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Abstract. This paper shows how a genetic algorithm can leel @s a method

of obtaining the near-optimal solution of the rasaublock scheduling problem
in a cooperative cellular network. An exhaustivarsh is initially implemented

to guarantee that the optimal result, in terms akimizing the bandwidth effi-

ciency of the overall network, is found, and thia genetic algorithm with the
properly selected termination conditions is usethénsame network. The simu-
lation results show that the genetic algorithm approximately achieve the op-
timum bandwidth efficiency whilst requiring only @#of the computation ef-

fort of the exhaustive search in the investigateivork.
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1 Introduction

The optimal solution of resource scheduling is abered difficult to obtain given that
it is a nonconvex problem [1,2,3,4]. Previous redeavork has investigated near-
optimal algorithms for scheduling channels or subees under the conditions of
fairness and power control [5,6,7,8]. The geneptinaal solution without those con-
ditions for scheduling resource blocks in a mudtitoetwork is not well-studied. The
exhaustive search technique is commonly used ftiingethe optimal solution [5],
[9]. However, it requires high computational efftotobtain the optimal results as it
needs to search all the possible combinations s#scH ], [16]. The genetic algorithm
is also a search method for solving nonconvex proB| and it is widely used in the
fields such as cloud design, computing, sub-cagaileication and even project man-
agement [11,12,13,14,15,16]. But it is rarely usetesource block scheduling to get
as much bandwidth efficiency as possible for a dmkrtransmission in a multi-cell
scenario. Ref. [15] proposed a genetic algorithmrésource block scheduling in the
uplink transmission in a single cell model. Therskaf the genetic algorithm in [15]
was stopped by the maximal number of iterationstheo resultant solution gives
worse results than the optimum. This contributiorestigates the use of genetic algo-
rithm as a solution for getting the optimal bandwiefficiency by scheduling re-



source blocks in a cooperative cellular networkhwiite possibility of flexible cooper-
ation. The termination conditions used in the gergtgorithm are properly selected
in order to get the optimal solution. The exhalestearch is used to get the optimal
results in a 3-cell network layout, and the resfutisn the genetic algorithm applied to
the same network and the same user locations anpaced with the optimal results.
In addition, the computation effort of getting thigtimal results by these two methods
is compared.

This paper is organized as follows: section 2 ardisBlay the system model and
the problem statement; section 4 introduces howetothe optimal solution by the
exhaustive search; section 5 explains the impleatient of the genetic algorithm;
section 6 compares and discusses the simulatiaritsesnd section 7 presents the
conclusion.

2 System Model

21 Network Layout

The system investigated is a downlink transmiséina hexagonal cellular network.
There are in total M resource blocks to be schebiideat most a total of U users in an
N-cell layout. One Base Station (BS) is locatethim center of each cell. A Resource
Block (RB) is assumed to be the smallest resoungde@ be scheduled and it can only
be used once by each BS. The power of each RBisrai to be the same. Frequen-
cy reuse is flexible which means that one RB camuded by more than one BS to
schedule to the same user (cooperative transm)ssiobe used by different base
stations to schedule to different users (frequenoge).

The settings used in the simulation are for a Bipid E urban macro environment
which are listed in Table 1 [10].

Table 1. Parameter Settings

Parameter Value

Network layout Hexagonal 3 cells
Cell radius 500m

Antenna Omnidirectional
Carrier frequency 2GHz

Bandwidth 10MHz

Bandwidth per RB 180KHz

Number of available RBs 50
Distance-dependent path loss 128.1+37.686d) with d in km
Thermal noise power spectral density -174dBm/Hz
Maximum BS transmit power 40 watts

Mobile station noise figure 9dB

Minimum distance between userand BS 35 m




3 Problem Statement

This paper investigates the optimal solution otiggtthe total bandwidth efficiency
by scheduling M resource blocks to at most U useeslayout of N cells. The SINR
expression for thetluser in the f RB with flexible frequency reuse is

zPu,n
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(1)
where R, =Pw/PLun (Pm is the transmit power in thehRB; P, is the path loss from
the " user to the  BS) represents the received power of theiser from the fiBS.

Q, is the set of base stations that use tHeRB to transmit signals to theé"wser
(cooperative transmission occurs if there are ntioa@ one BS in this set) whit@,
stands for the set of the base stations that aeahe it RB but to transmit to the
other users in the network. The base statior@uimandQ, are from 1 to N, and no
elements may overlap betwe@a andQ.. Ns is the noise power. (1) shows the SINR
expression for the case that th® RB is scheduled for the transmission between the
base stations in the set@# to the (' user, whilst the HiRB is also used by the base
stations in the set @@, but to transmit to the other users in the netwawkhe inter-
ference to the'iuser.

The capacity of thefuuser in the ffi resource block is

Cym =B, log,d+S' ),

| 2)
where B, is the bandwidth of the fRB (180KHz in LTE). Thus, the total bandwidth
efficiency of the N-cell layout with U users in &tand M resource blocks in total
(M<50) is

1 U M
plmal = B zzcu,m’

total u=l m=1
3
where Boal is the total bandwidth used in the scheduling [@ol(Bota<10MHZz). The
objective formula of this resource block schedulpmblem (which to obtain the
maximum total bandwidth efficiency for the network)

3P
1 U M = u,n
arg max B, log,(l+ —=—), Q,,Q, c[LN].
v Btotal ;; ? Ns + ZPu:n‘
n'eQ, . (4)




4  Optimal Solution

The exhaustive search is a common method of fintiegoptimal results [5], [16].
The basic idea of this algorithm is to try all {hassible values within the whole vari-
able fields and to generate all the possible oleaesults. Then, the value of the
variable giving the best objective result is coasidl as the optimum. Therefore, the
exhaustive search can guarantee the optimal reshlts it carries a large computa-
tional cost.

41 Implementation

As shown in (4), there are three variables for thgurce block scheduling problem:
which user (u), which resource block (m) and whiigse station (n). Based on the
explanation of the investigated network in secffah each RB can only be used once
by each BS and the frequency reuse is flexibleeath RB can be used at most N
times. Thus, there are NM resource block positeralable for scheduling to at most
U users, which can be represented as a 1 x NM atihgdvector to show the RB
allocation case. Each element of the 1 x NM vector be allocated to either none or
one user in the network. Therefore, the numbeiheftbtal possible combinations is
(U+1)M,

4.2  Simulation Resultsand Analysis

The simulation results are for a 3-cell layout watie user per cell and three resource
blocks in total. Even in this small network, themher of the total possible combina-
tions is 4. For a more realistic problem with larger numbefr8Ss, users and RBs,
the exhaustive search becomes computationally sibiea

Inspection of the simulation results of the exhiassearch for this 3-cell network
layout reveals that there are three types of RBcatlon cases for the investigated
network that may be optimal: full cooperation tnanssion, 2/3 reuse non-cooperative
transmission and reuse 1 non-cooperative transmnisBull cooperation transmission
means that all the resource blocks from all thes Iséigtions are scheduled to the same
user (all the elements of the scheduling vectorsateeduled to the same user), and
this case occurs when the scheduled user has cabtp@ood channel conditions to
all the base stations while the other users hadechannel conditions to all the base
stations; 2/3 reuse non-cooperative transmissicanméhat all the resource blocks are
used by 2/3 of the base stations (2/3 of the elésnehthe scheduling vector are
scheduled), and this case occurs when the usdteirbdse station not transmitting
have a bad channel condition to its own base stdit can cause considerable inter-
ference to the other users if resource blocks enedsled to this user; reuse 1 non-
cooperative transmission means that all the resdoiacks from each base station are
scheduled to its own user, and this case occurs whe users have good channel
conditions to their own base stations while theyehbad channel conditions to the
other base stations in the layout.



5 Genetic Algorithm

Although the exhaustive search is able to giveadpimal results, it requires a large
amount of computation especially when the invesgigaetwork contains many users
and many resource blocks. The Genetic Algorithm Y@Aalso a search method
which treats the variable as a chromosome [11], [[5%e chromosome (variable) will
get genetic changes, e.g., crossover and mutati@hpe measured by a fitness func-
tion until it meets the termination conditions winiare normally used to control the
precision of the outcomes.

51 Implementation

The process of the genetic algorithm is that a geioe of individuals (chromo-
somes) get measured by a fitness function andehdtrfrom the fitness function is
judged by the Termination Conditions (TC): if cunteesult can satisfy the termina-
tion conditions, the solution is the current chremme; if current result can not satis-
fy the termination conditions, the current genembf individuals will be genetically
changed and the next generation of individuals bellgenerated and be measured by
the fitness function and checked again. This p®cepeats until the result can meet
the termination conditions. The details of the dienalgorithm can be found in
[11,12,13]. There are four key parameters useldrgenetic algorithm:

« Po: population size, more individuals used in aegation causes more computa-
tion but gives better results in the genetic akboni

« Re: replacement rate, the bad individuals will éplaced by the newly generated
individuals.

« Co: crossover rate, one point crossover is usdismpaper.

< Mu: mutation rate, a gene of an individual to betated is randomly selected, and
the value of the selected gene will be changed.

This paper investigates the resource block schagluti a cellular network to get as
much total bandwidth efficiency as possible, anel dptimal results have been ob-
tained by the exhaustive search. Thus, the geaddimrithm is implemented in the
same deployment as that used in the exhaustivehsetine chromosome (variable) is
the 1 x NM scheduling vector, of which each elenisiiilled with none or one of the
users whose locations are the same as those ughd byhaustive search. The fitness
function is the total bandwidth efficiency calcaldtby (3). The selection of termina-
tion conditions for the genetic algorithm will bepdained in section 5.2 and section
5.3.

5.2 Validation of the Genetic Algorithm

The first step is to check whether the genetic rilgm can be used to optimize total
bandwidth efficiency by scheduling resource blocks.



The termination condition for validating the genetigorithm should be based on
the optimal results from the exhaustive search.sThke termination condition is
selected to be the difference between the optiesilts and the results from the ge-
netic algorithm. The fitness function gives theutessfrom the genetic algorithm, and
then the difference from the optimal results carcomputed. This difference will be
compared with the constraint set in the terminationdition to determine whether the
optimal resource block allocation has been foundhgygenetic algorithm or more
generations of individuals are needed.

The detailed simulation results are displayed @sdudsed in section 6.1. The con-
clusion can be drawn that the genetic algorithrabile to solve the scheduling prob-
lem to get optimal bandwidth efficiency.

5.3 Validation of the New Termination Conditions

The results for validating the genetic algorithra based on the termination condition
that requires the optimal results from the exhaassiearch. Hence, new termination
conditions without knowing the optimal results skiobe produced for the genetic
algorithm to be applied to any network.

The termination condition in section 5.2 sets ast@int on the bandwidth effi-
ciency difference to control the precision of tesults from the genetic algorithm, so
the new termination condition for any network alses a constraint on the bandwidth
efficiency difference between the current resutt tre maximal value of the previous
results. Therefore, the search stops when the bdtivefficiency difference between
the current result and the maximal previous reisultithin a small value. Moreover,
the minimum generation number for each searchsis iakcluded in the new termina-
tion conditions. This avoids a situation that tearsh stops at a local optimum.

6 Simulation Results

In this section, the simulation results and the gotation for validating the genetic
algorithm will be displayed in section 6.1. The slation results and the computation
for validating new termination conditions will bésdussed in section 6.2. Three as-
pects will be compared between the exhaustive Beard the genetic algorithm: total
bandwidth efficiency, selected resource block atmn case and computation. Total
bandwidth efficiency will be shown as “Total bandtti efficiency ratio” which is the
ratio of the total bandwidth efficiency from the Gilvided by the total bandwidth
efficiency from the exhaustive search. Selectedue= block allocation case will be
displays as “Correct RB allocation” which is thegatage of the same RB allocation
cases selected by the GA as those selected byxttmigtive search. Computation
means the number of resource block scheduling amatibns searched by the two
algorithms. Computation of the GA relates to th@ylation size and the generation
number. “Averaged generation number” means thergéina number in average in
the simulation, and the computation of the GA canchlculated approximately by
“Averaged generation number” times the populatiae £16].



All the simulation results are obtained for a 3-tajout with one user per cell and
three resource blocks in total. 1000 random inddpehuser drops (1 user in each
cell per drop) are generated as the user locadiompkes.

6.1 Simulation Results of Validating the Genetic Algorithm

Table 2 displays the parameters of the geneticrithgo in this simulation. These
parameters have been selected following extensiperanentation to identify their
impact upon the GA performance. The terminationdétiom used in this simulation is
that the bandwidth efficiency difference betwees dptimal result and the GA result
is less than 1Bbps/Hz.

Fig.1 shows the CDF curves of the total bandwidficiency from three different
algorithms: reuse 1 non-cooperation (users gehalfesource blocks from their own
BSs), the optimum (results from the exhaustived®aand the GA. From Fig.1, both
the GA and the optimum always outperform the reusen-cooperation, and the GA
curve is almost the same as that of the optimunusTthe results from the GA are
very close to those optimal results from the extiaeisearch.

Table 3 gives the details of the comparison betwherexhaustive search and the
GA. Although the GA correctly selects 81.8% reseubtock allocation cases, the
total bandwidth efficiency ratio is 99.98%. Thisples that in the cases where the

Table 2. Parameters 1

Parameter Value
Po 100
Co 0.4
Mu 0.01
Re 0.5
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Fig. 1. Comparison of the CDF curves for validating GA



GA makes a non-optimal selection, the selectiomeigertheless very close to the op-
timal one in terms of the bandwidth efficiency dbéal. The purpose of using the GA
is to achieve a total bandwidth efficiency as clasgpossible to the optimum, so this
result shows that the genetic algorithm is validdte finding the optimal solution of
the resource block scheduling problem. Moreoves, dbimputation used in the GA is
2150 (Averaged generation number times the vallodfwhile the computation used
in the exhaustive search i€ @ll the possible combinations for the investigatet-
work), so the GA only uses 0.82% of the computatiequired by the exhaustive
search. Therefore, the GA can significantly redtiee computation compared with
the exhaustive search even in this very smallziablem.

Table 3. Simulation Results for Validating GA

Parameter Value
Averaged generation number 21.4960
Correct RB allocation 81.80%
Total bandwidth efficiency ratio 99.98%

Fig.2 shows the distribution of the generation namin the simulation. From
Fig.2, the curve tends to be flat after the gei@matumber is 50, and 95.5% of the
user drops can get results of the resource bldokatlon from the genetic algorithm
by using no more than 50 generations. Thus, 5@tisas the minimum generation
number in the new termination conditions for anyweek so that the search of the
genetic algorithm after 50 generations is based pear-optimal result for most of the
users in a network without knowing the optimum..Zigowever also shows that there
are a small percentage of cases (around 4.5%) wisieh to use a larger number of
generations to obtain a near optimum solution. TihiBcates that constraining the
maximum generation number can constrain the cortipotd requirement but at the
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cost of optimality. Thus, the balance of the optitpeand computation achieved by
the genetic algorithm is a subject for further stigation, which is out of this paper
but might be done in the future.

6.2 Simulation Results to Validate the Termination Conditions When the
Optimum Resultsare Unknown

Whilst it is useful to show that the GA can achiewear-optimum performance by
comparing with the exhaustive search, this is qagsible for a small size problem,
due to the excessive computation of the exhaustearch in larger problems. For
larger problems, it is thus necessary to identififable termination conditions for the
GA which do not rely on knowledge of the optimum.

Table 4 shows the parameters of the genetic afgoriised in this simulation.
These have been modified based upon experimensahedition to accommodate the
change of termination conditions. The terminatiomditions for this simulation are
that the bandwidth efficiency difference betweee tirrent result and the maximal
previous result is less than40ps/Hz and each search must use no less thanns0 ge
erations.

Table 4. Parameters 2

Parameter Value
Po 1200
Co 0.6
Mu 0.01
Re 0.4

Fig.3 displays the three CDF curves of the totaldvadth efficiency from reuse 1
non-cooperation, the optimum and the GA. In Figh&, curves of the optimum and
the GA are almost identical which indicates that thsults from the GA are still very
close to those from the exhaustive search even wigetermination conditions do not
rely on knowledge of the optimum. Moreover, thevesrof both the optimum and the
GA are always superior to that of the reuse 1 raoperation.

From Table 5, 98.2% of the RB allocations madeh@y@A are optimal and the to-
tal bandwidth efficiency ratio is approximately 200 This shows that even those
1.8% non-optimal RB allocation cases selected leyGlIA can give excellent band-
width efficiency results. Moreover, the averagedeagation number is 51.872, which
is very close to the minimum generation numberGfaénd the number of the individ-
uals used for each generation is 1200 (populatig),sso the computation of the GA
is around 62247. The exhaustive search needs ¢alat all possible RB allocation
combinations which is%4 Thus, the genetic algorithm requires only 23. "&hputa-
tion of that of the exhaustive search and still get approximately 100% optimal
total bandwidth efficiency. Therefore, the modifiestmination conditions for any
network in the GA are validated. Additionally, coanmg with the results in section
6.1, it can be seen that the termination conditiod the population size can have a
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Table5. Simulation Results of the New TC

Parameter Value
Averaged generation number 51.8720
Correct RB allocation 98.20%
Total bandwidth efficiency ratio 100.00%

considerable influence on the results and the ctettipn required: when larger popu-
lation size is used or a minimal generation nunibeet in the termination condition,
the results from the genetic algorithm are betteitexthe computation required by the
genetic algorithm is increased.

7 Conclusion

This paper has shown that the genetic algorithm lmarused for finding a near-
optimal resource block allocation solution for nraiding total bandwidth efficiency
in a cooperative 3-cell network. The exhaustivercfedas been applied to a 3-cell
network layout for the simulation to guarantee dpéimal solution in the investigated
network and a scheduling vector was used for reptery the resource block alloca-
tion cases. Then, the genetic algorithm has begtemented in the same network
layout and the same user locations to get resoittthe comparison with those from
the exhaustive search. Firstly, the genetic algorihas been validated by the termi-
nation condition relating to the optimal resultsrfr the exhaustive search. As a result,
the termination condition has been modified andfieerso that the genetic algorithm
can be implemented in any network due to that tlelified termination conditions
no longer being based on the results from the estheusearch. From the simulation
results obtained, the genetic algorithm is capabkchieving a near-optimal resource
block solution for maximizing total bandwidth eféoicy. Moreover, the genetic algo-



rithm can significantly reduce the computation iieegh by the exhaustive search in
the investigated network. Additionally, the popidatsize and the termination condi-
tion can impact the results from the genetic athariand the computation that the
genetic algorithm needs. Work to evaluate the perémce of the genetic algorithm in
a larger size network (with many users and mangue blocks) and to find solu-
tions with lower complexity is now underway.
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