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Abstract. This paper shows how a genetic algorithm can be used as a method 
of obtaining the near-optimal solution of the resource block scheduling problem 
in a cooperative cellular network. An exhaustive search is initially implemented 
to guarantee that the optimal result, in terms of maximizing the bandwidth effi-
ciency of the overall network, is found, and then the genetic algorithm with the 
properly selected termination conditions is used in the same network. The simu-
lation results show that the genetic algorithm can approximately achieve the op-
timum bandwidth efficiency whilst requiring only 24% of the computation ef-
fort of the exhaustive search in the investigated network.  
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1 Introduction  

The optimal solution of resource scheduling is considered difficult to obtain given that 
it is a nonconvex problem [1,2,3,4]. Previous research work has investigated near-
optimal algorithms for scheduling channels or subcarriers under the conditions of 
fairness and power control [5,6,7,8]. The general optimal solution without those con-
ditions for scheduling resource blocks in a multi-cell network is not well-studied. The 
exhaustive search technique is commonly used for getting the optimal solution [5], 
[9]. However, it requires high computational effort to obtain the optimal results as it 
needs to search all the possible combinations or cases [1], [16]. The genetic algorithm 
is also a search method for solving nonconvex problems, and it is widely used in the 
fields such as cloud design, computing, sub-carrier allocation and even project man-
agement [11,12,13,14,15,16]. But it is rarely used in resource block scheduling to get 
as much bandwidth efficiency as possible for a downlink transmission in a multi-cell 
scenario. Ref. [15] proposed a genetic algorithm for resource block scheduling in the 
uplink transmission in a single cell model. The search of the genetic algorithm in [15] 
was stopped by the maximal number of iterations, so the resultant solution gives 
worse results than the optimum. This contribution investigates the use of genetic algo-
rithm as a solution for getting the optimal bandwidth efficiency by scheduling re-



source blocks in a cooperative cellular network with the possibility of flexible cooper-
ation. The termination conditions used in the genetic algorithm are properly selected 
in order to get the optimal solution. The exhaustive search is used to get the optimal 
results in a 3-cell network layout, and the results from the genetic algorithm applied to 
the same network and the same user locations are compared with the optimal results. 
In addition, the computation effort of getting the optimal results by these two methods 
is compared.      

This paper is organized as follows: section 2 and 3 display the system model and 
the problem statement; section 4 introduces how to get the optimal solution by the 
exhaustive search; section 5 explains the implementation of the genetic algorithm; 
section 6 compares and discusses the simulation results and section 7 presents the 
conclusion. 

2 System Model 

2.1 Network Layout 

The system investigated is a downlink transmission in a hexagonal cellular network. 
There are in total M resource blocks to be scheduled to at most a total of U users in an 
N-cell layout. One Base Station (BS) is located in the center of each cell. A Resource 
Block (RB) is assumed to be the smallest resource unit to be scheduled and it can only 
be used once by each BS. The power of each RB is assumed to be the same. Frequen-
cy reuse is flexible which means that one RB can be used by more than one BS to 
schedule to the same user (cooperative transmission) or be used by different base 
stations to schedule to different users (frequency reuse).   

The settings used in the simulation are for a typical LTE urban macro environment 
which are listed in Table 1 [10].  

Table 1. Parameter Settings 

Parameter Value 
Network layout Hexagonal  3 cells 
Cell radius 500m 
Antenna  Omnidirectional 
Carrier frequency 2GHz 
Bandwidth 10MHz 
Bandwidth per RB 180KHz 
Number of available RBs 50 
Distance-dependent path loss 128.1+37.6*log10 (d) with d in km 
Thermal noise power spectral density -174dBm/Hz 
Maximum BS transmit power 40 watts 
Mobile station noise figure 9dB 
Minimum distance between user and BS 35 m 



3 Problem Statement 

This paper investigates the optimal solution of getting the total bandwidth efficiency 
by scheduling M resource blocks to at most U users in a layout of N cells. The SINR 
expression for the uth user in the mth RB with flexible frequency reuse is 

                                   (1) 
where Pu,n=Pm/PLu,n (Pm is the transmit power in the mth RB; PLu,n is the path loss from 
the uth user to the nth BS) represents the received power of the uth user from the nth BS. 
Ωn is the set of base stations that use the mth RB to transmit signals to the uth user 
(cooperative transmission occurs if there are more than one BS in this set) while Ωn’ 
stands for the set of the base stations that also use the mth RB but to transmit to the 
other users in the network. The base stations in Ωn and Ωn’ are from 1 to N, and no 
elements may overlap between Ωn and Ωn’. Ns is the noise power. (1) shows the SINR 
expression for the case that the mth RB is scheduled for the transmission between the 
base stations in the set of Ωn to the uth user, whilst the mth RB is also used by the base 
stations in the set of Ωn’ but to transmit to the other users in the network as the inter-
ference to the uth user. 

The capacity of the uth user in the mth resource block is 

                                           (2) 
where Bm is the bandwidth of the mth RB (180KHz in LTE). Thus, the total bandwidth 
efficiency of the N-cell layout with U users in total and M resource blocks in total 
(M≤50) is 

                                          (3) 
where Btotal is the total bandwidth used in the scheduling problem (Btotal≤10MHz). The 
objective formula of this resource block scheduling problem (which to obtain the 
maximum total bandwidth efficiency for the network) is  

                   (4) 

 

 

 

 



4 Optimal Solution 

The exhaustive search is a common method of finding the optimal results [5], [16]. 
The basic idea of this algorithm is to try all the possible values within the whole vari-
able fields and to generate all the possible objective results. Then, the value of the 
variable giving the best objective result is considered as the optimum. Therefore, the 
exhaustive search can guarantee the optimal results while it carries a large computa-
tional cost.  

4.1 Implementation  

As shown in (4), there are three variables for this resource block scheduling problem: 
which user (u), which resource block (m) and which base station (n). Based on the 
explanation of the investigated network in section 2.1, each RB can only be used once 
by each BS and the frequency reuse is flexible, so each RB can be used at most N 
times. Thus, there are NM resource block positions available for scheduling to at most 
U users, which can be represented as a 1 x NM scheduling vector to show the RB 
allocation case. Each element of the 1 x NM vector can be allocated to either none or 
one user in the network. Therefore, the number of the total possible combinations is 
(U+1)NM.  

4.2 Simulation Results and Analysis 

The simulation results are for a 3-cell layout with one user per cell and three resource 
blocks in total. Even in this small network, the number of the total possible combina-
tions is 49.  For a more realistic problem with larger numbers of BSs, users and RBs, 
the exhaustive search becomes computationally unfeasible. 

Inspection of the simulation results of the exhaustive search for this 3-cell network 
layout reveals that there are three types of RB allocation cases for the investigated 
network that may be optimal: full cooperation transmission, 2/3 reuse non-cooperative 
transmission and reuse 1 non-cooperative transmission. Full cooperation transmission 
means that all the resource blocks from all the base stations are scheduled to the same 
user (all the elements of the scheduling vector are scheduled to the same user), and 
this case occurs when the scheduled user has comparably good channel conditions to 
all the base stations while the other users have bad channel conditions to all the base 
stations; 2/3 reuse non-cooperative transmission means that all the resource blocks are 
used by 2/3 of the base stations (2/3 of the elements of the scheduling vector are 
scheduled), and this case occurs when the user in the base station not transmitting 
have a bad channel condition to its own base station but can cause considerable inter-
ference to the other users if resource blocks are scheduled to this user; reuse 1 non-
cooperative transmission means that all the resource blocks from each base station are 
scheduled to its own user, and this case occurs when the users have good channel 
conditions to their own base stations while they have bad channel conditions to the 
other base stations in the layout.  



5 Genetic Algorithm 

Although the exhaustive search is able to give the optimal results, it requires a large 
amount of computation especially when the investigated network contains many users 
and many resource blocks. The Genetic Algorithm (GA) is also a search method 
which treats the variable as a chromosome [11], [15]. The chromosome (variable) will 
get genetic changes, e.g., crossover and mutation, and be measured by a fitness func-
tion until it meets the termination conditions which are normally used to control the 
precision of the outcomes.    

5.1 Implementation  

The process of the genetic algorithm is that a generation of individuals (chromo-
somes) get measured by a fitness function and the result from the fitness function is 
judged by the Termination Conditions (TC): if current result can satisfy the termina-
tion conditions, the solution is the current chromosome; if current result can not satis-
fy the termination conditions, the current generation of individuals will be genetically 
changed and the next generation of individuals will be generated and be measured by 
the fitness function and checked again. This process repeats until the result can meet 
the termination conditions. The details of the genetic algorithm can be found in 
[11,12,13]. There are four key parameters used in the genetic algorithm: 

• Po: population size, more individuals used in a generation causes more computa-
tion but gives better results in the genetic algorithm.  

• Re: replacement rate, the bad individuals will be replaced by the newly generated 
individuals.  

• Co: crossover rate, one point crossover is used in this paper. 
• Mu: mutation rate, a gene of an individual to be mutated is randomly selected, and 

the value of the selected gene will be changed.  

This paper investigates the resource block scheduling in a cellular network to get as 
much total bandwidth efficiency as possible, and the optimal results have been ob-
tained by the exhaustive search. Thus, the genetic algorithm is implemented in the 
same deployment as that used in the exhaustive search. The chromosome (variable) is 
the 1 x NM scheduling vector, of which each element is filled with none or one of the 
users whose locations are the same as those used by the exhaustive search. The fitness 
function is the total bandwidth efficiency calculated by (3). The selection of termina-
tion conditions for the genetic algorithm will be explained in section 5.2 and section 
5.3. 

5.2 Validation of the Genetic Algorithm 

The first step is to check whether the genetic algorithm can be used to optimize total 
bandwidth efficiency by scheduling resource blocks.  



The termination condition for validating the genetic algorithm should be based on 
the optimal results from the exhaustive search. Thus, the termination condition is 
selected to be the difference between the optimal results and the results from the ge-
netic algorithm. The fitness function gives the results from the genetic algorithm, and 
then the difference from the optimal results can be computed. This difference will be 
compared with the constraint set in the termination condition to determine whether the 
optimal resource block allocation has been found by the genetic algorithm or more 
generations of individuals are needed.  

The detailed simulation results are displayed and discussed in section 6.1. The con-
clusion can be drawn that the genetic algorithm is able to solve the scheduling prob-
lem to get optimal bandwidth efficiency.    

5.3 Validation of the New Termination Conditions  

The results for validating the genetic algorithm are based on the termination condition 
that requires the optimal results from the exhaustive search. Hence, new termination 
conditions without knowing the optimal results should be produced for the genetic 
algorithm to be applied to any network.  

The termination condition in section 5.2 sets a constraint on the bandwidth effi-
ciency difference to control the precision of the results from the genetic algorithm, so 
the new termination condition for any network also uses a constraint on the bandwidth 
efficiency difference between the current result and the maximal value of the previous 
results. Therefore, the search stops when the bandwidth efficiency difference between 
the current result and the maximal previous result is within a small value. Moreover, 
the minimum generation number for each search is also included in the new termina-
tion conditions. This avoids a situation that the search stops at a local optimum.  

6 Simulation Results 

In this section, the simulation results and the computation for validating the genetic 
algorithm will be displayed in section 6.1. The simulation results and the computation 
for validating new termination conditions will be discussed in section 6.2. Three as-
pects will be compared between the exhaustive search and the genetic algorithm: total 
bandwidth efficiency, selected resource block allocation case and computation. Total 
bandwidth efficiency will be shown as “Total bandwidth efficiency ratio” which is the 
ratio of the total bandwidth efficiency from the GA divided by the total bandwidth 
efficiency from the exhaustive search. Selected resource block allocation case will be 
displays as “Correct RB allocation” which is the percentage of the same RB allocation 
cases selected by the GA as those selected by the exhaustive search. Computation 
means the number of resource block scheduling combinations searched by the two 
algorithms. Computation of the GA relates to the population size and the generation 
number. “Averaged generation number” means the generation number in average in 
the simulation, and the computation of the GA can be calculated approximately by 
“Averaged generation number” times the population size [16].        



All the simulation results are obtained for a 3-cell layout with one user per cell and 
three resource blocks in total. 1000 random independent user drops (1 user in each 
cell per drop) are generated as the user location samples.  

6.1 Simulation Results of Validating the Genetic Algorithm 

Table 2 displays the parameters of the genetic algorithm in this simulation. These 
parameters have been selected following extensive experimentation to identify their 
impact upon the GA performance. The termination condition used in this simulation is 
that the bandwidth efficiency difference between the optimal result and the GA result 
is less than 10-1 bps/Hz. 

Fig.1 shows the CDF curves of the total bandwidth efficiency from three different 
algorithms: reuse 1 non-cooperation (users get all the resource blocks from their own 
BSs), the optimum (results from the exhaustive search) and the GA. From Fig.1, both 
the GA and the optimum always outperform the reuse 1 non-cooperation, and the GA 
curve is almost the same as that of the optimum. Thus, the results from the GA are 
very close to those optimal results from the exhaustive search.  

Table 3 gives the details of the comparison between the exhaustive search and the 
GA. Although the GA correctly selects 81.8% resource block allocation cases, the 
total bandwidth efficiency ratio is 99.98%. This implies that in the cases where the  

Table 2. Parameters 1 

Parameter Value 
Po 100 
Co 0.4 
Mu 0.01 
Re 0.5 

 

Fig. 1. Comparison of the CDF curves for validating GA 

 



GA makes a non-optimal selection, the selection is nevertheless very close to the op-
timal one in terms of the bandwidth efficiency obtained. The purpose of using the GA 
is to achieve a total bandwidth efficiency as close as possible to the optimum, so this 
result shows that the genetic algorithm is validated for finding the optimal solution of 
the resource block scheduling problem. Moreover, the computation used in the GA is 
2150 (Averaged generation number times the value of Po) while the computation used 
in the exhaustive search is 49 (all the possible combinations for the investigated net-
work), so the GA only uses 0.82% of the computation required by the exhaustive 
search. Therefore, the GA can significantly reduce the computation compared with 
the exhaustive search even in this very small size problem.  

Table 3. Simulation Results for Validating GA 

Parameter Value 
Averaged generation number 21.4960 
Correct RB allocation 81.80% 
Total bandwidth efficiency ratio 99.98% 

Fig.2 shows the distribution of the generation number in the simulation. From 
Fig.2, the curve tends to be flat after the generation number is 50, and 95.5% of the 
user drops can get results of the resource block allocation from the genetic algorithm 
by using no more than 50 generations. Thus, 50 is set as the minimum generation 
number in the new termination conditions for any network so that the search of the 
genetic algorithm after 50 generations is based on a near-optimal result for most of the 
users in a network without knowing the optimum. Fig.2 however also shows that there 
are a small percentage of cases (around 4.5%) which have to use a larger number of 
generations to obtain a near optimum solution. This indicates that constraining the 
maximum generation number can constrain the computational requirement but at the 

 

Fig. 2. The CDF distribution of the generation number 

 



cost of optimality. Thus, the balance of the optimality and computation achieved by 
the genetic algorithm is a subject for further investigation, which is out of this paper 
but might be done in the future.  

6.2 Simulation Results to Validate the Termination Conditions When the 
Optimum Results are Unknown 

Whilst it is useful to show that the GA can achieve near-optimum performance by 
comparing with the exhaustive search, this is only possible for a small size problem, 
due to the excessive computation of the exhaustive search in larger problems. For 
larger problems, it is thus necessary to identify suitable termination conditions for the 
GA which do not rely on knowledge of the optimum.  

Table 4 shows the parameters of the genetic algorithm used in this simulation. 
These have been modified based upon experimental observation to accommodate the 
change of termination conditions. The termination conditions for this simulation are 
that the bandwidth efficiency difference between the current result and the maximal 
previous result is less than 10-6 bps/Hz and each search must use no less than 50 gen-
erations.  

Table 4. Parameters 2 

Parameter Value 
Po 1200 
Co 0.6 
Mu 0.01 
Re 0.4 

Fig.3 displays the three CDF curves of the total bandwidth efficiency from reuse 1 
non-cooperation, the optimum and the GA. In Fig.3, the curves of the optimum and 
the GA are almost identical which indicates that the results from the GA are still very 
close to those from the exhaustive search even when the termination conditions do not 
rely on knowledge of the optimum. Moreover, the curves of both the optimum and the 
GA are always superior to that of the reuse 1 non-cooperation.   

From Table 5, 98.2% of the RB allocations made by the GA are optimal and the to-
tal bandwidth efficiency ratio is approximately 100%. This shows that even those 
1.8% non-optimal RB allocation cases selected by the GA can give excellent band-
width efficiency results. Moreover, the averaged generation number is 51.872, which 
is very close to the minimum generation number of 50, and the number of the individ-
uals used for each generation is 1200 (population size), so the computation of the GA 
is around 62247. The exhaustive search needs to calculate all possible RB allocation 
combinations which is 49. Thus, the genetic algorithm requires only 23.75% computa-
tion of that of the exhaustive search and still can get approximately 100% optimal 
total bandwidth efficiency. Therefore, the modified termination conditions for any 
network in the GA are validated. Additionally, comparing with the results in section 
6.1, it can be seen that the termination condition and the population size can have a  



 

Fig. 3. Comparison of the CDF curves for validating the new TC 

Table 5. Simulation Results of the New TC 

Parameter Value 
Averaged generation number 51.8720 
Correct RB allocation 98.20% 
Total bandwidth efficiency ratio 100.00% 

considerable influence on the results and the computation required: when larger popu-
lation size is used or a minimal generation number is set in the termination condition, 
the results from the genetic algorithm are better while the computation required by the 
genetic algorithm is increased. 

7 Conclusion 

This paper has shown that the genetic algorithm can be used for finding a near-
optimal resource block allocation solution for maximizing total bandwidth efficiency 
in a cooperative 3-cell network. The exhaustive search has been applied to a 3-cell 
network layout for the simulation to guarantee the optimal solution in the investigated 
network and a scheduling vector was used for representing the resource block alloca-
tion cases. Then, the genetic algorithm has been implemented in the same network 
layout and the same user locations to get results for the comparison with those from 
the exhaustive search. Firstly, the genetic algorithm has been validated by the termi-
nation condition relating to the optimal results from the exhaustive search. As a result, 
the termination condition has been modified and verified so that the genetic algorithm 
can be implemented in any network due to that the modified termination conditions 
no longer being based on the results from the exhaustive search. From the simulation 
results obtained, the genetic algorithm is capable of achieving a near-optimal resource 
block solution for maximizing total bandwidth efficiency. Moreover, the genetic algo-

 



rithm can significantly reduce the computation required by the exhaustive search in 
the investigated network. Additionally, the population size and the termination condi-
tion can impact the results from the genetic algorithm and the computation that the 
genetic algorithm needs. Work to evaluate the performance of the genetic algorithm in 
a larger size network (with many users and many resource blocks) and to find solu-
tions with lower complexity is now underway. 
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