263 research outputs found

    Rule-Based Design for Low-Cost Double-Node Upset Tolerant Self-Recoverable D-Latch

    Get PDF
    This paper presents a low-cost, self-recoverable, double-node upset tolerant latch aiming at nourishing the lack of these devices in the state of the art, especially featuring self-recoverability while maintaining a low-cost pro le. Thus, this D-latch may be useful for high reliability and high-performance safety-critical applications as it can detect and recover faults happening during holding time in harsh radiation environments. The proposed D-latch design is based on a low-cost single event double-node upset tolerant latch and a rule-based double-node upset (DNU) tolerant latch which provides it with the self-recoverability against DNU, but paired with a low transistor count and high performance. Simulation waveforms support the achievements and demonstrate that this new D-latch is fully self-recoverable against double-node upset. In addition, the minimum improvement of the delay-power-area product of the proposed rule-based design for the low-cost DNU tolerant self-recoverable latch (RB-LDNUR) is 59%, compared with the latest DNU self-recoverable latch on the literature.Spanish Government MCIN/AEI/10.13039/501100011033/FEDER PID2020-117344RB-I00Regional Government P20_00265 P20_00633 B-RNM-680-UGR2

    STUDY OF SINGLE-EVENT EFFECTS ON DIGITAL SYSTEMS

    Get PDF
    Microelectronic devices and systems have been extensively utilized in a variety of radiation environments, ranging from the low-earth orbit to the ground level. A high-energy particle from such an environment may cause voltage/current transients, thereby inducing Single Event Effect (SEE) errors in an Integrated Circuit (IC). Ever since the first SEE error was reported in 1975, this community has made tremendous progress in investigating the mechanisms of SEE and exploring radiation tolerant techniques. However, as the IC technology advances, the existing hardening techniques have been rendered less effective because of the reduced spacing and charge sharing between devices. The Semiconductor Industry Association (SIA) roadmap has identified radiation-induced soft errors as the major threat to the reliable operation of electronic systems in the future. In digital systems, hardening techniques of their core components, such as latches, logic, and clock network, need to be addressed. Two single event tolerant latch designs taking advantage of feedback transistors are presented and evaluated in both single event resilience and overhead. These feedback transistors are turned OFF in the hold mode, thereby yielding a very large resistance. This, in turn, results in a larger feedback delay and higher single event tolerance. On the other hand, these extra transistors are turned ON when the cell is in the write mode. As a result, no significant write delay is introduced. Both designs demonstrate higher upset threshold and lower cross-section when compared to the reference cells. Dynamic logic circuits have intrinsic single event issues in each stage of the operations. The worst case occurs when the output is evaluated logic high, where the pull-up networks are turned OFF. In this case, the circuit fails to recover the output by pulling the output up to the supply rail. A capacitor added to the feedback path increases the node capacitance of the output and the feedback delay, thereby increasing the single event critical charge. Another differential structure that has two differential inputs and outputs eliminates single event upset issues at the expense of an increased number of transistors. Clock networks in advanced technology nodes may cause significant errors in an IC as the devices are more sensitive to single event strikes. Clock mesh is a widely used clocking scheme in a digital system. It was fabricated in a 28nm technology and evaluated through the use of heavy ions and laser irradiation experiments. Superior resistance to radiation strikes was demonstrated during these tests. In addition to mitigating single event issues by using hardened designs, built-in current sensors can be used to detect single event induced currents in the n-well and, if implemented, subsequently execute fault correction actions. These sensors were simulated and fabricated in a 28nm CMOS process. Simulation, as well as, experimental results, substantiates the validity of this sensor design. This manifests itself as an alternative to existing hardening techniques. In conclusion, this work investigates single event effects in digital systems, especially those in deep-submicron or advanced technology nodes. New hardened latch, dynamic logic, clock, and current sensor designs have been presented and evaluated. Through the use of these designs, the single event tolerance of a digital system can be achieved at the expense of varying overhead in terms of area, power, and delay

    Single Event Effect Hardening Designs in 65nm CMOS Bulk Technology

    Get PDF
    Radiation from terrestrial and space environments is a great danger to integrated circuits (ICs). A single particle from a radiation environment strikes semiconductor materials resulting in voltage and current perturbation, where errors are induced. This phenomenon is termed a Single Event Effect (SEE). With the shrinking of transistor size, charge sharing between adjacent devices leads to less effectiveness of current radiation hardening methods. Improving fault-tolerance of storage cells and logic gates in advanced technologies becomes urgent and important. A new Single Event Upset (SEU) tolerant latch is proposed based on a previous hardened Quatro design. Soft error analysis tools are used and results show that the critical charge of the proposed design is approximately 2 times higher than that of the reference design with negligible penalty in area, delay, and power consumption. A test chip containing the proposed flip-flop chains was designed and exposed to alpha particles as well as heavy ions. Radiation experimental results indicate that the soft error rates of the proposed design are greatly reduced when Linear Energy Transfer (LET) is lower than 4, which makes it a suitable candidate for ground-level high reliability applications. To improve radiation tolerance of combinational circuits, two combinational logic gates are proposed. One is a layout-based hardening Cascode Voltage Switch Logic (CVSL) and the other is a fault-tolerant differential dynamic logic. Results from a SEE simulation tool indicate that the proposed CVSL has a higher critical charge, less cross section, and shorter Single Event Transient (SET) pulses when compared with reference designs. Simulation results also reveal that the proposed differential dynamic logic significantly reduces the SEU rate compared to traditional dynamic logic, and has a higher critical charge and shorter SET pulses than reference hardened design

    Radiation Tolerant Electronics, Volume II

    Get PDF
    Research on radiation tolerant electronics has increased rapidly over the last few years, resulting in many interesting approaches to model radiation effects and design radiation hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation hardened electronics for space applications, high-energy physics experiments such as those on the large hadron collider at CERN, and many terrestrial nuclear applications, including nuclear energy and safety management. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their ionizing radiation susceptibility has raised many exciting challenges, which are expected to drive research in the coming decade.After the success of the first Special Issue on Radiation Tolerant Electronics, the current Special Issue features thirteen articles highlighting recent breakthroughs in radiation tolerant integrated circuit design, fault tolerance in FPGAs, radiation effects in semiconductor materials and advanced IC technologies and modelling of radiation effects

    A low power and soft error resilience guard-gated Quartro-based flip-flop in 45 nm CMOS technology

    Get PDF
    Abstract Conventional flip‐flops are more vulnerable to particle strikes in a radiation environment. To overcome this disadvantage, in the literature, many radiation‐hardened flip‐flops (FFs) based on techniques like triple modular redundancy, dual interlocked cell, Quatro and guard‐gated Quatro cell, and so on, are discussed. The flip‐flop realized using radiation hardened by design Quatro cell is named as the improved version of Quatro flip‐flop (IVQFF). Single event upset (SEU) at inverter stages of master/slave and at output are the two drawbacks of IVQFF. This study proposes a guard‐gated Quatro FF (GQFF) using guard‐gated Quatro cell and Muller C‐element. To overcome the SEU at inverter stages of IVQFF, in GQFF, the inverter stages are realized in a parallel fashion. A dual‐input Muller C‐element is connected to the GQFF output stage to mask the SEU and thus maintain the correct output. The proposed GQFF tolerates both single node upset (SNU) and double node upset (DNU). It also achieves low power. To prove the efficacy, GQFF and the existing FFs are implemented in 45 nm Complementary Metal Oxide Semiconductor (CMOS) technology. From the simulation results, it may be noted that the GQFF is 100% immune to SNUs and 50% immune to DNUs

    Développement de circuits logiques programmables résistants aux alas logiques en technologie CMOS submicrométrique

    Get PDF
    The electronics associated to the particle detectors of the Large Hadron Collider (LHC), under construction at CERN, will operate in a very harsh radiation environment. Most of the microelectronics components developed for the first generation of LHC experiments have been designed with very precise experiment-specific goals and are hardly adaptable to other applications. Commercial Off-The-Shelf (COTS) components cannot be used in the vicinity of particle collision due to their poor radiation tolerance. This thesis is a contribution to the effort to cover the need for radiation-tolerant SEU-robust programmable components for application in High Energy Physics (HEP) experiments. Two components are under development: a Programmable Logic Device (PLD) and a Field-Programmable Gate Array (FPGA). The PLD is a fuse-based, 10-input, 8-I/O general architecture device in 0.25 micron CMOS technology. The FPGA under development is instead a 32x32 logic block array, equivalent to ~25k gates, in 0.13 micron CMOS. This work focussed also on the research for an SEU-robust register in both the mentioned technologies. The SEU-robust register is employed as a user data flip-flop in the FPGA and PLD designs and as a configuration cell as well in the FPGA design

    A review of advances in pixel detectors for experiments with high rate and radiation

    Full text link
    The Large Hadron Collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the High Luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.Comment: 84 pages with 46 figures. Review article.For submission to Rep. Prog. Phy

    Study of Layout Techniques in Dynamic Logic Circuitry for Single Event Effect Mitigation

    Get PDF
    Dynamic logic circuits are highly suitable for high-speed applications, considering the fact that they have a smaller area and faster transition. However, their application in space or other radiation-rich environments has been significantly inhibited by their susceptibility to radiation effects. This work begins with the basic operations of dynamic logic circuits, elaborates upon the physics underlying their radiation vulnerability, and evaluates three techniques that harden dynamic logic from the layout: drain extension, pulse quenching, and a proposed method. The drain extension method adds an extra drain to the sensitive node in order to improve charge sharing, the pulse quenching scheme utilizes charge sharing by duplicating a component that offsets the transient pulse, and the proposed technique takes advantage of both. Domino buffers designed using these three techniques, along with a conventional design as reference, were modeled and simulated using a 3D TCAD tool. Simulation results confirm a significant reduction of soft error rate in the proposed technique and suggest a greater reduction with angled incidence. A 130 nm chip containing designed buffer and register chains was fabricated and tested with heavy ion irradiation. According to the experiment results, the proposed design achieved 30% soft error rate reduction, with 19%, 20%, and 10% overhead in speed, power, and area, respectively

    High-speed Energy-efficient Soft Error Tolerant Flip-flops

    Get PDF
    Single event upset (SEU) or soft error caused by alpha particles and cosmic neutrons has emerged as a key reliability concern in nanoscale CMOS technologies. The decrease in signal charge due to the reduction of the operating voltage and node capacitance primarily increases the soft error rate (SER) in integrated circuits. The situation is aggravated by the increasing number of memory elements (e.g., flip-flops) on chip, the lack of inherent error masking mechanisms in these elements, and the below-nominal voltage operation for reducing the power consumption. In fact, limiting the power consumption is critical to enhance the battery life of portable electronic devices. In this thesis, I present several soft error tolerant flip-flops that offer high speed while consuming low power either inherently or through low-energy clocking scheme. The proposed soft error tolerant flip-flops can be divided into two major categories: i) flip-flops with square-wave clock and ii) flip-flops with energy recovery sinusoidal clock, which is very attractive to significantly lower the clock power consumption. The two square-wave clock based proposed flip-flops are: a true single phase clock (TSPC) DICE flip-flop and a clocked precharge soft error robust flip-flop. These flip-flops use fewer transistors and offer as much as 35% lower power-delay-product (PDP) than existing soft error robust pulsed DICE flip-flop. The energy recovery clock based proposed flip-flops are: a soft clock edge SEU hardened (SCESH) flip-flop, C2-DICE flip-flop, a conditional pass Quatro (CPQ) flip-flop, and two energy recovery TSPC flip-flops. These flip-flops exhibit lower PDP ranging from 30% to 69% when compared to the pulsed DICE flip-flop and the single-ended conditional capturing energy recovery (SCCER) flip-flop. Thus, the proposed flip-flops provide a wide range of power and delay choices and as such can be used in a variety of low-power or high performance applications including high-end microprocessors, low-power system-on-chips (SOCs), and implantable medical devices

    Study of radiation-tolerant integrated circuits for space applications

    Get PDF
    Integrated Circuits in space suffer from reliability problems due to the radiative surroundings. High energy particles can ionize the semiconductor and lead to single event effects. For digital systems, the transients can upset the logic values in the storage cells which are called single event upsets, or in the combinational logic circuits which are called single event transients. While for analog systems, the transient will introduce noises and change the operating point. The influence becomes more notable in advanced technologies, where devices are more susceptive to the perturbations due to the compact layout. Recently radiation-hardened-by-design has become an effective approach compared to that of modifying semiconductor processes. Hence it is used in this thesis project. Firstly, three elaborately designed radiation-tolerant registers are implemented. Then, two built-in testing circuits are introduced. They are used to detect and count the single event upsets in the registers during high-energy particle tests. The third part is the pulse width measurement circuit, which is designed for measuring the single event transient pulse width in combinational logic circuits. According to the simulations, transient pulse width ranging from 90.6ps to 2.53ns can be effectively measured. Finally, two frequently used cross-coupled LC tank voltage-controlled oscillators are studied to compare their radiation tolerances. Simulation results show that the direct power connection and transistors working in the deep saturation mode have positive influence toward the radiation tolerance. All of the circuit designs, simulations and analyses are based on STMicroelectronics CMOS 90 nm 7M2T General Process
    • 

    corecore