduling policy must determine the proper set of links for which there exists a power
and rate allocation that meets power constraints and SINR requirements. However, finding
the set of links that maximizes a given system metric (e.g., total sum rate or fairness) is a
combinatorial NP-complete problem [110]. For the particular scenario where the number of
users is less than or equal to the number of antennas at the transmitter, a suboptimal solution
to the scheduling problem is found in the so called user-removal techniques [38, 110, 111] where
the users that violate the power constraints or QoS requirements are found iteratively and
temporary dropped.

The works related to resource allocation optimization and the ones about user-removal
have different objectives and both fields have been studied independently. The former assumes
that for a given set of links exists an infinite number of solutions to the resource allocation
problem and the main objective is to find the allocation that maximizes a specific utility
function such as sum rate, power consumption, etc. The latter is concerned about the set of
links that can be scheduled whose QoS requirements are fixed and the resource allocation can
be achieved by conventional allocation schemes. There is a large number of open issues that
must be solved in interference coupled networks and the objective of the work presented in
this chapter is two-fold: to provide a solution to the scheduling problem and simultaneously
maximize the total sum rate by performing efficient resource allocation. Unlike the available
literature, the work presented in this chapter considers that the allowed SINR ranges are
constrained to take values from a finite set of thresholds or targets associated with a given set
of MCSs. By considering different MCSs the philosophy of user-removal is extended for the
case of non-fixed SINR targets and a methodology to find the MCS allocation that maximizes
the total sum rate is designed.

4.1.1 Related Works

Over the last 20 years several theoretical [36–38, 69, 112–114] and practical [105, 107, 111,
115] works have been developed to understand and solve the problems of power allocation and
utility maximization for cellular, multi-hop, peer-to-peer, satellite, and DSL communications
networks. Early works on power control [112, 115–118] designed iterative algorithms under
the standard interference function framework [36, 112] in order to guarantee the convergence
of the algorithms to a unique and optimal power allocation solution. These works assume
that the set of given links is always feasible, i.e., for such set there always exists a solution
to the power allocation problem. More recent works [36, 107, 113] studied the relationship
between the rate allocation and power control, assuming a high SINR regime. This is a
common assumption because for interference coupled systems the mathematical modeling of
the resource allocation problem is more tractable [37] and efficient iterative algorithms can
be developed. For instance, in [113] the power control problem for rate maximization is
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formulated as a convex problem and its solution is found via geometric programming (GP)
for wireless networks.

Related works for interference coupled wired (DSL) networks [108, 109, 119] show that
suboptimal yet efficient power allocation for rate maximization can be achieved when the non-
convex rate maximization problem is approximated by alternative convex objective functions
of the transmit powers. In [109] the authors show that relaxed forms of the objective function
of the rate maximization problem lead to the convergence of the proposed algorithms and the
accuracy of such approximation depends on the convexity properties of the objective functions.
In [119] the weighted sum rate maximization problem was extended to the multiuser multi-
carrier scenario in interference coupled systems. The idea behind the algorithms presented in
[108, 119] is to solve iteratively the original resource allocation problem by optimally solving
in each iteration, a relaxed version of the original problem. In each iteration, the local optimal
solution bounds the solution of the original problem for a given resource allocation and due
to the properties of the relaxed objective function, the convergence to a local optimum is
guaranteed. This is known as successive convex approximation (SCA) whose goal is to refine
the solution found for the relaxed problem in order to close the gap between the approximated
and the optimal resource allocation. A framework to solved general optimization problems
under SCA and a comprehensive analysis of state-of-the-art dynamic spectrum management
algorithms is presented in [114]. The work in [119] solved the power spectrum management
problem implementing a SCA algorithm that exploits the characteristics of the feasible region
of resource allocation solutions and in each iteration GP is used to solved the local power
assignment problem. The works [37, 70] presented algorithms that solve optimally the joint
power and rate allocation problem by exploiting the convex characteristics of the feasible rate
region and generalized the resource allocation problem for both high and low SINR regimes.

The mathematical abstraction or representation of an interference coupled network has a
strong connection to the theory of irreducible matrices [120, 121] and the Perron-Frobenius
theorem [37, 120]. Such mathematical principles are the foundation of several works (e.g., [36–
38, 70, 105, 113]) that characterize the feasible rate region and solve optimally the resource
allocation problem. The theoretical results derived from the the Perron-Frobenius theorem
[37, 38, 70] allow to render the network optimization problem into an eigenvalue problem
and to verify the feasibility of both, the set of scheduled links and its corresponding resource
allocation. This mathematical tool has been used to solve the rate and power allocation
problem for a fixed set of links (e.g., [37, 70, 107]) assuming that the rates and powers can take
any real positive value. The main objective of such works is to find the optimum allocation
that maximizes a given utility function under a set of power constraints and transmission
schemes. The user-removal techniques [38] exploit the Perron-Frobenius theory to identify
the infeasibility of a set of links in scenarios where for a given set of power constraints and
rate (SINR) requirements, the classical power control algorithms (e.g., [115]) do not converge.

4.1.2 Contributions

The work presented in this chapter is focused on the sum rate maximization problem in
multiuser systems considering multiple antennas at the transmitter and that each selected
user has individual rate requirements. In Section 4.2 a centralized DAS scenario is considered
and an algorithm to define close-to-optimal transmitter-receiver pairs (links) is designed.
The problem of assigning one user per distributed antenna is reformulated as a linear sum
assignment problem. A low-complexity algorithm is developed in order to find a fast solution
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to the matching problem. Once that the set of links has been defined, considering equal power
allocation (EPA) and unconstrained individual rates, an algorithm based on the user-removal
principle is designed in order to refine the set of scheduled links that improve the system
performance. Assuming that the set of close-to-optimal links has been predefined, Section 4.3
focuses on the resource allocation optimization for a general scenario with centralized and
coordinated transmitters. The remaining problem is to assign the best rate and power to
the scheduled links subject to a set of power constraints and finite number of available rates.
Three approaches to solve this problem are presented and numerical results are obtained
for a centralized DAS scenario at Section 4.4 which assess the performance of the proposed
methodologies.

4.2 The User-Antenna Matching Problem

In multiuser MIMO systems where the antennas at the transmitter are co-located (CAS),
the most common criterion for selecting users for downlink transmission is based on the
spatial correlation between wireless channels (see Chapter 5). In [122] the authors propose
a user selection based on graph theory where the criterion to group users served by the
same spreading code in a MIMO-CDMA system is defined by their nearly orthogonal spatial
signatures. Using graph coloring techniques, users that can create interference between each
other are isolated and users with relative low values of interference are served in the same
radio resource. A low-complexity algorithm for user selection was proposed in [123] where the
set of selected users minimizes the sum of the channel correlation. As the minimum average
correlation metric is not enough to guarantee the largest sum rate, an improved version of
[123] was proposed in [124] where the scheduling decisions are made evaluating iteratively the
correlation and the achievable sum rate of each possible set of users. Optimal and sub-optimal
techniques to exploit such channel properties to efficiently optimize the system performance
are studied in Chapter 5 and Chapter 6 where signal design is required to fully exploit CSI
at the transmitter side.

Although extensive research has been done for user selection in MIMO systems, the se-
lection schemes presented in the literature cannot be applied directly to DAS systems where
each distributed antenna serves only one user. In this scenario, the most common scheduling
strategy attempts to maximize the system sum rate based on the scheduling of the users with
best channel conditions. This is the well known channel-aware scheduling, which exploits in-
stantaneous channel conditions and MUDiv [21]. Authors in [125] implement a channel-aware
scheduling by designing a user selection algorithm based on the statistical characteristics of the
instantaneous large-scale fading for DAS. Such a greedy algorithm finds the set of dominant
users for which the difference between their instantaneous channels lies below a threshold.

In this section, a centralized user selection algorithm is designed to attach each distributed
antenna or single-antenna remote antenna unit (RAU) to at most one user in order to optimize
the system performance. The mathematical formulation of this kind of problem resembles a
particular class of matching problem known as linear sum assignment problem (LSAP) [126].
A methodology for user selection is proposed for the downlink transmission in DAS scenarios,
which finds a sub-optimal solution of the LSAP by means of a low-complexity matching
algorithm.
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4.2.1 The Matching Problem Formulation

Consider a single cell wireless communication system with K single-antenna users and one
CU equipped with N RAUs as shown in Fig. 4.1(b). The channel between the user k and the
RAU n is assumed to be a block fading Rayleigh where the channel gains are constant during
each time slot and change independently from slot-to-slot. The channels are affected by a
path-loss component, and a shadowing fading component modeled as a log-normal distributed
variable with parameter σs. The signal received by the user k ∈ {1, . . . ,K} is defined as:

yk = hkx + zk, (4.1)

where x = [x1, . . . , xN ]T is the transmitted symbol vector by the RAUs, hk ∈ C1×N is the
channel vector to the kth user, zk is the additive white Gaussian noise (AWGN) with variance
σ2
k at the kth user. It is assumed perfect CSI at the CU and E[|xi|2] = pi. By considering

equal power allocation (EPA), i.e., that all RAUs have allocated power pi = p,∀i, the SINR
experienced by the user kth in the nth RAU can be expressed mathematically as:

SINRk,n =
p|hk,n|2∑N

j=1,j 6=n p|hk,j |2 + σ2
k

. (4.2)

Each RAU feeds back its CSI to the CU where the scheduling processing is performed.
The achievable sum rate of the kth user selected to be scheduled in the nth RAU is given by:

Rk,n = log(1 + SINRk,n). (4.3)
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Figure 4.1: (a) System model for two wireless links k and i. (b) Distributed Antenna System Scenario.

The CU must define a set of users that maximizes a specific global function such as the
total sum rate. The optimum set of users in this scenario can be found within a search space
of size

N !

(
K

N

)

︸ ︷︷ ︸
For N matched antennas

+ N︸︷︷︸
Possible combinations

·
(
N−1∑

n=1

n!

(
K

n

))

︸ ︷︷ ︸
Match over a subset of n antennas

, ∀K ≥ N (4.4)

which is prohibitively large even for small values of K. Notice that the search space are all
possible combinations that N RAUs can schedule K users having at least one RAU transmit-
ting. In order to reduce the complexity of the user selection, the algorithms proposed in this
section analyze the search space of size N !

(
K
N

)
where all RAUs transmit at the same time.
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In order to illustrate the users selection in this search space, consider the system in Fig. 4.2
for a single radio resource, consider all K users in the set V2 = {1, 2, 3} to have the same
priority, all N RAUs in the set V1 = {a, b, c} to schedule only one user. The links between
the users and the RAUs represent the achievable rate given by (4.3) and can be summarized
in the matrix C ∈ RK×N . One approach to generate the set of scheduled users is to find
iteratively the link with maximum achievable rate, make a match for its corresponding RAU
and user, and drop all other links associated with them. This operation can be mathematically
represented as a multiplication of the elements in the same row and column of the selected
entry by a binary variable defined as:

αk,n =

{
1 if row k is assigned to column n
0 otherwise

(4.5)

Following this procedure the final link match and total sum rate in Fig. 4.2 are { (1, b)
(2, a) (3, c) }, {18}, respectively. Nevertheless, among all possible matches, N !

(
K
N

)
= 6, the

optimum solution is given by {(1, b)(2, c)(3, a)} that in this context is Pareto optimal1 with
maximum sum rate {21}. The user selection in this scenario is a class of weighted matching
problem called linear sum assignment (LSAP) that can be defined as follows [126]:

Given a K×N matrix C = (ck,n), the problem is to match each row to a different column
in such a way that the sum of the corresponding entries is maximized. This problem can be
mathematically expressed as:

maximize

K∑

k=1

N∑

n=1

αk,nck,n (4.6)

subject to
N∑

n=1

αk,n = 1 (k = 1, . . . ,K) (4.7)

K∑

k=1

αk,n = 1 (n = 1, . . . , N) (4.8)

αk,n ∈ {0, 1} (4.9)

where αk,n is the weight of the element ck,n defined by (4.5). In literature of combinatorial
optimization (e.g., [126, 128]) the optimal solution of (4.6)-(4.9) can be found by several
approaches (primal-simplex algorithms, primal-dual algorithms, shortest path algorithms,
etc.). In the following section, a low-complexity algorithm that can find a close-to-Pareto
solution to the LSAP for the DAS will be designed and assessed.

4.2.2 Greedy and Minimum Rate Loss Matching

The process of scheduling starts when the users report their channel gains to the CU. The
achievable rate Rk,n of user k is evaluated and it is assumed that RAU n transmits the desired
signal and all other RAUs are sources of interference. The terms Rk,n, ∀k ∈ V2,∀n ∈ V1 are
collected in the C ∈ RK×N matrix. The goal is to assign one user to each RAU meeting the
constraints (4.7)-(4.9). The entries of the matrix C are defined by the wireless channels. For

1A Pareto optimal allocation is one such that, there does not exist another feasible allocation where at least
one user gets a better resource assignment (RAU, carrier, etc), and all others get at least the same resources.
This optimal allocation cannot be improved on without hurting at least one user [127].
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Figure 4.2: A wireless network with N = 3 RAUs {a, b, c} and K = 3 users {1, 2, 3}. V1 is the set of
all RAUs in the system and V2 is the set of active users in the system.

a given channel realization and user deployment, the information in matrix C can reflect two
different conditions that may take place simultaneously:

1. In the first condition, the matrix C has dominant elements in V2 such that every user i
has ci,m � ci,n,∀m,n ∈ V1, n 6= m. In this case the user selection can be performed in
a greedy fashion due to the fact that each user has only one link with high achievable
rate value.

2. In the second condition, assume that for some elements in V2 there are several links
with large achievable rate such that ci,m ≈ ci,n, ∀m,n ∈ V ′1 , V

′
1 ⊆ V1, n 6= m, i.e., more

than one element in V1 can serve user i.

In the greedy selection for each step of the scheduling process, the user with maximum
achievable rate k attached to RAU n is selected and all links related to that specific user and
RAU are dropped as described in Algorithm 4.1a. This means that when a match between
user k and RAU n is found, all remaining matches (with good and poor achievable rate)
for k and n are lost in following iterations. Therefore, by being greedy some resources that
would be assigned in the future iterations are dismissed. In order to minimize such a loss,
a minimum-rate-loss algorithm is proposed. In this approach, each time a match is found it
minimizes the losses of such selection by finding the match that will provide the maximum
amount of available rate for the next iteration.

Define c(T ) as the total available rate in the cell computed as:

c(T ) =
∑

k

∑

n

ck,n, (4.10)

where ck,n is the element in row k and column n in C. If a link (i, j) is selected, the amount
of total available rate that will be discarded by this selection, is evaluated as:

c
(D)
i,j =

∑

k

ck,j +
∑

n6=j
ci,n. (4.11)

The remaining rate in the system once that link (i, j) has been selected, is given by

c
(A)
i,j = c(T ) − c(D)

i,j . For the minimum-rate-loss approach summarized in Algorithm 4.1b, the
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Algorithm 4.1a Greedy Matching

1: Find the entry c∗k,n = max
k∈V2,n∈V1

ck,n.

2: Define the match N ← N + {(k, n)}.
3: Multiply all the entries in row k and column n by their respective weight given by (4.5).
4: Go to Step 1 until all RAUs have been assigned.
5: return a match solution N .

Algorithm 4.1b Minimum Rate Loss Matching

1: C(temp) ← C
2: Compute C̃ applying (4.12) to C(temp).
3: Find the weight c∗k,n = max

k∈V2,n∈V1

c̃k,n.

4: Define the match Ñ ← Ñ + {(k, n)}
5: In C(temp) multiply all the entries in row k and column n by zero.
6: Go to Step 2 until all elements in C(temp) are zero.
7: return a match solution Ñ .

matching is performed over the matrix C̃ and its elements are evaluated by applying the
following transformation:

c̃k,n = ck,n


 c

(A)
k,n

c
(D)
k,n


 , (4.12)

where the quotient that multiplies the original term ck,n is the relative gain of the available
rate over the rate loss for the (k, n) match. The problem (4.6) is solved by using the outputs
of Algorithm 4.1a and Algorithm 4.1b. After applying both algorithms, there are two possible
solutions N and Ñ . The final selected match is the one with maximum sum rate, and the set
of potential users that can be scheduled is given by K = {k1, . . . , k|K|} with |K| ≤ N .

4.2.3 Rate Maximization with Equal Power Allocation

Solving the user-RAU matching problem is the first step to maximize the sum rate in
a multiuser scenario. The second step is to allocate power so that the total system sum
rate is maximized. Allocating power to all user in K may yield a degradation in the system
performance due to the fact that one or more links may create more rate degradation to
other links than the rate that they actually achieve. In such case, it is necessary to refine the
set of selected users and only allocate power to those users that contribute to the sum rate
enhancement.

For the set of selected users K there exist L =
∑N

n=1

(|K|
n

)
subsets S

(l)
(K), l ∈ {1, . . . , L} that

represent all possible ways that elements in K can be scheduled with the constraint that each
user can be served only by its previously assigned RAU. It is possible that the sum rate is

maximized by a subset S
(lopt)
(K) such that:

(lopt) = arg max
l∈{1,...,L}

R(S
(l)
(K)), (4.13)

where the term R(S
(l)
(K)) is the sum rate achieved by subset S

(l)
(K) and is given by:
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R(S
(l)
(K)) =

∑

i∈S(l)
(K)

log
(
1 + SINRki,nki

)
(4.14)

where ki is the ith user in subset S
(l)
(K) and nki is its associated RAU.

4.2.3.1 Minimum Rate Contribution Selection

In order to estimate S
(lopt)
(K) without computing all L possible combinations, an iterative

process drops users based on the minimum rate contribution criterion. This process finds
the user for which the downlink transmission generates more interference to the other users
compare with his own achievable rate. This is done evaluating the individual rate by (4.3) and
calculating the total sum rate by (4.14). Then, it is considered that the user with minimum
value for (4.3) is dropped and (4.3) and (4.14) are evaluated for the remaining users. At the
end, the user with minimum rate contribution is dropped if the total sum rate is larger when
such user is not scheduled. This process is summarized in Algorithm 4.2.

Algorithm 4.2 Minimum Rate Contribution (MinRC)

1: S
(e)
(K) ← K

2: ∀ki ∈ S(e)
(K) eval Rki,ni by (4.3).

3: Compute the rate R(S
(e)
(K)) by (4.14).

4: Find the user k(min) = min
ki∈S(K)

Rki,ni .

5: Define S
(tmp)
(K) = S

(e)
(K) − {k(min)} and eval R(S

(tmp)
(K) )

6: If R(S
(tmp)
(K) ) > R(S

(e)
(K))

7: S
(e)
(K) ← S

(e)
(K) − {k(min)}, and go to Step 2.

8: else
9: Scheduled all users in S

(e)
(K)

10: End

For the user-RAU matching, the complexity is O(KN2) considering that each matching
implies a process of complexity O(KN) and this process is repeated N times. Nevertheless,
for systems where the number of distributed antennas is small and K ≥ N , the complexity of
solving the matching problem by the proposed algorithms is limited. Even if the time com-
plexity of the proposed user assignment algorithm is O(KN2), its computational complexity
(floating point operations) is low compared to the complexity of the algorithms that find the
optimal solution for (4.6). The proposed maximization of (4.14) implies a linear search that
is given by the cardinality of the set of matched users O(|K|).

4.2.4 Numerical Results for the Matching Problem

The deployment of the distributed antennas consists of one RAU at the center of the cell
and three distributed RAUs uniformly deployed at a distance from the cell center of 2

3 the
cell radius r, illustrated in Fig 4.1(b). The simulation parameters are listed in Table 4.1.
In order to quantify the fairness of a given resource allocation policy, several metrics have
been proposed in the literature of engineering, economics, and other fields [68, 129]. A fairness
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Table 4.1: Simulation Parameters for user selection in the DAS Scenario

Parameters Values

Cell radius 900 m

Carrier frequency 2.5 GHz

Channel bandwidth 20 MHz

RAU transmit power 43 dBm

Thermal noise power density -174 dBm

UE noise figure 7 dB

Path loss model UMi-LoS [130]

Shadow fading standard deviation σs = 3

Available MCS (M) 8 [50]

Max. num. iterations τ 50

User deployment uniform

measure is a sequence of mapping {fn : Rn+ 7→ R, ∀n ∈ Z+} over a given set of n non-negative
elements [68]. For a given a vector x ∈ Rn+, let the Gini index {FG(·) ∈ R+|0 ≤ FG(·) ≤ 1}
be the metric to quantify the inequality (unfairness) in the distribution of the rate among
selected users, having FG(x) = 0 as the maximum level of fairness. For K active users in the
system, FG over all channel realizations is given by [129]:

FG =
1

2K
∑K

k=1Rk

(
K∑

k=1

K∑

i=1

|Rk −Ri|
)

(4.15)

where Rk is the average rate achieved by the kth user.
The tested algorithms were analyzed in terms of different performance metrics: the average

sum rate, the cardinality of the final set of scheduled users, and the fairness of the average
achieved rate. The proposed algorithms to match user-RAU Algorithm 4.1a -Algorithm 4.1b
(Alg. 4.1a-b) was compared to both, the generalized Jonker-Volgenant algorithm (JVA) for
non-square dense matrices [128] which finds the optimum solution of (4.6)-(4.9), and the
dominant user grouping (DUG) algorithm for rate-maximization [125]. The output of the
algorithms to make the user-RAU matching was combined in the second phase with three
approaches that establish the final subset of scheduled users:

1. S
(e)
(K) is optimum among all L subsets and maximizes (4.14).

2. S
(e)
(K) is found by MinRC algorithm.

3. S
(e)
(K) = K, i.e. all matched users from first phase are scheduled.

Fig. 4.3 shows the average sum rate for different values of K and N = 4 achieved by
Algorithms 4.1a-b and JVA. The numerical evaluations show that the proposed algorithm
Alg. 4.1a-b achieves the same average performance of JVA for the user-RAU matching in the

first phase. Fig. 4.3 shows the three approaches to define S
(e)
(K) and the gap in terms of sum rate

when the subset of scheduled users is found by MinRC and when all matched users in the first
phase are scheduled. For K = 10 the gap in performance between the optimum set compared
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to S
(e)
(K) = K is up to 15%. Nevertheless, the sum rate loss incurred by not maximizing (4.14)

is compensated by scheduling more user which is a gain in terms of fairness.
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Figure 4.3: Sum rate for N = 4, different values of K.

Fig. 4.4 shows the expected value of the cardinality of the subset of scheduled users over N ,

E[|S(e)
(K)|/N ]. For lower values of K the percentage of scheduled users in the optimum subset

S
(e)
(K) can be up to 30% below the number of users scheduled when S

(e)
(K) = K. If the subset

S
(e)
(K) is found by MinRC, it is attained an improvement of 15% in the number of scheduled

users compare to the optimum subset and the loss in sum rate is only of 5%. Table 4.2 shows

the comparison in terms of sum rate for S
(e)
(K) = K between Alg. 4.1a-b and DUG for low

values of K. The performance gap between Alg. 4.1a-b and DUG in terms of sum rate is
less than 3% but for Alg. 4.1a-b the percentage of scheduled users is 100%. These differences
between Alg. 4.1a-b and DUG become negligible for large values of K.

The rate distribution among users measured by (4.15) is shown in Fig. 4.5. The results
reflect the contradicting objectives of maximizing (4.14) and scheduling all users found in the
first phase. It can be observed that by defining the subset of scheduled users by MinRC, a
trade-off between sum rate (a gap of 5% compared with the optimum subset) and fairness is
achieved. The CDF of FG with MinRC is closed to the CDF of the scheme that schedules
all user found in the first phase by Alg. 4.1a-b. These results are equal when K is found by

Table 4.2: Comparison between Alg. 4.1a-b and DUG for R(S
(e)
(K)) and E[|S(e)

(K)|/N ] for low values of

K and S
(e)
(K) = K.

K 10 15 20 25

R(S
(e)

(K))
Alg. 4.1a-b 5.78 6.92 7.71 8.29

DUG 5.89 6.94 7.72 8.29

E[|S(e)

(K)|/N ]
Alg. 4.1a-b 1 1 1 1

DUG 0.94 0.98 0.99 0.99
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JVA in the fist phase and the sum rate is maximized by MinRC. For a large number of users

(K ≥ 30) the gap in terms of sum rate between all possible strategies to find S
(e)
(K) vanishes.

Fig. 4.6 shows the CDF of the achieved sum rate for K = 30. The gap in performance
between the scheduling with MinRC and the optimum scheduling is negligible. Moreover,
by scheduling all users found by Alg. 4.1a-b in the first phase, the sum rate gap is only 4%
compared to the optimum scheduling with the advantage that 100% of the matched links are
active.

4.3 Power Allocation and Link Adaptation

In this section it is assumed that all transmitter-receiver pairs are given, either because
K = N or because a previous user selection as the one described in Section 4.2 was previously
performed in scenarios where K > N . Hereafter, the addressed problem is to maximize the
achievable SINR subject to a set of power constraints and considering that the SINR can only
take values from a finite set defined by the available MCSs. The optimal system performance
can be achieved if the best set of links and their respective SINR are selected, which requires
further optimization scheduling of the given links. The joint scheduling and resource allocation
that maximizes the sum rate is a complex combinatorial problem that grows exponentially
with the number of links and depends strongly on the number of available MCSs. The optimal
solution of such a combinatorial problem can be found via exhaustive search by selecting the
set of links and MCSs that yield the maximum sum rate. Such procedure has prohibitive
complexity and it is required to develop sub-optimal but efficient algorithms that achieve
a good trade-off between sum rate performance and complexity. The proposed algorithms
merge the objectives of the resource allocation optimization and the user-removal techniques.
This integration is achieved by operating over two dimensions of decision, the set of links and
the set of available MCSs. Conceptually, the proposed algorithms work in two phases. The
first phase establishes whether for a given set of links exists a power and rate allocation that
satisfies the SINR requirements imposed by some MCSs under a set of power constraints. In
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other words, this phase verifies if the set of links and their MCSs are feasible. The second
phase modifies either the set of links or the assigned MCSs, based on the feasibility measure
provided by the first phase.

In the following section it is shown how this two iterative phases can be designed us-
ing the Perron-Frobenius theory by formulating the sum rate maximization problem as an
eigenvalue optimization problem. Although, this approach achieves acceptable sum rate and
outage figures, it requires the computation of the eigenvalues that characterize the interfer-
ence coupled network in each iteration. For this reason, alternative solutions that only require
either the evaluation of the power consumption or the estimation of the achievable SINR per
iteration are designed. Furthermore, it is proposed a low complexity algorithm that performs
a fast estimation of the set of links and MCSs that solve the sum rate maximization problem.
Numerical results show that despite the fact that the proposed algorithms are suboptimal
strategies, they are asymptotically optimal when the number of users in the network grows to
infinity. Moreover, it is shown that the proposed algorithms generalize the concept of user-
removal for the case of multiple SINR targets, and they are efficient low-complex alternatives
to the state-of-the-art user-removal algorithms.

4.3.1 Resource Allocation Problem

Consider the wireless network depicted in Fig. 4.1(a) where the current channel instance
is simultaneously being used by K synchronized links. The receivers decode its corresponding
data treating interference as white noise, i.e., multiuser detection is not employed. In order to
mathematically characterize the interference coupled network, in the following it is adopted
the matrix notation and the system model used in recent works [37, 70]. Let pk be the power
used by the kth link and p the vector that summarized all K powers. The SINR experienced
by the kth link given a power allocation p is [37]:

SINRk(p) =
pkGkk∑K

i 6=k piGki + σ2
k

, (4.16)

where Gki is the power attenuation from the transmitter on link i to the receiver on link k,
taking into account propagation loss, fast and slow fading, and Gkk is the power loss for the
intended transmission at link k. The SINR in (4.16) is a particular form of the SINR since Gki
can be given either by a function of the channel magnitude Gki = f(hki) used in Section 4.2.1
or by the precoded channel Gki = f(hki,wki) as in [131] where wki is a precoding weight
whose design is studied in Chapter 5 and Chapter 6.

Efficient allocation schemes seek the simultaneous provisioning of individual QoS for mul-
tiple wireless links, which implies that each link achieves a SINR that can be maintained
above a given threshold or target:

SINRk(p) ≥ γk. (4.17)

The SINR target of the kth link is constrained to take values from a finite set of targets
γk ∈ Mk where Mk = {γ(1), . . . , γ(M)}, γ(m−1) < γ(m), and M is the number of available
MCSs. A larger value of γk implies that link k attempts to maintain a more spectral efficient
modulation scheme. Depending on the service, Mk can be used to assign different priorities
among users or to limit their achievable data rates. For instance, the rate demand in link i
can be limited while link k can improve its performance having a larger number of available
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modulations, |Mk| > |Mi| for some k 6= i. For sake of simplicity and without loss of
generality, it is assumed the same M for all links, Mk =M, ∀k. The kth link is associated
with a modulation index mk that defines the position of its SINR target in the setM so that
γk = γ(mk). The discrete set of targets is given by the available set of MCSs supported in
the systems, which in practice is defined by the user equipment capabilities and the wireless
network technology. The vector of SINR targets is defined as γ = (γ1, . . . , γK)T and all SINR
targets will be summarized in a diagonal matrix Γ = diag(γ).

The users requirements in (4.17) can be described in a vector inequality of the form:

p ≥ ΓVp + Γz, (4.18)

where V is a K ×K nonnegative matrix whose entries are defined as:

[V]ki =

{
Gki/Gkk if k 6= i
0 if k = i

(4.19)

and it is assumed that V is irreducible, which means that each link has at least one interferer2

[36]. The weighted noise vector z is defined as:

z =

(
σ2

1

G11
, . . . ,

σ2
K

GKK

)T
. (4.20)

Consider two sets of power constraints: (a) individual power constraints (IPC), summa-
rized in p̄ so that p̄k is the maximum available power for the kth link. (b) total power
constraints (TPC) so that

∑K
k=1 pk ≤ Pt. For the case of TPC, let B be a K×K nonnegative

irreducible matrix defined as [37]:

B = ΓV +
1

Pt
Γz1T

= Γ
(
V +

1

Pt
z1T

)
.

(4.21)

The matrix B absorbs the total power constraints as an additional source of interference
whose power is inversely proportional to the power Pt. The properties of B provide funda-
mental information regarding to the transmission reliability and how interference, powers,
and SINR targets are coupled. For the case of IPC, there exists a set of K matrices Bk and
each one absorbs the power constrains of the kth link as an additional source of interference,
and they are defined as [37, 38]:

Bk = Γ
(
V +

1

p̄k
zeTk

)
, ∀k (4.22)

where ek is the kth unit coordinate vector.
In resource allocation theory, one of the fundamental problems is to find the appropriate

vector of targets γ in order to optimize a given objective function. The set of all attainable
target vectors is called feasible SINR target region. The geometry of the feasible SINR target
region (Fig. 4.7) is defined by the coupling matrix V, the noise z, the available SINR targets γ

2This implies that all the SINRs are coupled by at least one of the allocated powers.
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defined by the MCSs, and the power constraints. Several works that provide a solution to the
resource allocation problem exploit the characteristics of the feasible rate region which has
a logarithmic relation with the feasible SINR targets. The optimum resource allocation that
maximize the system performance lies in the boundary of such feasible region [36, 37, 107].
The information provided by the geometry of the feasible rate region can be exploited to
determine not just the optimal resource allocation but also if time-sharing is required. This
means that if for the set of links that is attempted to be scheduled does not exist a power
allocation that satisfies all links requirements, the set must be split off assigning different
time slots to different subset of links [70]. The need of time-sharing depends on the convexity
of the rate region, however, such a geometry is not known a priory. This implies that finding
the best subsets of users that should use time-sharing is a combinatorial problem that grows
exponentially with the number of links[70].

Definition 4.1. Feasibility conditions: They are the sets of SINR requirements and power
constraints that the resource allocation must fulfill.

Definition 4.2. Resource feasibility : A power vector p is feasible if for such a vector the
feasibility conditions are met. A set of targets γ or Γ is called feasible if all targets in the
set can be jointly achieved by power control. A set of links is called feasible if there exists at
least one set of targets whose related powers meet the feasibility conditions.

Definition 4.3. Jain’s index of fairness: For a given a vector x ∈ Rn+, this measure of
fairness is defined as follows [132]:

J(x) ,
(
∑n

i=1 xi)
2

n
∑n

i=1 x
2
i

, (4.23)

where {J(·) ∈ R+| 1n ≤ J(·) ≤ 1} having J(x) = 1 as the maximum level of fairness.

The power allocation and the SINR target (MCS) selection are two sides of the same
problem, i.e., the feasibility of p is given by feasibility of γ and vice versa. For each feasible
target vector there exists a feasible componentwise power vector (unique up to a scaling
factor) that produces such a target vector [36, 37, 70]. From (4.17) and (4.18) it can be
observed that the power vector p and the achievable SINRs depend on the targets Γ. From
power control theory [36, 37, 69] and Perron-Frobenius theory of positive matrices [120, 121],
it is known that for feasible targets in (4.17) the power vector can be computed as:

p = [I− ΓV]−1Γz. (4.24)

Since the power resources are limited in the network any feasible vector p given by (4.24)
must lie within a feasible region limited by a given set of constraints. Define the region of
feasible powers considering IPC as:

PIC = {p ∈ RK++ : p ≤ p̄}, (4.25)

and the region of feasible powers considering TPC as:

PTC = {p ∈ RK++ : ‖p‖1 ≤ Pt}, (4.26)

where K = |K| is the cardinality of the subset of links that can be jointly supported K ⊆ K̄,
and K̄ is the set of all available links. The system performance is optimize by solving the
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following rate maximization problem over the set of feasible links K constrained in the joint
continuous power and discrete target regions:

maximize
∑

k∈K, K⊆K̄

wγR(SINRk(p)) (4.27)

subject to γk ∈M, ∀k ∈ K
p ∈ P,

where R(SINR(p)) is the achievable rate associated with a given SINR [50], and P can
be given either by (4.25) or (4.26) depending on the specific network requirements. As the
elements of γ can only take values from a finite set M, (4.27) is a combinatorial problem
whose complexity depends on the size of M and the number of elements in K̄. The term wγ
is a priority weight associated with γ and the fairness constraints imposed to subset K.

Finding a solution to (4.27) requires the optimization over the set of feasible links that
can transmit simultaneously and their respective feasible modulations (and their associated
powers). An exhaustive search algorithm attempting to solve (4.27) would require to test
all the combinations of links and target vectors. The size of the associated search space
ΩK̄,M is (M + 1)|K̄| − 1, and several configurations of links sets and target vectors may be
infeasible. Looking for the optimal solution in ΩK̄,M is extremely complex, therefore, iterative
algorithms that find a sub-optimal solution to (4.27) are developed. On one hand, the Perron-
Frobenius theory is used to reformulate the sum rate maximization problem as an eigenvalue
optimization problem. On the other hand, alternative algorithms are designed in order to
verify the resource feasibility. Such approaches use the information provided by the power
consumption or the achievable SINR, so that the eigenvalue computations are avoided. The
fundamental concept behind the proposed algorithms is that each iteration, the resource
allocation feasibility is compromised by a link k∗, i.e., by its associated γk∗ and pk∗ . The
algorithms make decisions in two phases. In the first phase the fulfilment of the feasibility
conditions is verified. If the feasibility conditions are violated, the second phase finds k∗ and
modifies the set of active links K or the target vector γ based on the information that k∗

provides.
Hereafter the following notation Ξ(k,K,V, z,p,γ) is adopted to indicate a drop event of

the kth link and consequent actions follow: K = K − {k}, V = V[k], γ = γ[k], z = z[k],
p = p[k], and γi = γ(mi=M) ∀i ∈ K. The vector p̂ condenses a given set of constraints and is
defined as:

p̂ =

{
p̄ if P = PIC ,
p if P = PTC , (4.28)

where p is a power vector that distributes equally the total available power among all links,
i.e., p

k
= Pt/|K|,∀k ∈ K.

4.3.2 Optimal Resource Allocation

The optimal solution for problem (4.27) can be given by two different approaches depend-
ing on the constraints over the final subset of feasible links. On the one hand, if the size of K
is not constrained, then the optimal solution γ? is found assuming that the priority weights
are simply wγ = 1, ∀γ. On the other hand, if the size of K is constrained to be maximum,
then it may exist a set of target vectors with equal sum rates and equal maximum cardinality.
In such case, two criteria are considered to reach the optimum allocation: one, by making
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γ? equal to any γ with the maximum cardinality and sum rate, which implies wγ = 1,∀γ.
And two, by taking into account the rate distribution among the links in each possible set K,
where the optimum target vector γ? is given by:

γ? = arg max
{%{K}}∈ΩK̄,M

∑

k∈K
w%{K}R([%{K}]k), (4.29)

where w%{K} is a fairness weight associated with the targets %{K} of the subset K and is given

by the Jain’s fairness index3 (4.23) of the data rates attained by %{K}. The optimum solution
γ? found by (4.29) maximizes the sum rate times the fairness index, and the final number of
active links, i.e., |K|.

4.3.3 Perron-Frobenius root based Optimization

The feasible vector of targets that maximizes the sum rate (4.27) must be in the boundary
of the feasible SINR target region. In order to characterize such region a condition for
feasibility of the targets is required. From the Perron-Frobenius theory [120, 121], for a
positive square matrix A, the PF-root ρ(A) and its associated right eigenvector x meet:
Ax ≤ x, if and only if ρ(A) ≤ 1. There exists a direct relation between this property and
the mathematical representation of the coupled targets in B. In the context of a interference
coupled system described in (4.18), the Perron-Frobenius property means that the SINR
targets are jointly achievable if and only if the following necessary and sufficient condition for
feasibility is met under total power constraints [37, Theorem 5.68 and Corollary 5.69]:

ρ(B) ≤ 1. (4.30)

When the system must meet individual power constraints the SINR targets γ are jointly
achievable if and only if the following necessary and sufficient condition for feasibility is met
[37]:

max
k∈K

ρ(Bk) ≤ 1. (4.31)

Fulfilling (4.30) or (4.31) implies that interference in the system can be mitigated by power
control, i.e., the SINR targets are feasible and (4.17) holds with equality. Furthermore, the
power allocation vector p given by (4.24) equals the right eigenvector associated with ρ(B)
for TPC or ρ(Bk) ∀k ∈ K for IPC [37].

For the case of TPC, the feasible region of targets can be defined as follows:

QTC = {γk = γ(mk) ∈M,∀k ∈ K : ρ(B) ≤ 1}, (4.32)

and similarly for IPC the feasible region is characterized as follows:

QIC = {γk = γ(mk) ∈M,∀k ∈ K : max
k∈K

ρ(Bk) ≤ 1}. (4.33)

Fig. 4.7 illustrates the feasible region QTC which is the intersection of sub-levels sets of
the spectral radii of all nonnegative irreducible matrices B [37] taking into account TPC.

3Notice that the fairness measured by the weights w%{K} can be also given by the Gini index defined in
(4.15). However, the Jain’s index is more convenient because the weights in (4.29) increase with fairness and
in the worst case they can degrade the achievable rates at most by 1

|K| [68]. In contrast, the Gini index has

two drawbacks if it is considered to weight the achievable rates in (4.29). The first one is the domain of the
mapping [0,1], and the other one is that FG → 0 as the fairness of the rate allocation %{K} increases.
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The region QTC can be completely characterized from its boundary since it is downward
comprehensive [37], which means that any γ on the boundary of QTC defines a set of target
vectors that are within the feasible SINR target region. Nonetheless, the point of interest
that maximizes the sum rate, is a target vector that solves (4.27) whose components lie in
the boundary of QTC .
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Figure 4.7: For a given V, z, M, and Pt this is an example of the boundaries for the SINR target
region for two cases: γ ∈ R++ (dashed line) and γ ∈ M (solid line). The vectors (•) represent the
combinations of γ that are jointly achievable for a two-link channel realization. The vectors (◦) cannot
be jointly achieved by any feasible power allocation.

The maximization problem can be reformulated as a PF-root optimization over the matrix
B since the feasibility of the targets is given either by (4.30) or by (4.31). The original problem
(4.27) can be rewritten as:

maximize
∑

k∈K, K⊆K̄

wγR([γ]k) (4.34)

subject to γ ∈ Q,
where the constraint in (4.34) absorbs both constraints in (4.27) and the feasible SINR region
Q is given either by (4.32) or (4.33) depending on the system power constraints.

4.3.3.1 Target Relaxation for a Non-Fixed Set of Links

In order to solve (4.34), it is required to identify which link violates the most the feasible
conditions. From the theory of irreducible matrices it is known that if A is an irreducible
square matrix and A[k] is a proper principal submatrix of A, then ρ(A[k]) < ρ(A) [120, 121].
In the context of user-removal [38] this property is fundamental to determine the link that
must be dropped since it relates the most infeasible link to the minimum PF-root over all
principal sub-matrices of B. In our context, the link k∗ that compromises the most the
resource feasibility is the one whose ρ(B[k∗]) is minimum. The fastest fulfillment of γ ∈ Q
is achieved whether k∗ is temporary disconnected or its associated γk∗ is relaxed so that the
PF-root of the matrix B is minimized.
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Hereafter the fairness weights are set to wγ = 1, ∀γ since neither the cardinality of the
final K nor the distribution of the achievable rates among the links in K are considered. The
algorithm starts by defining the initial conditions of the targets as γk = γ(mk=M), ∀k ∈ K
which may be or not a feasible starting point and is the maximum available target established
by a given set M. The feasibility of the target vector is verified either by (4.30) or by (4.31)
and if γ ∈ Q then the algorithm stops and all links in K transmit simultaneously with the
powers defined by (4.24). If γ is infeasible a relaxation of the SINR targets is required and
in the current iteration the algorithm modifies only the component [γ]k∗ , where the most
infeasible link k∗ under total power constraints is computed as [38]:

k∗ = arg max
k∈K

(
1

ρ(B[k])

)
, (4.35)

and for individual power constraints k∗ is found by [38]:

k∗ = arg max
k∈K

(
min

i∈K,i 6=k

1

ρ(B
[k]
i )

)
. (4.36)

For the next iteration the link k∗ reduces its target index by one unit mk∗ = mk∗ − 1, and
its new SINR target is set to γk∗ = γ(mk∗ ). In the case that link k∗ cannot reduce its minimum
target, then it is classified as infeasible or useless. Assigning any positive power to this link
will create interference to the other links without achieving its minimum required SINR. At
this point, the set of feasible links must be reduced so that K = K − {k∗}, and without the
worst link, the algorithm attempts to allocate the maximum target for the remaining users,
mk = M,∀k ∈ K. The steps performed to solve (4.34) using the PF-root (PFR) approach are
given in Algorithm 4.3.

Algorithm 4.3 PF-root (PFR) based Optimization

1: Set initial values: K = K̄, γk = γ(mk=M),∀k ∈ K.
2: If γ ∈ Q by (4.30) or (4.31)
3: Set final vector p by (4.24), γ, and Stop.
4: else
5: Compute k∗ by (4.35) or (4.36)
6: If mk∗ > 1
7: mk∗ = mk∗ − 1, γk∗ = γ(mk∗ ), Go to Step 2.
8: else
9: Ξ(k∗,K,V, z,p,γ), Go to Step 2.

10: End
11: End

Algorithm 4.3 looks for the maximum SINR target vector on the boundary of Q. The
target vector γ found by this approach is not necessary the same size of the optimal one
denoted as γ?, and in such case the feasible regions of both solutions are different. Observe
that this algorithm is only suitable for centralized wireless networks as it requires a CU
that has a knowledge of global network parameters to compute the PF-root. Under IPC
(|K|2 − |K|) PF-root computations are required each iteration and the maximum number of

iterations require to find K is upper bounded by (
∑|K̄|

i=1((M − 1)i+ 1))− 1, which depends on
the the number of available MCSs in M and the size of the initial set K̄.
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4.3.3.2 Target Increment for a Fixed Set of Links

In this approach the resource assignment starts with a feasible target vector and the
objective is to increase its components as much as possible maintaining feasibility. Since Q
is downward comprehensive [37] the vector γ found by Algorithm 4.3 defines a set of vectors
which are inside the feasible region Q. However, if the initial conditions of γ are set to
the minimum attainable target, the unique explicit information about how far these initial
conditions are from the boundary of Q is given by (4.30) or (4.31). Therefore, the problem
at hand is the following: how to tighten up the SINR requirements in order to solve (4.34)
keeping fixed the initial feasible subset of links K?

Proposition 4.1. Consider that γ ∈ QIC . The element γk∗ that can be increased yielding
the minimum increment of the left-hand side of (4.31) is the one whose ρ(Bk∗) is minimum.

Proof. Let i be the element whose ρ(Bi) is maximum. According to [38, Thm. 9] the maxi-
mum achievable γ ∈ QIC is defined by p̄i and the power pi associated with γi is maximum,
i.e., i = arg mink p̄k − pk [70, Thm. 2]. Let j = arg mink ρ(Bk), and γ(k) ∈ QIC where
γ(k) = γ + δek is the target vector whose kth term increases δ ∈ R++. Since (4.31) identifies
which is the tightest power constraint, i.e., which p̄k is the hardest to meet, and an increment
in γ(k) requires an increment in pk, making γ(j) will increase the power pj associated with
the less tight power constraint p̄j .

In this approach the minimum available target is initially assigned to all links and the
priority weights are set to wγ = 1, ∀γ. The links that cannot meet this minimum SINR
requirement are found either by (4.35) or by (4.36) and dropped. Once that the initial subset
of feasible links K has been defined, it follows from Proposition 4.1 that the link k∗ candidate
to increase its SINR requirements is given by:

k∗ = arg min
k∈K

ρ(Bk). (4.37)

An approximation to (4.37) that avoids the |K| eigenvalue computations is to define k∗ as
the link with less power consumption relative to its power constraint:

k∗ = arg max
k∈K

(p̄k − pk)/p̄k. (4.38)

Notice that this simplification applies since γ and p are assumed feasible. In the case
of Algorithm 4.3 the vector of powers in the feasible power region P that satisfies all SINR
requirements exists only if (4.30) or (4.31) (according to the system constraints) are met
and it cannot be used directly to make previous decision. The tightening of the targets is
performed stepwise until the conditions γ ∈ Q cannot be fulfilled, which implies |K| PF-root
computations each iteration as described in Algorithm 4.4.

4.3.4 Power Consumption based Optimization

In order to solve (4.27) using the tools provided by the Perron Frobenius theory, it is
required to optimize the PF-root of the matrix B. In each iteration of Algorithm 4.3, finding
the worst link k∗ requires |K| eigenvalue computations. If IPC (4.25) is imposed, finding k∗

would require (|K|2 − |K|) PF-root evaluations per iteration. Moreover, the criterion used to
evaluate feasibility of the resource allocation (4.30) is also based on the PF-root computation.
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Algorithm 4.4 PF-root Incremental Target (PFRIT) based Optimization

1: Set initial values: K = K̄, γk = γ(mk=1),∀k ∈ K.
2: If γ ∈ Q
3: Define Ktmp = K
4: Compute k∗ over Ktmp by (4.37) or (4.38)
5: If mk∗ < M
6: mtmp

k∗ = mk∗ + 1, γtmp = γ, [γtmp]k∗ = γ(m
tmp
k∗ )

7: If γtmp ∈ Q
8: Set γ = γtmp, Go to Step 4.
9: else

10: Set γ, compute p by (4.24), and Stop. Convergence

11: End
12: else
13: Ktmp = Ktmp − {k∗}, Go to Step 4.
14: End
15: else
16: Compute k∗ by (4.36)
17: Ξ(k∗,K,V, z,p,γ), γk = γ(mk=1) ∀k ∈ K, Go to Step 2.
18: End

An alternative algorithm is developed where the infeasibility of γ is determined through
the characteristics of p. In [70] it was shown that if the targets are feasible, the link that
consumes more power is the one that maximizes the PF-root in (4.30). The link with maxi-
mum power requirements compromises the most the resource feasibility. In order to identify
the link k∗ that has the maximum demand of power, it is used an algorithm that exploits
the characteristics of the power vector computed by the Distributed Power Control (DisPC)
algorithm [115]. DisPC has been used as part of algorithms that find the optimum power

allocation in scenarios where γ ∈ R|K|++ is a feasible target vector (e.g., [69, 70]). It has been
proved that DisPC is a fixed point algorithm [112] that converges to the optimum unique p
always that γ is feasible.

If the SINR targets γ are infeasible then the PF-root of the matrix ΓV will be greater
than 1. Under such conditions for a large number of iterations (t) of the DisPC algorithm,
the powers approximate to [118]:

p(t) ≈ ρ(ΓV)tCx, (4.39)

where x is the right eigenvector associated with ρ(ΓV) and C is a constant depending on
the initial vector p(t = 1) and the coupling matrix V. The power vector goes to infinity as
the number of iterations (t) increases due to the fact that ρ(ΓV) > 1. As the objective is to
allocate the maximum SINR target for all links (γk = γ(M), ∀k), this initial conditions may
not be feasible leading to (4.39). This implies that the power vector found by DisPC cannot
used directly to select the link that consumes more power. Nevertheless, if the powers are
normalized each iteration so that ‖p(t)‖1 = 1, then it can be found within a finite number of
iterations τ , a link k∗ whose associated power is maximum, i.e., pk∗(τ) > pk(τ), ∀k 6= k∗. If
feasibility conditions are violated it is required to modify either the set of active links K or the
target γk∗ so that the power consumption of k∗ is reduced in the next iteration. The initial
conditions t = 1 of the vector of normalized powers p̌ of the DisPC algorithm are given by
the constrained power vector in (4.28), i.e., p̌(1) = p̂. The DisPC algorithm with normalized
powers is described in Algorithm 4.5.
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Algorithm 4.5 DisPC Algorithm with normalized powers
1: repeat
2: p̌(t+ 1) = ΓVp̌(t) + z
3: p̌(t+ 1) = p̌(t+ 1)/‖p̌(t+ 1)‖1
4: until ‖p̌(t+ 1)− p̌(t)‖1 ≤ ε or t < τ

Once that the Algorithm 4.5 has finished, the link that provides more information about
resource feasibility is given by the maximum element in the normalized power vector p̌:

k∗ = arg max
k∈K

p̌k. (4.40)

The power vector found by (4.40) does not consider the power constraints (4.25) or (4.26)
and they are taken into account once that there exists a power vector defined by (4.24) such

that p ∈ R|K|++ which corresponds to a feasible target allocation where no power constraints
are imposed. Once that p > 0, the criterion to select the link k∗ considering the power
constraints is given by:

k∗ =





arg min
k∈K

(p̄k − pk)/p̄k if P = PIC ,
arg max

k∈K
pk if P = PTC , (4.41)

where for IPC, k∗ indicates which link consumes more power regarding its individual power
constraint. Finding the infeasible link k∗ using the DisPC implies a two-time scale algorithm,
and two process of optimization over the vector of powers. The first one is finding a p
whose components are in R++ and the second is adjusting p according the power constraints.
The steps to perform the minimum power consumption (MPC) optimization are given in
Algorithm 4.6.

4.3.5 Target-to-SINR Ratio based Optimization

An alternative to (4.40)-(4.41) is obtained by using a metric that takes into account the
power constraints each iteration. For a given set K and its respective γ and p it is required to
determine how far is the achievable SINR of each link from its associated target. To calculate
such a distance, define the function that computes the target-to-SINR ratio (γk/SINRk) for
the kth link as:

ψk(γ,V, z,p) =
[γ]k([Vp]k + [z]k)

[p]k
. (4.42)

In order to maximize the total sum rate, the initial conditions of the SINR targets are set
to the maximum modulation available γk = γ(mk=M), ∀k ∈ K. If for such γ the power vector
p computed by (4.24) is in the feasible power region P thus γ is feasible. Otherwise, the link
k∗ with the worst target-to-SINR ratio is given by:

k∗ = arg max
k∈K

ψk(γ,V, z, p̂), (4.43)

where p̂ is given by (4.28). The steps performed to solve problem (4.27) using both the
MPC approach defined by (4.40)-(4.41) and the target-to-SINR ratio (TSR) approach given
by (4.43) are described in Algorithm 4.6.
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Algorithm 4.6 MPC/TSR based Optimization

1: Set initial values: K = K̄, γk = γ(mk=M),∀k ∈ K.
2: Evaluate p by (4.24)

3: If p ∈ R|K|++

4: If p ∈ P
5: Set final vectors p, γ, and Stop.
6: else
7: Compute k∗ by (4.41) or (4.43), Go to Step 11.
8: End
9: else

10: Compute k∗ by (4.40) or (4.43)
11: If mk∗ > 1
12: mk∗ = mk∗ − 1, γk∗ = γ(mk∗ ), Go to Step 2.
13: else
14: Ξ(k∗,K,V, z,p,γ), Go to Step 2.
15: End
16: End

4.3.6 SINR Target Increment based Optimization

The objective of Algorithm 4.3 and Algorithm 4.6 is to reach a point γ in the region of
targets Q, ideally on its boundary. Both approaches start with initial conditions that may be
out of the feasible region of targets. The number of iterations required for the algorithms to
converge depends on the channel realization. When the channel conditions are not favorable
many links will achieve low SINR, which implies that the number of iterations required for
the algorithms to converge may be large. In order to find a faster way to compute the solution
of (4.27) an algorithm that operates in two stages is designed. In the first stage, it finds a
target vector γ inside the feasible target region. In the second stage, it attempts to reach the
closest point to the boundary of the feasible target region from inside out by tightening up
the SINR requirements of specific links.

Define Γ̃ as the matrix of achievable SINR targets under a given set of power constraints
p̂ (4.28) as follows:

Γ̃ = [diag(Vp̂ + z)](−1)diag(p̂). (4.44)

Since the elements of the diagonal of Γ̃ take values in R, it is necessary to adjust such
values to be in the set M of available SINR targets. The appropriate target value of the kth
link lies in one of the SINR target ranges defined by M = {γ(1), γ(2), . . . , γ(M)} [50]:

γ̃k ∈ [γ(m), γ(m+1)). (4.45)

Therefore, the adjusted target of the kth link over its target interval is defined as:

γ̈k = min{γ(m), γ(m+1)}, (4.46)

where the target γ̈k is related to the highest spectral efficiency, i.e., the rate of the selected
target (MCS) is the closest but below the achievable capacity of the SINR γ̃k [50, 106]. The
values of the achievable SINR targets from (4.44) are adjusted by (4.46) and the links whose
adjusted γ̈ are not in the set of available targetsM are dropped. Notice that the computation
of Γ̃ uses the maximum available power vector p̂ and this lack of initial power control may
discard feasible links that could be scheduled.
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Once that a target vector γ̈ with all its elements in M and its associated power vector
p ∈ P has been defined, the links in K remain fixed and the first stage is completed. The
second stage of the algorithm is focused on tightening up the components of γ̈ in order to
maximize the final sum rate maintaining resource feasibility. The problem of target increment
for a fixed subset of links was addressed in Section 4.3.3.2 using a criterion derived from the
Perron Frobenius theory. This criterion is used to define the candidate link k∗ that can
increase its SINR target and it requires the evaluation of the PF-root of B. In order to avoid
the eigenvalue computation such criterion can be simplified by using the minimum power
consumption instead. This is intuitive since γ̈ and its associated power vector are feasible,
and the latter can be used to decide which link can increase its power consumption. The link
k∗ candidate to tighten its SINR target up is given by:

k∗ =





arg max
k∈K

(p̄k − pk)/p̄k if P = PIC ,
arg min

k∈K
pk if P = PTC . (4.47)

The steps performed to solve problem (4.27) using the SINR target increment (STI)
approach are described in Algorithm 4.7. Notice that more than one link can be discarded in
Steps 3 and 4, but Γ̈ is not guaranteed to be feasible. In such a case and in order to reduce
outage, Steps 21 and 22 are used to drop only one extra link whose associated adjusted target
γ̈ is minimum.

Algorithm 4.7 SINR Target Increment (STI) based Optimization

1: Set K = K̄
2: Compute Γ̃ by (4.44), and γ̈k by (4.46)
3: K′ = {k : γ̈k /∈M}
4: Ξ(k′,K,V, z, p̂, γ̈), ∀k′ ∈ K′
5: Compute p by substituting Γ̈ = diag(γ̈) in (4.24)
6: If p ∈ P
7: Define Ktmp = K
8: Compute k∗ over Ktmp by (4.47)
9: If mk∗ < M

10: mtmp
k∗ = mk∗ + 1, γtmp = γ̈, [γtmp]k∗ = γ(m

tmp
k∗ )

11: Compute ptmp by using Γtmp = diag(γtmp) in (4.24)
12: If ptmp ∈ P
13: Set γ̈ = γtmp, Go to Step 8.
14: else
15: Set γ = γ̈, compute p by (4.24), Stop.
16: End
17: else
18: Ktmp = Ktmp − {k∗}, Go to Step 8.
19: End
20: else
21: k∗ = min

k∈K
[γ̈]k

22: Ξ(k∗,K,V, z, p̂, γ̈), Go to Sep 2.
23: End
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4.4 Performance Evaluation for a DAS Scenario

In order to assess the algorithms a DAS scenario as the one depicted in Fig. 4.1(b) is
considered. These type of access interfaces are based on the concept of space diversity and
cell splitting in order to improve coverage and spectral efficiency. The deployment of the
distributed antennas consists of N RAUs, one at the center of the cell and N − 1 distributed
RAUs uniformly deployed at a distance of 2

3 the cell radius from the cell center. Consider that
the RAUs are coordinated only to control their transmit powers and no signal processing (e.g.,
beamforming) is used. The channels are modeled as Rayleigh fading and are affected by a
path-loss component and a shadowing fading component modeled as a log-normal distributed
variable with parameter sσ.

There are K users uniformly deployed in the cell and K ≥ N . Therefore, it is necessary
to select the initial subset of links K̄ by assigning a different user to each RAU which is
accomplished by the RAU-user matching Algorithm 4.1a - 4.1b defined in Section 4.2.2. The
algorithm assigns one different user to each RAU deployed within the cell defining in this
way the initial set of links K̄. After all RAU-user links have been established, the proposed
algorithms find the final subset of feasible links K and allocate powers and rates. The set of
available targetsM is the one presented in Table 4.3. Results are generated by averaging 10e3
channel instances for each value of K and the simulation parameters are listed in Table 4.1.

4.4.1 Examples of the MCS selection

In this subsection two illustrative examples of how the algorithms select the MCSs are
presented. For the first example, consider the two-user system depicted in Fig. 4.1(a). The
channel gains are given by G11 = 0.8791, G12 = 0.3999, G21 = 0.0211, G22 = 0.8791, the
power constraint is Pt = 1.4, the noise power is σ2

1 = σ2
2 = 10−2 and the set of available SINR

targets (M) is defined in Table 4.3 [50].

Table 4.3: Set of available SINR Targets M in (dB) and its associated R in (bps/Hz)

Index m 1 2 3 4 5 6 7 8

γ(m) -3.2 1.8 5.0 7.2 11.2 14.8 19.0 22.8

R(γ(m)) 0.333 1 1.5 2 3 4 5.14 6.4

Fig. 4.8 shows the evolution of the proposed algorithms over the region of available targets
for a scenario with two users considering (4.26). The starting point γk = γ(M) is infeasible
for Algorithm 4.3 (PFR) and Algorithm 4.6 (MPC/TSR) and the feasible target vectors are
found by different paths. The algorithms stop once that p ∈ PTC or γ ∈ QTC .

For the second example, consider a scenario with seven active links in K̄ and (4.26) is
imposed. Fig. 4.9 shows the evolution of the algorithms for one link k. Since Algorithm 4.3
(PFR) and Algorithm 4.6 (MPC/TSR) start in the maximum available SINR target only
target relaxation is performed. However, it is possible that their curves go up reaching the
maximum SINR target value. This indicates the dropping of an infeasible link and that the
algorithms attempt to allocate the maximum SINR target to the remaining users. In this
particular example Algorithm 4.6 either by MPC (4.40)-(4.41) or by TSR (4.43) has one
dropping event, whilst Algorithm 4.3 (PFR) finds a feasible γ for all links in K̄. This means
that the final solution of the algorithms may differ in the number of active links. Algorithm 4.7

60



−5 0 5 10 15 20 25
−5

0

5

10

15

20

25

PFR

MPC

TSR

STI

γ1 (dB)

γ
2
(d
B
)

 

 

Figure 4.8: Example of the search of the maximum vector of targets γ.

(STI) starts from a given target value and its objective is to increase such target as much as
possible.
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Figure 4.9: MCS selection based on target relaxation and target increment.

4.4.2 PF-root based optimization: Fixed vs Non-Fixed Set

Fig. 4.10 presents the CDF of the sum rate for K = 8. Two particular case are shown:
(a) for a fixed sum rate target of 15bps, the gap between the proposed algorithms and the
optimal allocation is less than 10% which is an acceptable approximation considering all
available combinations of links subsets and targets (|Ω|K̄|=4,M=8| = 6560). (b) for a required
probability Pr = 0.3, the sum rate gap is less than 10% for both proposed algorithms when
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compared to the optimum allocation. The outage probability has been used as a metric to
assess the performance of different power control algorithms, and it can be defined as the ratio
between the number of dropped links to the total number of links [38]. The performance in
terms of outage probability is presented in Fig. 4.11. For a fixed outage probability target
of 10−3 it can be observed that the approach used by Algorithm 4.4 (PFRIT) exploits more
efficiently user diversity compared to the approach of Algorithm 4.3 (PFR). Algorithm 4.4
(PFRIT) can be used to minimize outage since it requires K > 8 to make |K| = N and
it achieves a performance similar to the optimal allocation for fixed subset K. In contrast,
Algorithm 4.3 (PFR) requires K > 28 to achieve zero outage. Notice that the optimum
allocation for a non-fixed K requires K � N to achieve zero outage. The sum rate deficiency
of Algorithm 4.4 (PFRIT) compared to Algorithm 4.3 (PFR) is compensated in terms of
fairness since |K| is also maximized.
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Figure 4.10: Cumulative Distribution Function of the average sum rate for K = 8.

4.4.3 Sum Rate and Outage Probability

In order to assess the performance of the algorithms the statistics of the sum rate and
outage probability are employed for different DAS scenarios and both set of power constraints
(4.25) and (4.26). As K grows, the channel conditions of the users attached to the RAUs are
improved and interference can be mitigated more efficiently. Fig. 4.12 and Fig. 4.13 show the
total sum rate as a function of the total number of users K considering N = 7.

Consider two particular cases of K. For the first case let K = N = 7, where in Fig. 4.12
the achieved sum rate of the three algorithms is similar when TPC (4.26) is imposed. The
sum rate maximization via PF-root optimization in Algorithm 4.3 (PFR) identifies with more
accuracy which link must relax its target which result in an extra gain of 0.73bps/Hz compared
to the other approaches. Algorithm 4.7 (STI) achieves the same performance of Algorithm 4.6
(MPC/TSR) since it allocates higher MCSs to its links. However, its performance in terms
of outage probability is worst than the other approaches since it may discard feasible links in
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Figure 4.11: Outage probability versus user diversity K.

its first stage. In Fig. 4.13, (4.25) is considered and the performance of Algorithm 4.7 (STI)
and Algorithm 4.6 via TSR (4.43) are outperformed by Algorithm 4.6 via MPC (4.40)-(4.41),
which indicates that when individual power constraints are imposed, target relaxation based
on power consumption achieves an extra gain of 0.95bps/Hz compared to the optimization
based on the target-to-SINR ratio.

The second case of analysis, K = 70 � N , provides a rich MUDiv and the performance
of all algorithms reach similar values of sum rate for both sets of power constraints. This
means that under favorable channel conditions, finding an acceptable solution to (4.27) can be
achieved with the low complex Algorithm 4.6 (MPC/TSR) and Algorithm 4.7 (STI) avoiding
the PF-root optimization.

The outage probability results are displayed in Fig. 4.14 and Fig. 4.15 for TPC and
IPC respectively. If TPC is considered, Algorithm 4.6 (MPC/TSR) has a marginal gap of
outage probability compared to Algorithm 4.3 (PFR). In contrast, if IPC is imposed, only
Algorithm 4.6 via MPC (4.40)-(4.41) achieves an outage probability closed to the one of
Algorithm 4.3 (PFR). In spite of the sum rate achieved by Algorithm 4.7 (STI), it suffers
form a larger outage compared to the other schemes. The main advantage of Algorithm 4.7
(STI) is that the number of required iterations for convergence is considerable less compared
to the other approaches. Fig. 4.16 shows the average number of iterations required by the
algorithms to converge for IPC and similar results are obtained for TPC. If the number of
users in the cell is low K ≈ N , that means that the N RAUs must serve users with worst
channel conditions compared to the case where K � N . In other words, when channel
conditions are poor, the feasible target region contains few feasible target vectors making
that Algorithm 4.3 and Algorithm 4.6 require more iteration to find a solution to (4.27). This
phenomenon is illustrated in Fig. 4.8.
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Figure 4.12: Total sum rate as a function of K for N = 7, M = 8, and Pt = 43(dBm).
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Figure 4.13: Total sum rate as a function of K for N = 7, M = 8, with p̄1 = 39(dBm) for the central
RAU, and p̄j = 33(dBm) for ∀j 6= 1, the rest of the RAUs.

4.4.4 Optimal Joint Link Selection and Resource Allocation

In order to quantify the sum rate gap between the proposed algorithms and the optimal
solution to (4.27) consider an scenario with N = 4, K = 10, and the optimal solution is found
by exhaustive search. For this particular case the search space contains |Ω|K̄|=4,M=8| = 6560
combinations. Fig. 4.17 and Fig. 4.18 show the CDF of the sum rate considering TPC and
IPC respectively. Algorithm 4.3 and Algorithm 4.6 look for the maximum SINR target vector
on the boundary of region of feasible targets Q. The target vector γ found by both approaches
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Figure 4.14: Outage probability as a function of K for N = 7, M = 8, and Pt = 43(dBm).
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Figure 4.15: Total sum rate as a function of K for N = 7, M = 8, with p̄1 = 39(dBm) for the central
RAU, and p̄j = 33(dBm) for ∀j 6= 1, the rest of the RAUs.

is not necessary the same size of the optimal one γ?. Since the optimum solution maximizes
the sum rate over all combinations in ΩK̄,M and in Algorithm 4.3 (PFR) and Algorithm 4.6
(MCP/TSR) the stop criteria are triggered once that feasible vectors γ or p have been found.
Such criterion to stop the algorithms, maximizes the cardinality of the final set K. The
optimum solution of (4.27) will present a larger outage specially when K ≈ N .
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Figure 4.16: Average number of iterations vs K for N = 7, M = 8, and any definition of P.
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Figure 4.17: CDF of the sum rate for N = 4, M = 8, K = 10, and Pt = 36.9(dBm).

4.4.5 Performance Evaluation for the Low-High SINR Regimes

The transition from a noise limited to an interference limited system with N = 7, K = 14,
is displayed in Fig. 4.19 and Fig. 4.20 for TPC and IPC respectively. For IPC, the cen-
tral RAU has a power constraint p̄1 given by the abscissa and the distributed nodes have
p̄j = 0.6p̄1, ∀j 6= 1 in watts. For both sets of power constraints Algorithm 4.3 (PFR) and
Algorithm 4.6 (MCP/TSR) obtain the same outage probability when the system is noise lim-
ited. For systems that operate with low transmission powers the resource allocation process
can be given by Algorithm 4.6 since its complexity is low compared to Algorithm 4.3 and its
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Figure 4.18: CDF of the sum rate for N = 4, M = 8, K = 10, with p̄1 = 39(dBm) for the central
RAU, and p̄j = 36(dBm) for ∀j 6= 1, the rest of the RAUs.

outage performance is similar. When the system is interference limited, the outage probability
gap between Algorithm 4.3 (PFR) and Algorithm 4.6 (MCP/TSR) is significant. Neverthe-
less, Algorithm 4.6 and Algorithm 4.7 (STI) are an alternative to the PF-root optimization
approach. Notice that in the interference limited scenario the rate is upper bounded by the
rate associated with the maximum target (MCS) in M, specially when there are favorable
channel conditions, e.g. K = 70 in Fig. 4.12 and Fig. 4.13.
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Figure 4.19: Outage probability vs the constrained transmit power Pt for N = 7 and M = 8.
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Figure 4.20: Outage probability vs the constrained transmit powers p̄ for N = 7 and M = 8.

4.4.6 Application for User-Removal

The proposed algorithms have the potential to be used as removal algorithms in the
context used in [38], i.e., all links in K̄ have the same unique fixed target and the objective
is to find the subset K with the links that can be simultaneously scheduled. This can be
achieved by making M = {γ(m)} for any fixed m, which is a particular case of the proposed
algorithms. Fig. 4.21 shows the outage probability when a unique fixed target is considered.
For this particular case Algorithm 4.3 (PFR) reduces to the Removal Algorithm III-A in
[38]. It is worthy to point out that for TPC, Algorithm 4.6 (MCP/TSR) is a low complex
alternative to the Removal Algorithm III-A [38] which was claimed to be the unique solver
for the case where (4.26) is imposed. The performance of the algorithms is compared to the
optimal removal. The outage probability gap between Algorithm 4.6 and the optimal removal
is negligible for low values of the fixed target. For large values of the fixed target this gap
reflects the inaccuracy of Algorithm 4.6 when selecting the worst link in K either by the power
consumption or by the target-to-SINR ratio criterion. However, this gap is a trade-off given
by the low complexity involved in the user-removal process and the accuracy of the selection.
The curve from Algorithm 4.7 (STI) is a clear example of the expected outage when more
than one link is discarded per iteration. Similar results to Fig. 4.21 are achieved when (4.25)
is considered.
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Figure 4.21: Outage probability for a fixed SINR target for all links with N = 7 and Pt = 28.5(dBm).

4.5 Conclusions

In this chapter the problem of sum rate maximization in interference coupled systems was
addressed by solving two subproblems: problem one is the user-antenna matching problem,
and problem two is the rate and power allocation for rate maximization. For problem one
in Section 4.2, it was designed an algorithm that operates in two phases, one that combines
a greedy matching and a minimum-rate-loss matching which provides a first set of potential
users. The second phase seeks a refined subset of users in order to maximize the total sum
rate. Numerical results show that the proposed matching method can achieve the performance
of more complex matching solvers.

For the second problem in Section 4.3, different algorithms were proposed to solve the
sum rate maximization problem. This problem has a combinatorial nature since the SINRs
are constrained to take values from a finite set. The algorithms find a set of links for which
exists a feasible resource allocation that attempts to maximize the sum rate. The proposed
algorithms are based on criteria derived from the Perron-Frobenius theory or from the im-
plicit information contained in the power consumption or achievable SINR. Furthermore, a
low-complexity fast algorithm was designed for link selection and resource allocation. Such
algorithm converges in few iterations and its robustness allows us to achieve acceptable per-
formance under favorable channel conditions.

Numerical results show that the proposed algorithms achieve a good trade-off between
complexity and accuracy compared to the optimal solution. The low-complexity algorithms
that avoid the PF-root computations are suitable for scenarios with favorable channel con-
ditions (e.g., rich MUDiv). In such scenarios the attainable sum rate is similar to the one
achieved by approaches depending on the eigenvalue optimization. It was shown that the pro-
posed algorithms can be used for user-removal under different sets of power constraints whose
performance is closed to the one achieved by state-of-the-art algorithms but with significant
reduction on computational complexity.

An additional application of the algorithms is to group users for time-sharing scheduling
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where transmission is provided only to useful users that can be jointly supported whilst useless
users can be served in a later time-slot or handed to another channel or base station.
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Chapter 5

User Selection and Signal Design In
Single Cell Systems

In this chapter, the sum rate maximization problem in single-cell multiuser MISO broad-
cast channels is addressed. In the analyzed system, the transmitter can design beamform-
ing weights (Zero-Forcing based) that can remove inter-user interference which scales the
system capacity according to the number of transmit antennas. If the number of users is
larger than the number of transmit antennas, only as set of users can be scheduled simul-
taneously and user selection is required. The achievable rates have a bijective relationship
with the effective channel gains, i.e., the magnitude of the channels after beamforming
[Ch1]. This relation allows to improve the achievable rates when the effective channel
gains are optimized. Such an optimization depends on the characteristics of the sched-
uled users channels, i.e., the magnitude and the spatial compatibility (orthogonality). The
sum rate maximization is a mixed optimization problem that operates over two domains:
the power allocation and the set of users [J3]. By decoupling those tasks, the user se-
lection can be performed based on channel metrics that indirectly evaluate the effective
channel gains. This is relaxation of the original problem where a set of channels opti-
mize a metric-based global objective function. Once that a set of users optimizes a given
metric, power allocation is performed by standard convex optimization techniques. This
chapter presents a qualitative and quantitative analysis of the metrics that can be used to
perform user selection [C5]. Different trade-offs between performance optimization and
computational complexity are attained by the proposed optimization algorithms.

5.1 Introduction

T
he multiuser multiple-input multiple-output (MU-MIMO) systems have a huge
potential to attain high data rates in wireless systems [15, 133]. MIMO systems can

exploit space-time coding and spatial multiplexing always that CSI is known at the transmitter
which increases the overall system capacity. In the wireless scenario of interest (see Fig. 5.1),
a transmitter encodes different information for different receivers in a common signal, which is
referred in the literature as a Broadcast Channel (see Chapter 2.2). For a classic deployment
with one BS equipped with Nt antennas and K single-antenna users, the capacity of a MIMO
system increases by a factor of min{Nt,K} times the capacity of a time-division-multiple-
access (TDMA) system if the transmitted signals are uncorrelated [15]. The TDMA system
cannot exploit the multiple antenna deployment at the BS which leads to a waste of system
resources and a degraded performance specially in the high SNR regime. The natural solution
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to this problem is to transmit simultaneously to more than one user. A strategy to accomplish
this goal is to implement DPC, a nonlinear coding scheme (multiplexing technique) based on
coding of known interference [24]. The DPC exploits the full CSI achieving the same capacity
of an interference free MIMO BC system [133]. If the number of single antenna users K is
larger than Nt, DPC can achieve a linear capacity increase in Nt.

DPC is the optimal capacity maximization scheme in a MIMO BC system. However, it
requires a huge computation complexity and feedback information, which rapidly increases
with Nt. Two sub-optimal alternatives of DPC were proposed in [25]. The first alternative is
the channel inversion or zero-forcing beamforming (ZFBF), which is an orthogonal transmit
spatial multiplexing scheme whose main objective is to nullify the mutual interference among
users. Despite its simplicity, ZFBF has been shown to achieve the same asymptotic sum
capacity of DPC when K is large [40]. The second alternative called zero-forcing dirty paper
(ZFDP) is an asymptotically optimal beamforming scheme that combines a QR decomposition
of the channel matrix with DPC at the transmitter. In this ranked known interference scheme,
the first user is not affected by interference while the second user is only affected by interference
coming from the first user and so on.

The capacity maximization using ZFBF (e.g., [25, 40, 134–136]) or ZFDP (e.g., [25, 137,
138]) can be further improved in scenarios where the number of single antenna users is larger
than the number of antennas at the BS (K > Nt). The users can be seen as an extra dimension
of adaptation which is referred in the literature as multiuser diversity (MUDiv). In order to
exploit such diversity, it is necessary to select a set of active users whose channel characteristics
yield a performance improvement in terms of sum rate when they transmit simultaneously
over the same radio resource. The user selection (scheduling) is a medium access control layer
process that can use information from the adaptive physical-layer design so that temporal
dimension (scheduling) and spatial dimension (multiple antennas) can be fully exploited.
The scheduling is a real time process whose computational complexity and implementation
affect directly the performance of upper-layers. Finding the set of users that optimizes a
given global utility function is a combinatorial problem whose optimal solution is given by
exhaustive search and its associated search space grows exponentially with the number of
users. The computation of the optimal solution of the scheduling problem is prohibitive for
most practical systems (moderate K and Nt). Therefore, it is necessary to find efficient
suboptimal scheduling schemes that can provide a good trade-off between performance and
complexity.

5.1.1 Related works

A considerable amount of work focused on the asymptotic sum rate of MIMO BC sys-
tems with user selection has been done over the last ten years. Several published works
(e.g., [40, 134, 136, 137]) presented efficient suboptimal algorithms that attempt to overcome
the prohibitively high complexity of exhaustively searching users. Most of the proposed algo-
rithms sub-optimally solve the problem of sum rate maximization by implementing cross-layer
designs, where the scheduling decisions are made based on instantaneous CSI or link-level
metrics. Since the aforementioned problem can be tackled in different ways, hereafter, it is
proposed a classification of the most common structures of the algorithms described in the
literature. The classification is based on the methodology followed to solve the mixed convex
and combinatorial problem of rate maximization in multiuser MIMO BC systems. This clas-
sification is used to make a clear distinction between the metrics used by each class and to
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fairly compare the performance achieved by algorithms of different classes.
A class-A algorithm is the one that performs a joint user selection and power allocation

optimization. A new user k is added to the set of previously selected users S only if for a given
utility function U(·) the aggregation of k to S increases the value of the utility function, i.e.,
U(S) < U(S + {k}). This kind of greedy algorithms [123, 124, 138–141] are highly effective
for sum rate maximization. However, they require a high computational processing since
the user selection requires the evaluation of the global utility function. Such a evaluation
requires both, water-filling power allocation and the Shannon capacity computation for each
unselected user in every iteration of the algorithm.

A class-B algorithm operates in two phases. In the first phase a set of users is selected based
on specific channel characteristics (metrics) and in the second phase the algorithm evaluates
the global utility function for the previously defined set, e.g., [40, 134, 136, 137, 142]. This
means that the user selection and the resource allocation (powers and beamforming weights)
problems are carried out independently and the sum rate maximization depends upon the
channel characteristics of the selected users. Furthermore, the cardinality of the set of selected
users is fixed in the first phase and it may be modified during the second phase when the
global utility function is evaluated. For instance, if water-filling is performed to evaluate the
global utility function, this may result in zero power allocation for some selected users due
to: their channel characteristics, the power constraints, and the SNR regime.

In [40] the authors designed a greedy algorithm that performs a semi-orthogonal user
selection (SUS) in order to maximize the total sum rate implementing ZFBF. In this class-B
algorithm the new selected user maximizes the component of the channel that is orthogonal to
the subspace spanned by the channels of the previously selected users. The exact evaluation
of that orthogonal component requires the multiplication of the unselected channel vectors by
a projector matrix over the subspace defined by channels of the selected users. The authors
of [40] showed that the average sum rate of ZFBF combined to their proposed user selection
technique achieves asymptotically the average sum rate of DPC when the number of users
grows to infinite (K →∞). Tu and Blum [137] proposed a class-B greedy algorithm for sum
rate maximization and ZFDP. The metric for user selection is based on the channel component
projected onto the null space spanned by the previously selected user channels. This metric
is used to estimate the power degradation that a new user will experienced if it interacts with
the orthogonal subspace spanned by the other selected users. A statistical analysis of this
methodology was done in [138] where it was shown that the greedy user selection based on null
space projections is a suboptimal yet highly efficient way to form groups of quasi-orthogonal
users that sub-optimally maximize the sum rate. The main disadvantage of this approach lies
in the computation of a projector matrix (null space projector) and its multiplication with
the channel vectors of all unselected users each iteration of the algorithm. A similar approach
to [137] was presented in [136] for sum rate maximization with ZFBF. The difference between
these two approaches lies in the fact that the latter performs singular value decomposition
(SVD) in order to compute null space of the selected user channels.

Both classes of algorithms require several matrix operations to perform the user selection.
Class-A algorithms use matrix inversion in order to perform power allocation per each possible
set of selected users. Class-B algorithms require the computation of a projector matrix [143]
per iteration and a matrix inversion if the power allocation is based on water-filling. The
effectiveness of the beamforming schemes is related to the spatial compatibility between the
channels of the selected users. Therefore, class-B algorithms exploit channel metrics that
quantitatively measure the spatial compatibility of the selected channels.
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5.1.2 Contributions

In this chapter, several metrics that measure the spatial compatibility between users are
proposed for Zero-Forcing based beamforming. The relationship between the metrics, their
properties, and their applicability for users selection are investigated. A novel metric for
spatial compatibility is proposed which is an approximation of the one used in [136, 137].
Such approximation has the advantage that it only requires multiplication of scalars defined
by the correlation coefficient between two channels. Based on the studied metrics two user
selection strategies are developed. The first strategy is a greedy class-B algorithm that makes
scheduling decisions based on the null space projection approximations, i.e., information ex-
tracted from the channel norms and the orthogonality between channels. The sum of null
space projections can be reformulated as the sum of individual weighted convex functions,
and the second strategy for user selection is to model the rate maximization problem as an
integer program. In contrast to some related works (e.g., [139]) that only provide a descrip-
tion of the user selection problem as an integer program (due to the high complexity of the
problem formulation), a complete mathematical model is derived for the integer constrained
program. The solution of the integer program (user set) asymptotically achieves the capacity
the optimum user set for moderate values of K. The attained performance of the proposed
metrics and algorithms is compared to the performance of state-of-the art algorithms (classes
A and B).

5.2 System Model

Consider a single-cell with one BS equipped with Nt co-located antennas and S is a set
of single antenna users (Nr = 1) as illustrated in Fig. 5.1. Assuming perfect CSI at the BS
and the channel coefficients are modeled as independent random variables, with a zero-mean
circularly symmetric complex Gaussian distribution (Rayleigh fading). The signal received
by the kth user is given by:

yk =
√
pkhkwksk +

K∑

i 6=k

√
pihkwisi + nk

= hkx + nk,

(5.1)

where sk is the intended symbol for user k, x ∈ CNt×1 is the transmitted signal vector from
the base station antennas, hk ∈ C1×Nt is the channel vector to the user k. Each user ignores
the modulation and coding of other users, i.e., it is assumed single-user detection where each
user treats the signals intended for other users as interference. nk ∼ CN (0, σ2

n) is the additive
zero mean white Gaussian noise with variance σ2

n. The entries of the block fading channel
H = [h1, . . . ,hK ] and n = [n1, . . . , nK ]T are normalized so that they have unitary variance,
and the transmitter has an average power constraint E[xHx] ≤ P . Since the noise has unit
variance, P represents the SNR. For linear spatial processing at the transmitter, the BF
matrix can be defined as W = [w1,w2, . . . ,wK ], the symbol vector s = [s1, s2, . . . , sK ]T and
P = diag(p1, . . . , pK) is the matrix whose main diagonal contains the powers so that the
transmitted signal is given by x =

∑K
k=1

√
pkwksk. The SINR of the kth user is

SINRk =
pk|hkwk|2∑

i 6=k pi|hkwi|2 + σ2
n

, (5.2)
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and the maximum instantaneous achievable data rate in bits/Hz of user k for a given block
fading channel is given by rk = log2(1 + SINRk).
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Figure 5.1: MISO Downlink System with Nt antennas at the BS and K single antenna users. The
scheduler uses the fedback CSI and for a given set of users the BS performs power allocation and
downlink transmission with beamforming.

5.3 The User Selection Problem

The performance of a MIMO system is measured by a global objective function of the
individual data rates or SINRs, U(r1, . . . , rK). From the system perspective, it is desirable
to optimize U(·) instead of the individual rates ri ∀i ∈ S, since the latter are coupled by
the transmit powers and the beamforming weights in (5.2). Thus the performance depends
on the way that the resources are allocated to each user and how efficiently the inter-user
interference is mitigated. Indeed, the enhancement of the system performance can be modeled
as a multi-objective optimization problem, where the optimum transmit strategy meets some
systems constraints (e.g., power, rates, etc) and maximizes jointly the individual objective
targets of the scheduled users [12].

In this chapter the system utility function is modeled as the sum rate using BF under
global power constraints. Given K ≤ Nt the general optimization problem is given by

RBF = max
W,P

|S|∑

k=1

ωkrk (5.3)

subject to ‖WP
1
2 ‖2F ≤ P

where ωk is a priority weight associated to user k defined a priory by upper layers of the
communications system to take into account QoS, fairness, or another system constraint. If
the system prioritizes users, i.e., ωi 6= ωj ∀i 6= j, there exist some sets of feasible P and W
called Pareto optimal that solves (5.3) whose characteristics depend on the individual weights
ωk. A Pareto optimal allocation is one such that, it does not exist another feasible allocation
where at least one user gets a better resource assignment, and all others get at least the same
resources. Moreover, an individual rate cannot be improved on without hurting at least one
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user. Finding a Pareto solution of (5.3) is a complex problem due to the nature of the optimum
W and P and each solution depends on the system requirements expressed by the weights ωk
[12]. The computation of optimal beamforming weights wk involves SINR balancing [33] and
since the weights do not have a closed-form, iterative computational demanding algorithms
have been proposed to determine them [34, 35]. As a matter of fact, it is known that problem
(5.3) is NP-hard even when all priority weights ωk are equal [61]. For some specific MISO
systems efficient algorithms solve the weighted sum-rate maximization problem in polynomial
time, for instance in [131] authors solve the SINR balancing problem through highly efficient
algorithms that converge geometrically.

5.3.1 Multiuser scenario

Let Ω = {1, . . . ,K} be the set of all competing users where K is larger than the num-
ber of available antennas at the BS, i.e., |Ω| = K > Nt. In order to exploit optimization
dimension provided by MUDiv, it is necessary to select a set of active users S whose chan-
nel characteristics maximize the system sum rate when they transmit simultaneously in the
same radio resource. Such characteristics are defined by the type of beamforming scheme,
the power constraints, the SNR regime, and the deployment characteristics (Nt, K, and Nr).
The sum rate maximization (user selection, beamforming, and power allocation) problem can
be defined as:

max
S⊆Ω:|S|≤Nt

RBF (H(S)), (5.4)

where H(S) is the row-reduced channel matrix containing only the channels of the subset of
selected users S, and RBF (H(S)) is the achievable sum rate for such set of users. Finding
the optimum solution of (5.4) requires an exhaustive search over a search space of size L =∑Nt

i=1
K!

i!(K−i)! , which is the number of all user permutations. Since the computation of the
optimal solution of the sum rate maximization problem implies the joint optimization over W,
P, and S, the original problem (5.4) can be relaxed by taking one or more of the following
actions: 1) by using beamforming weights w with a defined structure; 2) based on linear
beamforming the power allocation can be performed either by the Lagrangian method or by
equal power allocation; and 3) based on the structure of the linear beamforming it is possible
to design user selection algorithms that exploit information contained in H, achieving a good
trade-off between performance and complexity.

In the following section linear beamforming schemes are introduced and it will be assumed
that all users are equally prioritized, i.e., ωk = 1 ∀k ∈ Ω. Although linear beamforming
techniques are sub-optimal schemes compared to DPC, they highly simplify the computation
of w and allow a straightforward allocation of the optimal power (water-filling) [25].

5.4 Linear Precoding Schemes

In this section the structure of the linear beamforming vectors and their main charac-
teristics are described. Since the weight vectors multiply the intended symbols in (5.1) can
be seen as a form of precoding, hereafter the terms beamforming and precoding are used
interchangeably. The perfect knowledge of the channel vectors of all users at the transmitter
is guaranteed through CSI feedback from the mobile stations to the BS. This can be attained
through TDD scheme assuming channel reciprocity [12].
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5.4.1 Zero Forcing Beamforming (ZFBF)

In Zero Forcing Beamforming (ZFBF) the channel matrix H at the transmitter is processed
so that orthogonal channels between the transmitter and the receiver are created, defining a
set of parallel subchannels [25]. The Moore-Penrose pseudoinverse of H(S) is given by [143]:

W̄(S) = H(S)H(H(S)H(S)H)−1, (5.5)

and the ZFBF matrix is given by the normalized column vectors of W̄(S) as

W(S) = [w̄1/‖w̄1‖, . . . , w̄|S|/‖w̄|S|‖]. (5.6)

For ZFBF scheme the sum rate maximizing power allocation is given by the water-filling
algorithm and according to [25] the information rate achieved with optimum P in (5.3) is
given by :

RZFBF (H(S)) =

|S|∑

i=1

(log(µbi))
+ , (5.7)

where bi =
{

[(H(S)H(S)H)−1]ii
}−1

is the effective channel gain1 of the ith user and its
allocated power is

pi = (µbi − 1)+, (5.8)

and the water level µ is chosen to satisfy

∑

i∈S

(
µ− 1

bi

)+
= P. (5.9)

If all users in S are allocated with nonzero power, the water level has the compact form
[46, 138, 144]:

µ =
1

|S|(‖W̄(S)‖2F + P ) =
1

|S|(
∑

i∈S
b−1
i + P ). (5.10)

5.4.2 Zero Forcing Dirty Paper (ZFDP)

Suboptimal throughput maximization in Gaussian BC channels has been proposed in
several works [25, 137, 138] based on the QR-type decomposition of the channel matrix
H(S) = L(S)Q(S) obtained by applying Gram-Schmidt orthogonalization (GSO) [121] to
the rows of H(S). L(S) is a lower triangular matrix and Q(S) has orthonormal rows. The
beamforming matrix given by W(S) = Q(S)H generates a set of interference channels

yi = lii
√
pisi +

∑

j<i

lij
√
pjsj + ni, i = 1, . . . , k (5.11)

while no information is sent to users k + 1, . . . ,K. In order to eliminate the interference
component Ii =

∑
j<i lij

√
pjsj of the ith user, the signals

√
pisi for i = 1, . . . , k are obtained

by successive dirty-paper encoding, where Ii is noncausally known. This precoding scheme
was proposed in [25] and the authors showed that the precoding matrix forces to zero the
interference caused by users j > i on each user i. Therefore, this scheme is called zero-forcing

1The effective channel gain is the magnitude of the channel after precoding.
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dirty-paper (ZFDP) coding. The information rate achieved with optimum P in (5.3) under
the ZFDP scheme is given by [25]:

RZFDP (H(S)) =

|S|∑

i=1

(log(µdi))
+ , (5.12)

where di = |lii|2 and µ is the solution to the water-filling equation

∑

i∈S

(
µ− 1

di

)+
= P, (5.13)

which defines the ith power as pi = (µdi − 1)+.

5.5 Metrics of Spatial Compatibility

Recall from Section 5.3 that problem (5.4) can be solved by fixing the precoder structure
and the power allocation method. Under ZF-based precoding the performance depends on the
spatial correlation between the components of H(S). The more correlated the channels, the
higher the power penalty imposed by ZF schemes which yields a degradation of the achievable
SINRs and a poor system performance. For this reason, several works in the literature
tackled problem (5.4) by optimizing the spatial compatibility between scheduled users. This
is accomplished by optimizing a specific metric over the channel matrix H(S), which can
provide information regarding the achievable sum rate. In other words, a metric of spatial
compatibility is a function of the CSI at the transmitter f(H(S)) so that f : C|S|×Nt 7→ R+

where the mapping quantifies how profitable is to select S for transmission.
Different metrics for spatial compatibility have been proposed in the literature and this

section presents a unified treatment of the most common metrics used by several state-of-
the-art algorithms that solve (5.4). It is worth mentioning that the optimization over a given
metric may bring some advantages in terms of computational complexity, for instance, itera-
tive evaluations of f(H(S)) do not require the computation of the optimum power allocation.
Some metrics are given by simple relations between the row vectors in H(S) which avoids
matrix operations. Under certain SNR constraints the user set that solves problem (5.4)
achieves maximum multiplexing diversity, i.e., its cardinality is equal to Nt [25]. In such SNR
regime, the search space of the solution of problem (5.4) is reduced from L to LNt =

(
K
Nt

)
and

optimization over f(H(S)) can efficiently find the best set for a given metric.

5.5.1 Null Space Projection

Consider ZFBF and a given set of channels of selected users {hi}i∈S , the effective channel
gain of the ith selected user (see Section 5.4.1) is given by [25]:

bi =
1

[(H(S)H(S)H)−1]i,i

= ‖hiQVi‖2

= ‖hi‖2 sin2 θVihi

(5.14)

where H̃i = [h1, . . . ,hi−1,hi+1, . . . ,h|S|] is the aggregate interference matrix associated with

user i, Vi = Sp(H̃i) is the subspace spanned by the rows of H̃i. The matrix PVi =
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H̃H
i (H̃iH̃

H
i )−1H̃i is the orthogonal projector onto Vi and QVi = I − PVi is the projector

matrix onto the orthogonal complement of Vi [143]. The metric in (5.14) is equivalent to the
projection of hi onto the null space spanned by the rows of H̃i (illustrated in Fig. 5.2), i.e., the
null space projection (NSP) operation. It holds that ‖hiQVi‖2 ≤ ‖hi‖2 with equality when hi
is orthogonal to Sp(H̃i). Notice that ‖hi‖2 in (5.14) is affected by the weight sin2 θVihi which
is the squared sine of the angle between the channel vector hi and the subspace spanned by
the components of H̃i. The weight sin2 θVihi is referred in the literature as the projection
power loss factor [145] since it will affect the effective amount of power that is transmitted
over the ith link.

Figure 5.2: The spatial relationship between the components of vector hi and Vi.

Using the properties of water-filling and the strong relationship between the achievable rate
with the terms bi, a compact formulation of the maximization of metric (5.14) is elaborated
below. Theoretical results in [45, 146] show that for the MISO BC system a meaningful metric
to estimate the achievable performance of S is given by

∏
i∈S bi under certain constraints over

the water level µ for ZFBF and Nr = 1. The extension of such results is straightforward for
Nr > 1 as the product of all effective eigen-direction gains of all users in S [45]. However, for
Nr = 1 the performance gap between the sum and the product of the terms bi is negligible and
hereafter it is analyzed the metric

∑
i∈S bi which is equivalent to a matrix trace operation.

Let H̄(S) = H(S)H(S)H and Ḣ(S) = H̄(S)−1 be a Wishart matrix [121] and its respective
inverse which characterize the interaction of all user channels in S. The set of users that
achieves a sub-optimal solution to problem (5.4) by maximizing the sum of the effective
channel gains is given by the solution of the following combinatorial problem:

Sω = arg min
S⊂Ω:|S|=Nt

Tr(Ḣ(S)). (5.15)

The optimum set Sω for the NSP metric is unique and it will contain the users that
maximize

∑
i ‖hi‖2 sin2 θVihi . The selection of S based on the NSP in (5.15) yields a close-to-

optimal solution to problem (5.4) for a ZF-based precoding under the following conditions:
P > P0, K > Nt, or large K and Nt. The term P0 is a critical SNR value that depends
on H(S) for which the cardinality of S is always maximum, i.e., full spatial multiplexing
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is attained [25]. The evaluation of the metric (5.14) is not unique and different algorithms
proposed in the literature use different algebraic operations to compute or approximate such
a metric. In the following subsection several methods to evaluate the NSP for ZFBF and
ZFDP are presented. The application of each one of these methods lies in the complexity
required to evaluate them as well as the available information at the BS. Each one of them
represents a trade-off between accuracy of the NSP evaluation and the required CSI at the
transmitter.

5.5.1.1 Orthogonal Projector for ZFBF

The computation of QVi is not unique and different forms to evaluate such matrix can be
efficiently used in different contexts, i.e., depending on the available CSI at the transmitter,
the required computational complexity, and the deployment (K, Nt, Nr). Applying singular
value decomposition (SVD) [143] to the matrix H̃i of the ith user yields:

H̃i = UH̃i
ΣH̃i

[V̄H̃i
ṼH̃i

]H , (5.16)

where ṼH̃i
contains the Nt−r basis of the null space of H̃i and r = rank(H̃i). The orthogonal

projector matrix is given by QVi = ṼH̃i
ṼH

H̃i
[147] and the set Sω in (5.15) maximizes the

objective function
∑

i ‖hiQVi‖2.

In some scenarios it is assumed that the BS knows the basis of Sp(H̃i) for any user i ∈ S.
Let {vj}rj=1 be the column vectors of V̄H̃i

defined in (5.16) and the NSP in (5.14) for the ith
user can be computed as follows:

‖hiQVi‖2 =

∥∥∥∥∥∥
hi


I−

r∑

j=1

vjv
H
j



∥∥∥∥∥∥

2

. (5.17)

The NSP operation in (5.17) can be also computed by applying GSO to H(S) as in [40] which
represents a lower computational complexity than the SVD approach [148]. Using the basis
of Sp(H̃i) the magnitude of the NSP operation is also given by ‖hiQVi‖2 = ‖hi‖2 − ‖ȟi‖2
where ȟi is the projection of hi onto each one of the orthogonal basis of Vi as follows [121]:

ȟi =

r∑

j=1

‖hi‖ cos θhivj
‖vj‖

vHj , (5.18)

where the term cos θhivj represents the coefficient of correlation between the vectors hi and
vj and is defined as [143]:

cos θhivj =
|hivHj |
‖hi‖‖vj‖

, (5.19)

and the domain of the coefficient is 0 ≤ ηhivj = cos θhivj ≤ 1 and θhivj = π
2 means perfect

spatial orthogonality.

The NSP calculation does not necessary require SVD and other matrix operations can
be used instead. Using the full channel matrix H(S) and H̃i for all i ∈ S the block matrix
determinant formula to compute det(H(S)H(S)H) reads [149]:
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det
(
H(S)H(S)H

)
= det

([
H̃iH̃

H
i H̃ih

H
i

hiH̃
H
i hih

H
i

])

= det
(
H̃iH̃

H
i

)
‖hiQVi‖2

(5.20)

and the NSP is given by ‖hiQVi‖2 = det(H(S)H(S)H)/ det(H̃iH̃
H
i ).

The orthogonal projection of hi onto Vi, ∀i ∈ S defined in (5.14) has a direct relationship
with the correlation coefficients defined in (5.19). The normalized power loss experienced by
the ith channel when it interacts with the subspace Vi is called the coefficient of determination
given by [143]:

∆2
Vihi =

hiPVih
H
i

hihHi
, (5.21)

where ∆2
Vihi measures how much the vector hi can be predicted from the channel vectors

of H̃i. Notice that from (5.14) and (5.21) the projection power loss factor of hi due to the
projection onto the null space of Vi is equivalent to 1 − ∆2

Vihi which can be evaluated as
follows [143]:

1−∆2
Vihi = (1− η2

hiπ(1))(1− η2
hiπ(2)|π(1)) . . . (1− η2

hiπ(k)|π(1)...π(k−1)), (5.22)

where π(k) is the kth ordered element of H̃i and ηhiπ(k)|π(1)...π(k−1) is the partial correlation
between the channel vector hi and the selected vector associated with π(k) eliminating the
effects due to π(1), π(2), . . . , π(k − 1). Using multiple regression analysis it is possible to
evaluate ‖hiQVi‖2 = ‖hi‖2(1 −∆2

Vihi) by extracting the partial correlation coefficients from
the correlation coefficients choosing one user order π out of (|S| − 1)! permutations of the
users in S [143].

A different approach can be applied if for a given set of channels {hj}j∈S the orthogonal
projector matrix of each channel is known so that for Nr = 1, and Qj = I− hHj (hjh

H
j )−1hj

and for Nr > 1 SVD can be used to calculate Qj . From [150] the following result holds:

QVi =


 ∏

j 6=i,j∈S
Qj



n

, n→∞ (5.23)

which establishes that the orthogonal projector matrix onto Vi can be approximated by recur-
rently projecting onto independent orthogonal subspaces such that their intersection strongly
converges to QVi as n grows.

The NSP measured by Tr(Ḣ(S)) has been used by several user selection algorithms either
by avoiding the exhaustive search required to solve (5.15) or by using relaxed forms to compute
(5.14). Table 5.1 summarizes different forms of computing the NSP applied in the literature
of users selection.

5.5.1.2 Orthogonal Projector for ZFDP

In Section 5.4.2 the ZFDP beamforming was described and it was mentioned that the
received signal of user i contains an interference component from all j < i users, i.e., the pre-
viously encoded users. Given an specific encoding order π(i), i ∈ {1, . . . , |S|} (a permutation
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Table 5.1: NSP for the ith user of S in Algorithms for User Selection

‖hiQVi‖2 Evaluation System NSP Approach

‖hiṼH̃i
ṼH

H̃i
‖2 Exact (5.14) MISO Iterative selection of S based on SVD [136, 137]

‖hiQVi‖2 Exact (5.17) MISO Selection based on GSO [40, 151]

‖hi‖2(1−∆2
Vihi

) Approx. (5.19) MISO Selection based on correlation coefficients [152]

‖hi
(∏

j 6=iQj

)n
‖2 Approx. (5.23) MIMO Tree search using SVD and n ∈ {1, 2, 3} [12, 153]

of the users in S), for this scheme the beamforming vectors wπ(i) are computed either by a
QR-type decomposition or by GSO as follows [154]:

wπ(i) =
Tih

H
π(i)

‖TihHπ(i)‖
, (5.24)

where

Ti =

{
I for i = 1,

Ti−1 −wπ(i−1)w
H
π(i−1) for i = 2, . . . , q,

(5.25)

and i = 1, . . . , q with q = rank(H(S)). The matrix Ti is the orthogonal projector matrix onto
Sp(hπ(j<i)) the subspace spanned by all previously encoded users for which hπ(j<i)wπ(i) = 0.
Some authors (e.g., [154, 155]) use the following expression as an objective function over the
channel matrix H(S) for user selection and ZFDP:

f(H(S)) =

|S|∑

i=1

‖hiTi‖2. (5.26)

Observe that user selection and sum rate maximization based on (5.26) implicitly depend
on one particular selected encoding order π out of |S|! different valid orders. Since different
orders yield different values of (5.26), Tejera et al. [154] proposed a method to perform the
successive encoding optimizing of the order π. Such an optimum order is attained by an al-
gorithm that evaluates (5.14) each iteration for every successive encoded user. An alternative
suboptimal approach can be employed as in [137] where π is defined by the descending order
of the effective channel gains of the users in S.

5.5.2 Approximation of the NSP for ZFBF

The objective function of problem (5.15) can be further relaxed by using a lower bound
of Tr(Ḣ(S)) in order to avoid the computation of the inverse matrix Ḣ(S). Considering the
definition of trace

Tr(Ḣ(S)) =
∑

i

λ−1
i (H̄(S)), (5.27)

and using the arithmetic-geometric mean inequality over the eigenvalues of Ḣ(S) it holds [16]:

|S|
(∏

i

λi(Ḣ(S))

)1/|S|

≤ Tr(Ḣ(S)). (5.28)
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Since |S| is constant and independent of the selected channels for all LNt user permuta-
tions, the lower bound on the objective function of (5.15) can be simplified as:

∏

i

λi(Ḣ(S)) = det(H̄(S))−1. (5.29)

A suboptimal but less computational demanding way to find a set of users that solves
problem (5.4) is by defining the set that solves the following combinatorial problem:

Sξ = arg max
S⊂Ω:|S|=Nt

det(H̄(S)), (5.30)

where the optimized objective function only requires to compute the determinant of a matrix
product. Observe that the lower bound of metric (5.29) is highly related with metric (5.20)
and the performance degradation of the former arises because the terms det(H̃iH̃

H
i ) ∀i ∈ S

are neglected.
In [152] it was presented a greedy algorithm where the metric for user selection is based

on an approximation of (5.22) and the correlation coefficients are used instead of the partial
correlation coefficients. Such relaxation neglects the channel gain degradation due to the
terms π(1), π(2), . . . , π(k − 1). Given channel matrix H(S), the metric that approximates∑

i∈S bi is defined as follows [152]:

Λ(H(S)) =
∑

i

‖hi‖2
∏

j 6=i
sin2 θhihj ∀i, j ∈ S (5.31)

Using this metric a suboptimal solution to problem (5.4) is given by the set of users that
solve the following combinatorial problem:

SΛ = arg max
S⊂Ω:|S|=Nt

Λ(H(S)). (5.32)

5.5.3 ε-orthogonality

Several user selection algorithms (e.g., [134, 152, 155, 156]) attempt to create groups of
quasi-orthogonal users based on the information provided by the coefficient of correlation
(5.19). A set of channels {hi}i∈S is called ε-orthogonal if cos θhihj < ε for every i, j ∈ S
[134]. Some works addressed problem (5.4) by scheduling the set of user with minimum ε-
orthogonality. The metric is measured over the normal channels [156] or over the eigenvectors
computed by SVD [134]. If the orthogonality among channels in H(S) is the only metric used
to define S (regardless of the channel gains), the sum rate maximization problem (5.4) can
be sub-optimally solved by the set of users that minimizes the ε-orthogonality among all LNt
possible sets. Such a set can be formally described as:

Sε = arg min
S⊂Ω:|S|=Nt

(
max
i,j∈S

cos θhihj

)
. (5.33)

Some works in the literature define Sε as the set with minimum sum of correlation coeffi-
cients

∑
i

∑
j 6=i cos θhihj ∀i, j ∈ S [134, 155] or as the set with minimum average correlation

coefficient [157]. Observe that these objective functions are based on pairwise metrics and
they can be negatively biased by few terms η with large values neglecting the remaining co-
efficients with relatively small values. An alternative utility function that can identify such
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large terms is the geometric mean over all correlation coefficients in S since it would assign
the same priority to each term. In multi-carrier systems with beamforming transmission
[156, 157], problem (5.33) is solved for each carrier which represents an user grouping process
based on (5.19). In MU-MIMO systems the user grouping problem based on (5.33) either
for scheduling time slots, sub-carriers, or both, can be modeled as a graph coloring problem
[49, 158] or as a graph clique problem [142] and complexity reduction is the main objective
of the proposed grouping algorithms.

5.5.4 Orthogonality Defect

The orthogonality defect derived from Hadamard’s inequality [16] measures how close a
basis is to orthogonal. Given the matrix H(S) the orthogonality defect is defined as:

δ(H(S)) =

∏
i=1 ‖hi‖2∏

i=1 λi(H̄(S))
, (5.34)

and δ(H(S)) = 1 if and only if the elements of H(S) are pairwise orthogonal. The metric
defined in (5.34) reflects the orthogonality of the set {hi}i∈S and it has been proposed to
evaluate the compatibility between wireless channels so that spatial multiplexing gain is max-
imized [134, 159]. The original problem (5.4) can be suboptimally solved by the set of users
that minimizes the orthogonality defect which is formally described as:

Sδ = arg min
S⊂Ω:|S|=Nt

δ(H(S)). (5.35)

Observe that problem (5.35) uses a weighted version of the utility function of problem (5.30)
where the weight is defined by the inverse of

∏
i=1 ‖hi‖2.

5.5.5 Condition number

The ZF-based beamforming methods are in general power inefficient since the spatial
direction of wi is not matched to hi ∀i ∈ S. Inverting an ill-conditioned channel matrix
H(S) yields a significant power penalty and a strong SINR degradation at the receivers. In
numerical analysis, a metric to measure the invertibility of a matrix is given by the condition
number. In MIMO system this metric is used to measure how the eigenvalues of a channel
matrix spread out and to indicate multipath richness for a given channel realization. The less
spread of the eigenvalues, the larger the achievable capacity in the high SNR regime. For the
matrix H(S) the condition number is defined as [160]:

κ(H(S)) =
|λmax(H̄(S))|
|λmin(H̄(S))| , (5.36)

and κ(H(S)) assess the multiplexing gain of a MIMO system [160]. Another definition of the
condition number is given by the product ‖A‖‖A−1‖ for a given nonsingular square matrix
A [121] and (5.36) generalizes that metric for any matrix H(S) ∈ C|S|×Nt where |S| ≤ Nt. If
the condition number is small, the matrix H(S) is said to be well-conditioned which implies
that as κ(H(S)) → 1 the total achievable sum rate in the MISO systems under ZFBF can
achieve a large portion of the sum rate of the inter-user interference free scenario. Problem
(5.4) can be sub-optimally solved by a set of users with the minimum condition number and
such set is formally described as:
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Sκ = arg min
S⊂Ω:|S|=Nt

κ(H(S)). (5.37)

Another metric to estimate matrix condition is given by the Demmel condition number.
Several applications in MIMO systems have been proposed in recent years for this metric,
e.g., link adaptation, coding, and beamforming [161]. The Demmel condition number can be
seen as the ratio between the total energy of the channels of H(S) over the magnitude of the
smallest eigenvalue of H̄(S) and is given by the following expression[161]:

κD(H(S)) =
Tr(H̄(S))

λmin(H̄(S))
, (5.38)

where Tr(H̄(S)) = ‖H(S)‖2F , i.e., the Frobenius norm is related with the overall energy of the
channel. Using (5.38) the set of users that sub-optimally solves (5.4) is given by the solution
of the following combinatorial problem:

SκD = arg min
S⊂Ω:|S|=Nt

κD(H(S)). (5.39)

5.6 Power Projection Based User Selection

In this section it is designed a user selection algorithm that sub-optimally solves the
sum rate maximization problem. This design only considers the physical layer information,
whereas the application level delay effects are not considered. It is assumed that all users
have infinite information to transmit when they are scheduled. The generalization of the user
selection problem is modeled as an integer program and the sub-optimality of the selection
metrics is discussed.

5.6.1 Iterative Power Projection (IPP)

Based on the fact that (5.14) has a fundamental connection with the coefficients of correla-
tion as described in Section 5.5.1, this subsection presents an algorithm that attempts to find
a quasi-orthogonal set of users S using exclusively the information provided by the channel
norms and a measure of the orthogonality between two user channels given by (5.19). Fig. 5.3
exemplifies the required information used to find the set S, and for two selected users i and j
the figure shows the physical components that affect the interaction with a third unselected
user k.

ij
ih jh

kh

kj
ki

( ( ))Sp H S

Figure 5.3: Interaction of two selected users i and j with third unselected user k
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In order to start the users selection process, it is assumed that the base station knows
the coefficients of correlation for all users in Ω = {1, . . . ,K}, which requires (K2 − K)/2
computations of (5.19) since ηhihj = ηhjhi and the computation of the coefficients (inner
product and vector norm operations) can be done within time O(K). For sake of notation let
%ij = 1− η2

hihj
, %̂ij = 1− |ηhihj | and define the following geometric and arithmetic means for

the elements % associated to user i ∈ Ω as:

Mg(i) =


 ∏

j 6=i,j∈Ω

%ij




1
|Ω|−1

≤
(

1

|Ω| − 1

) ∑

j 6=i,j∈Ω

%ij , (5.40)

where Mg(i) is a lower bound of the arithmetic mean of the projection power loss factors of
user i. The first selected user is the one that maximizes the product of its channel magnitude
by the average projection onto all other users:

i∗ = arg max
i∈Ω
‖hi‖2Mg(i), (5.41)

and the sets of selected and unselected users are updated, S = {i∗} and Ω = Ω − {i∗}
respectively. Selecting the first user by (5.41) has the goal of assigning priority weights to the
channel norms, i.e., users with large channel norms are penalized if their associated correlation
coefficients have a large variance. Furthermore, the geometric mean Mg(i) minimizes the bias
created by the terms % with very large or small values, which would be neglected if the
arithmetic mean of the projection power loss factors were considered in (5.41).

The following user to be selected must maximize two criteria at the same time. On the
one hand, it must maximize its own projected power which is affected by the coefficients % of
the already selected users in S. The effective projected power of the user i ∈ Ω is given by:

ψi = ‖hi‖2
∏

j∈S
%ij . (5.42)

On the other hand, the users in S have already achieved the effective channel gains:

φj = ‖hj‖2
∏

k 6=j,k∈S
%jk, j ∈ S. (5.43)

For a new user candidate i ∈ Ω, its aggregation to the set S implies a reduction of the total
sum of effective channel gains of the selected users (

∑
j∈S φj) by the factors % associated with

the new selected user. Using the arithmetic and geometric means, lower bounds of the average
effective channel gains of the selected users in (5.43) can be defined for the ith unselected
user as follows:

∏

j∈S
φj%ij ≤


 1

|S|
∑

j∈S
φj%ij



|S|

≤


 1

|S|
∑

j∈S
φj



|S|

. (5.44)

The total effective projection power (an approximation to the effective channel gain) ϕ̇i
of the unselected user i takes into account the two required criteria. 1) the average projection
power over the elements in S computed for the lower bound in (5.44), and 2) the projection
power of user i ∈ Ω (5.42):
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ϕ̇i =


∏

j∈S
φj%ij




︸ ︷︷ ︸
gain ∀j ∈ S


‖hi‖2

∏

j∈S
%ij




︸ ︷︷ ︸
gain ∀i ∈ Ω

=


∏

j∈S
φj




︸ ︷︷ ︸
constant ∀i ∈ Ω


∏

j∈S
%ij




‖hi‖2

∏

j∈S
%ij


 . (5.45)

By taking the square of the product of the terms %ij both effects are considered, the
impact of the selected users over user i and the power degradation that the users in S will
have if user i is selected. Since the effective projected power of the selected users remains
constant for all users in Ω, the metric in (5.45) can be normalized as follows:

ϕi = ‖hi‖2
∏

j∈S
%2
ij . (5.46)

Given S, the next selected user is found using the metric defined in (5.46) as:

i∗ = arg max
i∈Ω

ϕi, (5.47)

where the selection of the locally optimum ϕ(n) in a given iteration n is conditioned on the
choice of ϕ(1), . . . , ϕ(n− 1).

As Nt,K → ∞ the number of total operations to solve problem (5.4) becomes compu-
tationally demanding and an optimization of the set Ω can be performed. By using (5.47)
recursively, each iteration requires the comparison of |Ω| elements in order to select the user
whose projection power is maximum. Considering that the cardinality of the final set must
be Nt, without dynamically modifying Ω each iteration, the selection process would require
a total of Lc = Nt(K − (Nt − 1)/2) comparison operations. It is worth mentioning that the
algorithms proposed in [134, 136, 137] also require Lc comparison operations times the ele-
ments of S. However, the computational complexity is quite different since each comparison
implemented in those works requires a matrix multiplication whilst the metric used in (5.46)
is a multiplication of real positive numbers.

In [40, 162, 163] after a new user i is added to S, the set of unselected user Ω is reduced
by keeping the users whose correlation factors are above a threshold αth, i.e., Ω(n) = {j ∈
Ω(n− 1) : ηhihj < αth}, where n stands for the iteration number, and i is the selected user of
iteration n − 1. This sub-selection within the algorithm has the drawback that the value of
the parameter αth is fixed which might result in a drastic reduction of the size of Ω and the
degradation of the multiuser diversity. According to [40] there exists an optimum value of the
threshold αth for each value of K and Nt but the mathematical relationship between these
terms is not given in a closed form. The statistical dependence of the average throughput
regarding to αth has been established only for the case where the cardinality of the set of
selected users is constrained to be 2, i.e., |S| = 2 in [145].

A dynamic optimization of the set Ω can be performed by considering two criteria to
discard users at each iteration. The first criterion is related to the statistics of the projection
powers regarding the users that have been selected. The second criterion weights the first one
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based on the number of active users and the number of antennas Nt. Define the arithmetic
mean of the projected powers given the new selected user i∗ as:

Ma(i∗) =
1

|Ω|
∑

j∈Ω

‖hj‖2%i∗j . (5.48)

Notice that the power projection computation is performed considering only the power
projection loss factors associated with i∗ and each term of the sum in (5.48) is the multi-
plication of two real numbers. The metric defined in (5.48) is used to discard users whose
projection powers are below the arithmetic mean which results in a reduction of the number
of comparisons for the next iteration. Nevertheless, when the number of total users is low
(K ≈ Nt) the number of users in Ω should not be reduced drastically in order to preserve
enough multiuser diversity and to achieve full spatial multiplexing. Define a weight factor
based on the number of antennas Nt and the size of the sets S and Ω as follows:

w(Nt,S,Ω) = 1−
(
Nt − |S|
|Ω|

) 1
Nt−|S|

. (5.49)

The objective of w(Nt,S,Ω) is to scale Ma(i∗) in iteration n taking into account the spatial
resources available at the BS and the current size of Ω. Given the new selected user i∗ and
weighting (5.48) times (5.49), the modified set of users that will compete to be scheduled in
the next iteration n+ 1 is defined as:

Ω(n+ 1) =
{
j ∈ Ω(n) : ‖hj‖2%i∗j ≥ w(Nt,S,Ω)Ma(i∗)

}
. (5.50)

The procedure to generate the quasi-orthogonal set of user that solves problem (5.4) is
described in Algorithm 5.1.

Algorithm 5.1 Iterative Power Projection (IPP)

1: Ω = {1, . . . ,K}, S = ∅, n = 0
2: while |S| < Nt do
3: if n = 0 then
4: Compute i∗ by (5.41)
5: else
6: Compute i∗ by (5.47)
7: end if
8: n = n+ 1, S(n) = S(n− 1) ∪ {i∗}, Ω(n) = Ω(n− 1)− {i∗}
9: Update Ω(n) by (5.50)

10: end while
11: Power Loading Principle: water-filling

5.6.2 An Integer Linear Program (ILP) Approach

The optimization performed in Algorithm 5.1 can be described as a greedy search over
a tree structure [164] where the root is given by the element of Ω that preservers a higher
average projected power (5.41). Similar approaches are implemented in [40, 134, 136, 137]
considering the user with the maximum channel norm as the root of the search tree. The
greedy Algorithm 5.1 makes a sequence of decisions in order to optimize the metric in (5.47).
However, this local optimization might not lead to a global optimal solution. Moreover,
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since the first user is found by (5.41), the correlation of such a user with the future selected
users is neglected when S is initialized. A general mathematical model of the interaction of
all elements in S that exploits the metrics used in (5.41) and (5.47) can be designed. The
structure of (5.41) and (5.47) maximize the squared channel norm weighted by the product of
the correlation coefficients. Such an operation can cast a relaxed version of the user selection
problem (5.4) into an integer programming problem.

Define the interaction of the user i ∈ Ω with the rest of the users as a function fi consid-
ering the structure of (5.46) as:

fi = ‖hi‖2
∏

j 6=i
%2
ij , ∀i, j ∈ Ω, (5.51)

and by applying a change of variables, define the function f̃i as

f̃i = ai +
∑

j 6=i
bij , (5.52)

where
ai = 2 log(‖hi‖), (5.53)

and
bij = 2 log(%ij). (5.54)

The next goal is to maximize the total sum of the projected powers which is a function
of two factors, the orthogonality between the selected channels and the amount of remaining
power after a projection. Therefore, (5.4) can be reformulated as the maximization of

∑
i f̃i

subject to |S| = Nt. In order to introduce such constraint, define the following binary variable
yi as:

yi =

{
1 if user i is selected
0 otherwise

(5.55)

In the same way it can be defined a set of binary variables xij that relate the common
coefficient %ij of two users as:

xij =

{
1 if both users i and j are selected
0 otherwise

(5.56)

The mathematical model for the user selection problem based on the channel norms and
correlation coefficients is given by:

maximize
∑

i

aiyi + 2
∑

i

∑

j=i+1

bijxij (5.57)

subject to
∑

i

yi = Nt

yi + yj ≤ 1 + xij ,∀i, j
xij ≤ yi, ∀i, j
xij ≤ yj , ∀i, j
yi ∈ {0, 1}, ∀i
xij ∈ {0, 1}, ∀i, j
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variables yi, xij

where (5.57) is a binary programming problem that generalizes the objective function opti-
mized by Algorithm 5.1. The advantage of this formulation is that the order in which the
users are selected has no impact in the orthogonality of the elements of H(S), i.e., the neg-
ative effects of selecting local optimum users in each iteration is canceled. The solution to
the user selection problem is given by the binary variables yi and power allocation based on
water-filling is performed as described in Section 5.4. Observe that a conversion from f̃i to fi
is not required because the set of scheduled users is defined as S = {i ∈ Ω : yi = 1}. Since the
objective function is convex and the constraints are given by affine functions, this problem
can be solved by the pseudo-dual simplex method [10] for integer programs or using standard
optimization packages [165, 166]. Moreover, problem (5.57) always has a feasible solution
because the only constraint that might lead to infeasibility is the equality constraint that is
always met due to the fact that K ≥ Nt. Problem (5.57) is a relaxed version of (5.4) and finds
a suboptimal solution to the user selection problem owing to the nature of the coefficients bij
which is discussed below.

5.6.3 Sub-optimality of IPP and ILP

The NSP found by (5.14) has a direct relationship with the correlation coefficients η of the
users in S and the channel vector h of the candidate user in Ω. It can be observed that the
product that scales the squared channel norm of user i in (5.46) contains all the information
of the correlation coefficients of elements of S which resembles the product (5.22). However,
(5.46) considers redundant information about how all elements in H(S) interact with h, which
results in a suboptimal evaluation of (5.22). As a matter of fact, the NSP approximation in
(5.46) is an upper bound of the NSP which is elaborated upon in Section 6.4.4. Notice that
as K grows, the probability that the basis of Sp(H(S)) can describe a new candidate user’s
channel h decreases. Therefore, the gap between the product of the correlation coefficients and
the product of the partial correlation coefficients reduces as well. This characteristic is used
in [134] to prove that when K → ∞ the performance of a SVD-based scheduling algorithm
that generates a quasi-orthogonal set of user by approximating (5.21) achieves asymptotical
optimal user selection performance.

The optimum metric for user selection varies according to the precoding scheme that is
implemented. For the case of ZFDP, since (5.46) considers redundant information when all
terms % are multiplied, lack of accuracy can be compensated by the elimination of the non-
causally known interference. In the case of ZFBF the orthogonality among selected channels
plays a more important role in terms of sum rate maximization. In order to compensate the
lack of knowledge of the partial correlation coefficients in (5.22), larger values of the power
loss factors are considered. This means that user selection described in Algorithm 5.1 for
ZFBF is performed using %̂ij instead of %ij . Due to the fact that %̂ij ≤ %ij (with equality
when the channels are uncorrelated) the projection power loss factor increases its value, and
in this way the poor orthogonality between channels has a higher impact when the squared
channel norms are scaled in (5.46).
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5.7 Performance Evaluation

In this section two types of numerical evaluations are presented. The first type of evalua-
tion is a comparison between the metrics defined in Section 5.5 and its capability to identify
the set of users that maximizes the sum rate. In the second type of evaluation, the proposed
user selection algorithms of Section 5.6 are compared to several state-of-the-art algorithms,
namely the semi-orthogonal user selection (SUS) [40] with threshold parameter αth, and the
NSP based approach [136, 137]. The upper bound of the sum rate is given by the expected
value of the solution of (5.4) found by exhaustive search. In order to highlight the contribution
of multiuser diversity, the performance is compared to two simplistic user selection approaches,
one based on the maximum channel gain (MCG) criterion (selecting the Nt users with largest
channel norms), and a second approach performing round robin scheduling (RRS).

The performance of Algorithm 5.1 (IPP) is also compared to two greedy class-A algo-
rithms, one proposed by Dimic and Sidiropoulos (D-S) [138], and the other proposed by
Karachontzitis and Toumpakaris (K-T) [124]. The solution of the integer linear program
(ILP) optimization in (5.57) is presented and used as an upper bound of the performance of
Algorithm 5.1 (IPP) and compared to the optimum solution of (5.4). The simulations consider
complete CSI, fading channels are generated following a complex Gaussian distribution with
unit variance, and the average sum rate is given in bps/Hz. Since the system performance is
evaluated via Shannon capacity by means of (5.7) and (5.12), the results are independent of
the specific implementation on the coding and modulation schemes, which provides a general
design insight.

5.7.1 Optimality of the Channel Metrics

The results of this section compare the average sum rate achieved when optimal user selec-
tion is performed over different metrics of H(S). The curves displayed in Fig. 5.4 are obtained
by optimally solving the combinatorial problems previously introduced in Section 5.5, whose
solutions are employed to evaluate (5.4). Notice that these results are upper bounds of the
average sum rate for each metric, which implies that any class-B user selection algorithm can
achieve at most the same performance for its optimized metric. The sum rate achieved by Sω
defined by (5.15) approaches the optimal sum rate achieved by S? paying a computational
cost of matrix product and inversion operations for each possible set S. Due to the properties
of water-filling the sum rate is maximized when the terms bi have larger and uniform values.
For low values of K there exists a performance gap between S? and Sω because the probability
that the terms bi have large uniform values is small. As K grows this probability increases
and the performance gap vanishes. The average sum rate achieved by Sξ defined by (5.30) is
a lower bound of the NSP metric (5.14) for all K with a performance gap not larger than 3%
w.r.t. S?. This result suggest that (5.29) is a good candidate metric for user selection since
it achieves a good trade-off between complexity and performance.

The orthogonality defect δ(H(S)) cannot identify with accuracy the set that maximizes
the sum rate because this metric only reflects the degradation of the product of the eigenvalues
of H̄(S) with respect to the channel gains. Consider that the optimum solution of (5.35) yields
δ(H(Sδ)) = 1. This result may indicate that H(Sδ) forms an orthogonal basis yet minimizing
the orthogonal defect ignoring the maximum achievable denominator in (5.34) leads to a
poor user selection in terms of sum rate maximization. Numerical results shows that this
effect worsens as K grows. The optimum channel matrix H(S?) does not achieve perfect
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ε-orthogonality or pairwise orthogonality among its components. The sum rate attained with
the solution of problems (5.35), (5.37), and (5.39) degrades as K grows. This is due to the
fact that for high multiuser diversity the probability of finding a set of users that minimizes
the dispersion of the eigenvalues of H̄(S) increases but this does not imply that the maximum
sum of effective channel gains or transmitted power is achieved. Metric (5.31) improves its
performance as K grows since the probability that H(SΛ) achieves both large

∑
i ‖hi‖2 and

pairwise uncorrelated channels increases with K. The set Sε found by metric (5.19) may be
not unique since two different sets may containing the same maximum η but their achievable
sum rates may be quite different.

Fig. 5.5 illustrates the average sum rate achieved by each metric as a function of the
SNR. Observe that the performance gap between the different metrics and the optimum
solution increases up to a critical SNR and after that point the performance gap between
curves remains constant. This indicates that the metrics performance depends on the SNR
regime. The average sum rate is similar for other ZF-based beamforming techniques such as
successive-ZF or ZF dirty-paper [25].
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Figure 5.4: Average sum rate as a function of the number of users (K) with SNR=18(dB) and Nt = 4.

Table 5.2 summarizes the operations performed over the eigenvalues of H̄(S) and the ma-
trix operations required to compute each metric. Keep in mind that to solve any of the com-
binatorial problems in Section 5.5 the time complexity of the sort operation O(LNt log(LNt))
is scaled by LNt times the complexity required to compute each metric. For metrics based on
the coefficient of correlation (5.19) and (5.31) the associated time complexity is O(Nt) since
only inner products and vector norms are required.

5.7.2 Throughput (R) vs number of active users (K)

In Fig. 5.6 and Fig. 5.7, it is compared the throughput performance of different user selec-
tion strategies and Algorithm 5.1 w.r.t. the number of competing users K. The performance
of ZFBF is highly susceptible to the characteristics of the set of selected users S. IPP algo-
rithm performs the user selection exploiting the information of the terms %̂. Since %̂ij ≤ %ij ,
the consequence is a more drastic reduction in the power projection in (5.46) due to the value
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Figure 5.5: Average sum rate as a function of the SNR with K = 20 and Nt = 4.

Table 5.2: Metric Properties. λi is the ith eigenvalue of H̄, f(H) is a function of λ. HHH , H−1,
eig(H) are matrix product, inverse, and eigenvalue decomposition operations.

f(H) Tr(Ḣ) det(H̄) δ(H) κ(H) κD(H)

f(λ)
∑
i λ
−1
i

∏
i λi

∏
i ‖hi‖2∏

i λi

λmax
λmin

∑
i λi

λmin

HHH X X X - -

H−1 X - - X -

eig(H) - - - - X

of the correlation coefficient ηhihj . Fig. 5.6 shows that IPP achieves a considerable portion of
the average sum rate of the optimum selection, for instance when K = 5 the performance gap
regarding the optimum user selection is about 11%. For K = 10, IPP achieves 90% of the
optimum users selection performance. The parameter αth is a threshold whose function is to
drop users with correlation factor below to it as described in Subsection 5.6.1. In this particu-
lar example αth = 1 in order to guarantee that the set constraint in (5.4) is not violated. The
objective of IPP algorithm is to achieve the performance of the greedy user selection based
on the NSP. The performance of the IPP algorithm has an asymptotic behavior regarding
the NSP approach as K grows. For K = 20, IPP achieves roughly 97% of the sum rate of the
NSP based algorithms [136, 137].

A comparison of the IPP algorithm to the ILP optimization shows that the latter exploits
more efficiently the user diversity as K grows. It is interesting that for K ≥ 20 the ILP
optimization achieves a better performance than the NSP approach in Fig. 5.6. This result
suggest that there exists a critical value of K for which the user selection of the ILP opti-
mization overcomes the selection performed using the metric defined in (5.14). For K = 20,
the performance gap between the optimum user selection and the ILP optimization is less
than 5%. This means that for given deployment Nt, there exists a finite value K0 for which
∀K > K0 the sum rate gap between the exhaustive search and the model (5.57) is negligible.
However, the complexity of computing the solution of (5.57) grows exponentially with K
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which is impractical for online implementations, but it is still an acceptable approximation
to (5.4) compared to the likely large search space size of the optimum solution for moderate
values of K.

The performance of the IPP is determined by the precoding scheme that is used. For
ZFDP in Fig. 5.7, it can be observed that IPP performs as well as SUS but there is still
a performance gap compared to the NSP approach. For K = 20, IPP achieves the same
performance of the greedy selection of [124] and 98% and 99% of the sum rate of the optimum
selection and the NSP approach respectively. For ZFDP and K ≥ 8, the ILP optimization
achieves better performance than IPP but is not effective enough to reach the performance
of the NSP approach for low values of K. Nevertheless, for K = 20, the ILP optimization
achieves 98% of the sum rate of the optimum selection. IPP shows an asymptotic performance
as K →∞ with respect to the NSP approach and the optimum selection for both precoding
schemes.
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Figure 5.6: Average Sum Rate as a function of the number of users K for the ZFBF scheme with
SNR = 18(dB) and Nt = 4.

5.7.3 Sum rate (R) vs SNR (P )

For Zero-Forcing-based beamforming and a given SNR (P ) the maximum sum rate under
the constraint |S| ≤ Nt in (5.4), might be achieved by a set of selected users of cardinality
strictly less than rank(H(S)) [25]. Nevertheless, from the properties of water-filling power
allocation in (5.7), there exists a finite value P0 (which depends on H(S)) for which ∀P ≥ P0,
(5.4) is solved by a subset of cardinality Nt. Notice that since the greedy class-A algorithms
in [138] and [124] obey the constraint |S| ≤ Nt, the sum rate that they achieve for P < P0 is
higher than the capacity of the optimal solution in (5.4) but the number of scheduled users
may be less than in a class-B algorithm. This phenomenon can be observed in Fig. 5.8 where
for a given number of user K = 10, the value of P0 ≈ 10(dB) and the optimum solution of
(5.4) is always better than the solution of the algorithms in D-S [138] and K-T [124]. It is
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Figure 5.7: Average Sum Rate as a function of the number of users K for the ZFDP scheme with
SNR = 18(dB) and Nt = 4.

worthy to point out that the optimum user selection here presented is found in a search space
of size

(
K
Nt

)
for a class-B algorithm, whilst the search space of a class-A algorithm [124, 138]

has size of
∑Nt

n=1

(
K
n

)
, which has no constraints on the minimum number of selected users.

Therefore, the optimum solution shown in the results is valid only for class-B algorithms and
presenting results for class-A algorithms attempts to highlight the difference between both
classes. Consider the high SNR regime (10 ≤ P ≤ 20) in Fig. 5.8, the performance gap
between IPP and the optimum solution ranges from 14% to 9% and for the NSP approach
the performance gap goes form 9% to 4% in the same SNR range. For the case of ZFBF, the
ILP optimization achieves a better approximation to NSP than the IPP approach. However,
in the case of ZFDP in Fig. 5.9, the performance gap between IPP and the ILP optimization
is about 1%, and both approaches achieve roughly 98% of the optimum selection capacity
for SNR of 20(dB). An interesting fact is that the MCG selection achieves 93% the optimum
selection capacity for K = 10 and P = 20(dB) under ZFDP. This indicates that for the
high SNR regime, channel gains play a more important role for the user selection process in
scenarios where nonlinear precoding is implemented. The performance of a class-B algorithm
depends on the multiuser diversity and the SNR regime.

5.7.4 Cardinality of S and Ω

The cardinality of the set S is conditioned by the class of the algorithm that is imple-
mented, its parameters, and the type of precoding that is used. In Fig. 5.10 it is analyzed
the average value of the ratio |S|/Nt for (a) ZFBF and (b) ZFDP. Such ratio indicates if full
spatial multiplexing is achieved. In the case of ZFBF, notice that both class-A algorithms
S-D and K-T [124, 138] require K ≥ 20 in order to achieve the maximum cardinality of S. To
exemplify the inconvenience of designing an algorithm dependent of non-dynamic parameters,
notice that setting a wrong value to the parameter αth of the SUS algorithm might lead to
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Figure 5.8: Average Sum Rate as a function of the SNR for ZFBF scheme with K = 10 and Nt = 4.
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Figure 5.9: Average Sum Rate as a function of the SNR for ZFDP scheme with K = 10 and Nt = 4.

a degradation of both the cardinality of the set of selected users and the sum rate. For the
case of ZFDP observe that the robustness of the precoder allows us to schedule Nt users in
both classes of algorithms. This has a direct impact in the achieved fairness owing to the
cardinality of |S| = Nt.

The reduction of the set Ω per iteration becomes relevant for high values of K and Nt. The
effects of (5.50) on the cardinality of the set of unselected users Ω are presented in Fig. 5.11
for (a) Nt = 3 and (b) Nt = 4. The figures show the average number of users kept in the
set Ω each iteration of Algorithm 5.1 for different number of users. The first iteration always
considers all K users to find the initial selected user. As the size of S increases the number
of required users to achieve |S| = Nt reduces and (5.49) takes into account such decrement
to assign the proper priority to Ma(i∗).
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5.7.5 Complexity Analysis

The complexity required to solve (5.4) can be analyzed in two parts. The first one is
the complexity required to implement each one of the precoders and the second one is the
complexity of IPP. For the case of ZFBF, the precoding requires a Nt×Nt matrix inversion W
and for ZFDP the evaluation of the beamforming weights requires a QR-type decomposition.
For both coding schemes, this process is carried out after IPP finished the user selection
process. The most costly operation in IPP is the evaluation of (K2 − K)/2 inner products
to define the correlation coefficients that can be done in time O(K). Since this values does
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not change along the selection process, they must be computed once and can be stored in
memory. Notice that the evaluation of (5.41) requires a time O(K) since only multiplications
of real positive numbers are required and an sort operation performed in time O(K log2(K)).
For the case where the set Ω reduces in one element per iteration and a total of Nt iterations
are required the total complexity is O(KNt + NtK log2(K)). However, for the following
iterations the time complexity of (5.47) is a function of the set of unselected user modified
according the statistics of the projection power given by Ma(i∗) and w(Nt,S,Ω). This implies
that each iteration will required a time O(|Ω|(1 + log2(|Ω|))) ≈ O(|Ω|) and Ω changes each
iteration according to (5.50). The solution of (5.57) requires the optimization over LILP =
1
2K(K + 3) binary variables in the objective function. This means that a total of 2LILP

configurations of those variables are available and the number of valid configurations depends
on the constraints imposed over the binary variables. Regardless the existence of pseudo-
polynomial algorithms that solve integer programs avoiding the evaluation of all configurations
[10], real time computation of the solution of (5.57) is prohibitive for large values of K.
Table 5.3 summarizes the time complexity of different user selection algorithms.

The proposed algorithms assume complete CSI. However, in practical systems it is chal-
lenging to guarantee this condition. Even if channel estimation is very accurate, it may exist
an error in the CSI at the transmitter due to mobility and feedback delays. Several works
(e.g., [40, 136, 155]) showed that outdated CSI may alter the orthogonality of the selected
channels which degrades the performance of Zero-Forcing based transmission schemes. The
authors in [155] showed that a significant fraction of the sum rate with complete CSI can be
achieved if the ratio between the outdated channel at the transmitter and the estimation error
is kept above a threshold. Therefore, as the frame lengths are designed so that the magnitude
of the real channels and the errors due to outdated estimates maintain a given average ratio,
the proposed user selection techniques are effective.

Table 5.3: Complexity comparison of user selection algorithms

Class A Class B

[138] [124] SUS [40] NSP [137] IPP

O(KN3
t ) (KN2

t ) O(KN3
t ) O(KN3

t ) O(KNt)

5.8 Conclusions

In this chapter, the problem of sum rate maximization was addressed for multi-user single-
cell systems. This fundamental problem in wireless communications is studied by decoupling
user selection and beamforming design. Although they are independent tasks, the user selec-
tion must consider the characteristics of the implemented beamforming scheme which depends
on the properties of the channel matrix of a selected set of users. The aim of the chapter
was twofold: to study metrics of the channels that are closely related to the achievable sum
rate, and to design algorithms that select users based on such metrics. It was developed a low
complexity algorithm that finds a quasi-orthogonal set of users that maximizes the total sum
rate for BC channels using ZFBF and ZFDP schemes. A fundamental relation between the
correlation coefficients and the null space projection was used to perform user selection. The
proposed IPP algorithm approximates the projected power using products of the correlation
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coefficients, a metric that is based exclusively on the physical characteristics of the multi-
user channels. The IPP algorithms was compared to different state-of-the-art algorithms and
numerical results show small performance gaps between the optimum user selection and the
proposed one.

By approximating the NSP as a product of correlation coefficients and transforming in-
dividual metrics per each competing user an integer programming model was derived, whose
performance approximates the performance of the exhaustive search. The results obtained
by numerical simulation indicate that the proposed scheduling designs can profit from funda-
mental information that characterizes the relation between wireless channels without imple-
menting computational demanding operations.
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Chapter 6

User Selection and Signal Design In
Multi-Cell Systems

In this chapter the problem of sum rate maximization in multi-user multi-cell systems is
tackled. A set of adjacent BS form a cluster in order to perform coordinated transmission
to cell-edge users, and coordination is carried out through a CU. However, the message
exchange between BSs and the CU is limited to scheduling control signaling and no user
data or CSI exchange is allowed. In the considered multi-cell coordinated approach, each
BS has its own set of cell-edge users and transmits only to one intended user while inter-
ference to non-intended users at other BSs is suppressed by signal steering (precoding).
Two distributed linear precoding schemes are studied, Distributed Zero Forcing (DZF)
and Distributed Virtual Signal-to-Interference-plus-Noise Ratio (DVSINR). Considering
multiple users per cell and the backhaul limitations, the BSs rely on local CSI to solve the
user selection problem [J4] . First, it is investigated how the SNR regime and the number
of antennas at the BSs affect the effective channel gain (the magnitude of the channels
after precoding) and its relationship with MUDiv. Considering that user selection must be
based on the type of implemented precoding, metrics of compatibility (estimations of the
effective channel gains) are designed which can be computed from local CSI at each BS
and reported to the CU for scheduling decisions. Based on such metrics, user selection
algorithms are designed so that a set of users that potentially maximizes the sum rate can
be found. Numerical results show the effectiveness of the proposed metrics and algorithms
for different configurations of users and antennas at the base stations.

6.1 Introduction

T
he performance of coordinated downlink transmission with linear precoding in
multi-antenna multi-cell systems has been an active area of research over the last years.

Recent works (e.g. [28, 52, 84] and references therein) have shown that cooperation and co-
ordination between clustered BSs improve rates, coverage, and efficiently suppress ICI which
specially benefits cell-edge users [60]. BS coordination involves message exchange between
neighboring cells and according to the level of coordination, multi-cell systems have been clas-
sified in three groups [12, 52, 167, 168]: interference aware (IA), joint processing/transmission
(JT), and coordinated beamforming (CBF). In IA there is no information exchange among
BSs, each transmitter serves its own set of users, and transmission parameters are adjusted in
a selfish fashion by measuring ICI [52]. In contrast, in JT systems it is assumed that CSI and
user data are globally available, full coordination is attainable though a CU, and each user
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receives data from a group of coordinated BSs (cluster). The JT system can be interpreted
as a broadcast channel [12] with distributed antennas and several radio resource management
(RRM) tasks (e.g., scheduling, power control, precoding design, data queue control, etc.)
extended from the single-cell systems can be applied (e.g., [28, 52, 60, 67, 72, 84, 169, 170]).
However, such extensions must take into account backhaul rate limitations, CSI acquisition,
joint transmission, and other system constraints [168]. In CBF the BSs need only data of the
users in their own cells and they do not require to know the precoders and traffic of other BSs.
The shared information is related to scheduling control signaling and partial or full CSI in
order to mitigate spatial ICI. The BSs design precoding vectors towards the scheduled users
so that the gain is two-fold: increasing the signal strength at the receivers and suppressing
interference in the adjacent cells [168]. Efficient RRM schemes can be implemented under
CBF using local CSI [171, 172] which relaxes the wideband backhaul and synchronization
requirements [84].

Regardless the type of coordination between neighboring BSs, the inter-cluster interfer-
ence problem arises if multiple clusters are taken into account, which can be dealt in two
ways. The most straightforward way is to apply the principle of cellular planning (see Chap-
ter 3.2) with frequency reuse [84, §5]. Using different radio resources in adjacent clusters (it
can be dynamically allocated) mitigates or eliminates the inter-cluster interference. A second
approach to reuse radio resource among different clusters is by means of inter-cluster coor-
dination, where adjacent clusters implement interference mitigation techniques for the users
at the edges of the clusters (e.g. [60]). For sake of simplicity and modeling tractability this
chapter will consider a single cluster network with B BSs for the single carrier case.

6.1.1 Related Works

Depending on the system utility function that is optimized, there exist different strategies
to achieve optimal power allocation and precoding design assuming that global CSI is known,
and that the number of antennas at the transmitters can server all competing users (cf.
[52, 67] for an in-depth survey). In the scenario where each BS serves only one user and CSI
is not exchanged among BSs, the system model can be referred to as interference channel
[12]. Recent works characterize its achievable rate region and jointly perform power allocation
and precoding design (e.g., [61, 64, 67, 167]) under the assumption that the intended user
of each BS has been previously selected by some procedure. However, for multi-user multi-
cell scenarios each BS must select one user from its own pool of users before proceeding with
precoding calculations. In this scenario the sum rate maximization is a complex combinatorial
problem because the number of users is larger than the number of available spatial resources
(antennas) and global CSI may not be available. The global performance is highly sensitive
to the set of scheduled users, since selecting user k at BS b relies on local CSI and the
associated channels of k at other BSs modify the precoders characteristics. Additionally, the
multiplexing gain and ICI suppression depend upon the number of antennas at the BSs [168].

In the literature of single-cell MU-MISO systems with precoding based on Zero Forcing
(ZF), the sum rates maximization problem is commonly tackled by decoupling the user selec-
tion from the power allocation and precoding design. As discussed in Chapter 5.5, the user
selection can be performed based on the NSP (e.g., [40, 45, 137]) or an approximation of it
(e.g., [152, 153]). The NSP provides an accurate measure of the effective channel gain (the
channel magnitude after precoding), so that the user channels selected based on such a metric
are spatially compatible or quasi-orthogonal. For ZF precoding, this means that the users
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selected using the NSP can provide a close-to-optimal solution to the sum rate maximization
problem in multi-user scenarios. Recent works on multi-cell systems have proposed extensions
from single-cell user selection algorithms assuming that partial or global CSI is available at
the CU (e.g., [12, 28, 60, 169, 170]). These extensions [28, 60] are centralized algorithms that
exploit the concept of NSP to improve sum rates relying on global CSI at the scheduler. If
global CSI is not available, distributed precoding and scheduling can still be implemented.
For instance, LTE-Advanced standard [59, 84] considers distributed linear precoding such as
signal-to-leakage-plus-noise ratio (SLNR) [12, 173] and ZF whose computation requires to
know local CSI and the set of intended users. One strategy for joint distributed precoding
and scheduling is to limit the exchange of CSI such that the clustered BSs jointly select users
in a sequential fashion, i.e., the first BS selects its users and broadcast its decision, then the
second BS selects its user based on the decision made by the first one and so on [84]. Another
approach has been introduced in [172] where users selection, precoding design, and power
allocation are treated as decoupled problems but their parameters are jointly updated at the
CU. Results show that distributed RRM schemes with limited message exchange between BSs
can improve system performance.

6.1.2 Contributions

In the considered system model, a set of adjacent BSs form a cluster and they coordi-
nate their transmission strategies through a CU in order to serve a set of cell-edge users
and mitigate ICI. The clustered BSs adopt the CBF transmission scheme where the data
for an intended user is transmitted from one BS, whereas the impairments from the ICI are
mitigated by coordinated precoding. Two distributed linear precoding schemes will be used:
Distributed Zero Forcing (DZF) and Distributed Virtual Signal-to-Interference-plus-Noise Ra-
tio (DVSINR derived from SLNR). It is assumed that each BS has its own set of intended
users, no user data or CSI is exchanged between BSs, and the shared information between
BSs and the CU is for scheduling control. In each scheduling instance the clustered BSs
attempt to maximize the sum rate by selecting a set of users with particular characteristics.
Optimizing the performance in the described scenario is a challenging task since global CSI
is not available and the backhaul connection with the CU only supports scheduling control
information. Moreover, selecting the best set of users whose channel characteristics maxi-
mize the sum rate is a combinatorial problem whose complexity grows exponentially with the
number of BSs and users per cell [172].

To solve the user selection problem, and taking into account that the BSs implement
either DZF or DVSINR, the key contributions of this chapter are summarized as follows.

• Initially, it is discussed how the instantaneous and average effective channel gains of DZF
and DVSINR depend on the signal-to-noise-ratio (SNR) regime, the number of antennas
at the BSs, and MUDiv. This insight of the precoder schemes is used to establish in
which way local CSI must be process at each BS. Then precoder-based metrics of user
compatibility are designed, i.e., depending on the type of precoding, a mapping from the
CSI of each user to a real number is developed. The proposed metrics are estimations
of the achievable effective channel gains and provide different levels of accuracy and
complexity. The metrics are designed to operate in different system configurations
based on the number of transmit antennas and BSs, i.e., an interference limited or a
power limited system.
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• The scheduling process must be perform at the CU by using the metrics reported by
the BSs. This goal is accomplished by developing algorithms for user selection with
different levels of complexity that properly combine the reported metrics. Once that a
set of users has been selected, the decision is informed to the BSs and they compute
either DZF or DVSINR based on the local CSI of the selected users.

• A pre-selection methodology is designed in order to reduce the number of competing
users per BS. The method is a ranking-based per-antenna selection that preserves MU-
Div in CBF systems, achieving considerable gains in terms of complexity reduction
with marginal performance loss. Numerical results show that the proposed metrics and
algorithms for user selection can achieve a large portion of the optimal sum rate (the
benchmark is a fully centralized system) by exploiting local CSI with limited message
exchange between BSs and the CU.

6.2 System Setup and Problem Formulation

Consider a multi-user multi-cell clustered network where a group of B adjacent BSs form a
cluster. Each BS has Nt antennas, all users in the network are equipped with a single antenna,
and define εD , max{Nt− (B−1), 0}. The BSs only exchange messages of scheduling control
through a CU and precoding design is performed at each BS using local CSI. The joint user
selection and precoding design are performed for cell-edge users located in the cell-edge area
defined by B BSs. The users are deployed within a circular area that spans a radius rcoop
(a fraction of the cell radius r) illustrated in Fig. 6.1. The bth BS has one index set of edge
users Sb and it only transmits data to one user in this set. Consider that Sb ∩ Sj = ∅, ∀j 6= b
and the transmitted signal from BS b to user k ∈ Sb is: xb =

√
Pbwbsb. Pb is the transmitted

power, wb ∈ CNt×1 is the unit norm precoder and sb is the transmitted data symbol with
E[|sb|2] = 1, E[‖xb‖2] = Pb, and Pb ≤ P where P is the maximum available power. The
received signal of user k is given by:

ybk =
√
Pbh

H
bkwbsb +

B∑

j=1,j 6=b

√
Pjh

H
jkwjsj + nk, (6.1)

where hbk ∼ CN (0, %2
bkI) of size Nt× 1 is a flat Rayleigh fading propagation channel between

user k and BS b and %2
bk is the long-term channel power gain. The term nk ∼ CN (0, σ2

n) is
the noise. The receivers treat co-terminal interference as noise and the instantaneous signal-
to-interference-plus-noise ratio (SINR) of user k ∈ Sb is defined as:

SINRbk =
Pb|hHbkwb|2∑B

j=1,j 6=b Pj |hHjkwj |2 + σ2
n

. (6.2)

6.2.1 Problem Formulation

In a cluster with B BSs, there exist L =
∏B
b=1 |Sb| user permutations with B users that

can be chosen for simultaneous transmission. Each user in S =
⋃B
b=1 Sb has a unique index

and all BSs know which indices belong to each BS. Let Gl ∀l ∈ {1, . . . , L} be a set of B
users where each user is served by one BS and the users indices in the set l are the same
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Figure 6.1: Deployment with B = 3, cell radius r = 1(km), and cell-edge cooperation area of radius
rcoop = 300(m).

for all BSs. The set Gl has an associated channel matrix at the bth BS which is given by

H
(l)
b , {hbi : i ∈ Gl}, i.e., all the local channels of the users grouped in Gl. The sum rate

maximization problem in the multi-user multi-cell scenario is defined as:

maximize
l∈{1,...,L}

B∑

b=1

log2 (1 + SINRbk)

subject to ‖w(type)
b (H

(l)
b )‖2 = 1, ∀b ∈ {1, . . . , B}

(6.3)

where SINRbk is defined in (6.2) for the user k ∈ {Sb ∩ Gl}.
The precoding vectors w

(type)
b (H

(l)
b ) ∀b are functions of H

(l)
b at each BS for the given set l,

and type ∈ {DZF,DV SINR} is the implemented precoding technique which will be defined
in the next section. The main objective is to find the set l that solves problem (6.3) which

can be attained by taking advantage of the properties of w
(type)
b . Such properties are used

to exploit the local CSI and the SNR regime in order to evaluate the effective channel gains,
i.e., |hHbkwb|2 ∀k, b, which are tightly related with the achievable rate.

6.3 Distributed Linear Precoding

In this section the properties and structure of two precoding techniques DZF and DVS-
INR are investigated. The main goal is to define underlying characteristics of the precoders
which depend on the SNR regime and Nt, and quantify how those characteristics affect the
instantaneous and average effective channel gains.

6.3.1 Distributed Zero Forcing (DZF)

Zero-forcing is a classic precoding strategy which removes the inter-user interference con-
strained by B ≤ Nt. The conditions to achieve near Pareto-optimal rates with distributed
ZF for the two-BS scenarios were presented in [64] and for B BSs generalized expressions to
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compute wb are provided in [12, 171]. Let H̃bk be the aggregate interference matrix of user k
given by:

H̃bk = [hb1, . . . ,hb(k−1),hb(k+1), . . . ,hbB], (6.4)

and each term hbi ∀i 6= k corresponds to the channel between BS b and the user i ∈ Si. The
matrix ṼH̃bk

= null(H̃bk) contains εD column vectors that are candidates to form wb since

they will produce zero interference to the other users in H̃bk. If εD > 1 the elements of ṼH̃bk

can be linearly combined to form the precoding vector as follows [171]:

w
(DZF )
b = ṼH̃bk

(hHbkṼH̃bk
)H

‖hHbkṼH̃bk
‖
, (6.5)

and the received signal at user k has its phase aligned so that hHbkwb ∈ R+.

Proposition 6.1. The expected value of the effective channel gain of user k ∈ Sb served by
BS b using DZF precoding with wb given by (6.5) under constraint Nt ≥ B is defined as
follows:

E
[
|hHbkwb|2

]
=
εD
Nt

E
[
‖hbk‖2

]
(6.6)

Proof. See Appendix A.1

6.3.2 Distributed Virtual SINR (DVSINR)

The ideal precoder technique would be able to balance between signal power maximization
and interference power minimization and a heuristic way to find such balance is reached by
maximizing the SLNR [12]. In [72] the authors show that it is possible to achieve Pareto-
optimal rates in multi-cell transmission when the precoding vectors are given by:

w?
b = arg max

‖w‖2=1

υbk|hHbkw|2∑
j 6=k υbj |hHbjw|2 + σ2

n
Pb

, (6.7)

where υbk ∈ (0, 1) which is a heuristic extension of the SLNR precoding [12, 173]. Then
w?
b ∀b are linear combinations of the maximal ratio transmission and ZF precoders and the

coefficients υbk that optimally maximize the sum rate can be only computed with global CSI.
If maximum ICI is accounted1 (υbk = 1 ∀b, k) the precoders that solve the virtual SINR
maximization problem (6.7) are given by [72]:

w
(DV SINR)
b =

Dbkhbk
‖Dbkhbk‖

, (6.8)

where Dbk = C−1
bk , Cbk , ρ−1

b INt + H̃bkH̃
H
bk is a Nt × Nt positive-definite Hermitian matrix

and ρb = Pb
σ2
n

. The following result describes the relation between the eigenvalues of Dbk and

the expected value of the effective channel gain.

1The authors in [167] showed that the coefficients υbk can define user weights that may represent, for
instance, user priority.
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Proposition 6.2. The effective channel gain of the user k ∈ Sb served by the bth BS under
DVSINR precoding constrained by Nt ≥ B can be approximated as follows:

E
[
|hHbkwb|2

]
≈ E

[
‖hbk‖2J(eig(Dbk))

]
(6.9)

where wb is defined in (6.8), J(·) is the Jain’s fairness index defined in (4.23), and eig(Dbk)
is the vector that contains all the eigenvalues of matrix Dbk.

Proof. See Appendix A.2

Proposition 6.3. For DVSINR, given the matrix H̃bk ∈ CNt×(B−1) and its corresponding
Dbk ∈ CNt×Nt under constraint Nt ≥ B it holds that

lim
ρb→∞

(
J(eig(Dbk))−

εD
Nt

)
= 0, (6.10)

which implies that ∃ρ0 and ∀ρb ≥ ρ0 the expected value of the effective channel gain is upper
bounded as follows:

E
[
|hHbkwb|2

]
≤ εD
Nt

E
[
‖hbk‖2

]
(6.11)

Proof. See Appendix A.3

The ICI for DVSINR is nonzero and for the high SNR regime the interference components
in the denominator of (6.2) are usually neglected [72, 167]. The following result provides an
approximation of the power that is leaked from clustered BSs using DVSINR precoding.

Proposition 6.4. For DVSINR and Nt ≥ B, the magnitude of the interference or leakage
from the jth BS over the channel hjk ∈ H̃ji ∀j 6= b in the denominator of (6.2) for the user
k ∈ Sb served by the bth BS can be approximated as follows:

E
[
|hHjkwj |2

]
≈ E

[
‖hjk‖2

εDNt(ρjλmin(H̃H
jiH̃ji) + 1)2

]
, (6.12)

where wj is a function of the matrix H̃ji associated to the user i served by the jth BS.

Proof. See Appendix A.4

6.4 The Multicell User Selection

This section discusses the multi-user channel characteristics that affect the performance
of DZF and DVSINR as well as their relation with MUDiv. Then problem (6.3) is addressed
by decoupling2 the user selection task from the precoding design. Based on the implemented
precoding technique novel metrics to determine spatial compatibility (functions of the local
CSI) are designed which will be used to develop user selection algorithms at the CU. The
objective is to find a set of receivers whose associated channels can provide a close-to-optimal
solution to the sum rate maximization problem.

2Decoupling both problems is a technique used in single-cell systems under precoding schemes with defined
structure such as Zero Forcing (e.g., [40, 45, 137, 152, 153]) which can achieve close-to-optimal performance.

107



6.4.1 Linear Precoding and User Selection

Consider that k ∈ {Sb ∩ Gl} and let H̃bk(Gl) ∈ CNt×(B−1) be the aggregate interference

matrix of k which contains all channels of H
(l)
b except hbk.

6.4.1.1 DZF

This scheme is defined if Nt ≥ B and achieves |hHbiw
(DZF )
b |2 = 0, i.e., zero inter-user in-

terference ∀i ∈ Gl \{k}. From Proposition 6.1 observe that the average value of |hHbkw
(DZF )
b |2

depends on Nt and εD. As the latter grows the effective channel gain is enhanced and con-
sequently the SINR. However, results in Appendix A.1 show that the instantaneous effective
channel gain is a function of the angle between hbk and the basis of Vbk = Sp(H̃bk(Gl)), the
subspace spanned by the i.i.d. columns of H̃bk(Gl). The selected user at BS b needs to meet
two conditions in order to improve system performance regardless the SNR regime: 1) maxi-

mize the local |hHbkw
(DZF )
b |2 which means that channel magnitude and spatial compatibility

(quasi-orthogonality) must be optimized jointly; 2) the channels {hjk}Bj=1,j 6=b of user k at

other BSs should be spatially compatible to the other selected channels so that |hHjiw
(DZF )
j |2,

∀j 6= b, ∀i 6= k is also maximized. Moreover, ∀k ∈ Sb there exist Lbk =
∏B
j=1,j 6=b |Sj | different

precoders and a set Gl maximizing |hHbkw
(DZF )
b |2 at BS b is, in general, not the best set at

other BSs.

6.4.1.2 DVSINR

This scheme does not impose a constraint on Nt but its capability to combat inter-user
interference depends on it. For a given user set Gl, Proposition 6.2 shows that in the low and

medium SNR regimes the expected value of |hHbkw
(DV SINR)
b |2 depends on the magnitude of

hbk and the characteristics of H̃bk(Gl). In particular, the magnitude of each i.i.d. vector in
H̃bk(Gl) and its singular values which directly modifies J(eig(Dbk)), cf. Appendix A.2. In the

high SNR, Proposition 6.3 indicates that the expected value of |hHbkw
(DV SINR)
b |2 is limited by

εD and Nt similar to DZF. Since the impact of Dbk in the effective channel gain is dominated
by εD eigenvalues associated to the null space of Vbk, the selected user at each BS should meet
the same conditions previously described for DZF. From results in Appendices A.2 and A.3
it can seen that at the low SNR the eigenvalues of Dbk have similar magnitudes and the BS
can select its user selfishly based on the channel magnitudes regardless the characteristics of
Vbk. At medium SNR the user selection is more complicated since the instantaneous effective
channel gain is modified by the weighted basis of Vbk where the weights are functions of ρb
and εD, cf. Appendix A.2. Notice that because |hHbiw

(DV SINR)
b |2 6= 0, ∀i ∈ Gl \ {k} the

achievable SINR (6.2) strongly depends on Nt and B. If εD > 0 (power limited scenario)
the amount of leaked power from BS j to the user k served by BS b is inversely proportional
to εDNt. When ρj → ∞ the leakage is also scaled by ρ−2

j according to Proposition 6.4 and
inter-user interference vanishes. The expression (6.12) reveals that for a fixed ρj the leakage
is minimized if λmin(H̃H

jiH̃ji) is maximized, which occurs if the i.i.d. vectors in H̃ji are quasi-
orthogonal. For user selection purposes, at BS b the best set Gl should meet two conditions:
1) hbk is quasi-orthogonal to Vbk (similar to DZF), and 2) the elements in H̃bk(Gl) are quasi-
orthogonal. If εD = 0 (interference limited scenario) a strategy for user selection based only
on local CSI is hard to define because the channels of all user in Gl are coupled in the SINR

108



expression. In other words, accurate user selection in such scenario requires CSI exchange
between BSs.

6.4.2 Metric for user selection: Nt ≥ B

Due to the fact that global CSI is not available at the CU, centralized user selection (e.g.,
[28, 170, 174]) cannot be performed. In order to design semi-distributed user selection it is
required to define the type of scheduling control information exchanged between the BSs and

the CU. The metric gbl is a function of the local CSI H
(l)
b so that gbl : CNt×B 7→ R+. Such

mapping computes an approximation of |hHbkwb|2, i.e., it quantifies how profitable is to select
the set Gl for transmission at the bth BS. Let Phbk = H̃bk(Gl)(H̃H

bk(Gl)H̃bk(Gl))−1H̃H
bk(Gl) be

the projector matrix onto Vbk, and Qhbk = INt−Phbk the projector matrix onto the orthogonal
complement of Vbk [143]. The proposed metric to estimate |hHbkwb|2 is given by:

gbl = ‖Qhbkhbk‖2 + αbk‖Phbkhbk‖2, (6.13)

where αbk is a function of the type of precoding scheme.

For DZF αbk = 0 for all ρb since the precoder takes the form w
(DZF )
b = Qhbkhbk/‖Qhbkhbk‖

which is the direction of the projection of hbk onto Sp(H̃bk(Gl))⊥ (cf. Appendix A.1). For

the case of DVSINR, w
(DV SINR)
b = hbk/‖hbk‖ as ρb → 0, i.e., the precoder is given by the

matched filter and one must have αbk = 1 in order to meet gbl = |hHbkw
(DV SINR)
b |2 = ‖hbk‖2.

When ρb →∞ the precoder is given by w
(DV SINR)
b = Qhbkhbk/‖Qhbkhbk‖ and one must have

αbk = 0 so that gbl = |hHbkw
(DV SINR)
b |2 = ‖Qhbkhbk‖2. Therefore, αbk must change depending

on the SNR regime and the characteristics of the i.i.d. vectors in H̃bk(Gl).

Proposition 6.5. The effective channel gain |hHbkw
(DV SINR)
b |2 is given by a nonlinear com-

bination of the orthonormal basis of both Sp(H̃bk(Gl)) and Sp(H̃bk(Gl))⊥. The metric (6.13)

is an approximation of |hHbkw
(DV SINR)
b |2 and a heuristic definition of the weight αbk is given

by:

αbk =
1

(ρbλmax(H̃bk(Gl)HH̃bk(Gl)) + 1)2
. (6.14)

Proof. See Appendix A.5

6.4.3 Metric for user selection: Nt < B

In this scenario εD = 0, DZF is not defined [72], and DVSINR precoding can be imple-
mented but inter-user interference is unavoidable. Moreover, metric (6.13) does not provide
information for user selection or cannot be computed. If B − Nt = 1 then Phbk = INt and
no useful information is extracted from (6.13). If B − Nt > 1 the matrix H̃H

bk(Gl)H̃bk(Gl) is
ill-conditioned3 and Phbk is no longer a projector matrix. Therefore, it is necessary to define a

metric of the form gbl = ‖hbk‖2f(H
(l)
b , ρb). The function f(H

(l)
b , ρb) must become 1 as ρb → 0

whilst its value should change according to the strength of hbk and its spatial relation with
Vbk as ρb →∞.

3Observe that H̃H
bk(Gl)H̃bk(Gl) is a matrix of size B − 1×B − 1 which has Nt non-zero eigenvalues. When

B − Nt > 1 the ratio λmax(H̃H
bk(Gl)H̃bk(Gl))/λmin(H̃H

bk(Gl)H̃bk(Gl)) → ∞ and the matrix is close to singular
[121].
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Consider two grouped users k ∈ {Sb∩Gl}, i ∈ {Sj ∩Gl}, and define m
(ki)
b = ‖hbk‖2/‖hbi‖2.

m
(ki)
b can provide a coarse estimation of the channel strength of the users regarding the bth

BS. If m
(ki)
b ≈ 1 this may suggest either that k and i are close to each other at the cell-

edge, or that k is far from BS b and transmission over channel hbk could be affected by strong

interference. For m
(ki)
b � 1, k may be close to BS b or i is either far from BS b or experiencing

deep fading. If m
(ki)
b < 1 fading is strong in hbk and transmission may not be feasible. In

order to quantify how strong and reliable for transmission is hbk using local CSI, define the

mapping M
(l)
bk as:

M
(l)
bk =

‖hbk‖2∏
j∈Gl\{k} ‖hbj‖2/(B−1)

, (6.15)

where the denominator is the geometric mean of the squared norms of the column vectors
of H̃bk(Gl). Using the geometric mean has two objectives: collecting in a single quantity the
strength of the channels {hbj}j∈Gl\{k} and considering the effects of each magnitude equally4

in the averaging operation.

It is required to estimate the spatial compatibility between all the elements of H
(l)
b , the

degradation due to correlation in H̃bk(Gl) and the effects of ρb. Define the metric for spatial
compatibility as

ζ
(l)
bk =

∣∣∣det
(

(H
(l)
b )HH

(l)
b

)∣∣∣
∣∣∣det

(
ρ−1
b INt + H̃bk(Gl)(H̃bk(Gl))H

)∣∣∣
, (6.16)

which is the ratio between the volume of a B × B matrix over the the volume of a Nt ×Nt

matrix. Recall that the determinant measures the volume spanned by the columns of a matrix.
The more orthogonal the column vectors of a matrix, the larger the value of its determinant
[121].

The heuristic metric for user selection is defined as

gbl = ‖hbk‖2
(
αbk + (1− αbk)M (l)

bk ζ
(l)
bk

)
, (6.17)

where αbk is given by (6.14). Observe that in the low SNR αbk → 1 which yields gbl ≈ ‖hbk‖2.

In the high SNR αbk → 0 and the selection metric is gbl ≈ ‖hbk‖2M (l)
bk ζ

(l)
bk .

6.4.4 NSP Approximation

The NSP operation ‖Qhbkhbk‖2 = ‖hbk‖2 sin2 θVbkhbk can be approximated by using the

inner products of the elements of H
(l)
b which reduces the processing effort required to compute

metrics (6.13) or (6.17). The term θVbkhbk is the angle between hbk and the subspace Vbk.
For two independent channels hbk and hbi at the same BS, the spatial compatibility between
them can be measured by the coefficient of correlation defined as [143]:

ηhbkhbi =
| 〈hbk,hbi〉 |
‖hbk‖‖hbi‖

, (6.18)

4This is not the case for the arithmetic mean since the magnitudes {‖hbj‖2}j∈Gl\{k} may have a large
variance in which case the smallest magnitudes would be neglected.
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which was already introduced in Section 5.5 equation (5.19) for the single-cell scenario and
is presented here for convenience. The coefficient sin2 θVbkhbk that scales ‖hbk‖2 in a NSP
operation can be computed as [143]:

sin2 θVbkhbk = (1− η2
hbkπ(1)) . . . (1− η2

hbkπ(i)|π(1)...π(i−1)), (6.19)

which is the same metric defined in (5.22) extended to the multi-cell scenario. If the correlation
coefficients (6.18) are used instead of the partial correlation coefficients in (6.19) a suboptimal
evaluation of sin2 θVbkhbk can be computed. Using this approximation of the NSP, the reported
metric to the CU by the bth BS for the user k ∈ {Sb ∩ Gl} is given by:

gbl = ‖hbk‖2
∏

i 6=k,i∈Gl

sin2 θhbkhbi . (6.20)

Observe that metric (6.20) can be computed even if Nt < B since (6.18) is independent
of B and exists for all Nt ≥ 2. If Nt ≥ B metric (6.20) is an upper bound of the NSP.
This means that ‖hbk‖2 is scaled by a coefficient larger than sin2 θVbkhbk which prioritizes the
channel magnitude over the spatial compatibility when the user selection is performed. The
relationship between the real and the approximated expected values of the NSP is presented
in the following proposition.

Proposition 6.6. For Nt ≥ B it holds that the average value of metric (6.20) is an upper
bound of the average metric (6.13) with αbk = 0, i.e., the NSP, so that:

E
[
‖hbkQhbk‖2

]
≤ E


‖hbk‖2

∏

i 6=k,i∈Gl

sin2 θhbkhbi


 (6.21)

Proof. See Appendix A.6

6.4.5 Exhaustive Search Selection over the Metrics

The optimal solution of (6.3) can be only found by exhaustive searching over the achievable
rates of the sets Gl ∀l ∈ {1, . . . , L}. This task that requires global CSI at the CU and the
computation of BL precoders in order to accurately evaluate the L possible achievable sum
rates. A sub-optimal solution to (6.3) can be found by not exchanging full CSI with the CU
but instead by reporting the metrics computed by (6.13), (6.17), or (6.20). Assuming that
all BSs know the L ordered sets, the bth BS computes the metrics gbl ∀l and report them to
the CU where the set that is chosen to perform coordinated transmission solves the following
problem:

l? = arg max
l∈{1,...,L}

B∏

b=1

gbl. (6.22)

Bearing in mind that gbl attempts to estimate the effective channel gains, the rationale
behind the product in (6.22) is that for MISO transmission a set of users maximizing the
product of their effective channel gains also achieves maximum sum rate [45]. In the studied
scenario, taking the product of the metrics assigns the same priority to each independent
metric gbl ∀b. This means that the computation of l? is not biased by a dominant metric
gbl � gjl ∀j 6= b for a given set l, which would be only beneficial to BS b. Once that l? has

been found, the BSs use the matrices H
(l?)
b ∀b to locally compute the precoders which are

used to sub-optimally solve (6.3).
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6.4.6 Search Space Pruning

Previously, it was discussed that solving (6.22) does not require global CSI but reporting
L metrics from each BS to the CU. If the number of cell-edge users is large (|S| � BNt)
computing the metrics for all user permutations L may become prohibitive. In single-cell
systems authors in [13] showed that for fixed Nt and single-antenna users, the system capacity
under spatial division multiple access scales by Nt log(log(|Sb|)) at the bth BS. This result
means that MUDiv provides a marginal contribution to the capacity enhancement unless
|Sb| → ∞. Similar conclusions extend to multi-cell systems operating in JT mode (e.g.,
[169, 174]). Numerical results in [169] show that MUDiv is beneficial for BS cooperation
when only a fraction of the total number of users is considered to participate in the selection
process. For a multi-cell JT system employing ZF precoding [174], BNt transmit antennas
can serve at most the same number of single-antenna users, and low-complexity user selection
algorithms can be extended from single-cell systems [40, 45, 137, 152, 153].

In the considered CBF scenario the objectives are to achieve multiplexing gain, decrease
the solution space size of problem (6.22) by selecting a small fraction of competing users from
S, and preserve MUDiv when selecting the competing users. In order to find a subset Ŝb ⊆ Sb
at BS b, let hbk = [hbk1, . . . , hbkNt ]

T be the channel of the user k ∈ Sb where hbkn is the channel
component of the nth transmit antenna, and consider the following. 1) For DZF efficient user
selection must be focused on finding quasi-orthogonal users regarding the SNR regime (see
Section 6.4.1). 2) For DVSINR efficient user selection in the low SNR is determined by the
channel magnitude (see Section 6.4.2). 3) In the high SNR the effective channel gains of DZF
and DVSINR are similar (cf. Proposition 6.1 and Proposition 6.3) and efficient user selection
must find spatially orthogonal users. A fast way to find a set of quasi-orthogonal users in JT
systems is by applying a ranking-based per-antenna selection as in [174]. The idea behind
such selection is that for two user, k and i having |hbkn| > |hbkn′ | ∀n′ 6= n, |hbim| > |hbim′ |
∀m′ 6= m, and ∀n 6= m, their inner product decreases as the magnitude of each dominant
antenna n and m increases, i.e., they become quasi-orthogonal.

It is required that the channel of the selected user k ∈ {Sb∩Gl} of BS b to be as orthogonal
as possible w.r.t. the channels in H̃bk(Gl). Therefore, the per-antenna ranking can be used
for pre-selecting the users with maximum per-antenna channel magnitude. In this way a user
k ∈ Ŝb will have a dominant antenna (spatial direction) n and it is likely that channels in
H̃bk(Gl) do not have per-antenna channel magnitudes similar or closed to |hbkn| at the same
antenna n due to path-loss effects, which guarantees certain degree of orthogonality.

Define the dominant user for the antenna n at BS b as

kbn = arg max
i∈Sb

|hbin|, (6.23)

and let the user with the best channel magnitude be

kb(max) = arg max
i∈Sb

‖hbi‖, (6.24)

where the subset of users that will participate in the selection process at the bth BS is defined
as

Ŝb = {kbn}Ntn=1 ∪ {kb(max)}. (6.25)

This user pre-selection reduces the search space size since only considers the strongest users
per spatial direction per BS. Including kb(max) in the set Ŝb guarantees that for DVSINR the
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strongest user will be considered for selection. Observe that the index kb(max) can be one or

more of the indices kbn ∀n which may be repeated as well, and |Ŝb| can be at most Nt + 1.
Assuming that |Sb| ≥ Nt + 1, ∀b the number of reported metrics per BS Lr that will be used
to solve (6.22) is bounded as follows:

Lr =
B∏

b=1

|Ŝb| ≤ (Nt + 1)B ≤ L =
B∏

b=1

|Sb| (6.26)

and notice that Lr is independent of |Sb| ∀b.

6.5 Numerical Results

In this section the performance of the joint distributed linear precoding and user se-
lection is illustrated numerically. The results are obtained using the deployment described
in Section 6.2 with B = 3, cell radius r = 1km, and cell-edge cooperation area of radius
rcoop = 300m. For simplicity all BSs have the same number of users K. The long-term chan-
nel power gain is proportional to 1/d4

bk where dbk is the distance between user k and BS b. It
is assumed perfect CSI at each BS, the average sum rate is given in bps/Hz, and the results
are averaged over 10,000 channel realizations. The results are computed by assigning Pb = P
for all b ∈ {1, . . . , B} and the same SNR regime at the cell border to all BSs, i.e., ρ = P/σ2

n.

The system performance benchmark is given by the optimal solution of problem (6.3)
which is achieved by global CSI at the CU and is referred to as O-GCSI. In order to solve
problem (6.22) two strategies are implemented: 1) considering all L user permutations, and
2) applying the search space pruning with Lr user permutations. For scenarios where Nt ≥ B,
the results obtained for (6.13) are referred to as O-MUS (metric of user selection) when L
is consider, or R-MUS if Lr is used. Similarly, metric (6.20) is referred to as O-NSPA (NSP
approximation) for L and R-NSPA for Lr. If Nt < B the results for (6.17) are referred to
as O-MUS2 and R-MUS2 for L and Lr respectively. In order to highlight how the proposed
metrics exploit MUDiv their performance is compared to a selfish user selection where each
BS transmits to its strongest user (maximum channel norm) referred to as Max-SNR.

6.5.1 Sum rate vs SNR

The average sum rate as function of ρ (dB) for DZF and DVSINR is displayed in Fig. 6.2
and Fig. 6.3 respectively. In Fig. 6.2 for the case Nt = 3, B = 3, and a target rate of 13bps/Hz
the O-NSPA requires about 1dB extra to achieve the target compared to O-GCSI. For a
target ρ of 10dB the O-NSPA has a gap about 1bps/Hz compared to O-MUS. The simulated
scenarios considered K = 10 users per BS, O-GCSI, O-MUS, O-NSPA require to evaluate
L = 103 metrics per BS while R-MUS, R-NSPA require Lr ≤ 43 for Nt = 3. For ρ = 10dB
R-MUS and R-NSPA achieve 96% and 91% of the optimal performance O-GCSI, which shows
the effectiveness of the search space pruning for CBF systems under DZF precoding. The
performance gap between R-MUS and R-NSPA w.r.t. O-GCSI is about 1% and 2.5% for
Nt = 4 and ρ = 10dB. Notice that as Nt grows metrics (6.13) and (6.20) converge to the same
value which is mainly determined by the squared channel norm, cf. Proposition 6.6. This
effect can be seen for Nt = 4 and ρ = 10dB where the performance gap between O-GCSI and
Max-SNR is about 8%.
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Figure 6.2: Average Sum Rate as a function of ρ(dB) for DZF precoding with K = 10, B = 3 and
Nt ∈ {3, 4}.

Fig. 6.3 show results for DVSINR with B = 3 and Nt ∈ {3, 2}. In the case Nt ≥ B the
performance of O-MUS and O-GCSI are quite closed and due to the heuristic nature of metric
(6.13) and its parameter (6.14), the results for O-MUS are sub-optimal in the middle SNR
range. The performance gap of O-MUS is less than 3% in the SNR range ρ ∈ [−10, 10] and
such a gap vanishes for other values of ρ. In the case of O-NSPA for Nt ≥ B, it achieves
up to 96% of the rate of O-GCSI in the whole SNR range. For Nt = 3 and ρ = 10dB, the
performance gap between R-MUS and R-NSPA w.r.t. O-GCSI is about 3% and 5%.

In Section 6.4 was discussed that for the interference limited scenario, Nt < B, the SINR
(6.2) of user k ∈ Sb depends on all its channels {hjk}Bj=1. However, BS b only knows hbk and
an accurate user selection must take into account both the effective channel gain over the
intended and unintended (leakage) channels, unlikely the case Nt ≥ B. The figure shows that
considering all user permutations L for metric (6.17), O-MUS2, is highly efficient in the low
SNR regime and it achieves up to 91% of the sum rate of O-GCSI when ρ = 20dB. In contrast,
O-NSPA cannot exploit MUDiv efficiently and only achieves 78% of the O-GCSI performance
at the same SNR. Accounting for the search space pruning, R-NSPA and R-MUS2 attain 79%
and 73% of the O-GCSI performance, respectively. These results show the effectiveness of the
propose metric (6.17) and highlight the fact that one relies on L metrics per BS in order to
achieve acceptable performance and compensate the lack of CSI knowledge of other BSs.

6.5.2 Sum rate vs K

Fig. 6.4 shows the average sum rate as a function of the number of users (multiuser
diversity) K for DZF and ρ = 10dB. The figure illustrates the average sum rate of two
scenarios where Nt = B and Nt > B. In the CBF scenario, numerical results show that the
set of users maximizing the product of their effective channel gains (computed with local CSI)
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Figure 6.3: Average Sum Rate as a function of ρ(dB) for DVSINR precoding with K = 10, B = 3 and
Nt ∈ {2, 3}.

achieve maximum sum rate for DZF5. For K = 12 O-MUS and O-GCSI overlap, O-NSPA
attains up to 94% of the sum rate of O-GCSI for Nt = 3 and 98% for Nt = 4. The performance
gap between O-MUS and O-NSPA reduces considerably by only adding one extra antenna per
BS. This implies a large gain in terms of computational complexity when metric (6.20) is used
instead of (6.13) for system configurations where Nt > B. The performance of R-MUS and
R-NSPA illustrates the benefits of the proposed search space pruning. For K = 12, Nt = 3,
and B = 3 the sum rate gap between R-MUS and O-MUS is less than 4% while the gap
between R-NSPA and O-NSPA is less than 3% but the gain in terms of computational load
is remarkable since Lr ≤ 64 < L = 1728.

Fig. 6.5 shows the sum rate as a function of K for DVSINR and ρ = 10dB. The figure
shows the performance for three scenarios with fixed B = 3 and Nt ∈ {4, 3, 2}. For Nt = 4
and K = 12, O-MUS and O-NSPA achieve 99% and 98% respectively of the benchmark sum
rate. For Nt = 3 and K = 12, O-MUS and O-NSPA achieve 99% and 97% of the O-GCSI
performance respectively. When Nt = 2, the O-MUS2 and O-NSPA achieve 94% and 89% of
the optimal sum rate, respectively. The computational gains due to search space pruning are
larger when Nt ≥ B and slightly reduce when Nt < B. For the latter scenario the performance
gap between O-MUS2 and R-MUS2 is about 7% while the gap between O-NSPA and R-NSPA
is about 6% for K = 12.

The results in all scenarios illustrate the effectiveness of the proposed metrics, two of them
capturing more accurately spatial compatibility of the multi-user channels given by (6.13) and
(6.17), and a third one given by (6.20) less computationally demanding and independent of
the relation between B and Nt.

5Results in [45] showed that in single cell scenarios under Zero Forcing based precoding, the users that
maximize the product of the effective channel gains achieve also maximum sum rate.

115



2 4 6 8 10 12 16 20 24 28 32 36 40
12

13

14

15

16

17

18

19

20

21

22

Number of users per BS (K)

A
ve

ra
ge

 S
um

 R
at

e 
(b

ps
/H

z)

 

 

O−GCSI
O−MUS
O−NSPA
R−MUS
R−NSPA
Max−SNR

B = 3, Nt = 3

B = 3, Nt = 4

Figure 6.4: Average Sum Rate as a function of the number of users per BS (K) for DZF with ρ =
10(dB), B = 3, and Nt ∈ {3, 4}.
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Figure 6.5: Average Sum Rate as a function of the number of users per BS (K) for DVSINR with
ρ = 10(dB), B = 3, and Nt ∈ {2, 3, 4}.

6.6 Conclusions

In this chapter the sum rate maximization problem was addressed in multi-cell systems for
the CBF mode with limited message exchange between BSs. Considering that CSI is not glob-
ally available two distributed linear precoding schemes with defined structures were adopted,
DZF and DVSINR. Their characteristics and associated effective channel gains were studied.
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It was shown that user selection must be perform based on the precoding technique that is
implemented and channel metrics were designed in order to exploit local CSI for scheduling
purposes. The objective of the metrics was to provide an estimation of the achievable effec-
tive channel gains for each precoder technique. For interference limited scenarios a metric for
DVSINR was designed which allows to efficiently identify spatially compatible users. A third
metric was proposed to avoid dependance on the number of antennas at the BSs and to reduce
computational processing since only requires the computation of inner products. Finally, a
method for search space pruning was developed which dramatically reduces the number of
metrics reported from the BSs to the CU and preserves MUDiv. The proposed algorithm
and metrics for user selection were assessed by simulations and numerical results show their
potential to improve performance in coordinated multi-user multi-cell systems with limited
message exchange between BSs.
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Chapter 7

Conclusions

The thesis in a nutshell: The research presented in the dissertation is a sequence of
steps whose final goal is to design user selection, signal design, and resource allocation
techniques over distributed antenna systems. The initial step was to quantify the poten-
tial gains of DAS in terms of frequency reuse and study its resilience against interfer-
ence. After establishing the DAS scenarios the multi-user component was introduced. In
such scenario two problems were addressed, selecting one single-antenna user per dis-
tributed single-antenna and allocating resources to the links in such a way that sum rates
were maximized. In order to exploit the advantages of MIMO, accounting for distributed
multiple-antenna transmitters is mandatory. However, the user selection and resource
allocation previously developed cannot be directly applied to the desired scenario due to
the characteristics of the MU-MIMO channels. Therefore, a transition step was required
whose objective was to design efficient user selection and resource allocation techniques
for a single-transmitter with multiple antennas (modeled as a single-cell system). Finally,
once that efficient user selection and resource allocation algorithms have been designed for
a single-transmitter with Nt > 1, they were extended in order to operate over distributed
multiple-antenna transmitter systems (modeled as a multi-cell system).

T
his chapter summarizes the main results in this thesis and presents open problems and
future lines of work. The following discussions endeavor to answer the question: how does

the research presented in this dissertation fit in the context of current cellular technologies and
scientific research?. By putting the proposed work and achieved results into perspective and
taking into account recent references in the literature, the intention of the author is to provide
a global view and the scope of this dissertation. The main discussed subject is resource allo-
cation in wireless communication systems. The field of resource allocation is tightly linked to
the following concepts: frequency planning, transmitter-receiver association, rate allocation,
power control, user selection/scheduling, and cross-layer design. The studied system models
consist of multiple antenna transmitters (co-located or distributed) and receivers, deployed in
cellular scenarios. The main contributions of this dissertation are in the fields of user selection
and link adaptation. In terms of user selection, efficient heuristic algorithms were designed
for single-cell or multi-cell scenarios with the objective to identify the set of users that max-
imizes the achievable sum rate. Channel-aware user selection in a mobile communication
system faces the question: how to share the radio resources available in the system between
different users in order to achieve efficient resource utilization?; from the system perspective
(operator), it is desirable to serve as many users as possible, while still satisfying the set of
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QoS requirements that may exist (user perspective). Link adaptation refers to the dynamic
allocation of rate, modulation, and power as a function of the wireless channels variations
(radio-link quality). This concept is closely related to scheduling since a given set of users
with good channels (spatially compatible and with large magnitudes) can utilize radio re-
sources more efficiently. Centralized and semi-distributed algorithms were designed in order
to provide efficient rate and power allocation in distributed antenna systems.

Chapter 3 Distributed Antenna Systems and Cellular Architectures [J1, C1]
� Many techniques for interference mitigation in wireless systems are based on
the concept of orthogonality. By transmitting over orthogonal (non-overlapping)
dimensions either in space, time, frequency, or code, it is possible to avoid interfer-
ence. One of the techniques used in cellular systems to combat ICI is to allocate
frequency bands in non-overlapping coverage areas so that, close-to-orthogonal fre-
quency allocation is achieved (frequency planning). Although universal frequency
reuse is implemented by practical cellular systems (e.g. LTE), frequency planning
will be necessary in future wireless systems since it is essential to mitigate ICI,
specially in high frequency bands (3.5GHz and above) [5, 58].
� In cellular systems where users are scheduled in orthogonal dimensions, the ICI
is the main performance limiting factor. By deploying distributed antennas and
employing different transmission schemes it is possible to optimize resources allo-
cation and improve throughput figures. DAS can increase coverage, reduce power
consumption, and provide resilience against ICI. Two transmission strategies were
studied: blanket transmission which employs all distributed antennas to serve a
user, and single-antenna transmission where the user is connected to the closest
distributed antenna. It is worth noting that both schemes have been recently
extended for MU-MIMO DAS scenarios, either integrating DAS with the CoMP
transmission approach [53, 56] (see Chapter 2.4) or with frequency planning [54].
This also highlights the recent adoption of DAS within state-of-the-art transmis-
sion schemes and frequency planning strategies [55, 56].
� The work presented in the chapter is focused on answering the question: which
are the gains in terms of frequency reuse by deploying DAS w.r.t. CAS?. To
answer that question two performance metrics are used, outage probability and
throughput, which are functions of the achievable SINR. The analysis also consid-
ers that there is finite set of allowed SINR levels defined by a given set of MCSs.
The results can be interpreted in two ways. On the one hand, DAS can consid-
erable enhance performance for both transmission strategies compared to CAS,
if frequency reuse is fixed. On the other hand, DAS allows a more aggressive
frequency reuse since similar performance to CAS can be attained with a smaller
frequency reuse factor.
� Lessons learned. i) Integrating DAS as part of the access network infra-structure
provides coverage and capacity gains in cellular systems. The key aspect to achieve
such gains is the diversity that distributed antennas provide to the cellular archi-
tecture. ii) Different transmission schemes require different resource allocation
policies, i.e., each scheme requires a particular assignment of resources among the
active distributed antennas. iii) DAS is an upcoming technology that can increase
the spectral efficiency in current cellular systems and its deployment and operation
in future communications systems is tangible.
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� Research Extensions. i) HetNet [4] may include DAS either as part of the macro-
cells, the micro-cells, or even both. Investigating more transmission schemes in
such scenarios is necessary to understand the potential of DAS as part of HetNet,
and to design efficient resource allocation policies. ii) Considering MU-MIMO
scenarios implies, in general, heterogeneous (umbalanced) data load distribution
within the coverage areas. Optimization algorithms should be designed in order
to improve the area spectral efficiency measured in bps/Hz/m2, i.e., optimizing
HetNet demands to maximize the average data rate per unit bandwidth per unit
area supported by a network [5].

Chapter 4 User Selection and Rate Allocation in Interference Channels [J2, C2, C3, C4]
� Resource allocation is a fundamental component of communication networks
which manages and optimizes the utilization of limited resources such as power
and bandwidth. One of the key objectives of resource allocation is to provide
reliable connection and maximize a global system objective (e.g. fairness or sum
rates). A necessary operation to maximize performance is to mitigate interference
(inter-user, inter-cell, and intra-cell) which can be done by controlling power al-
location and the set of links that use the same wireless medium concurrently. By
considering a distributed single-antennas system (DAS deployment) and several
single-antenna users, a number of question questions related to resource allocation
arise: how to perform simultaneous transmissions?, what transmission scheme
should be used?, how to assign a user to each distributed antenna?, given a set
of rate and power constraints, how to perform resource allocation in order to
maximize the sum rate?, how to maximize the number of scheduled users?. The
objective of this chapter was to address such questions.
� One of the characteristics of DAS is that the antennas are geographically far
apart and spread throughout the coverage area. Because of this reason, one can
consider that each antenna can serve as an independent transmitter that coor-
dinates its resource allocation though a central processing unit. In this way, a
coordinated single-antenna transmission scheme can be employed and each dis-
tributed antenna must serve users that are close to it. When multiple users are
uniformly deployed, it is needed to match each antenna with the user that will
increase the total sum rate and minimize the interference for other matched users.
Such a matching operation can be modeled as an assignment problem, whose op-
timal solution can be found by exhaustive searching over a finite set of feasible
solutions. To address this problem, heuristic search algorithms were designed and
assessed with positive results in terms of optimality and complexity.
� Once that each distributed antenna has been matched with a user, it is neces-
sary to determine the maximum rate supported in each link meeting a set of power
constraints. Since the allowed rates are defined by a given set of MCSs the prob-
lem at hand becomes combinatorial. In the resource allocation problem feasibility
issues emerge because it may not be possible to allow all the distributed antennas
to transmit. The system model and the power constraints can be expressed in a
matrix form and feasibility can be found by intrinsic properties of such a matrix.
Based on the Perron-Frobenius theory of non-negative matrices or heuristic mea-
sures of power consumption, heuristic search algorithms were designed in order to
solve the rate allocation problem and to handle feasibility issues.
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� Lessons learned. i) Understanding the structure of the solution space (SINR
target region) is fundamental to avoid infeasible resource allocation and to solve
such problem efficiently. ii) Resource allocation algorithms cannot fully optimize
fairness and sum rates at the same time, which are fundamentally opposite goals.
In this context, fairness implies to maximize the number of active links while max-
imizing the sum rate may require to keep several transmitters disconnected. iii)
User removal techniques are required to guarantee feasibility and resource alloca-
tion policies should employ them according to the global system objective.
� Research Extensions. i) The power allocation framework introduced in this
chapter is general and flexible enough to be used along with beamforming design
and user selection for distributed multiple-antenna transmitter systems. Although
some works have been produced in this direction [67], considering the case where
the allowed rates (defined by some MCS) and/or powers are given in finite sets still
requires further research. ii) Modeling the user selection problem in distributed
multiple-antenna transmitter systems as an assignment problem is also an inter-
esting topic for future work. Due to the fact that the assignment problem operates
over a matrix that describes the dynamics of the system, channel metrics can be
used to capture such dynamics which can be used for efficient user selection.

Chapter 5 User Selection and Signal Design In Single Cell Systems [Ch1, J3, C5]
� The topic of user selection has drawn the attention of academia over the last
ten years and several practical (greedy and iterative) algorithms have been pub-
lished. Even more important is the fact that current standards in the industry,
namely LTE Releases 11 [175] and Wi-Fi/IEEE 802.11ac, already allow simulta-
neous transmission of different user streams in the same channel at the same time.
This means that beamforming techniques will massively be under operation in the
years to come. It also implies that there is huge room for the design and imple-
mentation of practical and efficient user selection algorithms, specially necessary
in crowded MU-MIMO scenarios.
� Most of the literature of user selection measures directly or indirectly the com-
patibility (spatial separability) between multi-user channels in order to group and
schedule subset of quasi-orthogonal users. There are several metrics (functions of
the multi-user channel) in the literature that have been used to accomplish that
objective. One of the achieved goals in this thesis is the unified treatment of the
most common metrics used to measure channel compatibility, i.e., it was shown
which are the relationships that held between the metrics and why they should or
should not be used for user selection.
� The combinatorial nature of the user selection problem jeopardizes optimum
spectral and power efficiency as well as multiplexing gains. However, it is possible
to handle such a problem by iteratively choosing users whose channels meet cer-
tain criterion. The user selection can be performed jointly with power selection
or by decoupling both processes. If the latter approach is followed, then channel
metrics play a fundamental role in the way that the set of selected users is found.
� Lessons learned. i) If the beamforming technique is based on ZF, the optimum
metric of selection is given by the NSP since it immediately provides information
about the effective channel gains (at a price of full CSI at the transmitter). Other
studied metrics have acceptable performance only for low number of users, i.e.,
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they cannot fully exploit MUDiv. ii) Metrics based on the NSP were derived so
that the user selection is performed with less computational complexity at a price
of optimality (unavoidable trade-off). iii) It is possible to cast the user selection
problem as a binary programming problem with unique solution. However, the
solution of such problem can be only used as a benchmark since solving it becomes
computationally costly as the number of users increases. iv) User selection can
be performed based on the coefficients of correlation between multi-user channels.
Although a sub-optimal user selection is attained, it requires few operations to
compute the coefficients and the processing would be the same if limited CSI is
considered, i.e., the transmitter knows quantized CSI.
� Research Extensions. i) The efficiency of the proposed metrics and user selection
algorithms can be tested in scenarios with quantized CSI and for practical beam-
forming schemes. ii) The proposed user selection algorithms can be extended and
tested over multiple carrier scenarios. iii) Considering MU-MIMO scenarios in
standardized wireless technologies, implies that the selection of spatially compat-
ible user needs to be integrated with physical resource block (minimum resource
unit in time and frequency) allocation. This means that current opportunistic
scheduling techniques [51] must be extended to provide support to multiple users
sharing the same physical resource blocks. iv) Heterogeneous systems is an im-
portant direction to extend the proposed algorithms. For BC systems where the
users have more than one antenna [33, 140, 153, 176–181], the generalization of
ZFBF is given by the Block Diagonalization (BD) scheme [42]. Since the perfor-
mance of BD depends on the spatial compatibility of the MU-MIMO channels,
fast and efficient user selection is necessary to maximize sum rate figures. v) In
MU-MIMO scenarios when the ith user is equipped with Nri antennas, its signal
space spans several dimension and mutual inter-user interference can be measured
either in the angular or the subspace domain [176, 179]. Metrics for user selection
in this kind of systems generalize either a function of θVihi (illustrated in Fig. 5.2)
or a measure of spatial compatibility for multidimensional subspaces. An interest-
ing direction for future research is to identify in which scenarios multidimensional
metrics (e.g., the principal angles between subspaces, the subspace collinearity, the
chordal distance, and the geometrical angle between subspaces [179, 181]) can be
used to design reliable user selection algorithms.

Chapter 6 User Selection and Signal Design In Multi-Cell Systems [J4]
� The cooperative transmission in multi-cell system fundamentally seeks to mit-
igate interference for users located within the boundaries of neighbor cells. The
use of distributed linear precoding schemes allows to mitigate the inter-user in-
terference which directly enhances achievable rates and can potentially improve
fairness if local user selection (per-base-station) is considered. There are different
approaches for cooperation in multi-cell systems and each one of them achieves
different gains at different cost in terms of shared information, signal processing,
and other practical considerations (see Chapter 2.4).
� One of the current challenges, in both academia and industry, is to design co-
operative transmission schemes (for cell-edge users) with resilience to multi-cell
synchronization issues, and limited backhaul rates. The proposed user selection
algorithms exploit distributed linear precoding, which lie in the category of inter-
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ference coordination techniques since the level of shared information between BSs
is very limited. By exploiting local CSI it is possible to perform precoding-oriented
user selection, which means that the proposed heuristic metrics and search algo-
rithms fully exploit the characteristics of the implemented precoding schemes.
� Lessons learned. i) It is possible to design channel metrics as a function of the
SNR regime, the available number of antennas per BS, and the local CSI, so that
accurate measures of compatibility between cell-edge users can be computed. The
derived metrics exploit the fundamental structure of each precoding technique,
i.e., they are based on the effective channel gains. In the case of DVSINR pre-
coding, even for the Nt < B scenario, the user selection based on the proposed
metric achieves more than 90% of the optimum selection performance. ii) Power
allocation strategies can be simplified since the precoders are unique for each set
of selected users, which relaxes processing tasks at the BSs. iii) Multi-cell coor-
dination allows a variety of efficient user selection algorithms even if the shared
information between BSs is limited. Heuristic search algorithms can be designed
so that user selection can be performed in a semi-distributed fashion. iv) Opti-
mal and close-to-optimal performance can be achieved by properly processing the
channel metrics at the CU. The proposed processing method is highly effective for
DZF in any SNR regime, and only sub-optimal for DVSINR in middle rages of
SNR. v) Low-complex (sub-optimal) algorithms can be further designed in order
to compute a limited number of metrics per BS for user selection purposes. Such
algorithms can overcome the performance of simplistic but practical scheduling
approaches with a low price in terms of complexity and message exchange.
� Research Extensions. i) Although the metrics and heuristic algorithms achieve
acceptable performance, they have been designed considering full CSI at each BS.
The work can be extended taking into account quantized or statistical CSI and spe-
cific constraints over the backhaul rates. ii) The proposed algorithms shed light on
how to perform efficient user selection assuming that all the competing users have
always data to be transmitted. The analysis can be further extended by consider-
ing that the users have different data loads. Under this scenario meaningful and
more realistic optimization can be performed, and it would be possible to design
algorithms that optimize the performance perceived by both, the system operator
and the users. iii) The studied coordinated transmission only considered a single
cluster with B BSs. Another direction in which this work can be extended is by
assessing and adapting the proposed algorithms to multi-cluster systems where
ICI is not negligible and scheduling schemes can potentially mitigate interference
[62]. iv) Fairness issues can be taken into account by implementing different local
selection strategies (see Chapter 6.4.6) and performing user selection over deployed
central and edge users. v) According to some works (e.g., [138, 153]) for single-cell
scenarios is not efficient to use all Nt antennas to perform SDMA. Investigating
whether such limitations exist in CBF under optimal or equal power allocation is
also an interesting topic of future research.

124



Appendices

125



Appendix A

Interference Channels in Multi-Cell
Systems

A.1 Proof of Proposition 6.1

In the following, the notation is slightly modified and the user and BS subindices are
omitted whenever the context avoids uncertainty. Consider the channel of the served user
h, its precoding vector w defined in (6.5), and its aggregate interference matrix H̃, define
Ṽ = null(H̃) the matrix that contains the orthonormal vectors {ṽi}εDi=1 and ρ = P/σ2

n. The
effective channel gain is given by:

|hHw|2 = ‖h‖2 cos2 θhw

= | < h,w > |2
(a)
= |Tr(hwH)|2

=
|Tr(hhHṼṼH)|2
‖hHṼ‖2

(b)
=
|Tr(ṼṼHhhH)|2
|hHṼṼHh|

=
|Tr(ṼṼHhhH)|2
|Tr(ṼṼHhhH)|

= |Tr(ṼṼHhhH)|
(c)
= |hHṼṼHh|
= |hH(ṼṼH)H(ṼṼH)h|
(d)
= ‖ṼṼHh‖2

(e)
= ‖

(
εD∑

i=1

ṽiṽ
H
i

)
h‖2

=

εD∑

i=1

‖ṽHi hṽi‖2
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=

εD∑

i=1

< ṽHi hṽi, ṽ
H
i hṽi >

(f)
= ‖h‖2

εD∑

i=1

cos2 θhṽi

where (a) is due to the fact that ‖w‖ = 1 and < h,w >= Tr(hwH). (b) is given by
substituting wH into (a) properties of the trace and outer product [121]. (c) is done by
expressing the denominator in (b) in the form of the numerator. (d) The basis of the null
space projection Ṽ can used to compute the projection matrix Qh = ṼṼH [147, §2.6].
The projector matrix is an idempotent matrix, i.e., Qh = QhQH

h = QH
h Qh [143]. (e) is a

decomposition of the form ṼṼH =
∑εD

i=1 ṽiṽ
H
i . In (f), given the orthonormal vectors {ṽi}εDi=1,

the projection of h onto Sp(H̃)⊥ can be computed by the sum of the individual projections
onto each one of the orthonormal basis [143]. As ‖h‖2 and cos2 θhṽi are independent variables
[182], the expected value of the effective channel gain is

E
[
|hHw|2

]
= E

[
‖h‖2

]
E

[
εD∑

i=1

cos2 θhṽi

]
.

Given h, ṽi ∈ CNt×1 define the random variable υi as

υi = cos2 θhṽi . (A.1)

According to [182] the cumulative probability function of υi is given by Fυi(υi) = 1− (1−
υi)

Nt−1 and the expected value of the random variable is E [υi] =
∫ 1

0 υifυi(υi)dυi = 1
Nt

.

A.2 Proof of Proposition 6.2

For the sake of notation, consider the channel of the intended user as h its aggregate
interference matrix H̃, w defined in (6.8), its associated matrix D, and ρ = P/σ2

n, so that:

E
[
|hHw|2

] (a)
= E

[ |hHDh|2
‖Dh‖2

]

(b)
= E

[ |Tr(DhhH)|2
|Tr(DDHhhH)|

]
(A.2)

where (a) obeys the definition of (6.8) and (b) is given by properties of the trace and outer
product [121]. Let H̃ = UH̃ΣH̃VH

H̃
be the SVD of the aggregate interference matrix and the

unitary matrix UH̃ is formed by the vectors {ui}Nti=1. The matrix D can be decomposed as:

D =

Nt−εD∑

i=1

λi(D)uiu
H
i +

Nt∑

j=Nt−εD+1

ρuju
H
j = DP + DQ (A.3)

The effective channel gain is
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|hHw|2 =
|hHDh|2
‖Dh‖2

=
|hHDPh + hHDQh|2
‖DPh‖2 + ‖DQh‖2

= ‖h‖2βh

(A.4)

where

βh =

(∑Nt−εD
i=1 λi(D) cos2 θhui + ρ

∑Nt
j=Nt−εD+1 cos2 θhuj

)2

∑Nt−εD
i=1 λ2

i (D) cos2 θhui + ρ2
∑Nt

j=Nt−εD+1 cos2 θhuj

. (A.5)

Consider the decomposition of the effective channel gain (A.4) and βh in (A.5), thus
|Tr(DhhH)| = ‖h‖2∑Nt

i=1 λi(D) cos2 θhui . Notice that each eigenvalue in (A.5) is affected by
a variable of the form (A.1) and recall that E

[
cos2 θhui

]
= 1

Nt
∀i. The following relation holds:

E
[
|Tr(DhhH)|

]
= E

[
‖h‖2 Tr(D)

Nt

]
. For the denominator in the RHS of (A.2) a similar results

is obtained for its average value: E
[
|Tr(DDHhhH)|

]
= E

[
‖h‖2 Tr(DDH)

Nt

]
. The expected

value1 in the RHS of (A.2) can be approximated by considering that the expected value of
the squared cosines affects all eigenvalues λi(D) ∀i and the eigenvalues are independent of
the correlation coefficients and ‖h‖2 so that:

E
[ |Tr(DhhH)|2
|Tr(DDHhhH)|

]
≈ E




(
1
Nt
Tr(D)‖h‖2

)2

1
Nt
Tr(DDH)‖h‖2




= E


‖h‖2

(∑Nt
i=1 λi(D)

)2

Nt
∑Nt

i=1 λ
2
i (D)




= E
[
‖h‖2J(eig(D))

]

A numerical example of E
[
|hHw|2/‖h‖2

]
and its approximation E [J(eig(D))] are pre-

sented in Fig. A.1 for B = 3 and Nt ∈ {3, 4, 6}. Notice that the curves are normalized
regarding to ‖h‖2 in order to exclusively illustrate the relations between the eigenvalues of
D.

A.3 Proof of Proposition 6.3

Let H̃ = UH̃ΣH̃VH
H̃

be the SVD of the aggregate interference matrix of the served user.

And let Ĥ = H̃H̃H = UĤΣĤVH
Ĥ

be the SVD of the Hermitian matrix Ĥ. The diagonal

matrix that contains the eigenvalues of Ĥ can be defined from the eigenvalues of the aggregate
interference matrix as

ΣĤ = ΣH̃ΣH
H̃
,

1For a fixed B and Nt ≥ B, if Nt is very large, the central limit theorem can be invoked and say that the
values of the numerators and denominators will be very close to the average. For low values of Nt we cannot
invoke this but simulations have shown that it still verifies.

128



−20 −15 −10 −5 0 5 10 15 20 25 30

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ (dB)

E
xp

ec
te

d 
V

al
ue

 

 

E
[(

1
‖h‖2

)
|Tr(DhhH)|2

|Tr(DDHhhH)|

]

E[J(eig(D))]

B = 3, Nt = 3, ǫD = 1

ǫD
Nt

= 0.333

ǫD
Nt

= 0.5

ǫD
Nt

= 0.666

B = 3, Nt = 4, ǫD = 2

B = 3, Nt = 6, ǫD = 4

Figure A.1: Normalized values of the effective channel gain of DVSINR precoder and its approximation
for B = 3 and Nt ∈ {3, 4, 6}.

and the eigenvalues of the matrix D are given by:

λi(D) =
1

ρ−1 + [ΣĤ]ii
. (A.6)

Due to the fact that λmin(Ĥ) is equal to zero with multiplicity εD, λmax(D) = ρ with multi-
plicity εD. This means that Nt− εD eigenvalues of D are bounded as ρ→∞ and εD are not.
The Jain’s index of eig(D) is such that:

lim
ρ→∞

(∑Nt
i=1 λi(D)

)2

Nt
∑Nt

i=1 λ
2
i (D)

=
εD
Nt
,

which is illustrated in Fig. A.1.

A.4 Proof of Proposition 6.4

In order to simplify the notation let h1 be the channel of the user served in the local BS,
with its associated matrices H̃1 and D1 = D1P + D1Q as in (A.3). And let h2 ∈ H̃1 be a
channel vector used to create the precoding vector w1. The interference term |hH2 w1|2 in
(6.2) for DVSINR can be unfolded as follows:
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|hH2 w1|2 =
|hH2 D1h1|2

|Tr(D1DH
1 h1hH1 )|

(a)
=

∣∣∣
∑Nt−εD

i=1 λi(D1)hH2 uiu
H
i h1

∣∣∣
2

‖h1‖2
∑Nt

i=1 λ
2
i (D1) cos2 θh1ui

(b)
=

∣∣∣
∑Nt−εD

i=1 λi(D1) 〈h2,ui〉 〈ui,h1〉
∣∣∣
2

‖h1‖2
∑Nt

i=1 λ
2
i (D1) cos2 θh1ui

(c)

≤ ‖h2‖2
(∑Nt−εD

i=1 λi(D1) cos θh2ui cos θh1ui

)2

∑Nt
i=1 λ

2
i (D1) cos2 θh1ui

where the numerator in (a) only takes into account the basis and eigenvalues of D1P in (A.3)
since the basis of D1Q contain the null space of h2. The result in (c) obeys the triangle in-
equality [121] since the terms 〈h2,ui〉 〈ui,h1〉 in (b) are complex numbers, and by taking their
associated norms and coefficients of correlation their absolute values are already computed,
cf. (6.18). In order to define an upper bound of E

[
|hH2 w1|2

]
notice that the eigenvalues of D1

in the denominator of (c) are affected by an independent random variables of the form (A.1)
with expected value 1

Nt
. And the average sum of the eigenvalues of D1P in the numerator

is affected by E
[
(cos θh1ui cos θh2ui)

2
]

= 1
N2
t

. Observe that the random variables defined by

the cosine functions are independent of each other and independent of ‖h2‖2 and eig(D1).
Therefore, the expected value of the leakage is upper bounded as follows:

E
[
|hH2 w1|2

]
≤ E

[‖h2‖2
Nt

|Tr(D1P )|2
Tr(D1DH

1 )

]
. (A.7)

By inspecting (A.7) it can be said that in the particular case where Nt < B the component
D1Q is not present in D1 according to (A.3), and the upper bound is given by:

E
[
|hH2 w1|2

]
≤ E

[
‖h2‖2J(eig(D1P ))

]
.

For the scenarios where Nt ≥ B the trace ratio in (A.7) can be approximated by dividing
the largest squared eigenvalue of the numerator given by λ2

max(D1P ) = (ρ−1+λmin(H̃H
1 H̃1))−2

over the largest squared eigenvalue in the denominator λ2
max(D1) = ρ2 which has multiplicity

εD. By considering only these eigenvalues in the ratio, the contribution of the other eigenvalues
is ignored and the approximated expected value of the leakage is given by:

E
[
|hH2 w1|2

]
≈ E

[‖h2‖2λ2
max(D1P )

NtεDλ2
max(D1)

]

= E

[
‖h2‖2

NtεD(ρλmin(H̃H
1 H̃1) + 1)2

]
.

(A.8)

A numerical example of the upper bound2 and the approximation of E
[
|hH2 w1|2

]
is

presented in Fig. A.2 for B = 3 and Nt ∈ {3, 4}. Notice that in the high SNR the

2Extensive simulations were computed to verify the results for several values of B and Nt. Numerical results
show that ∀ρ ≥ −20(dB) as εD

Nt
→ 1, specifically when Nt > B(B − 2) + 2, inequality (A.7) does not hold and

(A.8) under estimate the average leakage.
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Figure A.2: Approximation, and exact value of the average leakage E
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2 w1|2
]

for B ∈ {3, 4} and
Nt ∈ {3, 4, 8}.

gap between the leakage and its approximation (A.8) decreases. For instance, in the case
Nt = B = 3, εD = 1 and there is a dominant eigenvalue in each matrix D1P and D1, i.e.,
εDρ

2 > λ2
max(D1P ) > λ2

min(D1P ). In scenarios where Nt > B the approximation (A.8) under
estimates the leakage in the low SNR. The reason is that in this regime all the eigenvalues of
D1 have similar magnitudes (cf. Fig. A.1) but the denominator is already multiplied by εD,
the number of dominant eigenvalues of D1 in the high SNR.

A.5 Proof of Proposition 6.5

From (A.3) it can be observed that the basis of both Sp(H̃) and Sp(H̃)⊥ are combined
when forming the precoder. The value of the effective channel gain is a function of ρ and for
the low SNR regime DP is dominant while in the high SNR regime DQ is the dominant term
of D. The exact interaction between of the vectors {ui}Nti=1 and h is given by βh. Observe
that the components of DQ in (A.5) compute the magnitude of the projection of h onto each
basis of Sp(H̃)⊥, the exact NSP component scaled by ρ. The components of DP do not
represent the exact projection of h onto Sp(H̃) because each one of the basis is affected by a
different eigenvalue λi(D). The term |hHw|2 combines a component of h onto Sp(H̃)⊥ and
weighted components of h onto the basis of Sp(H̃).

The intuition behind the heuristic metric (6.13) is that the effective channel gain is
bounded as follows:

‖Qhh‖2 ≤ |hHw|2 ≤ ‖h‖2.
This means that one can always take into account the magnitude of ‖Qhh‖2 and the compo-
nent ‖Phh‖2 should be modified by a monotonic decreasing function of ρ with values in the
range [0, 1]. By observing that βh is the ratio of the squared combination of the eigenvalues
of D over the combination of its squared eigenvalues, the function (6.14) is defined by the
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quotient of λ2
min(D) = (ρ−1 + λmax(H̃HH̃))−2 over λ2

max(D) = ρ2. The objective of such
ratio is to measure how much the maximum and minimum eigenvalues of D spread out as
a function of ρ. Observe that as ρ → 0 the value of (6.14) goes to 1 and when ρ → ∞ the
function goes to zero.

A.6 Proof of Proposition 6.6

Let Ṽbk(Gl) = null(H̃bk(Gl)) be the matrix that contains the orthonormal basis of the
null space of H̃bk(Gl) and ṽi is its ith column vector with i ∈ {1, . . . , εD}. The NSP can be
computed as ‖hbkQhbk‖2 = ‖hbk‖2

∑εD
i=1 cos2 θhbkṽi (see Appendix A.1). Recall that ‖hbk‖2

and cos2 θhbkṽi are independent variables [182] and the factors of the product in the RHS of
(6.21) are independent. Assuming that the components of H̃bk(Gl) are independent, it holds
that:

E


 ∏

i 6=k,i∈Gl

sin2 θhbkhbi


 =

(
1− 1

Nt

)(B−1)

and εD
Nt
≤
(

1− 1
Nt

)(B−1)
with equality when B = 2.
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