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1. Introduction

Modern wireless communications have come a long way since James Clark

Maxwell predicted the existence of radio waves in 1864 and Heinrich

Rudolph Hertz, for the first time, demonstrated them in 1885 [1]. Guglielmo

Marconi kicked off wireless communications when he invented the first

wireless telegraph in 1895. The ever-growing evolution of wireless com-

munications is illustrated by a timeline in Fig. 1.1 [2, 3].

Figure 1.1.Evolution of wireless radio communications.

The first commercial mobile telephone system was developed in 1946

at the Bell labs with a high-power transmitter that could cover up to 50

miles to serve a very limited number of rich early adopters on low band-

width. Due to the constraints on bandwidth, the Bell labs designed for

the first time the concept of cellular technology and introduced it to the

world. The idea behind the cellular concept was to divide a service zone

to smaller unit areas and applyfrequency reuse, which could theoretically
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Introduction

provide with more reliable service, lower transmission power, and better

utilization of spectrum. The only major problem with the principle of cel-

lular division was the necessity to hand over an established connection of

a moving user over a cell border.

The cellular principle was first commercially deployed by Nordic Mobile

Telephone (NMT) in 1981, which initiated a new era of mobile commu-

nications that we now call 1G cellular technology. Despite being a mile-

stone, 1G systems had two fundamental problems. Analog communica-

tions proved to be susceptible to interference and the lack of standards

led to incompatible technologies throughout the world. To address some

of the earlier limitations, 2G cellular radio access (e.g., Global System for

Mobile Communications (GSM)) was developed with improvements, such

as overhead reduction, robust source and channel coding, a new text mes-

saging service, better hand-off control, etc. Later, 2G systems were ex-

panded to support data communications and internet service. Since then,

further evolutions of cellular communications continued improving sys-

tem performance and robustness with a principal focus on enabling faster

mobile internet, which is still an ongoing endeavor to provide billions of

users over the world with the reliability and comfort of technology in their

palms that will one day melt away in our human lives and hopefully make

the world marginally a better place.

1.1 Motivation

Although the initial attempts to develop a true mobile communication

device for the mass market dates back to 1960s with pagers, cellular mo-

bile phones have changed our lives tremendously, particularly since late

1990s. The speed of transformation for mobile phones has been unparal-

leled to any other product in technology. Particularly, the invent of mobile

internet together with the absorption of other conveniences by cellular

phones (i.e., a digital camera, fitness–health tracker, media player, nav-

igator, game console, etc.) has made them one of the most influential

disruptors of our information age. This unrivaled advancement of mobile

devices gave birth to utmost demands for reliable, affordable, fast, and

secure service delivery.

Cellular networks have been deployed almost everywhere with dense

human population. Their benefits have been almost second nature during

our daily lives, making it difficult for us to even be perceptive of their ex-

14



Introduction

istence, of course only until we experience a service outage. It should be

acknowledged that planning to deploy cellular coverage in all locations

of the populated world is probably one of the most ambitious goals of

mankind in any commercial industry. From the point of view of a net-

work provider or operator, the goal is to improve customer satisfaction

with minimum financial expenditure, therefore growing the net income.

On the other hand, a user’s desire is to receive a certain level of quality of

service (QoS) determined by the individual’s perception. Hence, network

designers, in a nutshell, try to meet such expected QoS metrics with the

highest possible efficiency.

By 2020 the commercial mobile data traffic per month is expected to

increase by over 9-fold with 9.2 billion global mobile subscribers [4]. To

gain a higher share of the market growth operators will try to attract new

subscribers, decrease the churn rate, and lure their existing customers

into more premium services. To achieve that, cellular network designers

will aim to improve user QoS, as one of the most relevant indicators for

these goals. Undeniably, QoS is a very broad term which is determined

by various technical and economic aspects depending on individual use

cases. For example, the expected quality of an offered service depends

on its type and the associated priority metrics. A real-time based ser-

vice, such as video conferencing or voice-over-IP (VoIP), should satisfy a

minimum tolerable delay metric from the users’ point of view. On the con-

trary, a non-real-time based service, such as file transfer protocol (FTP),

should deliver high throughput for a guaranteed QoS. Offering a wide

range of subscriptions with different price points allows operators to cap-

ture a larger market share from different types of users (e.g., human or

machine) with different needs.

Motivated by the vitality of these benefits, this thesis revolves around

the question of how equipping multiple antennas at a base station or at a

mobile terminal device can help improve the user QoS in next generation

cellular communications. Roughly speaking, the main QoS parameters

in this thesis for exploring an answer to the above question are based on

network-wide throughput or link-specific signal-to-interference plus noise

ratio (SINR) metrics. In addition, system complexity is also considered an

integral design aspect of this thesis from both hardware simplicity and

computational load angles as a robust service provision with limited fi-

nancial expenditure is a vital focus area in cellular network deployments

as in any commercial venture. Potential improvements are studied, devel-

15



Introduction

oped, and discussed in this thesis by means of introducing new methods,

optimizing current state-of-the-art schemes, or integrating other technol-

ogy concepts to cellular systems.

1.2 Scope, challenges, and beyond

First and foremost, next generation cellular networks are expected to in-

troduce new types of services as well as offer improvements to the preex-

isting ones in terms of data rate, user capacity, scalability, cost efficiency,

and flexibility. However, this thesis only focuses on the efficient utilization

of multiple antenna deployments in cellular radio access with no particu-

lar attention to any service type. That being said, four major technology

components are chosen as the field of discussion throughout this thesis for

the investigation of various multi-antenna techniques. In addition, this

thesis also touches on several other concepts in cellular communications

and even discusses some of those concepts in detail while the attention is

still on drawing the design framework for one of the said four main topics.

The first main topic of this thesis is downlink multi-user multi-input

multi-output (MIMO) transmission, which includes transmit/receive base-

band filter design as well as resource allocation/assignment problems. Al-

though this is a well-studied topic in the last several years, ever-growing

desire for higher spectral efficiency justifies the importance of optimiz-

ing baseband processing methods for multiple users who are sharing the

same air interface resources. In particular, the goal of the thesis is to

investigate the opportunities within the state-of-the-art linear/non-linear

schemes for downlink precoding and multi-carrier multi-user scheduling.

Consequently, low-complexity solutions can be developed with reduced

transmit power and improved SINR. In addition, this thesis also focuses

on the sensitivity of potential solutions to inevitable MIMO link deter-

rents, such as channel state information (CSI) errors and thermal noise

effects.

The second topic is related to massive MIMO systems with reciprocal

duplex channel response. More specifically, this thesis investigates pop-

ular estimation procedures for downlink CSI at base stations where the

channel exhibits reciprocal characteristics. These methods mostly rely on

first acquiring uplink channel responses and converting them to downlink

based on the reciprocity property of the wireless propagation medium.

However, such reciprocal propagation characteristics are often disturbed
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Introduction

in the overall channel response due to internal mismatches in the radio

frequency (RF) transceivers. Therefore, the first part of the discussions

on this topic is dedicated to dealing with antenna calibration methods

that measure and recover from such non-reciprocal behaviors of an RF

transceiver. The second half of the discussions includes analyzing and

improving blind estimation methods for the simultaneous acquisition of

uplink CSI from multiple users. Such blind estimators often rely on ex-

tracting the second-order channel properties from non-orthogonal data

symbols as standard training based estimation is often susceptible to pi-

lot contamination on uplink massive MIMO.

The third main topic is about non-reciprocity based CSI estimation on a

massive MIMO link. Downlink channel acquisition is tedious in massive

MIMO due to two major challenges. The first issue is the requirement for

a very long time duration during downlink training whereas the second

problem is related to the need for oversized signaling overhead during the

feedback of user CSI reports. A very large antenna array increases the

number of subchannels in the associated CSI vector. This requires long

orthogonal pilot sequences to isolate different subchannels on downlink,

which leads to long time periods of training. To restrict the duration,

the antenna array size needs to be limited; however, such limitations can

support only a small number of served users to preserve the asymptotical

orthogonality among those users’ CSI vectors. Moreover, the number of

feedback bits needs to be increased proportionally to achieve a sufficient

quantization granularity in a user’s CSI report. Otherwise, the quan-

tization resolution per channel coefficient decreases with more transmit

antennas. This thesis investigates potential approaches that tackle the

above challenges in three categories. The categories are established based

on specific propagation characteristics which enable compression meth-

ods to reduce the size of CSI reports by removing some of the redundant

information. These propagation characteristics are temporal channel cor-

relations, spatial channel correlations, and channel sparsity. The goal of

this thesis is to shed light on promising solutions in each category and jus-

tify the circumstances that create the favorable propagation conditions for

CSI compression in a non-reciprocal massive MIMO propagation.

The fourth topic of this thesis is full-duplex in-band relaying. As the

fundamental limitation of full-duplex relaying is caused by its inherent

loop-interference, this topic is investigated by categorizing the types of

mitigation techniques for the said interference signal. In particular, this
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thesis focuses on spatial-domain suppression methods, which operate by

means of multi-antenna baseband processing so as to nullify the bulk of

the loop-interference in digital-domain. The goal of this thesis is to inves-

tigate such optimal suppression techniques and explore the feasibility of

full-duplex deployments on a relay link. In addition, RF components of a

full-duplex MIMO relay are also taken into consideration in the thesis as

the accuracy of an interference mitigation scheme strongly depends on its

sensitivity to imperfections in hardware.

The thesis investigates the above described topics in a cellular network

architecture although the developed and discussed schemes can be ap-

plicable to other wireless radio technologies as well. All the discussions

and emphases of the thesis are channeled toward next generation cellular

communications. However, the specifications of the considered network

models, when necessary, are often based on the state-of-the-art cellular

communication standards, i.e., LTE-A. In addition, it should be also dis-

claimed that the communication models are occasionally simplified in this

thesis to focus on the investigated multi-antenna schemes.

This thesis also takes an optimistic view toward some of the present

obstacles that prevent a feasible real-world implementation of some of

the state-of-the-art multi-antenna techniques. These challenges may in-

clude demanding computational requirements, high financial costs, insuf-

ficiency in backend connection speeds, reliance on short latency and long

battery lives. Although current network, device, and equipment capabil-

ities may be inadequate to fulfill most of these conditions, technological

advancements in other fields are expected to overcome these shortcom-

ings over time.

One of the upfront challenges toward next generation cellular systems

is related to the physical scarcity of available RF spectra. As the allocated

frequency bands have already been heavily used in the existing cellular

systems, achieving better spectral efficiency is a key motivation for net-

work designers developing next generation cellular systems. This thesis

also puts this motivation to the spotlight in the context of multi-antenna

techniques in spatial-domain as an additional signal dimension. In ad-

dition to higher efficiency, another popular means to overcome the said

spectral scarcity is introducing higher frequency bands in the range of

60GHz, which also serves as an enabler for other potential technology

components of next generation systems [5, 6].

Another design challenge is related to reducing the environmental harms
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caused by cellular deployments. Recent reports indicate that base sta-

tions are responsible for above70% of the overall energy consumption of

a cellular network operator [7]. In addition to financial savings, minimiz-

ing energy consumption also leads to greener wireless communications

that can contribute to a significant reduction in CO2emission. For in-

stance, deploying indoor communication technologies can be a significant

derivative of higher energy efficiency. To be specific, liberating an outdoor

macrocell evolved Node B (eNB) from the burden of serving far away users

who are in non-favorable channel conditions helps lowering the transmit

powers by means of avoiding unnecessary energy losses through wall pen-

etrations. In addition, next generation systems also target harnessing

higher frequency bands by millimeter-wave and visible light communica-

tion (VLC) technologies that will lead to better energy efficiency [8].

High user mobility notoriously leads to limited channel coherence time

due to significant Doppler shifts, which shrink affordable eNB reaction

time as well as cause difficulties in both acquiring up-to-date CSI and sus-

taining reliable connections. Although current mobile networks can sup-

port mobility up to250km/h, the availability of high-speed trains reaching

approximately500km/h will demand a further support by the next gener-

ation cellular systems for higher user mobility scenarios [9].

Another dominant source of evolution for cellular systems is considered

network densification [10]. In principle, denser deployments increase the

spatial load factor per area and therefore improve the network capacity.

Moreover, small cells lead to reduced pathloss, which boosts the strength

of both desired and interference signals while the impact of thermal noise

disappears. Therefore, advanced interference management concepts be-

come integral to next generation system realizations. In addition, cell

densification requires adaptive resource coordination, advanced interfer-

ence cancelers at receivers, intelligent self-organizing network deploy-

ments, as well as commensurate densifications at the backhaul.

Last but not least, next generation cellular communications will rely

on many applications that deserve recognition. This part is dedicated

to mentioning the most popular of those applications as well as the as-

sociated enabling technologies, although they are beyond the purview of

this thesis. Next generation cellular systems will support more types of

connected devices with the introduction ofInternet of Things(IoT) [11],

connected car and connected home applications,Tactile Internet[12], etc.

This variety will lead to fragmentations in user experience, demanding
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more specific diversifications in user QoS requirements. For example,

machine-type communications (MTC) will depend on the availability of an

efficient low-bandwidth sporadic traffic medium in order to satisfy the ex-

pectations of long lifespan, low power, and low latency devices [13]. Wire-

less power transfer is a promising technology that can overcome the issue

of limited battery life at user equipment (UE) in next generation cellular

networks [14]. This technology may rely on delivering the energy transfer

via microwave radiations emitted from the, so-called,power beaconsthat

can be employed at eNB stations. Such wireless transfer of energy can

potentially supply an infinite battery lifespan for always-on autonomous

MTC users, e.g., portable measurement devices. Next generation cellu-

lar systems will continue evolving also at the network level by leverag-

ing more virtualization and automation with cloud IT infrastructure and

self-organization. Cloud IT refers to a software-defined network design

that can offer virtualization and programmability for the network func-

tions in order to reduce the operational costs and inflexibility [15]. Self-

organizing networks refer to an automation technology that uses intelli-

gence and autonomous adaptivity in order to introduce simplicity, speed,

and flexibility for configuring, managing, and optimizing mobile network

architectures [16]. Lastly, it is important to be aware that governments

and regulatory bodies will continue playing even more prominent roles

in the evolution of next generation cellular systems. The World Radio-

communication Conference (WRC) in 2019 will address the allocation of

millimeter-wave bands (i.e., above6GHz) for 5G according to the current

agenda of International Telecommunication Union (ITU). Governments

will assign their regulatory bodies (such as FCC in the U.S., OFCOM in

the UK, CEPT in Europe) in making the distribution of the established

and newly introduced spectrum bands among national operators for var-

ious purposes, as an essential aspect of the next generation system will

be to harmoniously combine different bands for different services within

a unified global framework.

1.3 Contributions

This thesis conveys comprehensive discussions of multi-antenna process-

ing techniques in different use cases for the next generation cellular com-

munications. Several methods and new concepts are proposed under four

main topics that are investigated throughout the thesis. The topics are
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selected based on their suitability for providing a sufficient field of dis-

cussion on various multi-antenna methods as well as their potential to

appear in future cellular systems. Therefore, this thesis offers an am-

ple view of the state-of-the-art multi-antenna techniques and procedures

presently in consideration for cellular communications, despite not neces-

sarily being able to cover every known multi-antenna scheme.

The major contributions of the thesis are summarized as follows:

1. A joint transmit and receive filter design mechanism is developed for

high signal-to-noise ratio (SNR) environments in the presence of CSI

errors on the downlink of a multi-user MIMO communication.

2. Novel multi-user multi-carrier resource schedulers are designed based

on the greedy and genetic based algorithms on downlink.

3. An adaptive quantization scheme is designed for reducing the total re-

quired signaling overhead during the operation of a relative antenna

calibration procedure.

4. A multi-cellular coordination algorithm is proposed for the optimiza-

tion of blind channel estimators on the uplink of a massive MIMO net-

work.

5. A new downlink CSI acquisition mechanism is proposed for massive

MIMO, which is based on estimating the characteristics of a select num-

ber of dominant paths and reconstructing the collective information.

6. A new type of user feedback report is proposed for realizing the above

CSI reconstruction mechanism by means of signaling the multipath phase

information attached to the targeted dominant paths on downlink.

7. An iterative optimization procedure is proposed for full-duplex dual-

hop relaying setups, which adapts its solution based on the instanta-

neous channel gains.

8. For a relay-supported coverage extension scenario, the optimal pairs of

power allocations are derived on full-duplex downlink with non-negligible

direct link between the end connection points. In addition, an optimiza-
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tion scheme is proposed and evaluated with multi-antenna processing.

1.3.1 Summary of the publications

This thesis is a compilation of the research findings and discussions from

a collection of eight original publications. The author of this thesis, alone,

has written the first and every draft of all the said publications and has

developed all the technical contributions including all of the presented

ideas, numerical evaluations and theoretical analyses. Each of these eight

original publications are outlined below:

•Publication I develops a novel joint transmit and receive baseband fil-

tering scheme under imperfect CSI knowledge for downlink multi-user

MIMO transmissions. The contribution is distinguished from the prior

art by its suitability for high SNR conditions as such a joint design typ-

ically requires sizable signaling between a base station and multiple

user terminals, which can only be compensated for when the channel

quality is sufficiently high. The simulation results verify the superior

performance of the proposed design over other state-of-the-art schemes.

•Publication II designs multi-resource schedulers on downlink based on

the well-known greedy and genetic based algorithms in a two-tier net-

work. The schedulers deal with the problem of resource allocation, as-

signment, as well as multi-user ordering for shared resources based

on maximizing the proportional fair and maximum throughput metrics

during time- and frequency-domain packet scheduling, respectively. In

contrast to the conventional solutions, the proposed schedulers adopt

an iterative approach, where at each iteration one additional user is at-

tempted to be co-scheduled next to the primarily scheduled users. Such

approach leads to a new chromosome structure for the genetic-based al-

gorithm. The numerical evaluations compare and contrast the proposed

schedulers and the publication concludes that the genetic algorithm per-

forms well in crowded networks whereas the greedy algorithm can be

preferable with less co-scheduled users.

•Publication III proposes a novel adaptive quantization scheme for the

necessary user reports of downlink CSI during a relative antenna cal-

ibration process. The adaptive scheme is based on adjusting the num-

22



Introduction

ber of quantization levels on-the-go for every CSI measurement at the

user terminal. The publication also proposes that the optimal number

of feedback bits should be derived at the base station as it has access

to measuring instantaneous uplink channel quality, and that the base

station should subsequently request the CSI feedback report from the

terminal according to the indicated number of quantization bits. The

numerical results demonstrate that such an adaptive quantization ap-

proach can offer considerable reduction in signaling overhead.

•Publication IV develops a multi-cellular optimization scheme for blind

estimators on uplink massive MIMO based on iteratively and jointly

optimizing CSI estimation accuracy. Such multi-cell optimization re-

quires exchanging a subset of the available channel information at each

base station toward a central backend in order to jointly extract the

common information among the shared data. The optimization aims to

minimize the estimation errors caused by the finite number of receive

antennas and transmit symbols. The simulation results compare the

performance of the proposed coordinated optimization scheme with con-

ventional blind estimators and verifies that such multi-cell coordination

helps reach lower symbol error rates.

•Publication V develops a new acquisition technique for downlink CSI

based on multipath extraction in massive MIMO systems. The pro-

posed method relies on extracting the reciprocal characteristics of the

strongest dominant paths from uplink while the corresponding non-

reciprocal path information is transferred from user terminals. Subse-

quently, final CSI is reconstructed at the base station by combining the

available knowledge with the shared information. Such reconstruction

offers several advantages over the conventional acquisition techniques,

such as signaling overhead being immune to the size of the antenna ar-

ray and removing the necessity of downlink training for full CSI estima-

tion. The simulation results demonstrate that the proposed acquisition

method is promising in massive MIMO communications thanks to its

CSI accuracy and low signaling overhead.

•Publication VI is a continuation of Publication V. The main contribution

is designing a new type of user feedback report for the realization of the

said multipath acquisition method, where the reports are composed of
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the phase information from the dominant paths that are targeted by the

base station. In addition, Publication VI develops and discusses opti-

mized selection and indication procedures for the extraction of the said

dominant paths for CSI recovery. The publication concludes that the

proposed technique demonstrates promising potential for future cellu-

lar communications with massive antenna arrays, particularly in large

cells with highly elevated base station towers due to the dependency on

receiving and transmitting planar wavefronts at the proximity of the

massive antenna arrays.

•Publication VII designs a coherent scheme to approximate the globally

optimal performance of a dual-hop link with a MIMO relay that operates

in full-duplex and executes either one of the two most popular relaying

protocols, i.e., amplify-and-forward (AF) and decode-and-forward (DF).

Unlike most of the prior arts, the proposed scheme is based on optimiz-

ing the overall end-to-end link instead of isolating the interference mit-

igation at the relay. In addition, the proposed method is also based on

a novel idea which adapts its optimal design strategy toward the base-

band filters according to instantaneous channel gains. The numerical

results verify that the proposed spatial suppression scheme very closely

approximates its theoretical bound in terms of data rates.

•Publication VIII derives the optimal pair of transmit power allocations

in a full-duplex downlink transmission with an interfering direct end-to-

end connection as a coverage extension scenario. Moreover, an iterative

algorithm is designed in baseband for the spatial suppressions of the

loop-interference as well as the direct connection signal. Simulation re-

sults demonstrate that the proposed scheme achieves higher data rates

when combined with the leakage-based transmit beamformers rather

than those with conventional transmit filtering.

1.4 Structure of the thesis

The rest of this thesis is structured as follows. Chapter 2 provides an

overview of a cellular network with emphasis on propagation channels,

transceiver design components, wireless transmission modes, and perfor-

mance impairments on multi-antenna links. Chapters 3, 4, 5, 6 deal with
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each of the four main topics of the thesis, which are respectively: downlink

multi-user transmission, reciprocity-based massive MIMO systems, non-

reciprocal channel estimation in massive MIMO, and full-duplex multi-

antenna relaying. Finally, Chapter 7 concludes this thesis by summariz-

ing its contributions and hinting at potential future directions.
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2. Overview of a Cellular Network

This chapter provides a brief overview of the state-of-the-art cellular net-

work architecture as well as the current and future trends for its evolu-

tion. The focus is on giving a clear description of the enabling features

and the limitations of a typical cellular communications system to estab-

lish an unbiased medium of assessment for the advanced multi-antenna

signal processing techniques covered in the subsequent chapters of this

thesis.

The most prominent example of the current cellular communication sys-

tems is commercially known as the 4G mobile networks, such as Long

Term Evolution (LTE) and its evolved form LTE-Advanced (LTE-A). The

next big advancement in radio access technology beyond 4G is directed to-

ward the so-called fifth generation (5G) systems, which are expected to be

commercially available by 2020 [17, 18]. In this chapter the description

of the current cellular networks is mostly based on LTE and LTE-A as

standardized by the Third Generation Partnership Project (3GPP). More

detailed description of the LTE-A architecture can be found in [19, 20, 21,

22, 23, 24, 25]. In addition, major potential directions for the next wave

of growth are also provided based on the concerted visions of the indus-

try participants and ongoing alliance projects on 5G research. The initial

timeline and technology clarifications of 5G can be found in [26, 27, 28,

29, 30, 31, 32, 33, 34, 35, 36].

In the following this chapter describes the multi-layered architecture of

a cellular network, propagation characteristics of a typical multi-antenna

wireless transmission, generic building blocks of a wireless RF transceiver,

as well as the main sources of performance impairments in a standard

multi-cellular multi-terminal mobile communication system.
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2.1 Architecture

The network architecture of LTE is fundamentally composed of three ma-

jor components: user equipment (UE), evolved UMTS Terrestrial Radio

Access Network (E-UTRAN), and evolved packet core (EPC) [23, 37, 38].

The UE handles all the communication functions from and to a mobile

user using the stored user-specific information. The E-UTRAN, also known

as theaccess network, deals with the communications between UE and

EPC, and consists of multiple eNB stations, each of which is connected

to other eNBs by the X2 interface. The serving eNB handles the data

transmissions to and from the connected UE, oversees the basic oper-

ations of UE by signaling control messages, and is also responsible for

the radio resource management (RRM). The EPC, also known as thecore

network, is responsible for hosting operators’ subscriber information, con-

trols the functioning of high-level mobility management, communicates

with packet data networks, and connects to theservices domain. The EPC

is composed of Mobile Management Entity (MME), Serving Gateway (S-

GW), Packet Data Network Gateway (P-GW), Policy Control and Charging

Rules Function (PCRF), and Home Subscription Server (HSS) units. The

MME controls and processes the signaling between EPC and UE related

Figure 2.1.A typical cellular architecture (e.g., of LTE) with three major components.
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to the non access stratum (NAS) protocols. The S-GW handles the trans-

fer of user-plane packets and UE handovers between neighboring eNBs

and different radio access technologies (RAT). The P-GW acts as a gate-

way and provides UE with connectivity to external packet data networks.

The PCRF is responsible for policy control decision making and control-

ling the charging functionalities in the P-GW. The HSS holds information

regarding users’ subscription data and the packet data networks that are

accessible by the users. The basic network architecture is illustrated in

Fig. 2.1.

A complementary way of classifying the LTE architecture can be based

on the control plane protocols, which comprise: physical layer (Layer-1),

data link and access layer (Layer-2), control and application layer (Layer-

3). The layer-1 handles the physical layer (PHY) operations, which in-

clude link adaptation (e.g., coding/decoding and modulation), power con-

trol, multi-antenna mapping, and initial cell search. During wireless sig-

nal transmissions the symbols are modulated by orthogonal frequency di-

vision multiple access (OFDMA) on downlink and single carrier frequency

division multiple access (SC-FDMA) on uplink. The layer-2 consists of

medium access control (MAC), radio link control (RLC), and packet data

convergence protocol (PDCP). The MAC performs hybrid automatic re-

peat request (HARQ) retransmissions and scheduling in uplink/downlink.

The RLC is responsible for the segmentation and concatenation of In-

ternet Protocol (IP) packets, and also performs error correction through

automatic repeat request (ARQ). The PDCP handles IP header compres-

sion/decompression, user/control plane data transfer, and integrity pro-

tection and encryption. The layer-3 contains radio resource control (RRC)

and NAS. The NAS performs user authentication, location registration,

bearer context activation/deactivation through messages directly between

Table 2.1.Control plane protocol stacks of UE in LTE.

Protocol Control tasks

Layer-3 NAS User authentication, location registration

RRC Radio resource usage, paging, RRC connection

Layer-2 PDCP IP header (de)compression, encryption

RLC Segmentation, concatenation, ARQ

MAC Scheduling, error correction (HARQ)

Layer-1 PHY OFDMA and SC-FDMA related functions
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UE and MME. The RRC controls the radio resource usage, and manages

signaling, data connections. The RRC is also responsible for establish-

ing, maintaining, and releasing of an RRC connection between UE and

E-UTRAN. The protocol stacks and their main responsibilities are briefly

listed in Table 2.1.

In the following, we mostly focus on the physical layer (Layer-1) aspects

of cellular networks. First, the characteristics of a wireless propagation

are described in detail. Then, we elaborate on RF transceivers and various

factors for performance limitations on the physical layer.

2.2 Wireless propagation

The overall end-to-end channel response of a cellular communication link

is composed of the effect of the electromagnetic channel response as well

as the hardware responses of the transceivers.

The propagation of the electromagnetic waves is often characterized

by multiple temporally dispersed paths through which the propagating

waveforms travel. The paths that are impacted by scatterers, reflectors,

or diffractors are called non line-of-sight (NLoS), whereas the paths that

directly connect the end points of a wireless link are called line-of-sight

(LoS). The LoS path of a wireless channel typically has the shortest de-

lay and strongest propagation gain, although multipath channels may be

composed of only NLoS paths if an obstruction blocks the line of sight

between transmitter and receiver.

Wireless fading can be grouped into three types: pathloss, shadowing,

and multipath fading. According to the pathloss model, the strength of

a transmit signal from an omni-directional antenna attenuates inversely

proportionally to the square of the distance traveled in free space due to

the conservation of energy principle, as the surface area of a sphere is

proportional to its square radius. In other propagation mediums, though,

the RF power of a signal decays differently depending on the texture of

the medium as well as the impact of the surrounding obstructions. Ex-

perimental studies have shown that the pathloss on our planet is usually

proportional to1/dη, wheredis the travel distance andηis the atten-

uation coefficient that is often measured between1.51to4. Shadowing

1At mobile communication frequencies, a LoS propagation inside a building may

exhibit a lower pathloss exponent than the free space, depending on the geometry

and material of the inner walls acting as a waveguide [39].

30



Overview of a Cellular Network

occurs due to the terrain characteristics, such as large obstacles like build-

ings or hills, and causes medium-scale fluctuations in the receive signal

strength. Shadow fading generates non-uniformity in the coverage area,

which creates difficulties for cost-efficient network planning. Multipath

fading causes variations in the amplitude, phase, and direction-of-arrival

(DoA) characteristics of a receive signal. The variation can be rapid and

substantial due to the reflectors and diffractors creating many electro-

magnetic waves from each path, as they can be accumulated at a receiv-

ing terminal either constructively or destructively based on their altered

DoA and delay characteristics [40].

2.3 RF transceivers

The response of a wireless channel is also impacted by the transmit and

receive antenna radiation patterns, which are often distorted by the im-

perfections in RF chain circuitry. These RF impairments are mainly caused

by the oscillator phase noise, direct current (DC) offset, in-phase/quadrature

(I/Q) imbalance, and nonlinearities in power amplifiers.

The local oscillator of an RF chain is responsible for the phase noise.

When an oscillator employs phase-locked loop (PLL), the resulting phase

noise follows a random process with finite-power. On the other hand,

without PLL the phase noise varies slowly; but it may accumulate over

time [41, 42]. In case of time-division multiplexed switching with a sin-

gle RF chain [43, 44], the impact of phase noise is particularly signifi-

cant in multi-antenna communications due to distinct phase noise compo-

nents for different channel coefficients. In such MIMO setups, the overall

RF phase noise with zero crosstalk is often modeled as a diagonal ma-

trix; whereas non-zero terms appear with non-negligible crosstalk at the

non-diagonal places of the phase noise matrix [45]. The DC offset errors

can be caused by the reflections of a local oscillator, which are mistak-

enly picked up and down-converted to DC; or by rapid changes in signal

strength, which lead to short-period overloads [46]. In direct conversion

architecture, the I/Q imbalance occurs due to the mismatches between

the in-phase and quadrature channels of a transceiver when the relative

phase difference within the local oscillator signal is not preciselyπ/2ra-

dian [47, 48]. Nonlinearity in a power amplifier causes distortions in RF

signals with high peak-to-mean power ratios, which may also lead to out-

of-band emissions. The nonlinearity of a commercial power amplifier is
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Figure 2.2.Direct conversion architecture of an RF circuitry fora.transmitters,b.re-

ceivers.

typically present due to the equipment manufacturers’ desire for higher

power efficiency, which requires extending the operation of an amplifier

close to its saturation point within the available dynamic range. A com-

mon design practice is to strike a balance between higher power efficiency

and better linearity.

Transmit signals of a typical transceiver are processed by source cod-

ing, channel coding/interleaving, modulation, space-time encoding, spa-

tial mapping, digital-to-analog converter (DAC), pulse shaping, RF up-

conversion, and power amplification; whereas receive signals go through

low-noise amplifier (LNA), RF down-conversion, analog-to-digital converter

(ADC), demodulation, equalization, decoding/de-interleaving, and decom-

pression, as illustrated in Fig. 2.2.

From a deployment point of view one of the major challenges with very

large antenna systems is related to their RF transceiver architectures.

Massive MIMO systems, as a potential technology component in next gen-

eration cellular networks [31], are known to require extreme amounts

of internal overhead due to data exchanges among very large number of

antennas within the transceiver, which causes overwhelming hardware

latency. In addition, transceivers should be composed of cheap RF compo-

nents in order to reduce the expanding financial costs with more antenna

elements. More detailed discussions on the RF hardware limitations of
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Figure 2.3.Illustration of an LTE scheduling block on downlink.

massive MIMO systems are available in Section 4.1.1.

Symbol transmissions on the downlink of LTE are based on OFDMA

scheme. OFDMA is derived from OFDM modulation to enable simultane-

ous use of radio resources by multiple users, which helps achieve better

multi-user diversity as well as flexibility in scheduling. Successive OFDM

subcarriers are separated by 15 kHz and every group of 12 adjacent sub-

carriers forms aresource block. Hence, each resource block is 180 kHz

and also has a time duration of 0.5 ms, which is called atime slot. A time

slot is composed of either 6 or 7 OFDM symbols depending on the type of

cyclic prefix. A pair of two successive resource blocks forms ascheduling

block, which represents the minimum resource unit that can be assigned

during resource allocation. An illustration of a scheduling block in LTE

downlink is depicted in Fig. 2.3.

High data rate transmissions require the use of a wide bandwidth in or-

der to tap into higher capacities whereas high user mobility leads to large

Doppler spread. However, multipath channels with high-speed users of-

ten experience large temporal and spectral dispersions in wideband trans-

missions. Large delay spread causes inter-symbol interference (ISI) in

time-domain and frequency-selectivity in frequency domain. Large fre-

quency dispersion causes inter-carrier interference (ICI) in frequency do-

main and faster temporal variations of the propagation channel in time-

domain. To provide support for high-rate and high-mobility scenarios in

LTE, OFDM offers protection in wideband transmissions against these is-

sues by means of applying cyclic prefix and multi-carrier modulation with
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Figure 2.4.Time-frequency structure of an OFDMA signal.

pulse shaping, as illustrated in Fig. 2.4. Necessary channel information

for a scheduling decision can be provided by separate CSI reports for dif-

ferent blocks due to resource division. As opposed to earlier cellular radio

access technologies, LTE schedulers can assign both temporal and spec-

tral resources to users, which unlocks additional flexibility that translates

to better throughput and coverage performance.

Uplink of LTE embraces SC-FDMA scheme, which is mainly a precoded

version of OFDMA. However, SC-FDMA facilitates lower power consump-

tion and simpler amplifier design, both thanks to smaller peak-to-average

power ratio, which makes SC-FDMA favorable for portable user termi-

nals that require low power consumption and design cost. During signal

modulation with SC-FDMA, transmit symbols are initially precoded by

discrete Fourier transform (DFT) before being processed by a standard

OFDM modulator, which involves baseband modulation, serial-to-parallel

conversion, subcarrier mapping, inverse Fourier transform, and the addi-

tion of cyclic prefix.

Baseband modulation processes a sequence of binary bits into multi-

level complex numbers based on the modulation format, such as binary

phase-shift-keying (BPSK), quadrature phase-shift-keying (QPSK), or any

16/64/256 quadrature amplitude modulations (QAM). Modulated symbols

are mapped to subcarriers and each block of these mapped data symbols

are simultaneously transformed to time-domain samples by Inverse Dis-
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Figure 2.5.OFDMA and SC-FDMA communication architectures.

crete Fourier Transform (IDFT) after zero padding, which helps prevent

potential aliasing that may be caused by the DAC. Next, a cyclic prefix

block is copied from the end of these time-domain blocks of samples and

added to the beginning. When transmit signals arrive at a receiver, the

prefix part of the samples will have to be removed as it contains ISI from

previous symbols. The additional DFT operation of SC-FDMA before sub-

carrier mapping allows each data symbol to be spread over multiple sub-

carriers, hence SC-FDMA offers higher frequency diversity gain compared

to OFDMA due to such frequency spreading. The naming for SC-FDMA

comes from the fact that data symbols are carried over a group of subcar-

riers which are transmitted simultaneously. In particular, the group of

subcarriers carrying the same data symbol should be considered a single

frequency band carrying the same information sequentially as a standard

FDMA modulation. For signal reception, an OFDMA (or SC-FDMA) re-

ceiver processes demodulation by applying reversal operations (i.e., DFT,

demapping, etc.) with respect to the steps of modulation, as illustrated in

Fig. 2.5.

Deploying multiple antennas is being considered one of the key compo-

nents for reaching the performance objectives in current and future cel-

lular radio technologies by means of utilizing the following benefits. Mul-

tiple antennas provide receive and transmit diversities. The premise of

receive diversity is related to that multiple antennas of a receiver acquire

independent copies of the same transmit signal and the probability of

all these copies simultaneously experiencing deep fading diminishes with
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more antennas. In particular, receive diversity allows collecting more of

the signal energy while avoiding channel fading. Transmit diversity also

delivers resistance against multipath fading and decreases the variance

of receiver-side SNR by space-time coding. For example, cyclic delay diver-

sity (CDD) introduces virtual echos into the channel to artificially increase

its frequency selectivity at the receiver [49].

In addition, multi-antenna communications can support beamforming,

which performs directional transmission or reception of a signal. Beam-

forming is based on constructively combining multiple copies of the de-

sired signal at a specific angle from a transmitter or receiver while cre-

ating interference nullifiers at other angles by means of introducing a

phased array response to multiple antenna elements. The beamforming

technique results in higher SINR and reduced power consumption via con-

centrated signal energy, particularly when carried out by a large antenna

array.

The use of multiple antennas also allows spatial multiplexing on a MIMO

link. When both ends of a link are equipped with multiple antennas, si-

multaneously transmitting multiple data streams usually leads to higher

throughput, thanks to the improved dimensionality of the spatial domain.

Multiple antennas are supported at both base stations and user terminals

by most of the downlink transmission modes (TMs) in LTE-A [22]. Trans-

mit diversity is used in TM2 and TM6. Spatial multiplexing is utilized

in TM3, TM4, TM5, TM8, TM9, and TM10. Beamforming is applied in

TM7 and TM8. Supported transmission modes and the required number

of antennas by LTE-A are listed in Table 2.2.

2.4 Sources of impairments

This section is devoted to summarizing the major types of performance

impairments in a typical cellular network apart from the hardware limi-

tations of RF transceivers, which are already discussed in Section 2.3. The

said performance impairments here indicate sources of interference sig-

nals, inadequate knowledge on the instantaneous channel status, connec-

tion issues during inter-cell hand-off, SNR loss by radio-over-fiber (RoF)

dispersion, loss of LoS access, interference-unaware power control, limi-

tations due to overhead or spectrum constraints, storage and battery lim-

itations, necessary cost reduction for commercial feasibility, and so forth.

In the following, we particularly focus on the sources of impairments that
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Table 2.2.Transmission modes in downlink LTE-A [22].

TM Task Transmit antenna setup

TM1 Single transmit antenna 1 antenna (port 0)

TM2 Transmit diversity 2 or 4 antennas

TM3 Open-loop spatial multiplexing 2 or 4 antennas

TM4 Closed-loop spatial multiplexing 2 or 4 antennas

TM5 Multi-user MIMO 2 or 4 antennas

TM6 Closed-loop transmit diversity 2 or 4 antennas (1 layer)

TM7 Beamforming multiple antennas (only port 5)

TM8 Dual-layer beamforming multiple antennas (ports 7, 8)

TM9 Up to 8-layer spatial multiplexing 8 antennas (ports 7–14)

TM10 Up to 8-layer spatial multiplexing 8 antennas (ports 7–14)

are caused or can be recovered by multi-antenna deployments in a cellular

network.

Inter-cell interference occurs due to the shared use of the same fre-

quency band among multiple neighboring cells. Conventional prevention

against inter-cell interference is based on dividing the whole spectrum

into multiple orthogonal bands byfrequency reuse factor(FRF). The sepa-

rated bands are then assigned to cells in such a way that none of the adja-

cent cells use the same spectrum. However, due to the demand for higher

spectral efficiency, more opportunistic adaptive schemes are considered in

modern networks that can find a better balance between spectral reuse

and efficiency, which also renders higher fairness versus throughput, or

vice versa. These trade-offs are elaborated with more details in Chap-

ter 3 regarding the multi-user multi-cell resource allocation problem on

the downlink of a cellular network.

Multi-user interference (MUI) refers to the interference signal among a

group of users sharing the same resource blocks in a downlink broadcast

transmission. When multiple user terminals are co-scheduled on down-

link, all data transmissions are unintentionally received at every user ter-

minal, therefore causing severe reductions in user SINR metrics. There-

fore, MUI mitigation is often desired without compromising spectral effi-

ciency. To do so, a transmitting station must apply spatial suppression by

means of pre-filtering the transmitted user data with respect to individual

channel states. However, in case of inadequate knowledge of CSI as well

as significant number of terminals receiving transmission on downlink,
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an optimal suppression strategy requires detailed considerations. Chap-

ter 3 addresses such transmission strategies in the presence of MUI on a

multi-user MIMO downlink.

Self-interference is a general term that defines the unintentional leak-

age of a transmit signal toward its own transceiver. In this regard typical

ISI and ICI during an OFDM transmission are considered self-interference

due to the same signal stream interfering with itself [50]. Neverthe-

less, the self-interference term is more popularly attached to full-duplex

communication systems, which transmit and receive on the same tempo-

ral and spectral resources through the same end-to-end connection. The

self-interference signal on a full-duplex relay link is often calledloop-

interferencedue to the transmitted signal from one side of the relay curl-

ing toward its opposite end which houses the reception antenna equip-

ment. Self-interference is also experienced in device-to-device (D2D) com-

munications when operated in full-duplex mode. Chapter 6 further dis-

cusses self-interference signals, mitigation techniques, as well as associ-

ated imperfections on the topic of full-duplex relaying.

Multiple access interference is present in multicast transmissions dur-

ing uplink when a plurality of users are simultaneously transmitting to-

ward the same base station on the same spectral resources. Typically,

multiple access interference can be avoided by inducing orthogonality

in spatial domain among user links by advanced receiver techniques or

by orthogonal code division. Conventionally, many multi-user detection

schemes have been developed to combat multi access interference during

uplink data transmissions [51]. More recently, a spatial division tech-

nique, called spatial division multiple access (SDMA), is studied to sup-

port multi-user access on uplink when a sufficient number of antennas is

available at the base station. However, these techniques practice pre-

vention schemes against multi access interference based on the avail-

able knowledge on the channel states. Multi access interference is also

present during a blind channel estimation on uplink when a plurality of

user terminals are simultaneously transmitting non-orthogonal signals to

the same base station. Chapter 4 deals with such impairment caused by

a multi access transmission on the uplink of a massive MIMO network

during channel estimation.

Inaccurate channel estimation is another source of performance impair-

ment. Significant CSI mismatches cause residual errors during interfer-

ence suppression and result in inefficiency in resource scheduling. Chap-
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ter 3 studies the impact of CSI mismatch on downlink multi-user MIMO

performance. In addition, Chapters 4 and 5 deal with the problem of CSI

estimation for massive MIMO systems operating in time division duplex

(TDD) and frequency division duplex (FDD), respectively. Particularly,

Chapter 4 is also concerned with RF impairments of the transceivers with

massive antenna arrays and studies antenna calibration techniques for

reciprocity recovery in TDD mode.

Downlink CSI mismatches at base stations also occur as a result of com-

pressions during user feedback reporting. The impact of the compression

rate is particularly significant when the reported CSI vectors are long

due to a massive-sized antenna array setup. There have been several at-

tempts for opportunistic schemes in literature based on efficiently trans-

ferring CSI by means of adaptive codebooks, iterative feedback reports,

or exploiting pre-known channel characteristics. Chapter 5 elaborates on

various CSI compression schemes and feedback reports in non-reciprocal

FDD-mode massive MIMO communications.
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3. Downlink Multi-User Transmission

MIMO technology has been originally adopted into cellular communica-

tions as a single-user point-to-point transmission technique. Later, it

evolved into multi-user mode in the context of spatial division multiple

access (SDMA) by means of exploiting the spatial signal domain to sepa-

rate the users sharing the same spectrum. Such resource sharing among

multiple users on the downlink of an OFDMA based transmission can of-

fer higher achievable rates by optimized precoding and resource schedul-

ing [21, 22].

Multi-user precoding techniques are commonly designed by improving

the user signal quality while mitigating any undesired signal components

on the link level [52, 53, 54]. Multi-carrier resource allocation techniques

for multi-user scheduling aim to achieve higher spectral efficiency in a

network while sustaining a desired level of fairness among users. Such

resource schedulers are often designed based on either a heuristic ap-

proach [55, 56] or the maximization of a network-wide utility metric [57],

such as proportional fair [58] or round-robin [59, 60]. Conceptually, an

optimum joint design for multi-user resource allocation and precoding is

considered too hard to attain in a typical cellular network as the search

space is extremely large within the allotted time duration [55].

Many efficient algorithms have been studied in literature, which can

intelligently generate high sum-throughput rates, network fairness, and

flexibility for user priority. In this chapter multi-block resource allocation

methods coupled with multi-antenna transceivers are discussed for for-

ward link transmission. The contributions of this thesis are presented as

well. Publication I presents a novel joint precoder and receiver method

for a multi-user transmission scenario. The method is based on decou-

pling the filters with the help of introducing two target channel matrices

which are designed for high SNR conditions. In addition, Publication II
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explores multi-carrier multi-user schedulers with successive interference

cancellation based on greedy and genetic based heuristic algorithms. The

described schedulers optimize user selection, user ordering, as well as the

assignment of scheduling blocks by heuristic iterations in order to maxi-

mize targeted performance metrics.

3.1 Precoding design

In 1983, Costa [61] demonstrated that the sum-capacity of a wireless

transmission, even with additive interference, can be attained by dirty

paper coding (DPC) as long as the knowledge of the interference signal

is noncausally available at the transmitter. He showed that the opti-

mal transmitter can adapt its signal to co-exist with the interference

rather than trying to mitigate it. Specifically, if the interference signal

at a receive terminal is known by its serving transmitter in advance, the

achievable data rate can theoretically reach the system capacity of the

interference-free transmission by means of adapting the transmit encoder

according to the directional information of the future interference signal.

This is illustrated by an analogy to writing some text on a dirty piece of

paper; hence the naming of the optimal interference-aware encoder [61].

As such optimal encoding requires accurate knowledge at the transmit-

ter about the receive-side interference, DPC is considered applicable to

cellular communication systems mostly in the context of downlink multi-

user transmissions as the interfering signal originates from the base sta-

tion itself in the form of MUI1. In addition, as the served user terminals

in a resource sharing based broadcast transmission are uninformed about

the CSI of others, receiver-side MUI mitigation can only be performed

sub-optimally. Although the proof of existence by Costa is elegant, the op-

timal encoding strategy for DPC is still unknown and the best attempts in

literature are known to be computationally very demanding [62]. More-

over, DPC is sensitive to CSI errors, especially in multi-user downlink

transmissions where accurate MUI prediction is hard.

Tomlinson-Harashima encoder is originally developed for single-stream

transmissions to combat ISI by means of pre-subtracting the interfer-

ing components created by the previously transmitted symbols [63, 64].

However, this encoder is often considered for multi-user transmission sce-

1Or in the context of full-duplex in-band relaying as theloop-interferencealso

originates from the same station point.
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narios in the context of pre-subtracting the precoded symbols that are

intended for other co-scheduled users. The performance of Tomlinson-

Harashima precoder relies on very accurate CSI; any small mismatch can

cause SNR saturation in response to increased transmit power [65].

The fundamental idea behind Tomlinson-Harashima precoding is illus-

trated in Fig. 3.1. The interference is pre-subtracted from the transmit

symbols, after which a modulo-Δoperator is applied. Hence, the strengths

of the transmit symbols are effectively constrained within[−Δ/2,Δ/2).In

case of complex-valued symbol modulations (such as, 16-QAM), separate

modulo operations can be used for the real and complex parts of the sym-

bols. The role of the modulo operator here is to keep the transmit power

minimal. Finally, the receiver applies the same modulo operator to re-

cover the intended symbols.

Figure 3.1.Tomlinson-Harashima encoding mechanism.

Trellis and convolutional coding methods are often applied together with

the Tomlinson-Harashima encoders in order to overcome their inherent

issues on shaping, modulo, and power limitations [66, 67]. Trellis precod-

ing [68] combats the shaping loss at high SNR regime by taking into ac-

count both present and future interference sequences. Convolution decod-

ing can recover the modulo and power losses present at low SNR regime

when applied with partial interference presubtraction, which leaves out

uniform-plus-Gaussian distributed residual noise [67]. Similarly, nested

lattice structure [69, 70, 71] based methods can also be applied with the

Tomlinson-Harashima encoders in order to combat the described inherent

limitations.

However, these DPC based precoding techniques always require compu-

tationally heavy signal processing, which may not be feasible at the base

station of a cellular network [72], e.g., due to limited time duration in the

order of milliseconds. In addition, the necessary non-linear processing is

often tailored for a specific symbol modulation scheme. On the other hand,

linear filters are generically designed for any modulation method. In ad-

dition, they can still theoretically achieve the same multiplexing gain as

DPC even with lower complexity [73, 74]. This can be realized by means
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of spatial-domain MUI suppression, as elaborated in the following.

3.1.1 MUI suppression

A well-known spatial-domain suppression is zero-forcing; a linear pre-

coder that is widely used and works particularly well under low CSI mis-

match and high SNR conditions. The design is typically based on pre-

suppressing the entire interference toward the unintended users by means

of calculating the pseudo-inverse of the broadcast channel response at the

base station. In case of multi-antenna terminals, block diagonalization

(BD) is known to perform better while still removing out the MUI, which

can be derived by either singular value decomposition (SVD) [52] or QR

factorization [75]. The design process follows first eliminating the MUI

for each user terminal by aligning its transmit filter to the nullspace of

the right singular matrix of the aggregate leakage CSI, after which the

decoupled effective channels of the MUI-free communication can be opti-

mized by matched filtering. In case of massive transmit antenna arrays,

MUI tends to disappear without any mitigation thanks to the asymptotic

orthogonality, hence a matched filter can be directly applied at the trans-

mitter2. More advanced linear precoders can be designed based on im-

proving the SINR by means of minimum mean square error (MSE) [53] or

maximum signal-to-leakage plus noise ratio (SLNR) criterion [76].

In case some or all user terminals employ multiple antennas, the opti-

mal design of the filters becomes too hard to derive due to non-convexity.

One approach forward is to decouple this joint design process of the trans-

mit and receive filters, therefore establishing sub-optimal solutions. Specif-

ically, MUI mitigation can be handled entirely at the transmit side while

the receive filters are brought into the picture at the second stage of the

optimization. For instance, transmit precoding can be considered a two-

layer filtering operation, where the first filter is designed to mitigate the

MUI alone while the second transmit filter as well as the receivers are

derived to produce minimum MSE [75]. Such two-layer transmit filtering

can strike a balance between MUI and noise mitigations. An alternative,

yet similar, example can be an optimization process based on minimizing

the interference-plus-noise signal as a whole by the regularized BD, after

which the user data signals can be optimized disjointly [77]. Publication

I demonstrates an optimized filter design by such interference-plus-noise

2More on this in Section 4.2.
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minimization in the presence of CSI errors. In addition, MUI can also

be mitigated in a successive manner for each user terminal, usually com-

bined with a user selection mechanism in multi-block resource schedulers;

as elaborated more in Section 3.2.

3.1.2 Impact of CSI mismatch and thermal noise

A significant requirement for high-performing multi-user transmissions

is the availability of accurate CSI. In case of perfect channel knowledge,

zero-forcing is well known to be an effective linear transmission scheme,

specifically in high SNR conditions. When CSI mismatch is small, novel

schemes can opportunistically allow negligible residual interference by

means of imperfectly orthogonalizing user channels, therefore helping to

achieve higher overall spectral efficiency via more efficient use of the spa-

tial degrees of freedom [78]. In a realistic communication scenario, how-

ever, CSI mismatch usually occurs due to channel estimation and quan-

tization errors, as well as temporal evolution between successive channel

measurements due to mobility. Base stations, particularly in FDD mode,

rely on uplink feedback from user terminals to acquire CSI. Due to the

limited available control signaling, only a small number of bits can be sig-

naled to convey the channel information during each feedback interval,

hence generating quantized CSI reports. With the addition of channel es-

timation errors during downlink training, acquired CSI becomes less reli-

able at the base station. It is well known that CSI mismatches cause an

error floorat high SNR. The general rule of thumb in literature for com-

batting such degradations of CSI mismatch is related to estimating its

error variance, which can be accomplished via stochastic processes [79],

quantization error estimation methods [80], or Shannon’s rate-distortion

theory [54]. The sensitivity of the transmit filter is then calibrated by a

linear regularization approach based on the estimated variance of the CSI

mismatch.

The response of a MIMO channel often contains spatial correlations as

a result of the scattering environments and antenna coupling at either

transmit or receive end of a link. Channel correlation is notorious for

limiting the multiplexing gain in single-user MIMO transmissions, hence

reducing the maximum spectral efficiency [81]. However, it has been also

shown that correlated fading can be beneficial to multi-user MIMO com-

munications as it can reduce the required amount of feedback overhead,

particularly when multiple users experience the same transmit-side cor-
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relators [82, 83]. Hence, channel correlations are occasionally considered

an opportunity in certain use cases. With the recent popularity of massive

MIMO system studies, various compression schemes have been investi-

gated for limited CSI feedback overhead. Exploiting the spatial-domain

correlations of a downlink channel is proven to be one of those promising

compression techniques [84, 85], as discussed in Section 5.2.2. In essence,

such two-sided exposition of spatially correlated channels indicates that

the best way of approaching a challenging problem is sometimes to search

for a solution from a different angle of view instead of giving up in the

first place.

An optimal transmit filter in multi-user MIMO approaches zero-forcing

(ZF) and maximum ratio transmit (MRT) schemes under low and high

thermal noise conditions, respectively, whereas minimum MSE-based fil-

ter (also known astransmit Wiener filter) can strike an optimum bal-

ance between desired signal maximization and MUI suppression [86]. Al-

though transmit-side operations have no direct impact on the user-side

signal degradations that involve any thermal noise and inter-cell inter-

ference by external sources, the optimum balance of the transmit Wiener

filter is known to be capable of influencing such degradations at user ter-

minals by again controller. The design procedure is fundamentally based

on harnessing the available transmit power at the base station to scale

up the transmit signal amplitudes. In return, user terminals become ex-

posed to additive noise and inter-cell interference with relatively smaller

amplitudes than those of the incoming desired symbols. In essence, the

core benefit of the gain controller is in relaxing the transmit-side filter de-

sign from any norm constraints, hence providing more flexibility to serve

users under diverse SINR conditions. Capturing such an optimal balance

between MUI and any other undesired signals by the described proce-

dure is also known asregularization[87]. Of course, the thermal noise (or

any external source of interference) at a user terminal cannot be observed

by the base station. One approach for choosing the gain controller can

be by means of deriving an estimate for the long-term average power of

those noise-plus-interference signals based on the reported channel qual-

ity indicator (CQI) information. Another approach can be based on a local

optimization at the base station, such as based on asymptotic SINR com-

putations in case of large-scale MIMO [88].

The impacts of CSI mismatch and spatial correlations on multi-user

downlink performance are studied by simulations in Fig. 3.2. The nu-
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merical results are demonstrated by sum-rate plots and generated on an

isolated cell with one 10-antenna base station and 5 user terminals each

equipped with 2-antennas. The simulation setup is as follows. The prop-

agation channels are composed of flat fading independent identically dis-

tributed elements and the thermal noise is modeled by zero-mean complex

Gaussian random variables. The CSI mismatch is rendered via only chan-

nel estimation errors based on the Gauss-Markov uncertainty model with

βcharacterizing the error coefficient as follows.

H(True)= 1−β2H(Est.)+βE, where0≤β≤1, (3.1)

for whichH(True)andH(Est.)respectively denote the true and estimated

CSI matrices;E∼CN(0,I)denotes the random error matrix. Observe

thatβ=0produces true CSI estimates andβ=1indicates zero cor-

relations between the estimated and true CSI matrices. Transmit-side

channel correlations are generated by the Kronecker model withαrepre-

senting the spatial correlation coefficient as follows.

H(True, Corr.)=H(True)R1/2,whereR(i, j)=

⎧
⎨

⎩

α|i−j|,ifi=j,

1, otherwise.
(3.2)

for whichH(True, Corr.)denotes the spatially correlated channel response,

Rdenotes the transmit-side correlation matrix, and0≤α≤1. Observe

thatα=0renders spatially uncorrelated channels andα=1causes full

spatial correlations at the base station. In addition, channel SNR values

are set to either0or15dB to assess the impact of the thermal noise on

the performance. The numerical results compare the performance of stan-

dard linear precoding methods under channel correlations and CSI errors.

As expected, MUI suppression proves to be less favorable under higher

thermal noise, greater spatial correlation, and larger CSI mismatch con-

ditions.

3.1.3 Joint transceiver design

When some or all of the terminals are equipped with multiple antennas,

the optimum design for the transmit and receive filters becomes coupled

with each other, hence creating a space to explore the optimal solution

by a joint design approach [89, 90]. However, such joint design prob-

lem is known to be non-convex, therefore hard to solve efficiently. Low-

complexity optimization algorithms have been investigated by many re-

searchers over the years to attain close-to-optimal performance results.
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Figure 3.2.Impacts of CSI mismatch (left-side), spatial correlation (right-side), and ther-

mal noise (top vs. bottom):a.SNR = 0 dB,α=0;b.SNR = 0 dB,β=0;

c.SNR = 15 dB,α=0;d.SNR = 15 dB,β=0. Conclusions are: 1) Inter-

ference cancellation is more beneficial under low thermal noise; 2) Both CSI

mismatch and spatial correlations devalue MUI suppression.

General strategies for these attempts can be classified into two categories.

The first category is based on exploiting the available knowledge of the

channel conditions. For example, when the amount of CSI mismatch or

the thermal noise is estimated for a user terminal [79, 80], its linear filter

can be approximated by a suitable unilateral closed-form scheme, hence

simplifying the design process for other users. In other words, the goal

revolves around reducing the extent of the joint solution set while ensur-

ing minimum amount of diversion from the global optimum. The second

strategy depends on decoupling the transmit and receive filters by fixing

each of them, hence converting the joint optimization into two separate

convex problems. Next, the jointly optimized filters can be approximated

by an iterative algorithm, while its convergence may not be guaranteed.

Although such iterative algorithms are widely adopted in literature (i.e.,

often based on minimum MSE criterion), they usually share two major

limitations. The first issue is that most of those algorithms focus on MUI

cancellation while overlooking the impact of thermal noise on the perfor-
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mance [91]. The second issue is related to the optimal power distribution

among users. One simplified approach regarding the second issue has

been applying per-user power constraints, such as unit power for each

user [92], although optimal power allocations should be derived accord-

ing to users’ channel status. One attempt for such optimization has been

designed based on an exhaustive search via the Lagrange method [93].

Despite its theoretical charm, such an exhaustive search is not feasible to

operate in a short time window during an ongoing downlink transmission.

On the other hand, a practical point of view toward the joint transceiver

problem suggests that it is possible to compensate for the rate loss due

to the additional control signaling, only when the channel conditions are

favorable for high-rate transmissions. In the light of this opportunistic

view, Publication I introduces two target channel matrices that are suit-

ably designed for high SNR environments. A target channel matrix is here

identified as an approximation of the desired effective channel response

in a multi-antenna transmission.

The joint transceiver design of Publication I is based on integrating the

optimal gain controller for power allocation into the minimum MSE ex-

pression and decoupling the transmit and receive filters with the help of

the target channel matrices. Figure 3.3 compares the performance of this

joint optimization with some of the most popular linear filtering methods

from literature. One of them is known as thegeneralized minimum mean

square error (MMSE) channel inversion[75] whereas the other is referred

to as theregularized block diagonalization[77]. The described joint opti-

mization outperforms the reference schemes under high SNR conditions.

It also proves to be immune to large CSI mismatches as long as they are

less significant than the degradations caused by the thermal noise. On

the other hand, the proposed joint scheme exhibits slightly larger rate

loss when exposed to extreme spatial correlations.

3.2 Multi-carrier resource allocation

As part of the RRM, eNB is responsible for allocating resource blocks,

scheduling transmissions, and monitoring real-time traffic in order to

meet the required QoS. The adoption of OFDMA on the downlink of cellu-

lar networks enables resource allocation techniques that are precise and

multi-dimentional in the spatial, temporal, spectral, and even multi-user

domains. With such design flexibility as well as the inevitable need for
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Figure 3.3.Impacts of CSI mismatch (left-side), spatial correlation (right-side), and ther-

mal noise (top vs. bottom):a.SNR = 0 dB,α=0;b.SNR = 0 dB,β=0;c.SNR

=15dB,α=0;d.SNR = 15 dB,β=0. Conclusions are: 1) Proposed joint

design outperforms others under high SNR as intended; 2) Proposed joint de-

sign is also more immune to large CSI errors; 3) Extreme spatial correlations

degrade the joint scheme comparatively more notably. Publication I,c2014

IEEE.

spectrum efficiency, the problem of radio resource allocation has been re-

ceiving a lot of attention in the research community.

The main radio resources are frequency bands, time slots, and avail-

able transmit power. In case of multi-antenna transceivers at a base sta-

tion, multiple users’ connections can be simultaneously sustained using

distinct spatial resources on the same spectral band and time slot. The

distribution of all available resources among active connections can be op-

timized by either a utility based or a heuristic based approach. The util-

ity based resource allocation provides robust and generalized solutions

whereas heuristic methods offer faster and more efficient solutions in an

opportunistic manner. In either case downlink resource allocation assigns

the available scheduling blocks to a group of users in order to maximize a

network-wide objective function.

Most OFDMA schedulers operate in two consecutive stages to reduce

the complexity in time-domain and frequency-domain [94]. Time-domain
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scheduling selects a list of candidate users to be scheduled whereas a

frequency-domain scheduler subsequently determines the assignment of

the available scheduling blocks to those users in the candidate list. Since

a time-domain scheduler operates independently of the resource blocks,

its decisions are determined based on wideband CQI reports, which can

be considered binary-coded integers based on the observed SINR at user

terminals [21]. On the contrary, both packet schedulers can target opti-

mizing either the same or different utility metrics, such as system-wide

throughput, fairness, minimum packet drop, etc., depending on the de-

sired scheduling characteristics of the network. Apart from fulfilling the

QoS requirements, the goal is to provide an optimal balance between spec-

tral efficiency and fairness depending on the service type. For instance,

fairness among users can be achieved by the time-domain scheduler while

the frequency-domain scheduler focuses on maximizing the throughput

metric [95, 96]. In real-time services, such as VoIP, packet schedulers of-

ten prioritize latency requirements [97]. Instead, both packet schedulers

can employproportional fairmetric, which allocates resources to users

with the highest instantaneous throughput relative to their average past

throughput.

Frequency reuse among multiple cells is well known to be useful for im-

proving the cell-edge user performance by avoiding severe co-channel in-

terference, which is widely used in the conventional 2ndgeneration GSM

networks [98]. However, spectral efficiency can still be improved while

preserving the cell-edge performance by fractional frequency reuse (FFR),

which offers two different FRFs to every cell. The FFR can be imple-

mented by assigning an FRF greater than unity to cell-edge regions and

unit FRF to cell-center regions [99]. Major design problems on FFR is

related to introducing an optimal division between the intra-cell regions

with the corresponding optimal distribution of spectral bands, and also re-

lated to designing adaptive algorithms that can sense the instantaneous

network conditions and proactively alter the FFR parameters. However,

advancements in signal processing, more computational capabilities of

user terminals, and especially the flexibility of fast frequency-domain sched-

ulers allow advanced interference management techniques that can po-

tentially render frequency reuse schemes obsolete. It is well known that

non-unitary FRF in an OFDM system reduces the available number of

resource blocks for scheduling, therefore causing reductions in achievable

throughputs, particularly drastically for high-bandwidth services [100].
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The main distinction between utility based and heuristic schedulers is

as follows. Utility based methods evaluate the level of user satisfaction

in case of a certain resource allocation by a quantifiable metric, such as

throughput, fairness, or latency. The final scheduling decision is then

determined by picking the set of allocation decisions that offer the maxi-

mum utility metric among all possible combinations. Utility based meth-

ods are reliable when the scheduling problem consists of a small search

space. On the contrary, heuristic schedulers seek sub-optimal solutions

through arationalsearch mechanism (instead of an exhaustive brute-

force attempt) by means of following a systematic set of optimization

steps, which exclude any unpromising combinations. Heuristic methods

are usually beneficial when the optimal solution is practically unfeasible

to attain as they perform iterative low-complexity computations. Util-

ity based schedulers have been extensively studied for past cellular radio

technologies as those schedulers are very suitable for less sophisticated

network needs. On the other hand, growing demand for higher spectral

efficiency increases the number of transmit antennas, targeted multi-user

terminals, and available spectral resources, hence justifying the research

interests in low-complexity heuristic schedulers more strongly than ever.

In the following, the rest of this chapter focuses on the heuristic methods

for downlink multi-user schedulers. In addition, the proposed genetic and

greedy based heuristic schedulers by Publication II are also discussed and

analyzed with numerical evaluations.

3.2.1 Heuristic-based scheduling

Allocation of available scheduling blocks among multiple user terminals is

a combinatorial optimization problem with non-linear objective function

and constraints. Hence, the optimum scheduling strategy is often attain-

able only via an exhaustive search, which is impractical in a large search

space. On the other hand, heuristic algorithms are known to be capable of

rendering acceptable, though sub-optimal, results with low computations.

Therefore, network schedulers based on heuristic algorithms are consid-

ered favorable for practical deployments. Heuristic schedulers can oper-

ate in three distinct stages: The first step involves choosing the users that

are to be served, which is conventionally addressed asresource allocation

problem. The second step deals with the distribution of the available re-

sources among the selected users, which is calledresource assignment.

The third step is related to ordering the allocated users on every schedul-
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ing block with respect to either increasing or decreasing priorities in case

the transmit station employs a successive type of MUI pre-cancellation.

Most popular heuristic methods for downlink schedulers include greedy

algorithm [101], simulated annealing [102], tabu search [103], genetic

evolutions [104], swarm optimization [105, 106], neural networks [107,

108], support vector machines [109], all of which are mainly developed

in order to tacklehigh time-complexityorpremature local convergenceis-

sues inherent to non-heuristic search algorithms. Arguably the most fa-

mous example in illustrating the gravity of the said issues is known as

thetraveling salesman problem(TSP). Imagine that a salesman has to

visitncities by starting from his home city and passing through each of

the other cities only once until he returns his home again. Transporta-

tion is possible between any two cities and all transportation costs are

known by the salesman prior to his journey. The question is in which or-

der this salesman should visit the cities so that his total expenditure is

minimized. Clearly, there are(n−1)!possible travel plans. Forn=15

cities, an exhaustive search requires computations over more than8×1010

combinations!

Greedy algorithms are based on picking a locally optimized choice at

each stage of a large combinatorial optimization problem. The name of

the algorithm comes from its selfish (or greedy) nature in always relying

on the local optimality at any stage irrespective of other stages. Although

a greedy algorithm always finds the best local optima, it does not neces-

sarily render results close to the global optimum. In the context of the

TSP a greedy algorithm may suggest the salesman every time to visit

the city that will cost the least amount of expenditure for the short term.

Since the rules disallow revisiting a city twice, the cost of visiting the sub-

sequent city always tends to increase during the course of the salesman’s

travel. But, picking the cheapest visit at each step often does not lead to

the most cost-efficient travel plan. Schedulers based on such greedy algo-

rithms are known as low-complexity and high performance solutions for

multi-user resource allocation problems. However, the required computa-

tions are usually more extensive due to the necessary metric calculations

at every optimization stage, as compared with the computations of other

heuristic methods, such as genetic algorithms. Greedy schedulers may

introduce a simplified pre-selection mechanism or apply an intermediate

user grouping to relax the complexity by means of limiting the local search

space [110, 111].
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The genetic algorithm is a heuristic search method based on evolution-

ary iterations of a random class of sample populations. The algorithm was

initially developed by Holland [112] by mimicking the lifecycle of chromo-

somes, which involves reproduction, recombination, crossover, and muta-

tion processes. At every generation a new set of individuals is created

by reproduction followed by a natural selection that decides the survivors

based on theirfitnessmetrics. Similar to the natural evolution, this pro-

cess leads to a gradual improvement of the population with fitter offspring

that are more likely to survive than the members of the past generations.

A genetic algorithm may resolve the TSP by randomly picking a sample

number of travel plans among all possible combinations. Each complete

path represents a unique chromosome designed as a sequence of binary

digits and the corresponding travel costs are multiplicatively inverted to

denote the associated fitness metrics. The chromosomes are processed

by crossover and mutation, which respectively indicate randomly located

exchanges and flips of some bits. At the end of continuous evolutions

over sufficient number of generations, the path with the highest fitness

metric is concluded as the best choice of travel plan for the salesman. A

genetic based algorithm requires few computations besides negligible bi-

nary swap operations; and usually leads to satisfactory results, although

sub-optimal, as long as the search space is large. Downlink schedulers

based on the genetic algorithm are considered low-complexity methods

that gradually approximate the optimum resource management. Such

schedulers can be designed to simultaneously handle the allocation and

assignment of resources, as well as successive user ordering within the

evolution of each population.

Publication II designs greedy and genetic based schedulers for a multi-

carrier multi-user downlink transmission and analyzes their performance

in a system-level simulation setup. Instead of running multiple uncon-

nected algorithms for each scheduling block as commonly embraced in

literature [104, 113], both of these schedulers here simultaneously oper-

ate on all available scheduling blocks and successively introduce a new

user assignment at each iteration, as described in more details below.

The greedy-based scheduler of Publication II functions as follows. First,

the time-domain scheduler selects a pre-defined number of users among

all active users based on a wideband utility function. Second, the frequency-

domain scheduler evaluates the selected users’ utility metrics on every

scheduling block and assigns the users with the highest metrics. As these
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Table 3.1.Greedy-based Multi-Carrier and Multi-User Scheduler

Step#1: Time-domain scheduler— Selection of candidate users:

A pre-defined number of users are selected among those

requesting service based on maximum wideband utility

Step#2: Frequency-domain scheduler— Primary user assignment:

The user with the highest metric is assigned on every

scheduling block as its primary user

The primary users are associated to hermitian precoders

for every resource block

Step#3: Frequency-domain scheduler— Secondary user assignment:

On each scheduling block the benefit of assigning an

extra user is evaluated based on the utility metrics

If a candidate user among the selected group can

improve the collective utility of a scheduling block,

•The best candidate is assigned as a secondary

user on that resource block

•The precoder for the new assignee is based on

the zero-leakage rule toward the earlier assignees

•Step#3is repeated on that scheduling block

for the next secondary user

Otherwise, the scheduling decision is finalized on

that resource block

assignees are the primary users of their scheduling blocks, the precoders

should be matched filters. Next, the utility metrics of the initially se-

lected users are re-evaluated on top of the last user assignment and the

ones reaching the highest metrics are assigned as the secondary users

for that scheduling block if the additional user assignment improves the

overall utility metric on the associated scheduling block. The precoders

for these secondary users are based on the zero-leakage criterion toward

the previous assignees of that block so that the latest user assignment

does not temper with the earlier scheduling decisions. Such successive

multi-user assignment ends once the utility reduction for the previous as-

signees outweighs the benefit of assigning an additional user. The steps

of the greedy-based scheduler are briefly listed in Table 3.1.

The proposed genetic-based scheduler of Publication II operates through

the standard steps of a genetic algorithm, as explained below.
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Initializationinvolves constructing a set of chromosomes as binary se-

quences based on a set of pre-defined rules. These rules describe the re-

quired chromosome structure and depend on the scheduler design. Publi-

cation II constructs two types of chromosomes for the primary and sec-

ondary user assignments. The primary chromosome structure is com-

posed ofheadandtail. Each bit in the head represents one of the ac-

tive users. A “binary–1” bit indicatesselectionfor the corresponding user,

whereas a “binary–0” indicatesno selection. Hence, the head takes over

the tasks of a time-domain scheduler. The tail allocates a group of binary

digits for every scheduling block so that each group can assign a unique

number for every selected user, which indicates the scheduling decision

for primary user assignments. On the contrary, secondary chromosome

structure is composed of only tail and preserves a group of binary digits for

each scheduling block. Each of these binary groups can uniquely indicate

an index of one candidate user for a secondary assignment on the corre-

sponding resource block unless the binary group contains “all binary–0”s,

which indicatesno more secondary assignments. Hence, the tails mimic

a frequency-domain scheduler by the first and second chromosome struc-

tures, respectively, for the primary and secondary user assignments. The

proposed pair of chromosome structures is illustrated in Fig. 3.4a. As a

comparison, some other multi-carrier schedulers in literature consider a

single chromosome structure for multi-user MIMO resource allocation by

simply extending the length of the chromosome sequences designed for

one resource block [114] (See Fig. 3.4b for the illustration). However, such

a chromosome structure renders longer evolutions over more generations

until the population reaches a satisfactory fitness. Instead, assigning an

additional user at every iteration shortens the chromosomes, therefore re-

ducing the runtime of the algorithm by faster convergence. Alternatively,

there are also so-called multi-carrier schedulers which run independent

instances of a genetic algorithm designed for a single resource block [104]

(See Fig. 3.4c for the illustration). However, such methods are inefficient

with a large number of resource blocks and are also unable to fulfill user-

based multi-carrier scheduling restrictions.

Selectionprocess evaluates the fitness of every chromosome in a cur-

rent generation. Two chromosomes are picked randomly based on their

fitness metrics. The picked chromosomes are then paired for breeding.

Breedingoperation produces child chromosomes from the selected par-

ents. A random bit index is picked with uniform distribution and all the

56



Downlink Multi-User Transmission

Figure 3.4.Alternative binary-coded multi-carrier chromosome structures for genetic-

based schedulers:a.Former (top) and latter (bottom) structures as proposed

in Publication II,b.Elongated form of a typical single-carrier based chro-

mosome,c.Structure for multiple instances of a single-carrier based genetic

scheduling. Publication II,c2014 IEEE.

following bits till the end of the tails are swapped between the paired

chromosomes. This is calledone-point crossover. Next, every bit of the

produced child chromosomes are toggled with a low probability which is

inversely proportional to their fitness, hence providing robustness for the

evolutionary adaptation. This operation is known asmutation. Also, the

chromosome sequences are repaired in case of a violation in their struc-

ture. The selection and breeding processes are repeated multiple times

until an equal number of child chromosomes are produced for the next

generation, in addition to the fittest two chromosomes from the current

generation that are directly transferred to the next generation.

Iterationsuggests initiating the algorithm using the former chromo-
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Table 3.2.Genetic-based Multi-Carrier and Multi-User Scheduler

Step#1: Time-domain scheduler— Selection of candidate users:

The head sequences are constructed based on the former

chromosome structure as a representation of user selection

Step#2: Frequency-domain scheduler— Primary user assignment:

The tail sequences in the former chromosome structure

represent the decisions on primary user assignments

The head and tail sequences of the chromosomes are

optimized in combination over multiple generations

The primary users are associated with hermitian

precoders on every resource block

Step#3: Frequency-domain scheduler— Secondary user assignment:

Brand new chromosomes are initialized based on

the latter chromosome structure

Chromosomes are optimized over multiple generations

If a new secondary user is assigned on a scheduling block,

•The precoder for the new assignee is granted based on

the zero-leakage principle toward the earlier assignees

•Step#3is repeated on that scheduling block

for the next secondary user

Otherwise, the scheduling decision is finalized on that

resource block, and hence its corresponding binary sequence

is fixed to “all binary–0”s for future iterations

some structure for the selection and assignment of primary users. Af-

ter having produced a new population by multiple selection and breeding

processes, the whole algorithm repeats itself in order to foster a certain

number of generations. The fittest chromosome from the last generation

fulfills the primary user assignments. Next, a new initialization process

starts using the latter chromosome structure and the fitness metrics are

determined based on the prior decisions on primary user assignments.

The following selection, breeding, and iteration processes foster the tar-

geted number of generations. The fittest chromosome from the latest gen-

eration indicates the scheduling decisions on the initial secondary user

assignments. Then, another initialization starts using the latter chromo-

some structure to determine the subsequent secondary user assignments.

More users are attempted to be assigned as long as the collective utility
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Figure 3.5.Comparison of throughput distributions by the multi-carrier schedulers:

a.User throughputs with 10 UEs/cell,b.User throughputs with 15 UEs/cell,

c.Cell throughputs with 10 UEs/cell,d.Cell throughputs with 15 UEs/cell.

Conclusions are: 1) Genetic-based scheduler delivers higher throughput in

more crowded networks; 2) Greedy-based scheduler more strongly favors the

users at the cell-centers; 3) Genetic algorithm renders higher network fair-

ness than the greedy algorithm. Publication II,c2014 IEEE.

metrics can be improved on the corresponding resource blocks. The pro-

posed genetic-based scheduler is summarized in Table 3.2.

Figure 3.5 demonstrates the numerical results of the described greedy

and genetic based schedulers. The system-level simulation setup com-

prises a 2-tier wrap-around network with 3 cells in each site. Downlink

channel model is based on WINNER-II [115]. There are 200 transmission

time intervals (TTI) and 25 non-overlapping scheduling blocks each ex-

periencing flat fading. Every base station employs 8 vertically polarized

antennas whereas each user has 2 antennas. Downlink data transmis-

sion can be carried through either one or two signal streams toward any

user terminal depending on its channel conditions, hence a base station

can co-schedule up to 8 users on the same shared resources. The base sta-

tions are allowed to co-schedule any number of users receiving transmis-

sions through any number of signal streams as long as the total number of

transmitted streams is not more than the available number of antennas
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at the base station. The greedy and genetic-based schedulers are evalu-

ated in terms of user and cell throughput performance in a network setup

with either 10 or 15 UEs per cell. In addition, evaluations also include

areferencescheduler for comparison, which relies on the minimum av-

erage waiting time criterion between successive scheduling decisions for

the selection of a candidate subset of users during the secondary user

scheduling. All of these three schedulers employ the proportional fair and

maximum throughput metrics, respectively, for the time- and frequency-

domain scheduling operations. Based on the results in Fig. 3.5 one can

draw the following inferences. The genetic-based scheduler provides bet-

ter network fairness than the greedy-based scheduler as the genetic algo-

rithm tends to assign more users on the shared resources while the greedy

algorithm prioritizes users at the center of the cells. This also naturally

leads to higher throughput performance by the genetic-based scheduler

when the network is more crowded with 15 UEs/cell.

3.3 Discussion

This chapter discussed optimized resource sharing based multi-user trans-

mission strategies on the downlink of a cellular radio system and pre-

sented the contributions of the thesis based on the original works of Pub-

lication I and Publication II. The first part of the chapter dealt with

baseband signal processing methods whereas the second part investigated

multi-block resource scheduling strategies.

A joint transceiver design can deliver higher performance in multi-user

MIMO transmissions. However, an additional information exchange needs

to be handled between a serving base station and user terminals. Such

information retrieval should satisfy the required level of transparency for

users and comply with the demodulation reference signal (DM-RS), con-

trol signaling, and CSI feedback configurations. Transparency clearly con-

sumes less control signaling whereas non-transparent multi-user MIMO

requires an increase in the downlink control information (DCI) size. Trans-

parency here indicates that each user terminal is informed about only its

own transmission rank and DM-RS ports while being unaware of shar-

ing the same resources with other users. Despite such restrictions on

the control information, transparent multi-user MIMO can still provide

transmit-side support for receiver design at user terminals in the context

of either joint methods or advanced non-linear processing, and can also
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inform users about potential DM-RS collisions [116].

Spatial multiplexing is beneficial in cellular MIMO transmissions par-

ticularly at improving the peak spectral efficiency whereas user termi-

nals in bad reception areas may experience less than satisfactory service

due to intolerable co-channel interference levels. Hence, multi-cell co-

operation techniques and joint power allocation schemes should also be

integrated to multi-user MIMO transmission strategies to protect cell-

edge users from unbearable interference. Such cooperative transmissions

should rely on multi-eNB communications by either partial or full infor-

mation sharing through the backhaul as well as opportunistic optimiza-

tion schemes on downlink.

Although this chapter focused on utilizing multiple antenna deployments

through the spatial dimension, downlink optimization techniques can be

generalized based on exploiting multiple signal dimensions from the code,

space, time, and frequency domains. Multi-antenna OFDM systems can

perform coding to multiplexed symbols over the spatial, temporal, and

spectral dimensions by means oftensor decompositionin order to achieve

higher data rates or link reliability [117]. A tensor represents a multi-

dimensional signal structure that can encapsulate the signal properties

in any of the said dimensions [118]. In particular, optimization by ten-

sor decomposition can prescribe a generalized procedure for concurrent

multiuser separation, multi-symbol encoding/decoding, interference sup-

pression, signal precoding/equalization, etc.

Schedulers are responsible for the allocation and assignment of the avail-

able resource blocks to achieve high performance and fairness in the net-

work. In addition, such schedulers should also take into account the im-

pact of adjacent channel interference on their performance. Heteroge-

neous network deployments or coverage area intersections among multi-

ple operators can cause signal leakage between adjacent bands, leading

to unrecoverable performance drops for some user terminals. Proactive

awareness by resource schedulers can provide protection against such in-

terference for those users as well as increased spectral availability and

lower energy consumption in the network. Furthermore, various other

radio technologies, such as D2D communications and cognitive radio, can

potentially improve the spectral efficiency of schedulers by means of con-

figuring allocation decisions on-the-go based on dynamical network con-

ditions.
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4. Reciprocity-Based CSI Acquisition in

Massive MIMO

Base stations equipped with very large number of antennas can offer cru-

cial benefits in cellular radio networks; for instance, adverse effects of un-

correlated noise and fast fading disappear, increased orthogonality among

users’ CSI allows simpler encoding/decoding, and the required transmit-

ted energy per bit shrinks at user terminals [119]. However, deploying

a very large antenna array at a base station increases the length of the

associated CSI vector, and accordingly, necessitates larger codebook and

more signaling bits in user feedback reports in order to preserve a suffi-

cient quantization granularity.

This inherent acquisition problem of oversized CSI can be avoided in

TDD systems by exploiting the duplex reciprocity of electromagnetic prop-

agation channels in anopen-loopapproach as the channel coherence band-

width is typically large. In particular, the channel response can be esti-

mated at the base station directly on reverse link and this estimate can be

interpreted as downlink CSI without any further dedicated aid from user

terminals. However, such CSI acquisition is susceptible to mainly three

types of predicaments: the transceiver impairments that are caused by

the analog RF circuitry, the difficulty with uplink channel estimation due

to notorious pilot contamination in a massive MIMO setup, and offset er-

rors within the reciprocity of the wireless duplex channel as a result of

its time evolution during successive measurements. Antenna calibration

can resolve duplex channel mismatches due to hardware impairments

and data-aided CSI estimators can help overcome pilot contamination,

whereas the time-varying nature of the channel limits the available com-

putational duration for the necessary antenna calibration and data-aided

estimation to a tiny fraction of the channel coherence time.

This chapter explores such reciprocity-based CSI acquisition techniques

in massive MIMO networks operating in TDD mode. The first part of the
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chapter investigates the reciprocity characteristics of a channel, which

can be impaired by the RF circuitry, and discusses the prominent recov-

ery techniques by multi-antenna calibration. The second part is dedicated

to data-aided blind channel estimators on reverse link. The contributions

of this thesis are also highlighted in this chapter, which can be summa-

rized as follows. Publication III presents an adaptive channel quantiza-

tion algorithm that improves the efficiency of relative antenna calibration

processes by means of reduced signaling overhead. Publication IV demon-

strates a multi-cell coordination based optimization method for blind CSI

estimators on uplink based on approximating the error sources that are

inherent to standard eigenvector decomposition (EVD) related computa-

tions in massive MIMO setups with multiple transmit signal sources.

4.1 RF circuitry calibration

Wireless TDD systems use the same frequency bands on forward and re-

verse links. In addition, electromagnetic waves traveling at exactly oppo-

site directions undergo the same physical obstructions. As a result, such

electromagnetic propagation channels demonstrate identical frequency-

domain responses in opposite directions as long as duplex transmissions

occur within the same coherence time window [120]. However, trans-

mit signal waveforms also travel through the transceiver circuitries at

both ends of a wireless link, hence the duplex reciprocity of the over-

all wireless channel cannot be present in case of any dissimilarity in

the frequency-domain responses of the transmit and receive components

within the same transceiver at either side of the link.

Main causes for such dissimilarity can be explained by internal clocking

structures (e.g., dividers, multipliers, and PLLs) or static effects depend-

ing on the hardware manufacturer. In addition, any mismatches of mu-

tual coupling between the receive and transmit antennas further damage

the reciprocity [121, 122]. Any asymmetries introduced by the RF hard-

ware of a transceiver cannot be resolved during manufacturing or assem-

bly stage by means of delicately eliminating all the differences between

each of the transmit and receive circuitry components as the employed

commercial electronics always contain unavoidable physical limitations,

partly as a result of the efforts for keeping the total cost of massive MIMO

deployments feasible [6]. Moreover, a terminal and its serving base sta-

tion have different oscillators, which leads to relative channel drifting
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over time. In that case, frequent recovery by antenna calibration is re-

quired to continually remove out any transceiver mismatches, and hence

restore the channel reciprocity. For antenna calibration practices, hard-

ware mismatches of a base station are considered the major issue whereas

any terminal-side mismatches have minor impacts on the system perfor-

mance [121]. In particular, when a base station employs linear precoding,

the operating performance becomes insensitive to any transceiver imper-

fections at user terminals [123].

There are two types of RF chain calibration methods: self-calibration

and over-the-air (OTA) calibration. Self-calibration methods require ded-

icated equipment prior to deployment or special RF circuitry for on-the-go

local calibration. Self-calibration is insensitive to channel conditions and

does not rely on signaling overhead on the active communication link.

Nevertheless, self-calibration requires higher implementation costs and

more sophisticated design [124]. On the other hand, OTA calibration is

based on intermittent inter-node signaling during the operation time of

a transceiver. As OTA calibration requires no special hardware, the im-

plementation allows simpler and more cost-efficient designs. Yet, OTA

calibration is based on relying on signaling resources on a communica-

tion link, therefore the calibration performance can be limited by the link

conditions. Although large signaling overhead leads to reduced through-

put performance, there is usually a point at which extensive signaling

and feedback from a user terminal can improve the restored channel reci-

procity while the reduction in system throughput is still smaller than the

gain obtained through reciprocity.

Calibration by OTA method can be realized either absolutely or rel-

atively [125]. Absolute OTA calibration compensates for the imperfec-

tions of each RF chain at a transceiver based on independent signaling

from every active user terminal [123]. On the contrary, relative OTA

calibration is based on measuring the non-symmetric characteristics of a

transceiver relatively by means of signaling only from onereferenceuser

terminal [126, 127]. Although relative calibration causes complex-valued

offsets in the CSI estimates for other terminals, their performance is un-

affected as long as the base station employs linear processing for data

transmissions.
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4.1.1 Deployment challenges under massive arrays

From a theoretical point of view massive MIMO technology offers very

large system capacities and resource efficient communications between a

base station and multiple UEs. In addition, radiating power per antenna

reduces drastically due to the distribution of transmit power among many

antennas. As a result, a base station can equip cheaper power ampli-

fiers and RF filters, and even skip the active cooling process [128]; which

not only reduces power consumption but also simplifies design complex-

ity. Similarly, user terminals can also enjoy lower transmit power con-

sumption and therefore improved battery lives, which is particularly ap-

preciated in portable handheld devices. However, a transceiver design

with a very large number of antennas raises a few hardware challenges

that need to be resolved in a real-world implementation of a base station.

These problems are mainly related to physical size limitations, baseband

processing, clock distribution, and synchronization.

The physical distance between two neighboring antenna elements should

be at least half of the carrier wavelength to avoid strong correlations

among the associated incoming/ongoing signal streams. As the linear ar-

rangement of many antenna elements needs larger space of occupancy,

at least two dimensional deployments have to be considered, which al-

lows refined beamforming in the elevation plane as well [129, 130]. For

an efficient design, beamforming weights should be applied at the radio

front-ends where they can be supported by a common databus for down-

link transmission. On the contrary, linear precoding during an uplink

transmission is based on combining all the receive samples, therefore the

databus can simply support a constant bandwidth. In addition, massive

MIMO transceivers cannot be deployed with dedicated RF amplifiers for

each antenna element in order to preserve economic viability. Hence, the

baseband signal processing is limited. But, cheaper phase and amplitude

adders can be attached to each element after carrier modulation [131].

4.1.2 Relative OTA calibration

In order to measure and compensate for the hardware mismatches at ev-

ery radio front-end, a base station needs to acquire full downlink CSI.

Random phase and amplitude responses of a transceiver can be approx-

imated by the relative offset between uplink and downlink channel esti-

mates, which is calledcalibration coefficient. After duplex channel mea-
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surements, calibration coefficients can be applied to future uplink channel

estimates to implicitly acquire the downlink CSI without any explicit user

feedback reports in TDD. Notably, the same calibration coefficients can be

applied to other user links in a relative manner, as a complex-valued ran-

dom scaling offset does not degrade the link performance with a linear

encoder. Also, properties of the transceiver parameters are known to be

slowly time-varying relative to the electromagnetic channel response [132,

133, 134], therefore the amount of feedback overhead can be tolerable un-

der very large antenna arrays due to the infrequent need for future re-

calibrations.

The main challenges for relative OTA calibration can be considered two-

fold under massive MIMO. First, duplex channel measurements must be

taken during a very short time period, although consecutive pairs of mea-

surements can be sporadic with longer delays. These time delays till the

successive recalibration depends on the quality of the hardware compo-

nents and manufacturing processes. Potentially, a transceiver may re-

quire recalibration every few minutes [132] or just once a day [128]. Sec-

ond, CSI reports in UE feedback require large overhead due to massive

number of antennas; however, the signaling overhead can be distributed

among many UEs as long as every base station antenna is measured by

the same user terminal. In case the signaling overhead is intolerable, an

internal calibrationprocedure can be operated locally on every antenna

element of a base station. Once the calibration coefficients are measured

in a similar fashion, they can be applied to user links relatively. Such

process requires even less frequent re-recalibration as the same clocking

is most probably used internally at the base station [128]. However, as

noted above, such internal calibration requires dedicated equipment at

the base station. In addition, the performance is typically degraded by

the limited dynamic range of the local power amplifier.

On the contrary, when relative OTA calibration is operated instead of

such internal calibration, the size of the required signaling overhead can

still be diminished as follows. Publication III proposes an adaptive quan-

tization algorithm which alters the CSI granularity at a user terminal in

response to the base station’s request so that the overall feedback over-

head is reduced by means of more efficient use of signaling. To put in

other words, such adaptive quantization can deliver higher calibration

performance using the same amount of signaling overhead. As the opti-

mal adaptation of CSI quantization for a single measurement during a
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calibration process depends on its earlier and later measurements, the

decision criterion should be evaluated at the base station and shared with

the UE by a feedforward request. However, any relative changes in the

reliability of the downlink channel cannot be foreseen during an uplink

measurement prior to user feedback, hence the global optimality is im-

practical to derive for such an adaptive CSI quantization scheme. The

optimization can merely rely on a simplified approximation based on the

current and previous uplink channel measurements. In particular, im-

proved accuracy of downlink CSI may return small or large calibration

gains depending on the corresponding quality of uplink channel. Accurate

uplink estimation encourages for finer granular quantization of downlink

CSI whereas inaccurate uplink measurements suggest reducing the sig-

naling overhead. More specifically, the adaptive quantization algorithm

of Publication III operates as follows.

Let us denote the measurement index number bykand the vector of

optimized quantization bits byq. Whenk=1, the first CSI measurement

on downlink is quantized by an initial number of bits, denoted byq0. After

the initial duplex channel measurements, the base station evaluates the

estimation accuracy for the next uplink channel measurement based on

the channel gain and estimator sample variance. The accuracy is stored

in a vector at the current measurement index (e.g.,k=2for the second

measurement), denoted byκ(k), which can be calculated as follows.

κ(k)=

M

m=1

|̂hul(m)|
2

ek(m)
, (4.1)

whereM denotes the number of channel coefficients,ĥuldenotes the up-

link channel estimate, andek(m)denotes the sample variance of the least

square estimator for themth channel coefficient, which can be derived by

the square-distance of the weighted least square method in pilot-aided es-

timators [135]. For each subsequent channel measurement, if the current

uplink accuracy is better than the previous one, the number of quantiza-

tion bits for the next downlink CSI feedback is increased bys+; otherwise,

it is reduced bys−. More measurements are taken till the total allotted

feedback bits (the number of which is denoted byB) are depleted. In ad-

dition, one can also define minimum and maximum number of allowed

feedback bits for the quantization of any CSI report, denoted here byqmin

andqmax, respectively. The necessary steps of the proposed adaptive quan-

tization algorithm are listed in Table 4.1.

The numerical performance results of the proposed adaptive quantiza-
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Table 4.1.Adaptive Quantization of CSI Feedback for Relative Calibration

Step#1: Initialize vectorsκ,qof lengthB/qmin , and setk=1

Step#2: Calculate and storeκ(k)

Step#3: ifk=1, storeq(1) =q0

elseifκ(k)<κ(k−1), storeq(k)=max(q(k−1)−s−,qmin)

elseifκ(k)>κ(k−1), storeq(k) = min(q(k−1) +s+,qmax)

else, storeq(k)=q(k−1)

end

Step#4: ifB− k
j=1q(j)≤0

ifq(k)≤q0/2, storeq(k)=0, andexit

else, storeq(k)=q0, andexit

end

else

setk=k+1and go toStep#2

end

tion scheme are generated in a multi-cellular network simulation and

demonstrated by Fig. 4.1. The simulation operates on a 7-site wrap-

around network with each site being composed of three120◦cells. Each

cell has one eNB and 10 UEs which are dropped uniformly. Each eNB

employs 4 antennas whereas all UEs are equipped with single antennas.

The antenna crosstalk is considered negligible at the eNBs. The chan-

nel is modeled based on WINNER-II [115] and the simulation involves 50

subcarriers and 100 TTIs. The user mobility is 3 km/h for all UEs, and

hence, the channel model exhibits time evolutions at every TTI. Multi-

ple duplex channel measurements are taken at every tenth TTI and op-

timized by minimizing the total least squares (TLS) errors. The adaptive

quantization parameters from Table 4.1 are selected as follows:q0=16,

qmin =8,qmax =24,s
+ =s− =4, andB=64. Figure 4.1 compares the

number of quantization bits used by each CSI feedback report to the in-

stantaneous uplink estimation error. Also, the number of duplex channel

measurements at every tenth TTI is visible from the figure. The results

demonstrate that the number of quantization bits consistently adapts to

the changes in uplink MSE between the previous and current TTIs.
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Figure 4.1.Comparison results between the number of adaptive quantization bits (bar

plot) and instantaneous MSE uplink estimation (line plot). Notice that the

number of duplex channel measurements is indicated by the number of bars

at every tenth TTI. Publication III,c2014 IEEE.

4.2 Blind CSI acquisition

The reverse link in a massive MIMO network can handle a large number

of simultaneous user transmissions thanks to the available spatial de-

grees of freedom. Moreover, the length of a pilot sequence cannot exceed

the channel coherence time and that the number of elements in an or-

thogonal binary sequence set is limited by its dimension. Hence, some of

the training sequences, which are uniquely assigned to individual users,

inevitably correlate with others, especially in a congested and perfectly

synchronized multi-cellular network operating on the reverse link. That

leads to impairments in uplink CSI measurements for some users who

have been assigned those contaminated pilots [119, 136]. Various opti-

mization techniques can utilize the limited training sequences efficiently

to some extent by means of either exploiting instantaneous channel prop-

erties or adopting coordinated pilot assignment schemes among multi-

ple eNBs [137, 138, 139, 140, 141]. However, the performance degrada-

tions by pilot contamination cannot be fully avoided, particularly when

the number of active users is overwhelming.

Subspace-based CSI acquisition techniques can extract the necessary
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channel information from receive sample symbols that are not necessar-

ily composed of orthogonal sequences, therefore providing an alternative

workaround against pilot contamination. Such acquisition techniques

based on the subspace partitioning of receive samples have been exten-

sively studied for the last few decades. The EVD based estimation is one of

those methods which use the second-order statistics of the receive symbols

at a base station to estimate the channel response vectors blindly [142,

143, 144, 145, 146, 147]. Suchblindestimators rely on computing the

eigenvectors of an average receive autocorrelation matrix and assigning

one of them that corresponds to the largest eigenvalue as the CSI vec-

tor. These blind multi-antenna estimators can be optimized to achieve

reduced time averaging window, eliminate potential phase ambiguities in

the final CSI, or acquire more accurate channel information [148, 149,

150, 151, 152]. In particular, the accuracy of a blind CSI estimator can

be improved by using both the receive samples and their complex conju-

gates, which is referred to aswidely linear subspace estimationin liter-

ature [153, 154]. Such techniques help represent the channel vectors in

real form, hence converting the phase ambiguity to a mere sign ambigu-

ity [154, 155]. In addition, widely linear methods render longer vector

representations of CSI, leading to reduced user channel distortions inside

the cumulative signal originating from multiple sources on the uplink of

a massive MIMO system [155]. On the other hand, a widely linear esti-

mator can only function with improper receive symbols [154, 156], which

limits its applicability to specific signal constellations. Improper signals

are characterized by a non-zero pseudo-covariance, which, as an example,

can be generated by real-valued modulation schemes, such as BPSK.

When blind estimators are applied in a massive MIMO setup, it has

been shown that CSI from multiple signal sources (e.g., user terminals)

can be extracted from the same receive autocorrelation matrix with small

distortions even though the transmitted signals are composed of non-

orthogonal data sequences [155, 157]. When a plurality of user terminals

simultaneously transmit on shared resources during a multicast trans-

mission on uplink, the user channel responses generate asymptotically

orthogonal inner products due to the law of large numbers and Lindeberg-

Lévy central limit theorem [158], as elaborated more in the following sec-

tion.
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4.2.1 Separation of user channel estimates

According to the random matrix theory, when the number of transmit an-

tennas approaches infinity, propagation vectors of different user terminals

exhibit asymptotic orthogonality with each other [119]. In particular, the

mutual orthogonality between any two user channel responses increases

with more antenna elements [158]. Hence the distinct eigenvectors of a

blind estimator can be matched to different users with respect to their

large-scale channel characteristics [157].

Upon receiving user data symbols from multiple terminals, a base sta-

tion computes the receive autocorrelation matrix by temporal averaging.

Assuming that the channel and additive noise elements are independent

and identically distributed with zero mean, each eigenvector of the auto-

correlation matrix corresponds to a user CSI. However, the acquired CSI

contains residual errors in practice due to the finite size of the receive

antenna array and insufficient receive symbols [155]. Furthermore, blind

estimators are known to be impacted by amultiplicative ambiguity in

their CSI estimates. Although this inherent ambiguity has no impact on

the performance of a linear-type encoder, the CSI estimates still hold un-

known amplitude and phase offsets relative to the true channel responses,

which can potentially cause large impairments with non-linear encoding

or by joint optimization algorithms coupled with symbol demodulations.

When the applied symbol modulation scheme is known, CSI estimates

by the eigenvectors can be improved by joint iterations during demodula-

tion. The initial demodulation of symbols can be derived by minimizing

the least squares based on the constellation scheme and eigenvector esti-

mates. The demodulated symbols are then used to correct the CSI esti-

mates. Such multiple iterations are known to reduce the residual CSI er-

rors [157]. In addition, multiplicative ambiguities can also be removed by

transmitting a short orthogonal training sequence from each user [154].

However, the other two inherent error sources, which are based on the

finite size of eNB antenna arrays and insufficient data symbols as ex-

plained above, cannot be suppressed either by the described iterative pro-

cesses here or by any other known method from prior art. To address this

deficiency in massive MIMO literature, Publication IV proposes a multi-

cellular coordination scheme which mitigates the impacts of the said two

error sources inherent to blind CSI estimators on the uplink of massive

MIMO systems. The details of the proposed multi-cell coordination are
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explained in the following part.

4.2.2 Multi-cellular coordination

The coordination algorithm in Publication IV is based on iteratively im-

proving the uplink CSI accuracy at a group of neighboring eNBs. Each it-

eration jointly processes the available channel information from all eNBs,

updates the approximated models for the inherent error sources due to

the finite number of antennas and symbols, and subsequently applies the

latest error models into separate CSI estimation mechanisms at every

eNB. The major contributions of Publication IV involve proposing for the

first time both such joint processing for a blind CSI estimator and such

approximation for the said error sources.

The detailed description of the proposed multi-cell coordination scheme

can be presented as follows. First, each eNB in the network estimates

the CSI from all associated UEs by means of computing the eigenvectors

of the mean receive autocorrelation. Next, multiplicative ambiguities are

resolved by a short training sequence, as typical with standard semi-blind

estimators. The ambiguity factors can be estimated at thelth base station

as follows.

Γ̂l=argmin
Γl
Yl−

√
puH̄lΓlD

1/2
l X

2

F
(4.2)

whereΓ̂landΓlare the estimated and true diagonal matrices of mul-

tiplicative ambiguity factors,Yldenotes the received training data,pu

denotes the uplink transmit power, andXdenotes the aggregate matrix

of transmitted training symbols. Also,H̄lD
1/2
l represents the aggregate

channel response on uplink, whereH̄landD
1/2
l respectively denote the

fast fading and large-scale fading components. Second, all CSI estimates

as well as a subset of the receive symbols from each eNB are collected

through backend at a centralized processor, where the available informa-

tion is jointly processed by exploiting the fact that the same transmit-

ted symbols from all UEs are, although unintentionally, received at every

eNB. Such joint optimization can be formulated based on minimum total

least squares as follows.

X̂=argmin
X∈S

L

l=1

D̂
−1/2
l Γ̂−1l Ĥ

†
lYl−

√
puX

2

F
(4.3)

Ĥl=
1
√
pu
D̂
−1/2
l Yl̂X

† (4.4)

whereX̂is the aggregate matrix of transmit symbol estimates,Sdenotes
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Table 4.2.Joint Multi-Cell Coordination for Blind Estimators

Initialize iteration indexi=1& max. number of iterationsI

Step#1: foreach eNB

Compute EVD-based CSI

Match CSI to corresponding UEs

Resolve ambiguities via short training

end

Step#2: CSI and receive samples are collected via backend

Joint coordination derives new CSI

CSI is signaled back to each corresponding eNB

Step#3: foreach eNB

MSE-based error sources are approximated for every UE

Recover local CSI from error sources

end

ifi<I, i→i+1&gotoStep#2

else, terminate

end

the symbol constellation forX, and̂Hl̂D
1/2
l denotes the aggregate channel

estimate. The iterations between (4.3) and (4.4) can be repeated multiple

times for convergence. After joint optimization, the generated set of new

CSI is signaled back to each corresponding eNB through the backhaul.

Third, each eNB approximates the inherent errors by means of substi-

tuting the jointly optimized and transferred CSI data into asymptotical

MSE expressions. Next, the accuracy of the initial CSI at each eNB is

improved by recovering from the inherent error sources based on their ap-

proximated MSE models. The final CSI at every eNB is once again trans-

ferred back to the central processor via backend signaling, which kicks

off the second iteration of the algorithm for the joint coordination. The

algorithm can be terminated after a certain number of iterations is com-

pleted, or when the relative change of CSI between successive iterations

drops below an acceptable margin. The described steps of the proposed

joint coordination algorithm are summarized in Table 4.2.

It should be noticed that the jointly optimized CSI is only used for ap-

proximating the error sources while the final channel estimation is mainly

based on the local estimates at each eNB. The logic behind this design

choice can be explained as follows. Due to the limited amount of signaling

74



Reciprocity-Based CSI Acquisition in Massive MIMO

resources at the backend, only a subset of the receive samples are trans-

ferred which leads to reduced estimation accuracy relative to the local

CSI. Moreover, backend signaling also introduces quantization errors to

both initial CSI estimates and receive samples.

4.3 Discussion

This chapter investigated the issue of downlink CSI acquisition in mas-

sive MIMO systems with reciprocal duplex propagation channels and pre-

sented the contributions of the thesis based on the original works of Publi-

cation III and Publication IV. The first part of the chapter was concerned

with multi-antenna calibration methods whereas the second part dealt

with subspace-based blind CSI estimation methods.

Massive MIMO technology is an exciting, new enabler for current and

next generation cellular radio access systems in achieving advancements

in power efficiency and interference avoidance by sharp beams and di-

rected energy transmissions. Nevertheless, the task of downlink CSI ac-

quisition becomes non-tedious with massive antenna arrays due to the

extended size of the conventional UE feedback reports. In case of channel

reciprocity, a base station can estimate the downlink CSI from the reverse

link although such reciprocity is often distorted by the imperfections in

transceiver hardware. To overcome these CSI errors, antenna calibration

techniques can measure and compensate for such distortions. Neverthe-

less, perfect restoration of channel reciprocity is usually improbable with

affordable RF equipment. Moreover, estimation on uplink can be unreli-

able under massive antenna arrays due to pilot contamination. As a rem-

edy for the latter, blind estimation techniques with non-orthogonal receive

signal sequences can be employed for CSI acquisition from multiple user

terminals. The residual non-orthogonality among (both intra- and inter-

cell) user channels may drastically diminish CSI accuracy, which can be

avoided to a certain extent by multi-cellular coordination.

However, such multi-cell coordination requires significant backend sig-

naling, at least, initially whereas subsequent iterations may rely on much

smaller backhaul overhead due to their gradual convergence. Moreover,

the amount of signaling can be minimized by associating multiple groups

of eNBs to separated clusters, as it is a common optimization practice in

coordinated multipoint (CoMP) networks. Although the necessary amount

of signaling can be handled by the standard X2 interface equipped with
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fiber or microwave that can provide up to 1Gb/s, the compatibility to cloud-

RAN (C-RAN) requires further investigation for the next generation sys-

tems. That being said, architectural features of C-RAN that are already

in consideration seem to suggest the feasibility of such multi-cell coordi-

nation among blind CSI estimators. The main motivation for C-RAN is

to provide smooth network access in densely populated urban areas by

centrally controlling all available deployments of transceiver stations in

order to improve the efficiency of interference management and reduce

financial costs. Clearly, such centralized intelligence should simplify the

operation of the proposed coordination process for CSI acquisition as well.

Due to the discussed residual errors in both antenna calibration and

blind estimation practices, the investigation of downlink CSI acquisition

via conventional UE feedback reports should still be considered a pivotal

element for the adoption of the massive MIMO technology into cellular

communications. That being the case, the focus of the thesis in the follow-

ing chapter is switched to non-reciprocal propagation channels for CSI

estimation at massive eNB antenna arrays.
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5. Non-Reciprocal Channel Estimation

in Massive MIMO

As the majority of commercial cellular networks operate in FDD, the

feasibility of massive MIMO in FDD mode is considered of utmost im-

portance for backward compatibility, cost efficiency, and interoperabil-

ity [159]. However, FDD systems exhibit non-reciprocal channel char-

acteristics due to separated carrier frequencies in uplink and downlink,

which renders implementation issues, particularly regarding downlink

CSI acquisition at base stations and heavy computational requirements

at user terminals.

This chapter discusses these challenges and demonstrates the state-of-

the-art methods and concepts for enabling massive MIMO in FDD mode

mainly by reducing the training duration on downlink, compressing UE

feedback overhead, and offloading the bulk of the necessary computa-

tional complexity from user terminals to the base station whenever pos-

sible. As most of the known solutions rely on exploiting certain charac-

teristics of a propagation channel in cellular deployments, the investi-

gated techniques in this chapter are grouped into three categories based

on the following classes of channel properties: temporal channel corre-

lations, spatial channel correlations, and multipath sparsity. In addition,

the current state of progress on the feasible implementations of FDD mas-

sive MIMO is also discussed within the timeline of the current and next

generation cellular systems.

Regarding the contributions of this thesis on FDD massive MIMO, this

chapter presents the following. Publication V designs a new CSI acquisi-

tion method based on estimating the reciprocal characteristics of a prop-

agation channel at a serving base station directly from the reverse link

whereas the active user terminals are required to estimate only the non-

reciprocal fast-fading properties of a select number of dominant paths.

Publication VI proposes that the estimated multipath phase information
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at user terminals is subsequently transferred to the serving base station

as a new type of feedback report for full CSI acquisition. Numerical evalu-

ation results and feasibility discussions are also presented from a realistic

deployment point of view at the end of the chapter.

5.1 Challenges for FDD-mode massive MIMO

Besides the inherent hardware challenges for equipping a base station

with very large antenna arrays, which are covered in Section 4.1.1, FDD

operation mode particularly manifests certain issues that need to be re-

solved before realizing a feasible deployment framework. The fundamen-

tal problem is related to forward-link CSI acquisition at the base station.

Apparently, uplink CSI is not convertible to its downlink counterpart as

the coherence bandwidth is typically much shorter than the offset be-

tween duplex carrier frequencies. Therefore, CSI acquisition is typically

realized within a closed-loop by quantized CSI feedback reports from user

terminals in most state-of-the-art FDD radio access technologies, includ-

ing cellular communications. However, the challenges for such feedback

based acquisition stems from two major causes in massive MIMO sys-

tems, as elaborated below.

First and foremost, the necessary time duration during channel train-

ing on forward link is proportional to the number of transmit antennas.

When orthogonal pilots are used among multiple base station antennas

to isolate different subchannel coefficients, the number of active terminals

simultaneously processing these training sequences needs to be limited to

maintain the perks of massive MIMO deployment [119]. In case of mul-

tiple neighboring cells simultaneously performing channel training, this

limitation on the number of served users becomes even more drastic. The

second issue is related to the fact that very large antenna arrays generate

long CSI vectors. Once the channel training is accomplished on down-

link, user terminals are still required to transmit their CSI estimates on

the reverse link. This feedback transmission has to be based on either

an enormous codebook or a fine-granularity scheme. In either case, the

transmission consumes large amounts of signaling overhead, which ren-

ders conventional CSI feedback techniques impractical. In addition, pro-

cessing long CSI vectors increases the computational complexity, which

is primarily critical for user terminals due to their low signal processing

capabilities and limited energy consumptions. What is more, the required
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storage size of an extended CSI codebook is expected to be overwhelming,

which may challenge the local memory limitations at user terminals.

Because of all these difficulties, there is a widespread belief that future

research efforts should be put into the TDD-mode massive MIMO [160,

161, 162, 163, 164]. On the other hand, there are those who think that

enabling the feasibility of massive MIMO in FDD will be worth the time

and efforts [165, 166, 167, 168, 169, 170]. In favor of the latter group’s

view, the rest of this chapter reviews the state-of-the-art techniques for

overcoming the design issues on CSI acquisition and discusses potential

future directions.

5.2 Channel characteristics as enablers of CSI compression

Realistic propagation channels most often exhibit characteristics that al-

low opportunities for developing intelligent CSI compression schemes. In

the following, well-known techniques within the theoretical area of FDD

massive MIMO research are grouped into three categories based on the

types of exploited channel properties, which are namely temporal correla-

tions, spatial correlations, and multipath sparsity.

5.2.1 Temporal correlations

Temporally correlated channels exist as a result of multipath propaga-

tion, Doppler spread, transmit pulse shaping and receive filtering [171].

Specifically, temporal correlation is the outcome of any amplitude cor-

relations between different excess delays of a channel impulse response

profile. Although temporal correlation is often present in all wireless

communications, it is rarely exploited for improving CSI estimation in

real-world commercial deployments due to the difficulties of conformance

testing. In theoretical evaluation studies, simulation models for tempo-

rally correlated channels are usually designed based on either first-order

Gauss-Markov process [172] or Jakes’ model [173].

One common approach in literature for the utilization of temporal cor-

relations is related to jointly estimating/tracking the fast-fading chan-

nel responses and time correlations at user terminals via Kalman fil-

tering [174, 175, 176]. In a massive MIMO setup temporal correlations

can be further exploited to improve the CSI quality at a base station.

The issue of limited time period during downlink channel training can
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be handled in a closed-loop by means of iteratively adapting the pilot se-

quences to current channel conditions based on the available knowledge

on past CSI [177]. As the optimization by such a closed-loop mechanism

informs the base station about thebesttraining sequence, CSI can be im-

plicitly extracted from this information at the base station without any

dedicated quantized CSI feedback. Such implicit acquisition can be real-

ized by designing the optimum beamformer that either minimizes MSE or

maximizes SNR for the past training signals [178]. However, this type of

pilot-assisted CSI acquisition approach can cause severe dimensionality

loss due to large amounts of signaling overhead in the closed-loop, par-

ticularly if the level of temporal correlations is lower than an acceptable

margin.

Another possible approach for improving downlink training is based on

a sequentially optimized beam design by the Kalman filter and its predic-

tion error covariance which exploits temporal channel correlations [179].

Due to such sequential optimization, user terminals are only required to

perform low-complexity processing tasks. Historically, differential code-

books are also well known to utilize temporal correlations for succes-

sively improving the quantization accuracy of CSI vectors [180, 181]. Such

compression performance within feedback reports can also be realized

in a massive MIMO setup if the temporal channel correlations are suf-

ficient [182].

5.2.2 Spatial correlations

The level of spatial correlations in a wireless channel depends on two fac-

tors: antenna geometry and scattering environment. The former factor

causes spatial correlations often due to short antenna spacing, large mu-

tual coupling among multiple antenna elements, or small angular spread.

On the other hand, the latter causes spatial correlations when there is a

lack of local scatterers at the proximity of a transceiver. In a typical cellu-

lar network, base stations are usually elevated and rather isolated from

the surrounding scatterers whereas scattering in the vicinity of user ter-

minals is a common phenomenon. When the correlation among antenna

elements is strong, their transmit signals experience fading at the same

time instances on downlink. In addition, strong correlations render multi-

antenna processing methods ineffective in capturing the spatial structure

of a channel. As a result, spatially correlated fading channels are well

known to limit the diversity techniques at the receiver of a user terminal.
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On the other hand, in a massive MIMO system spatial channel correla-

tions are also considered beneficial for CSI compression. Regarding theo-

retical performance evaluations, the Kronecker correlation model [183] is

often used for simulating spatially correlated channels in massive MIMO

studies [184, 185, 186]. In case of negligible terminal-side correlations,

the one-ring channel [187] is another popular model for more simplified

analyses.

In massive MIMO systems, a two-layer transmit beamforming can effec-

tively utilize spatial correlations. In such a design, the first beamformer

can provide user grouping based on pairwise correlations while the second

beamformer is applied to the effective channel response with reduced di-

mensionality [184]. This technique can offer significant CSI compressions

without drastically compromising the performance. In addition, channel

covariance matrices (CCM) are also widely utilized for various CSI com-

pression techniques with multiple antennas as the channel covariance can

be directly measured from the reverse link, even in FDD modulation mode

with the help of a carrier frequency transformation [188]. With a very

large antenna array setup spatial channel correlations render low-rank

CCMs, therefore creating an optimization space for downlink training and

user CSI feedback reports thanks to the reduced channel dimensional-

ity [84].

Another means of reduction for the channel dimension can be based on

grouping highly correlated antenna elements into a single representation

with respect to pre-defined patterns at a base station [189]. In addition,

spatial channel correlations can also be utilized for an optimized codebok

design in massive MIMO. The port modulation technique can improve

the downlink performance without instantaneous CSI by matching the

virtual precoderwith respect to the spatial correlations of the antenna ar-

ray [185]. Moreover, codebooks for a spatially correlated channel can be

designed more efficiently by taking into account also the temporal corre-

lations [182, 186].

5.2.3 Sparsity by finite dominant paths

A very large number of transmit antennas produces a sparse multipath

structure in wireless channels with limited number of scatterers due to

the extended signal space dimension [190, 191]. Specifically, the major-

ity of the channel eigenmode strengths drops below the noise level as a

result of power spreading. Aside from very large antenna array setups,
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other causes for such an extended dimension could be very large band-

width or very long symbol durations [192]. For performance evaluations,

sparse channel models are often designed based on simulating a few local

scatterers or based on defining spatially correlated channels which ren-

der low-rank frequency responses as a requirement for channel sparsifi-

cation. Realistic evaluation studies can also employ advanced geometry-

based stochastic channel models with many more propagation paths, such

as WINNER-II [115], COST 2100 [193], or 3GPP spatial channel model

(SCM) [194].

The concept of compressive sensing is a well known signal processing

technique that can provide accurate estimations of a wireless channel

with small amounts of measurements when its propagation characteris-

tics exhibit sparsity in the signal space [195, 196]. Compressive sensing

methods do not require any prior knowledge on CSI as the encoding is

based on random projections. The main design procedure among such

compressive sensing based schemes is related to transforming channel

responses by asparsifying basis, which is most commonly derived by the

DFT, Discrete Cosine Transform (DCT), or Karhunen-Loéve Transform

(KLT).

In the most broad terms, the compressive sensing technique can enable

high-rate data transmissions in massive MIMO communications with only

small amounts of CSI measurements. User terminals transform the avail-

able CSI knowledge according to a pre-known transformation basis and

then transfer the compressed output in feedback reports. The receiving

base station decodes the transformed information to full CSI with negli-

gible loss thanks to the sparse characteristics of the channel. The trans-

formation basis can also be selected adaptively based on instantaneous

CSI conditions that allow dynamic configurations on user feedback. Such

adaptive optimization can be designed by adjusting the compression ratio

according to the sensitivity of downlink performance to the recovered CSI

accuracy at the base station [85]. Furthermore, CSI compression can be

designed to additionally exploit the joint sparsity structure among mul-

tiple user channel responses due to common terminal-side local scatter-

ers. Such joint optimization can be realized by a distributed compression

scheme that collects the encoded copies of the local CSI measurements

from multiple users and performs joint recovery at the base station [197].

Moreover, channel sparsity also allows reductions in signaling overhead

while tracking continuous-time channel parameters, such as multipath
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direction-of-departure (DoD) angles and their evolutions due to terminal

mobility [131].

Alternatively to these compressive sensing schemes, channel sparsity

can also be exploited to extract only the set of dominant path character-

istics in a multipath propagation channel via parameter estimation, as

proposed in Publication V. When a base station receives planar wave-

fronts on uplink, multipath properties are similarly represented by the

elements of a CSI vector, therefore facilitating the estimation of some

multipath characteristics from uplink, such as DoA angles and path am-

plitudes. The planarity of receive wavefronts depends on the physical

distance between the neighboring elements of an antenna array relative

to the end-to-end link distance. Specifically, when the distance between

the base station and a user terminal is much longer than the physical

size of the antenna arrays, the properties of the multipath components

are almost identically observed at different antenna elements. This man-

ifestation is known as thefar-field approximation principle. Therefore,

the CSI acquisition method of Publication V is mainly targeted for macro

cell networks with highly elevated base station platforms. On the other

hand, it should also work well in small cells operating at higher spectrum

bands as they allow more densely-packed antenna arrays.

Publication V designs such multipath extraction based CSI acquisition

method as follows. A base station acquires the time-delays of the multi-

path propagation response from a plurality of user terminals on uplink.

The estimation can be realized by minimum least-squares via standard

channel training or by a sliding cross-correlator mechanism in case of a

multi-selective rake receiver setup [198]. It should be noted that such

dedicated time-delay estimations are necessary only when the successive

delays of a receive signal are separated by shorter time offsets than the

width of the receive autocorrelation; otherwise, multipath delays can be

detected simply by the locations of the autocorrelation peaks [200]. After

multipath time-delay and amplitude estimations, base stations can ac-

quire the incoming DoA angles from uplink and transform them to down-

link assuming that the duplex time elapse between the time frames is

insignificant [199]. For instance, the DoA angles can be estimated by a

subspace-based estimator based on the following receive autocorrelation.

Ṙt,kl=
1

N

N

n=1

ˆ̇ykl(t+(n−1)Ts)̂̇ykl(t+(n−1)Ts)
H, (5.1)

whereNdenotes the number of transmit symbols,ˆ̇ykldenotes the receive
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Table 5.1.Channel parameter estimation at a base station

Step#1: Multipath time-delay estimation

◦If the time offsets between successive paths are

longer than the receive signal autocorrelation:

The delays are detected at the autocorrelation peaks

◦Otherwise:

If the base station is equipped with a multi-selective

rake receiver:

→A sliding-cross correlator mechanism derives

the path delays [198]

Otherwise:

→The delays are estimated by minimum least-

squares by channel training

Step#2: The estimation of DoA angles

◦If the number of resolvable paths is overwhelming:

→The estimated time-delays and fading parameters

are processed for each dominant path individually

◦Otherwise:

→A subspace-based DoA estimator processes the

aggregate receive autocorrelation [199]

Step#3: The design of a single-beam downlink training

◦The optimum direction can be determined by:

→Orthogonal pilots that are precoded based on

the second-order channel correlation statistics

→Iterations in a closed-loop by user feedback [177]

signal vector from thekth user’slth path on uplink, andTsdenotes the

transmission time of a symbol. Notice that the receive signal components

ˆ̇yklcan be formulated for each individual path thanks to the estimated

multipath delay and fading terms. In addition, It should be also noted

that the eigenvectors ofṘt,klcorrespond to distinct multipath components

due to the law of large numbers and Lindeberg-Lévy central limit theo-

rem [155, 158]. Upon DoA estimation, downlink training sequences can be

transmitted on a single beam from the base station, which overcomes the

issue of long training duration inherent to massive MIMO. The optimum

direction of the training beam can be derived by iterations in a closed-

loop mechanism [177]. Table 5.1 summarizes the necessary operations of
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Table 5.2.Channel parameter estimation at a user terminal

Step#1: Multipath time-delay estimation & tracking

◦The initial estimation:

→The sample channel correlation matrix is structured

on the pilot subcarriers

→The multipath time-delays are acquired by a subspace-

based estimator

◦The subsequent tracking:

→Each path is modeled based on its last delay and

amplitude estimates and the model is processed by

a delay-locked loop (DLL) structure

→The output is cross-correlated with the early and

late versions of the reference pilot symbols

→The difference between the squared outputs of the

cross-correlations produces a tracking error, which

indicates the new delay estimate

Step#2: The design of the MPI feedback

→Downlink path coefficients are approximated by a mini-

mum least-squares error detector

→MPI vector is formed based on the phase information

of the indicated dominant path coefficients

a base station for the estimation of uplink channel parameters.

After channel training on downlink, each user terminal can estimate

and track its corresponding multipath delays via the second-order chan-

nel statistics derived from the OFDM symbols of the received training

sequence [201]. In addition, user terminals can approximate their down-

link path coefficients and designmultipath phase indication(MPI) vectors

formed by the complex-valued fading coefficients of the selected dominant

paths, as proposed for the first time in Publication VI. Table 5.2 lists the

necessary operations at a user terminal for channel parameter estimation

on downlink and the subsequent feedback.

The set of the selected dominant paths are proposed to be chosen and

indicated by the base station for every user. Choosing only a subset of

the propagation paths implies that the targeted CSI vector by the base

station involves only those paths’ responses instead of the whole propa-

gation channel response, hence the naming of the multipath extraction
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based CSI acquisition method. The optimal selection procedure for the

dominant paths should depend on a number of parameters, such as path

strengths, latency requirements, user priorities, pairwise path correla-

tions, and prior estimation errors for the multipath parameters. Upon

the selection of dominant paths, their indication can be realized by means

of signaling only the number of paths as a single integer and relying on

pre-defined path priorities based on either amplitude or delay informa-

tion. An explicit indication of the selected paths can also be performed by

a modified version of a time-reversal type precoding. With the received

MPI feedback the base station acquires the necessary phase information

on the targeted propagation paths. Typically, the number of dominant

paths is much smaller than the number of antenna elements in a massive

MIMO setup, therefore the signaling overhead by user feedback reports

gets sharply reduced without sacrificing CSI accuracy.

The proposed CSI acquisition and MPI feedback schemes in Publica-

tion V and Publication VI offer the following benefits. First of all, only

non-reciprocal multipath characteristics are required at user terminals

while the rest of the channel parameters are estimated by the base sta-

tion. Therefore, the issue of limited training duration can be avoided by

a single beam transmission on downlink as full CSI vectors are no longer

required at user terminals. What is more, the bulk of the necessary sig-

nal processing is handled at the base station, hence relaxing the compu-

tational complexities at user terminals. Both of these benefits are par-

ticularly welcome when compared with the compressive sensing methods

from massive MIMO literature, which require not only full CSI knowl-

edge but also higher computational loads at user terminals. Secondly,

the signaling overhead by user feedback reports is also significantly re-

duced as the number of dominant paths is often measured to be between

two to six in a typical mobile macro cell with elevated base station plat-

forms [201, 202]. Furthermore, the proposed acquisition technique also

allows flexible implementation with easily controllable feedback size and

CSI accuracy.

Figure 5.1 presents the numerical evaluation results for the proposed

multipath extraction based CSI acquisition scheme by means of average

symbol error rate and sum-rate performance. The simulation incorpo-

rates a single cell with one eNB and 8 randomly dropped UEs. The eNB

is equipped with 100 vertically polarized antennas in a 10×10 array struc-

ture while each UE has a single antenna. All transmit symbols are modu-
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Figure 5.1.Performance comparison results of the MPI feedback based on1,2,6,10of

the most dominant propagation paths as the targets bya.average symbol

error probabilities andb.average sum-rates. Publication VI,c2015 IEEE.

lated by QPSK and the propagation channels are generated by WINNER+

model with the urban macro settings [203]. Downlink and uplink carrier

frequencies are respectively defined as 2 and 2.5 GHz. The simulation

lasts for 100 TTIs and operates on 50 subcarrier blocks. In addition, all

user codebooks are simulated based on the random vector quantization

(RVQ) based codebook scheme, as described by [204].

The left-hand side of Fig. 5.1 demonstrates the symbol error rates with

the MPI feedback based on the strongest 1, 2, 6, 10 dominant paths as the

targets. In addition, the performance of the conventional EVD estimator

with a carrier frequency transformation is also included as a reference

scheme. For the MPI feedback reports, two bits are allocated for each vec-

tor element. One can observe that the performance of the CSI reconstruc-

tion by only one path is limited by the ceiling effect at high SNR levels.

Moreover, incorporating more propagation paths into the MPI feedback

reports gradually reduces the symbol error rates while the signaling over-

head is also increased.

The right-hand side of Fig. 5.1 shows the average sum-rate results ver-

sus the total number of feedback bits per each user report. The MPI feed-

back is simulated again with the same numbers of dominant paths as

before, in addition to another reference curve representing the theoretical

bound for the conventional type of feedback reports based on true narrow-

band CSI quantizations, although the indicated bits are counted only once

for all subcarriers. As equal numbers of bits are allocated for the MPI vec-

tors of different lengths, extracting less paths provides better performance
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as a result of higher granularity with the vector quantizations. However,

as more and more bits are allocated along the horizontal axis, increasing

the number of incorporated paths generates higher sum-rates for the MPI

feedback scheme.

5.3 Discussion

This chapter investigated promising CSI acquisition techniques by user

feedback reports for massive MIMO and explained the contributions of

the thesis based on the original works of Publication V and Publication

VI. Most popular acquisition methods have been described and analyzed

in three explicit categories based on the exploited characteristics of prop-

agation channels.

Enabling the massive MIMO technology in cellular communications for

the most widely deployed duplexing mode (i.e., FDD) is highly desirable.

However, the estimation of downlink CSI is problematic in massive MIMO,

due to the expanded size of CSI feedback reports as well as more demand-

ing signal processing at UEs. Nevertheless, these limitations can be over-

come by exploiting certain propagation characteristics that are seemingly

considered unfavorable in conventional wireless communication systems.

For example, spatial channel correlations are often undesirable as they

limit the achievable spatial diversity. However, spatially correlated chan-

nels can facilitate significant CSI compressions, which is desirable for

compact user feedback reports in massive MIMO.

The proposed CSI acquisition technique in this chapter takes advan-

tage of the channel sparsity in multipath propagations. Compared with

compressive-sensing based methods, this acquisition technique does not

require full CSI estimation at user terminals. Therefore, downlink train-

ing can be based on a single-beam pilot transmission. In addition, compu-

tational load is sharply reduced at user terminals as the necessary signal

processing does not increase with respect to the number of eNB antenna

elements. The applicability in a real-world deployment, however, relies on

planar incoming/ongoing wavefronts to fulfill the far-field approximation

principle. This requirement should be suitable for large coverage areas,

such as stadiums, concerts, open air festivals, etc., which are determined

as potential test cases for 5G systems by the METIS project [205]. Large

numbers of users in such service environments are expected to consume

and exchange high-quality multimedia contents which will lead to spikes
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in data traffic during a short period of time. These scenarios can be ad-

dressed by massive MIMO deployments in a large coverage area with ele-

vated base station towers that can serve many users with very high spec-

tral efficiency. In addition, future advancements in manufacturing and

the introduction of higher spectrum bands (e.g., millimeter-wave frequen-

cies) to cellular communications will help employ more densely packed

antenna arrays with much shorter physical distance between neighbor-

ing antenna elements. As a result, the far-field approximation can be

valid in smaller cells as well, which should facilitate the feasibility of the

proposed method in more coverage locations. In any case, technological

progress and better cost efficiency in computational power, battery life,

and manufacturing will remove some of the present limitations concern-

ing massive MIMO deployments. When network designers also figure out

how to solve the problem of downlink CSI acquisition in an efficient man-

ner, this technology will likely be indispensable in future cellular commu-

nication systems.
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6. Full-Duplex In-Band Multi-Antenna

Relaying

Wireless relaying is a significant enhancement in cellular networks for

coverage extension, cost-efficient backend support, capacity improvement,

and low power consumption. Relays may have various applications in a

cellular communication by means of establishing reliable point-to-point

connections, taking part in a cooperative cognitive radio system [206,

207], providing affordable wireless backhaul, or assisting in a multiuser

transmission [208, 209, 210]. Concerning all of these use cases of wireless

relays, the full-duplex technology can offer higher QoS by more efficiently

harnessing the precious air interface resources compared with resource

division methods, therefore potentially delivering up to twice spectral ef-

ficiency with higher data rates.

However, multi-hop full-duplex communication links are well known to

be susceptible to loop-interference between the transmit and receive sides

of the intermediate wireless relays. The adverse impacts of this unfavor-

able byproduct can be tolerated by applying physical isolation, internal

cancelation in RF and digital baseband, or spatial-domain suppression

in case of multiple antenna deployments. In the following, this chapter

presents the benefits of full-duplex transmissions and the state-of-the-art

mitigation techniques for the loop-interference inherent to wireless full-

duplex relay links. In addition, hardware limitations and practical deploy-

ment challenges are also touched upon, as well as the current and future

directions of the wireless full-duplex technology in cellular communica-

tions. Regarding the contributions of this thesis on multi-antenna tech-

niques, Publication VII presents an optimization procedure for spatial-

domain interference suppression on a full-duplex point-to-point MIMO

relay, which closely approximates its global optimality in a single-stream

transmission. In addition, Publication VIII derives the optimal set of

transmit powers and develops an iterative optimization algorithm by SLNR-
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based spatial-domain filters in a two-hop multi-input single-output (MISO)

link setup.

6.1 Merits of full-duplex over resource division

The conventional relaying operation requires a resource division in either

time or frequency domain. The former is based on assigning dedicated

time slots for the transmit and receive tasks of the relay on a shared fre-

quency band whereas the latter splits the available spectrum between

the transmit and receive operations that are occurring simultaneously. In

either case, a conventional relay transceiver can only tap into half of the

available resources during any given time window, hence the performance

of the end-to-end link stays inherently limited. Such resource-division

based relaying is known ashalf duplexing. On the other hand, full duplex

relaying utilizes the entire allotted radio resources, therefore it can score

up to twice as much throughput despite the inadvertent loop-interference

signal arriving at the receive end of the relay, as illustrated in Fig. 6.1.

Figure 6.1.The transmit signal of a full-duplex relay interferes at its receive end.

Thanks to the full-duplex alleviating the inherentrate loss, wireless re-

lays can be deployed for a wide range of use cases. First and foremost, re-

lays can extend the service coverage by means of both overcoming shadow

fading effects and reaching out farther locations with reduced transmit

power [211]. Relays can operate either as a dumb transceiver which is

controlled by its connected base station or as an intelligent entity with its

dedicated scheduling and resource allocation decisions [212]. Relays can

support multicast and broadcast transmission scenarios serving multiple

terminals at a time. Massive antenna arrays can be deployed on a relay

to act as a connected hub among a plurality of terminals [213, 214]. Re-

lays can be beneficial in cognitive radio networks, where unlicensed users

are allowed to use the bandwidth of primary users [215]. In addition,

relays can also be utilized to serve as wireless backhaul for reduced finan-
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cial costs during deployment and maintenance, or for overcoming terrain

limitations that may prevent any wired backhaul installations [216].

6.2 Hardware limitations

In a full-duplex relay, the loop-interference emitted from the transmit side

couples with the receive front-end, which may cause saturations due to

both the transceiver’s limited dynamic range and the inadequate knowl-

edge of the incoming loop-interference signal. The issue of limited dy-

namic range is a typical result of the non-idealities in ADC, DAC, and

power amplifiers whereas the inaccurate estimation of the loop-interference

is mostly a result of CSI errors and RF imperfections [217]. Excessive

CSI mismatches can also cause an instability by signal oscillations, par-

ticularly at non-regenerative relays. Full-duplex relays are also suscepti-

ble to a bias problem, which renders large correlations between the loop-

interference and the desired signals at the receive-side in case of insuffi-

cient time delays until the repetitive arrival of the incoming signal stream

through the transmit-side. In addition, other generic limitations, such as

the thermal noise, quantization errors, phase noise, IQ imbalance, and

keyhole effects, also degrade the performance of a full-duplex relay.

The characteristics of these hardware-related limitations usually de-

pend on the type of relaying, which can be of either regenerative or non-

regenerative nature. The most popular regenerative relaying protocol is

DF [216]. Relays with DF decode and re-encode the source signal prior to

its retransmission. Hence, they require complex design and heavy com-

putations. To overcome these high demands, DF relays can employ only

symbol-by-symbol decoding at the expense of performance, instead of fully

decoding the entire source codeword [218]. Note that in a two-hop relaying

setup only full error-free decoding with DF can theoretically reach the mu-

tual information of the weaker hop. The most popular non-regenerative

relaying is AF [219, 220]. The AF protocol operates by straightforwardly

amplifying the incoming signal subject to a power constraint. On the other

hand, network planning is more difficult with AF, compared to DF. In

addition, due to lack of decoding, AF relays may amplify also the loop-

interference, which may further lead to internal oscillations. Although

AF performs sub-optimally, it is still considered a popular type of relaying

due to its design flexibility and low complexity [221]. Although ADC and

DAC are not necessary for the operation of AF, they are indispensable for

93



Full-Duplex In-Band Multi-Antenna Relaying

Figure 6.2.Block diagram of a MIMO full-duplex relay transceiver.

loop-interference mitigation in a full-duplex relay. The operation diagram

of a MIMO full-duplex relay is depicted in Fig. 6.2.

In a two-hop link scenario, the destination node may receive the same

signal stream twice, depending on the level of direct signal attenuation

from the source node. If the gap between the arrival times of these OFDM-

modulated signals emitted from the source and the relay toward the des-

tination is shorter than the cyclic prefix, the signals will be combined

constructively1. Otherwise, the weak signal directly originating from the

source should be interpreted as interference at the destination.

In the following, the rest of this chapter fundamentally focuses on the

mitigation of loop-interference as it is unavoidable under the full-duplex

mode. In addition, other limitations (e.g., interference through the direct

link, etc.) are also elaborated more in the context of end-to-end link opti-

mization.

6.3 Loop-interference mitigation

In the part, the mitigation techniques for the loop-interference signal on

a full-duplex relay link are grouped into two main categories: preven-

tion/cancellation methods and multi-antenna spatial-domain suppression

schemes. The former group comprises antenna/relay selection, physical

isolation, analog RF cancellation, and digital cancellation by time-domain

1This is, however, unlikely in practice as full-duplex relays usually opt to add

artificial, long delays to avoid any bias problem.
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subtraction whereas the latter involves either full nullification or partial

diminution of the loop-interference by multi-antenna processing in the

spatial domain. Both of these mitigation categories are discussed in more

details below.

6.3.1 Prevention/cancellation methods

Transmit and receive antenna selection is an effective, low-complexity

way of preventing large loop-interference signals while requiring small

amounts of CSI feedback overhead [222]. In case of multiple relay nodes

in a network, the relay with the lowest loop-interference can be activated

for the required end-to-end communication, hence proactively alleviating

the issue ofself-interference[223, 224]. In addition, a joint scheme can

combine such antenna and relay selection strategies [225].

Physical isolation, also known aspassive suppression, provides power

attenuation for the loop-interference signal by means of blocking its prop-

agation medium via physical separation between the transmit and receive

sides of a full-duplex relay. Physical isolation techniques also often steer

transmit and receive antenna directivities in such a way that the intersec-

tion between the main transmit and receive radiation lobes is minimized.

Another means of isolation can be based on increasing the physical dis-

tance between the transmit and receive antenna arrays of a relay. In ad-

dition, physical isolation may also exploit the surrounding environment

through obstructions, employ shielding plates between the antenna ar-

rays, or polarize the transmit and receive waves orthogonally.

The cancellation of an RF interference signal can be realized by a stan-

dard noise canceler chip [226]. In a full-duplex relay such an RF can-

celer applies the necessary amplitude and phase corrections to the refer-

ence loop-interference, which is extracted from the previous transmission

slots, so that it matches to the actual incoming loop-interference at the

current time instant. After a successful matching, the RF canceler sub-

tracts this reference signal in analog domain. Such RF signal cancellation

is verified to be able to provide up to30dB reductions in loop-interference

signals [227].

Loop-interference signals can also be canceled digitally in baseband by

means of subtracting an estimate of the interference based on the previ-

ously transmitted baseband signal from the relay. Apparently, accurate

modeling for the loop-interference also requires proper knowledge on the

loop-interference channel. However, the feasibility of the necessary chan-
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Figure 6.3.Illustration of the loop-interference cancellation techniques operated within

a MIMO full-duplex relay, where each grey-colored block represents a differ-

ent cancellation type.

nel estimation can be dubious due to phase noise errors [228] and limited

dynamic range [229]. In addition, delay and phase alignments are also re-

quired on the interference model prior to the final subtraction, which can

be computed by a standard detector that measures the peak of the signal

correlations. The operational diagrams of these cancellation techniques

are illustrated on a full-duplex MIMO relay model by Fig. 6.3.

6.3.2 Spatial suppression

Due to the discussed hardware limitations in Section 6.2, the preven-

tion/cancellation methods for the loop-interference often exhibit limited

performance, which leaves room for improvement by spatial-domain sup-

pression. Specifically, analog RF cancellation leaves behind residual noise

as a result of the imperfections in RF splitters and CSI estimates. More-

over, such analog cancellation requires a dedicated hardware chip, which

may be missing in a transceiver. Digital cancellation is performed only

after the receive signal goes through ADC, hence the issue of front-end

saturation cannot be prevented. In addition, physical isolation and digital
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cancellation together are experimentally shown to be insufficient for fully

removing out the loop-interference when equipped with omnidirectional

antennas in an indoor prototype cellular setup [230]. On the contrary,

spatial-domain multi-antenna techniques can create spatial nulls at both

transmit and receive antenna arrays, or particularly alleviate the receive

front-end saturation via pre-suppressing the bulk of the loop-interference

by transmit-side filtering.

An intermediate relay can establish a two-hop connection between a

base station and a user terminal for coverage extension on downlink. In

such scenarios, the direct link between the end points of a transmission

is often considered weak. Therefore, the direct link can be interpreted

either as negligible or as a cause of interference at the user terminal.

During such downlink transmissions by a two-hop relaying, the serving

base station acts as thetransmission sourcewhereas the user terminal

is considered thesignal destination, as depicted in Fig. 6.4. In a MIMO

two-hop relaying, spatial suppression techniques can improve the perfor-

mance of the end-to-end link by means of either full nullification of the

loop-interference or by its partial mitigation based on global SINR maxi-

mization.

Figure 6.4.Coverage extension in a downlink transmission by full-duplex relaying.

Forming spatial nulls at the transmit and receive antenna arrays of a

full-duplex relay is an effective measure that performs well in interfer-

ence limited conditions. Such spatial nullifiers are usually computed ac-

cording to the right and left singular matrices of the loop-interference

channel, after which the remaining degrees of freedom are taken into

account to improve the quality of the desired signal. However, the op-

timal solution for such procedure is hard to derive even if the ideal CSI

is available. One promising approach for a sub-optimal derivation can

be based on an iterative computation of the spatial filters, where each of
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them is optimized separately in succession based on the orthogonal pro-

jection of the other filter from the last iteration [231]. Similarly, such op-

timization can also be realized by the gradient projection algorithm [232].

Another potential sub-optimal solution for full interference suppression

can be based on individually nullifying the disjoint eigenbeam subsets of

the loop-interference channel by means of computing its SVD. Although

the feasible solution set is smaller than the former category of iterative

methods, final spatial filters can be derived in closed forms by the latter

approach due to its disjoint nullifications. Publication VII combines the

orthogonal projection method with such a disjoint nullification approach

in order to derive the spatial filters for the most generalized case, which

incorporates any rank-deficient channels in addition to the full-rank con-

dition presented in literature [233, 234]. Such rank-deficiency is expected

to occur more frequently in a full-duplex operation when the same an-

tenna array is not shared between the receive and transmit ends, which

is usually the case with full-duplex relaying as opposed to half-duplex.

In addition, note that the said rank-deficiency here also encapsulates any

full-column or full-row rank conditions, which should frequently occur un-

der a pair of receive and transmit arrays that are equipped with unequal

numbers of antennas.

Regarding the global maximization of the end-to-end SINR metric, power

control is an integral part to the feasibility of a full-duplex relay link. As

its optimality requires striking an ideal balance between improving the

desired signal and mitigating the loop-interference, the feasible solution

set often entails only partially suppressed residual interference. However,

there can be cases with the DF protocol where a full nullification indicates

the globally optimal solution. Apparently, altering the transmit power of

a full-duplex relay has a direct impact on the loop-interference. Higher

transmit powers boost the interference signal, therefore causing higher

rate losses at the first hop while improving the signal quality at the sec-

ond hop. On the contrary, low transmit powers at the relay diminish the

loop-interference at the receive front-end while also reducing the strength

of the desired signal at the destination terminal. Hence, generalized spa-

tial suppression techniques with residual loop-interference cannot be de-

veloped independently of the transmit power allocations in a full-duplex

relay. Due to the sophistication and non-convexity of this global optimiza-

tion problem, there is no known solution providing a generalized opti-

mum spatial suppression strategy for full-duplex MIMO relays, although
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a handful of attempts has been made in literature in order to approach

the theoretical performance bound on a two-hop link. One such study is

based on an iterative algorithm that derives suboptimal transmit spatial

filters at the source and relay that is equipped with a digital interference

canceller [235]. Another study is based on deriving the receive and trans-

mit filters of a MIMO relay in succession based on maximum signal-to-

interference ratio (SIR) [236] while the other filter is being disregarded.

Instead of designing sub-optimal solutions, some studies have conducted

theoretical analyses and derived lower and upper performance bounds for

the end-to-end achievable rates on a full-duplex MIMO relay link [237].

In terms of the contributions of this thesis, Publication VII investigates

the global optimization of a two-hop single-stream point-to-point link with

a full-duplex MIMO relay by means of end-to-end SINR maximization.

Since the end-to-end link exhibits dissimilar behavior based on the rela-

tionship between the first and second hop channel SNRs, the optimiza-

tion problem is divided into three explicit subproblems. When the link

quality between the source and relay stations is much better than that

of the relay–destination link, the global optimality renders almost full

loop-interference nullification. On the contrary, when the second hop is

much stronger than the first, the optimal spatial filters converge to chan-

nel matched filters. Under the DF protocol both of these convergences

reach to the global optimality as long as the strength of the stronger hop

surpasses a certain threshold, which is derived in Publication VII based

on the instantaneous channel SNR metrics. In case of AF, however, this

convergence does not conclude during the search in the feasible design

set. Such distinction is present between these protocols due to their differ-

ent natures on operational linearity. Assuming full decoding/re-encoding

without errors, the performance of a DF relay link is only tightly bounded

by its weaker hop, independently of the other. On the contrary, the AF

protocol exhibits a continuous rate of change in the overall performance,

which indicates that the relative strengths of the hops with respect to

each other do not lead to a performance saturation on the end-to-end link.

Concerning the third subproblem where neither hop is much stronger

than the other, the optimization relies on an iterative approximation be-

tween the transmit- and receive-side filters based on separately deriving

one of them after having fixed the other. For a given transmit-side filter,

the optimal receiver can be computed by minimum MSE criterion. For a

given receive-side filter, the optimal transmitter can be obtained by a con-
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vex combination between the full nullification and hermitian transpose

schemes in a single-stream transmission.

Figure 6.5 presents the simulation results of the described optimization

scheme with comparison to the maximum theoretical rates achievable by

spatial-domain suppression. The simulation setup is a two-hop one-way

relay link with negligible direct link between the end points. The propa-

gation channels are modeled by flat-fading uncorrelated random variables

and the thermal noise at the receivers is generated as zero-mean unit-

variance independent Gaussian elements. The average gain of the chan-

nels between different communication nodes is defined as 15 dB whereas

the average gain of the loop-interference channel is varied from−30 to

30 dB. The data transmission is carried over a single stream and the re-

lay station is equipped with either 2 or 5 antennas at both receive and

transmit sides. The source station employs maximum transmit power as

it is the ideal strategy with negligible direct link between the source and

destination. In addition, the simulation is modeled to be free from any

hardware imperfections or CSI estimation errors.

The vertical axes in Fig. 6.5 represent the end-to-end transmission rates

whereas the horizontal axes indicate the average strength of the loop-

interference channel. The following conclusions can be drawn based on

the transmission rate results of Fig. 6.5. A common observation among

all antenna configurations is that the theoretical bound is distinctly more

sensitive to the loop-interference when its strength is about−30 dB with

the DF protocol. This phenomenon can be explained as follows. When the

level of loop-interference is high, the optimal spatial suppression almost

nullifies the interference, hence rendering the sensitivity of the trans-

mission rates low along the horizontal axes. On the contrary, low loop-

interference necessitates a more delicate balance between improving the

desired signal and minimizing the interference, therefore the optimum

spatial suppression leaves behind larger residual interference. This is in

fact a common behavior in wireless communications, where the optimal

multi-antenna filtering approaches the zero-forcing solution under high

interference whereas the channel matched filter performs well when the

interference is low. Another remarkable indication of this phenomenon

is that it occurs as a side-effect due to insufficient spatial degrees-of-

freedom. More specifically, the maximum achievable rate plots in Fig. 6.5

should theoretically produce the same transmission rates along the hori-

zontal axes if the relay is considered to be equipped with unlimited num-
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Figure 6.5.Achievable data rates by the proposed spatial suppression scheme (red lines)

in comparison to their theoretical limits (blue lines) in a two-hop downlink

scenario with a full-duplexa.2×2,b.2×5,c.5×2,d.5×5MIMO relay.

Publication VII,c2014 IEEE.

ber of antennas.

Moreover, the DF protocol, in contrast to AF, renders unequal rates with

the antenna configurations 2×5 and 5×2 in Fig. 6.5. Such dissimilar be-

havior with the performance of DF can be explained as follows. At the re-

lay, both the transmit power and the transmit-side filter can balance the

optimization in a similar manner by improving the quality of the trans-

mit signal as opposed to reducing loop-interference, or vice versa. On the

other hand, the balancing between improved desired signal and reduced

loop-interference at the relay is only impacted by the receive-side filtering

among all design parameters. As a result, having a larger antenna array

at the receive-side, rather than at the transmit-side, allows more refined

optimization with the DF protocol, as its performance is tightly bounded

by the weaker hop. Thus, employing more antennas at the receiver helps
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to relax the limited freedom on the source–relay hop, particularly when

the level of loop-interference is low. On the contrary, the same observation

is not present with the AF protocol as it is more stable against unequal

hop qualities. To be specific, the performance gap between DF and AF

is maximized when the source–relay and relay–destination links deliver

equal rates. On the contrary, when either of the hops theoretically delivers

infinite data rate, DF and AF reach asymptotically identical throughputs.

Publication VIII presents an iterative optimization method for a full-

duplex MIMO relay on MISO end-to-end link, where a base station is

equipped with multiple antennas during a downlink transmission. The

optimization in spatial domain involves designing baseband multi-antenna

filters at the receive and transmit sides of the relay station as well as the

transmit filter at the base station. The design is based on the assumptions

that the relay contributes non-negligible processing delays and that the

direct link between the end points is weak, hence interpreted as interfer-

ence at the destination terminal. The optimization problem should also

address developing optimum power allocations at both of the transmit

stations, as constrained by their upper bounds. Publication VIII firstly

derives for both DF and AF protocols the optimal pairs of transmit powers

as well as the optimal receivers when the rest of the design parameters

are known. Next, these findings are combined to a single closed-form ex-

pression as an iterative search between these separate expressions is not

guaranteed to converge to the global optimum due to the non-convexity

of the transmit power expressions. Second, both transmit filters are opti-

mized by maximum SLNR condition for a fixed receive filter and transmit

powers. Finally, an iterative algorithm is designed to jointly optimize all

system parameters in baseband, as elucidated in the following.

Let us first denote the receive and transmit side baseband filters of the

MIMO relay respectively bygrandgt, and the transmit filter at the source

station bygs. In addition, let us also denote the power allocations at the

source and relay stations bypSandpR, respectively. The optimization

algorithm is initiated by settinggsandgtto channel matched filters. At

each iteration the optimalpS,pR, andgrare derived as described above,

and subsequently bothgsandgtare re-computed based on the maximum

SLNR. These computations are repeated at every iteration till the first

drop in the end-to-end SINR, denoted byγe2e. Additionally, the algorithm

can also be terminated after a pre-determined number of iterations, e.g.,

whenI= 100 iterations are completed. The required steps of this joint
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Table 6.1.Joint Iterative Algorithm on a Full-Duplex MISO Dual-Hop Link

Step#1: Initialize iteration indexi=1, setγe2e=0, and

defineg
(0)
s ,g

(0)
t as channel hermitian transpose

Step#2: Derivep
(i)
S,p

(i)
R, andg

(i)
r based on giveng

(i−1)
s andg

(i−1)
t

Step#3: Computeg
(i)
s andg

(i)
t by max. SLNR

Step#4: ifγ
(i)
e2e<γ

(i−1)
e2e

SetpS=p
(i−1)
S ,pR=p

(i−1)
R ,gr=g

(i−1)
r ,gs=g

(i−1)
s ,gt=g

(i−1)
t ,

andexit

elseifi>I

SetpS=p
(i)
S,pR=p

(i)
R,gr=g

(i)
r,gs=g

(i)
s,gt=g

(i)
t,

andexit

else

Seti=i+1and go toStep#2

end

iterative algorithm are listed in Table 6.1.

Figure 6.6 demonstrates the numerical evaluation results of the de-

scribed algorithm in Table 6.1. The system setup is a dual-hop MISO

relay link with an additional direct end-to-end connection that is pro-

cessed as interference at the destination terminal. Due to the full-duplex

operation the system is also degraded by loop-interference at the relay re-

ceiver. The wireless channels are modeled with flat-fading independent

and identically distributed elements. The system also contains thermal

additive noise at both receivers, which is modeled by zero-mean indepen-

dent Gaussian random variables. The mean strengths of the source–relay

and relay–destination channels are 10 dB whereas the direct link and

loop-interference channels have varying strengths from 0 to 10 dB while

always being kept equal to each other. The source station is equipped with

4 antennas whereas the relay station employs 2 transmit and 2 receive

antennas. The destination terminal has a single antenna, hence the end-

to-end link is MISO. Also, the maximum transmit powers are constrained

to one and the system is considered to experience neither hardware nor

CSI imperfections. In addition, note that all the curves in Fig. 6.6 employ

the optimal power control, although the spatial filters are designed differ-

ently. Last but not least, the number of maximum iterations (i.e.,I) is set

to 100 to keep the simulation run-time short.

The vertical axes in Fig. 6.6 indicate the achievable data rates whereas
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Figure 6.6.Achievable data rates by the joint iterative algorithm, as compared with:

a.linear MRT filter and direct link transmission, andb.the same joint iter-

ative algorithm, but with ZF transmitters instead of SLNR. Publication VII,

c2014 IEEE.

the horizontal axes represent the mean strengths of both interference

channels, which are namely the loop-interference and direct link chan-

nels. One can draw the following conclusions based on the numerical

results. On the left-hand side, Fig. 6.6a compares the performance of

the iterative algorithm with that of MRT filtering and direct link con-

nection under both AF and DF modes. The former scheme is realized

by defining the transmit filters as channel matched filters while the op-

timal relay receiver is derived by the minimum MSE. The latter scheme

is based on shutting off the relay station and relying on the direct link

for data transmissions between the source station and destination termi-

nal. Clearly, increasing the strengths of the loop-interference and direct

link gradually degrades the MRT performance while enhancing the direct

transmission link. However, the proposed iterative algorithm with SLNR

outperforms others at any point along the horizontal axis. On the right-

hand side, Fig. 6.6b investigates the impact of the SLNR transmitters on

the proposed iterative algorithm by re-defining the transmitters as ZF

filters. This is realized by means of first pre-nullifying the interference

signals transmitted from the source and relay stations prior to employing

the remaining degrees-of-freedom for enhancing the desired signal qual-

ity. The SLNR based transmitters outperform ZF at every point within

the simulated range of interference strengths. In addition, one can no-

tice the following counterintuitive phenomenon in Fig. 6.6b. The perfor-

mance of the ZF-based schemes unconventionally improves with higher

interference levels along the horizontal axis, which can be explained as
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follows. The balancing problem between optimizing the desired signal

and weakening the interference signals becomes a more delicate proce-

dure at lower interference levels. Therefore the iterations in Table 6.1

start bouncing with small offsets relatively faster when the interference

signals are weak. This leads to an early termination of the algorithm by

satisfying the exit condition atStep#4of Table 6.1 fairly quickly.

6.4 Discussion

This chapter investigated the optimization of wireless full-duplex relay

links and presented the contributions of the thesis based on the original

works of Publication VII and Publication VIII. Specifically, the benefits of

the full-duplex technology over half-duplex are highlighted; hardware im-

perfections and the concept of loop-interference signal are explained; and

popular mitigation methods for residual loop-interference are discussed

with particular emphasis on the multi-antenna spatial suppression tech-

niques.

An important design target in cellular communications is providing re-

liable, high-capacity connections toward cell-edge users, which can be

achieved with wireless relay deployments. AF relaying can be integrated

to cellular systems without any standardization efforts as it is simply op-

erated as a Layer-1 repeater. As a matter of fact, it has already been

employed in the second and third generation cellular communication net-

works [238]. However, this type of relaying causes unintentional ampli-

fications in the noise and inter-cell interference, therefore high-capacity

transmission goals cannot be thoroughly fulfilled. On the contrary, the

use of DF relaying requires standardization and, in fact, has been sup-

ported by LTE-A for fixed deployments since Release-10 [239]. This type

of standardized DF relays, which operate on Layer-3, can achieve higher

throughputs by combatting inter-cell interference and noise signals thanks

to demodulation/decoding and modulation/re-encoding processes. In addi-

tion, the deployment of mobile relay nodes (e.g., on top of a high-speed

bullet train) has also been in discussion by 3GPP for a while as a study

item [240].

Although wireless relays are currently deployed in cellular networks,

the configured operational modes are based on either out-band or in-band

half-duplexing. Despite the available support for in-band full-duplexing

by the cellular standards [241], the only successful commercial implemen-
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tation of the wireless full-duplex technology has been in the field of digital

terrestrial broadcasting so far, where the deployed full-duplex relay sta-

tions are calledon-channel repeaters[242]. However, the full-duplex tech-

nology is expected to appear in future cellular networks as it offers not

only higher spectral efficiency and better link reliability but also opens

up new, exciting opportunities for many technology enablers toward next

generation cellular services. As more diversified types of UEs and IoT

terminals require incessant cellular connections, the increasing demand

for improved access links can be provided by full-duplex relaying. With

a higher user density, terminal devices can act as wireless relays to for-

ward the cellular traffic as intermediate ad-hoc elements, particularly for

indoor coverage. Vehicles can operate as moving relays for filling in cov-

erage holes while driving around urban environments. In addition, relays

can support green communications and help MTC applications in conserv-

ing terminal battery lives. It should be noted that future relaying appli-

cations are expected to be compatible to multitude of devices and services,

therefore specified relay functionalities also need to be adjustable for dif-

ferent usage scenarios.
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To address the ever-growing user demand for mobile communication tech-

nologies, service providers and designers of cellular systems want to at-

tract more subscribers and seduce the existing ones toward more pre-

mium tiers by means of introducing new types of applications and estab-

lishing more aggressive improvements to the existing offerings at a more

competitive pricing. These advancements push the technical boundaries

of cellular communications further at each iteration. Future evolutions

of cellular systems are expected to offer even higher data rates, lower

latency, reduced power emissions in denser coverage areas, as well as ini-

tiate new application fields for more diverse usage scenarios. As a result

of these objectives, many technology components are being developed and

analyzed for feasibility and suitability studies within the timeline of each

generation over the incessant evolution of cellular communication sys-

tems.

Multi-antenna deployments keep attracting significant interests from

both academic and industrial research communities by creating vast op-

portunities for reaching the said objectives. Signal processing techniques

for multiple antennas allow establishing a third dimension by the spatial

domain next to the spectral and temporal domains. This third dimen-

sion helps researchers bend the rules of the game by enabling concurrent

multi-layer communications, low-power concentrated transmissions, spa-

tial orthogonalization, etc. without consuming auxiliary spectro-temporal

resources. This thesis investigated state-of-the-art multi-antenna pro-

cessing techniques and developed novel contributions for enabling some

of the target objectives for next-generation cellular communication sys-

tems.

First and foremost, serving multiple users on shared resources is of ut-

most importance for the efficient sustainability of high-rate transmissions
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on downlink. Deploying multiple antennas facilitates both multi-layer

data delivery and orthogonalization among users. This thesis investi-

gated linear and non-linear baseband processing strategies and explored

their benefits and drawbacks in terms of performance, complexity, and sig-

naling requirements in the presence of channel state information (CSI)

errors and thermal noise. In particular, joint transmitter and receiver

design methods are explored on a multi-user multi-input multi-output

(MIMO) link as they can potentially offer higher performance results de-

spite the associated optimization being a non-convex problem. In terms

of the contributions, a novel joint design technique is proposed for high

signal-to-noise ratio (SNR) channel conditions, where the captured per-

formance gain can compensate for the signaling loss. Simulation results

demonstrate that the proposed method outperforms state-of-the-art filter-

ing schemes under low thermal noise levels, and also under high thermal

noise as long as the CSI mismatch stays the primary performance limita-

tion in the system.

As resource allocation is equally, if not more, important in the efficient

utilization of the available spectrum, this thesis also dealt with the op-

timization of downlink schedulers. Allocation, assignment, and user or-

dering strategies are investigated on a multi-user MIMO downlink with

the assumption of perfect orthogonalization among the resources. In par-

ticular, this thesis proposed two heuristic scheduling methods based on

the greedy and genetic algorithms. The proposed schedulers apply an

iterative method, where only one additional user is attempted to be co-

scheduled at each iteration next to the set of primarily scheduled users

on every resource block. Such approach also motivated for a new type of

chromosome structure for the genetic algorithm. System-level simulation

results indicate that the proposed genetic scheduler performs well with

low complexity in crowded networks whereas the greedy based scheduler

is preferable when less users are co-scheduled.

The future work on the proposed joint baseband processing can be re-

lated to its extension to a non-linear scheme. In addition, the necessary

feedforward signaling for the distribution of the receive filter weights and

the associated impact on the performance in terms of resource loss can be

analyzed theoretically or evaluated in a simulation setup. Regarding the

future work on multi-resource schedulers, the proposed algorithms can be

evaluated in more sophisticated network setups, such as under a massive

antenna array that allows tens of users on the same shared resources or
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by taking into account the residual inter-carrier interference (ICI) among

successive resource blocks. Also, the associated scheduler complexities

can be derived by a theoretical analysis in a future work.

Second of all, the massive MIMO technology is well known to offer im-

proved CSI orthogonality among multiple users and resistance against

multipath fading, as well as help achieve reduced power loss at user ter-

minals. However, the acquisition of a channel response is a concerning

issue due to the requirements for extended user feedback in addition to

the limitations in storage and computational capabilities. This thesis in-

vestigated the state-of-the-art CSI estimation strategies that exploit the

reciprocity property of propagation channels on massive MIMO links op-

erating in time division duplex (TDD) mode. To start with, the thesis dis-

cussed multi-antenna calibration techniques that can recover the recipro-

cal characteristics of the channel once the hardware imperfections are re-

solved at radio frequency (RF) transceivers. Regarding the contributions,

this thesis proposed an adaptive quantization scheme for user CSI feed-

back reports during a relative antenna calibration procedure. The adapta-

tion is based on measuring the instantaneous channel conditions of uplink

and deriving the optimum amount of granularity for the subsequent CSI

feedback report. Numerical results demonstrate considerable reductions

in signaling overhead when the CSI feedback is quantized adaptively.

Assuming that the channel reciprocity is restored, this thesis also in-

vestigated blind channel estimators on the uplink of a multi-user mas-

sive MIMO connection. Although massive MIMO allows multi-source sig-

nal separation during a blind CSI estimation process, the residual multi-

user distortions deteriorate the estimation accuracy as a result of the long

channel vectors being only asymptotically orthogonal with each other. In

addition, the limited sample size of the transmit symbols also reduces the

CSI accuracy. This thesis proposed a multi-cellular coordination scheme

for such multi-source blind estimators on the uplink of a massive MIMO

connection based on jointly processing the available receive data from

multiple base stations and iteratively approximating the sources of degra-

dations due to limited receive symbols and finite antennas. Simulation

results verify the improvements in terms of higher CSI accuracy and

demonstrate the analyses on the speed of convergence for the proposed

coordination scheme.

The future research work could be related to extending the proposed co-

ordination algorithm for the pilot-based uplink training. Due to the poten-
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tial risk for pilot contamination, only a small number of pilot sequences

can be allowed in a dense network. The optimization could address firstly

separating the users into a few groups. Then, all the users in each group

can be simultaneously detected by a single blind estimator while different

groups are separated from each other by orthogonal signal sequences.

Thirdly, as channel reciprocity is unavailable in frequency division du-

plex (FDD) systems due to much shorter coherence bandwidth relative

to the duplex frequency gap, enabling massive MIMO in FDD operation

requires brand new acquisition methods for downlink CSI. This thesis

investigated the most popular techniques addressing the notorious chal-

lenges associated to downlink training and user feedback compression.

The state-of-the-art schemes are grouped into three categories based on

the exploited channel characteristics, which are temporal correlation, spa-

tial correlation, and multipath sparsity. In terms of the contributions, this

thesis proposed a novel acquisition technique based on reconstructing full

CSI by a selected number of the strongest propagation paths. As some

channel parameters are identical on forward and reverse links, a base sta-

tion is proposed to estimate those reciprocal characteristics of the channel

directly from uplink whereas the served user terminals are only required

to measure and transfer the phase information associated to the targeted

dominant paths for final CSI reconstruction.

The benefits of the proposed CSI acquisition technique include reduced

feedback overhead by uncoupling its size from the number of base station

antennas as well as removing the requirement for full CSI vector estima-

tion at user terminals. Numerical results verify the potential of the pro-

posed technique for FDD-mode massive MIMO connections, particularly

in macro cells with elevated base station towers. Future research direc-

tions should include more detailed investigations on practical realizations

as well as the applicability to smaller cells at millimeter-wave frequencies,

which can enable more densely-packed antenna array structures.

Last but not least, the full-duplex technology has been receiving signifi-

cant interests in wireless communications due to its ability for an econom-

ical use of resources. Instead of conventional duplex division schemes, a

transceiver operating in full-duplex simultaneously receives and trans-

mits on the same spectral band while the separation between incoming

and outgoing streams are safeguarded by other means. This thesis inves-

tigated the full-duplex transmission technology on a relay link, which is

a frequent application area for the full-duplex operation, and focused on
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the state-of-the-art mitigation schemes for the loop-interference occurring

at the receiver side of a full-duplex relay. The presented discussions also

address the sensitivity of the mitigation techniques to hardware imper-

fections whereas the focus is still mostly on spatial-domain suppression

methods, which can be performed thanks to multi-antenna deployments

at such relays.

Regarding the contributions on full-duplex, this thesis proposed a co-

herent algorithm that approximates the global optimality on a dual-hop

link with a MIMO full-duplex relay. The algorithm is based on designing

baseband transmit and receive filters via piecewise analyses on the global

optimization problem. In addition, optimal power allocations are derived

on a multi-input single-output (MISO) link and the necessary baseband

filters are optimized by means of swapping the associated leakage signals

between the source and relay transmitters. Future work on full-duplex

should focus on improving the resistance of the proposed schemes against

a large CSI mismatch or a potential receiver-end saturation, which may

occur as a result of extreme signal overloads with non-ideal hardware

equipment. A mechanism can be developed that performs on-line analy-

ses on the instantaneous stability conditions of the system and feeds the

outcome into the proposed schemes based on an approximated metric on

the CSI inaccuracy.
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