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ABSTRACT 

 

Dynamic logic circuits are highly suitable for high-speed applications, considering the fact 

that they have a smaller area and faster transition. However, their application in space or other 

radiation-rich environments has been significantly inhibited by their susceptibility to radiation 

effects. This work begins with the basic operations of dynamic logic circuits, elaborates upon the 

physics underlying their radiation vulnerability, and evaluates three techniques that harden 

dynamic logic from the layout: drain extension, pulse quenching, and a proposed method. The 

drain extension method adds an extra drain to the sensitive node in order to improve charge sharing, 

the pulse quenching scheme utilizes charge sharing by duplicating a component that offsets the 

transient pulse, and the proposed technique takes advantage of both. Domino buffers designed 

using these three techniques, along with a conventional design as reference, were modeled and 

simulated using a 3D TCAD tool. Simulation results confirm a significant reduction of soft error 

rate in the proposed technique and suggest a greater reduction with angled incidence. A 130 nm 

chip containing designed buffer and register chains was fabricated and tested with heavy ion 

irradiation. According to the experiment results, the proposed design achieved 30% soft error rate 

reduction, with 19%, 20%, and 10% overhead in speed, power, and area, respectively.  
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CHAPTER 1 INTRODUCTION 

 

The preponderance of information in this day and age is ciphered by electronic circuits in the 

form of charge or current flow. With the development of modern complementary metal-oxide 

semiconductor (CMOS) technology, the feature size has been scaling down and has currently 

reached 14 nm and below. In April 2012, Intel Core i7 and i5 processors based on its 22 nm 

technology hit the market worldwide. While the transistor dimension shrunk, the supply voltage 

needed to scale down to around 1.0 V in order to prevent material wear or breakdown due to high 

electric fields. As a result, node charge decreased at a rate that was at least linear with the channel 

width. In 1962, Wallmark and Marcus already discerned that a single cosmic ray particle strike 

would start upsetting microelectronic devices if the channel length scales below 1 μm [1]. Ever 

since this was made aware, the effect of radiation on microelectronics has gained a tremendous 

amount of attention and increasingly more researchers began studying the underlying mechanisms. 

In 1978, May and Woods from Intel Corporation reported that these upsets were triggered by alpha 

particles emitted during the radioactive decay of thorium and uranium from radioactive impurities 

in the device materials. The term “soft error” was first used in their paper to denote “random, 

nonrecurring, single-bit errors in memory devices” [2]. Guenzer and Wolicki [3] later discovered 

that the particles that triggered soft errors came not only from thorium and uranium, but also from 

highly energetic neutrons, protons and heavy ions originating from cosmic rays in the natural 

environment. Moreover, they introduced the term “single event upset” to refer to a soft error that 

occurs in dynamic random-access memories (DRAMs). In 1995, Baumann et al. [4] discovered 

that boron fission induced by thermal neutrons in the borophosphosilicate glass (BPSG) layer acts 

as another source of radiation-induced errors in high density DRAMs. 
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1.1 Radiation Sources 

1.1.1 Alpha Particles 

An alpha particle is comprised of two protons and two neutrons bound together, which is 

identical to a helium nucleus. It is generally created during the process of alpha decay. In the 1970’s, 

alpha particles emitted from radioactive impurities in package resin were found to be the major 

source of terrestrial soft errors. An alpha particle loses energy when it travels through materials by 

means of interacting with the electrons of that material. The distance it travels before being stopped 

by material is a function of both its energy and material density. The range of an alpha particle is 

fairly short: a few tens of micron in packaging materials and even less in metals and oxides. 

Therefore, the semiconductor industry has focused on purifying the packaging materials near the 

die surface in order to eliminate the major source of contamination. As a result, the alpha particle 

emissivity on integrated circuits (ICs) and packaging materials has decreased from 2.3 α/khr-cm2 

to 0.9 α/khr-cm2 for 40 nm technology [5]. However, with ever-decreasing node capacitance and 

low supply voltages, alpha particles originating from the package, on-chip interconnects and wafers 

will remain a significant source of soft errors.  

1.1.2 Space Radiation 

Radiation in space predominantly consists of ionizing radiation that exists in the form of high-

energy, charged particles. There are three sources of natural space radiation: galactic cosmic rays 

(GCR), solar particle events (SPEs), and trapped radiation. 

Galactic cosmic rays originate outside the solar system and may generate showers of 

secondary particles that penetrate and impact the earth’s atmosphere. Primary cosmic rays, 

originally produced in various astrophysical processes, are composed largely of protons and alpha 
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particles. When the primary cosmic rays impact the atmosphere, secondary cosmic rays are 

generated, which include mainly electrons, photons and muons [6]. 

SPEs occur when electrons, protons, and alpha or heavier particles emitted by the sun 

accelerate to extremely high energies in interplanetary space. These particles temporarily increase 

the radiation in interplanetary space around the magnetosphere, with the potential to penetrate to 

lower altitudes in the polar regions [7]. 

Trapped radiation is the result of particles from solar wind and cosmic rays becoming trapped 

in two magnetic rings surrounding the earth, which are referred to as Van Allen belts. These belts 

are comprised of an outer and inner component; the outer belt is formed by high energy electrons 

with an energy value as high as 10 MeV, while the inner belt is formed by a combination of protons 

with an energy value as high as 400 MeV and electrons with an energy value range that spans 

hundreds of keV [7]. 

High-energy cosmic rays do not directly generate electron-hole pairs in silicon, but rather 

cause soft errors mainly by neutron-induced silicon recoils. Neutrons colliding with Si nuclei 

transfer enough energy to displace Si nuclei from the lattice, which then break into lighter 

fragments that generate charge and cause soft errors.  

The energy of silicon reaction products is significantly higher than that of alpha particles, thus 

rendering high-energy cosmic rays more likely to upset semiconductor devices than alpha particles. 

In addition, the charge density of neutron-generated silicon recoils ranges from 25 to 150 ƒC/µm, 

while alpha particles generate around 16 ƒC/µm. Therefore, soft error effects such as multiple-bit 

upset (MBU) and single event latch-up (SEL) are generally triggered by high-energy neutrons 

instead of alpha particles, considering the fact that their linear energy transfer (LET) threshold is 

typically above 16 ƒC/µm [8]. 
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1.1.3 Thermal Neutron-Induced Boron Fission 

Boron is widely used as a p-type silicon doping implant and is also extensively used in the 

formation of BPSG dielectric layers. It naturally occurs with two isotopes, 11B (80.1%) and 10B 

(19.9%). When a 10B nucleus captures a low-energy neutron, or thermal neutron, a fission reaction 

occurs and produces a 0.84 MeV 7Li recoil nucleus, a 1.47 MeV alpha particle, and a 478 keV 

gamma particle. While both Li recoil and alpha particle are capable of causing soft errors, the Li 

recoil hitting a sensitive node has a higher possibility of inducing a soft error, considering the fact 

that it generates more charge per unit length of travel. For the traditional BPSG-based 

semiconductor process, this is sometimes the primary cause of soft errors. Several methods have 

been developed to mitigate the soft error rate (SER) due to the activation of 10B in BPSG, the most 

simple and direct of which is to abandon the use of BPSG from the process flow. Since BPSG was 

eliminated at the technology node beyond 0.25 µm, the SER has experienced a dramatic drop. 180 

nm static random-access memory (SRAM) devices with the BPSG dielectric layer eliminated were 

reported to exhibit an SER drop by a factor of 600 [9]. 

1.2 Single-Event Effect 

The naturally occurring space radiation environment, along with semiconductor fabrication 

materials and process, produce transient and permanent changes in the electrical properties of 

integrated circuits and solid-state devices. These changes may cause malfunctions, not only in 

avionics, space, and military electronics, but also in commercial semiconductor devices in the 

terrestrial environment. Therefore, a considerable amount of research focusing on the mechanisms 

of various radiation effects has been conducted. 

The Joint Electron Device Engineering Council (JEDEC) standard JESD89A defines a single 

event effect (SEE) as “any measurable or observable change in state or performance of a 
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microelectronic device, component, subsystem, or system (digital or analog) resulting from a single 

energetic particle strike” [10]. SEEs are induced by the interaction between an ionizing particle 

and electronic components. As previously discussed, these ionizing particles can be either primary 

(including heavy ions originating from space environment or alpha particles emitted by radioactive 

impurities in the die and packaging materials), or secondary particles (recoils produced by the 

nuclear interaction between a particle, such as a thermal or high-energy neutron or a proton, and 

atoms in the die, such as silicon and oxygen). SEEs can be generally categorized into 2 types: non-

destructive and destructive effects.  

Outlined below are the nondestructive functional errors, also referred to as soft errors: 

 Single-event upset (SEU): A change of state in electronic devices caused by energetic 

particles striking a sensitive node. 

 Multiple-bit upset (MBU): Upsets of two or more bits in the same word triggered by a single 

particle event. 

 Single-event functional interrupt (SEFI): A soft error that causes a detectable malfunction 

of devices, and is commonly associated with a change in control bit or register. 

 Single-event transient (SET): A transient voltage spike at a certain node in an IC that may 

not cause an upset unless latched by a storage element. 

Other SEEs can cause non-recoverable errors or even destruction of devices [11]. These so-

called “hard errors” include: 

 Single-event latch-up (SEL): Single particle strike induced parasitic bipolar formation in 

CMOS wells that results in a low-impedance path between power and ground, resulting in 

a high current condition. 
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 Single-event burnout (SEB): Simultaneous high currents and high voltages initiated by a 

high-energy particle strike can induce second breakdown of the parasitic bipolar transistor 

in a power metal-oxide semiconductor field-effect transistor (MOSFET) which may 

subsequently cause a meltdown of the device [12]. 

 Single-event gate rupture (SEGR): A condition in which a single particle strike results in a 

breakdown and ensuing increase in gate leakage current of a MOSFET. SEGR is typically 

observed at the same time as SEB in power MOSFETs.  

This thesis examines the mechanisms and mitigation techniques of soft errors, with particular 

attention devoted to SET and SEU. 

1.3 Motivations 

Since the discovery of soft error in electronic devices, many techniques have been proposed 

aiming to mitigate SET and SEU. These mitigation techniques can be roughly divided into three 

categories: device level, system level and circuit level.  

Technology- or device-level hardening requires fundamental changes of fabrication process 

to limit charge collection in ICs. One popular and promising technique is the silicon-on-inductor 

(SOI) structure [13], in which the active device is on a thin silicon layer that is dielectrically 

insulated from the substrate. 

System- or architecture-level techniques detect and correct soft errors by adding extra 

information to the data. One of the most popular approaches is the use of error detection and 

correction (EDAC) codes, which use redundant bits to detect bit flip in the data [14]. 

Other approaches deal with SET and SEU at the circuit level. Among them, triple modular 

redundancy (TMR) is an easily applicable method that can be implemented, not only at the circuit 

level, but additionally at the system board or module level. Although TMR has proven efficient in 
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masking soft errors, it also typically implies a considerable hardware overhead. In this day and age, 

most researchers have turned to radiation hardening by design (RHBD) approaches. This entails 

that the circuit structure is designed in such a fashion that, rather than relying on specialized devices 

or process features, the special circuit topologies and/or layout can provide sufficient radiation 

hardening. 

Numerous RHBD techniques have been proposed to improve the tolerance of the CMOS 

device against radiation. Some of the techniques provide hardening on the gate level by introducing 

extra transistors into the circuit, such as the dual-interlocked storage cell (DICE) [15] and soft-

error immune latch (SEILA) [16]. Contrastingly, other techniques rely on a delicately designed 

layout, such as guard bands/rings, guard drains [17], and layout design through error-aware 

transistor positioning (LEAP) DICE [18]. Most of the RHBD techniques primarily apply to latch 

and flip flop structures, with the exception of guard rings and guard drains, which can be utilized 

for any cell at the sensitive node). However, with the technology trends of smaller feature size, 

lower supply voltage and higher operating frequency, a resulting increase in combinational logic 

soft errors has been observed. It is reported that, normalized to the number of cells, SER for 

combinational dynamic logic and SRAMs in 0.25 µm test circuits are essentially synonymous [19]. 

Furthermore, the need for RHBD techniques in combinational logic is of equal (if not of more) 

importance to that in memory elements.  

Despite the urge for combinational logic rad-hardening, minimal research has been conducted 

to study SER in dynamic logic circuits, which are considerably faster than static CMOS and are 

often used in the performance-critical blocks of microprocessors, digital signal processors and 

memories. Operating by periodically charging circuit nodes, dynamic logic is usually considered 

more vulnerable to radiation than its static counterpart. Along with the decreasing node capacitance, 

charge stored on the nodes is becoming so small that even a minimal perturbation or any single 
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particle strike may discharge the nodes and alter their states. A few rad-hardening methods for 

dynamic logic were reported in last two decades, most of which took the gate-level approaches that 

either doubled the circuit size or introduced a considerable delay that slowed down the dynamic 

logic circuits. On the other hand, recent research on layout techniques has achieved significant 

hardening by simply repositioning transistors or adding a small component in the layout. 

Furthermore, layout techniques appear to be more promising in dynamic logic application. 

Therefore, thorough research directed towards cost-effective and easy-to-apply approaches for 

dynamic logic rad-hardening is essential. 

1.4 Research Objectives  

Based on the discussion above, the overall objectives of this thesis work are to study dynamic 

logic circuits with several RHBD approaches, reduce the SER through layout adjustment, and 

compare and verify the improvement through the use of simulation and radiation experiments. In 

order to achieve the objectives, the steps below are adhered to: 

1. Study different SET/SEU mechanisms and effects during dynamic logic operations. 

2. Propose a layout-level RHBD technique that introduces relatively small area overhead 

and delay. 

3. Build three-dimension (3D) technology computer aided design (TCAD) device models 

for the proposed approach and some previous rad-hardening methods. 

4. Perform mixed-mode heavy ion simulation under various conditions, comparing the 

effect of particle strike incidence, energy and frequency on SEU probability. 

5. Design and fabricate a 130 nm testing chip that contains different layout-level RHBD 

dynamic logic circuits. 
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6. Build up a testing system with printed circuit boards (PCBs) and carry out heavy ion 

experiments using different particles, incident angles, operating frequencies, and 

power supply voltages. 

1.5 Thesis Outline 

The remainder of the thesis is organized as follows: Chapter 2 provides an introduction 

outlining how a domino logic circuit operates, along with a comparison to static CMOS logic, and 

analyzes how SET/SEU affects dynamic logic circuits. Chapter 3 provides a review of previous 

RHBD methodologies for logic circuit and memories. Chapter 4 proposes a layout-level RHBD 

method for domino logics, and discusses the design implementation and simulation of 3D device 

models using Synopsys Sentaurus TCAD. The simulation results, along with a comparison to other 

layout techniques, is subsequently listed and analyzed. Chapter 5 describes the testing chip layout 

design in IBM 130 nm CMOS technology. In Chapter 6, the radiation testing methodology and 

results are discussed, following a description of the testing system architecture. Chapter 7 

concludes the thesis and presents suggestions for future works.  
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CHAPTER 2 DYNAMIC LOGIC 

 

Static CMOS logic with a fan-in of N requires 2N devices and is relatively slow as a result of 

both the NMOS and PMOS gate capacitance at each input. This chapter investigates the dynamic 

logic family, which is an alternative logic family that has been shown to substantially reduce the 

number of transistors to N+2, while avoiding static power dissipation. 

2.1 Basic Principles of Dynamic Logic 

The basic structure of an n-type dynamic logic gate is displayed in Figure 2.1. The pull-down 

network (PDN) is constructed the same manner as in static CMOS logic. With the addition of a 

clock input, dynamic logic operates in a periodical sequence of precharge and evaluation phases. 

The output logic value is represented by the presence or absence of charge at the Out node.  

 

Figure 2.1 Structure of an n-type dynamic logic  
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2.1.1 Precharge Phase 

When 𝐶𝐿𝐾 = 0, the PMOS transistor MP turns on and the output node Out is charged to VDD. 

Due to the fact that the NMOS transistor MN is “off”, the pull-down path is disabled. Therefore, no 

static power is consumed during this period. This stage is referred to as precharge, in which the 

output is precharged to logic 1 and prepared for evaluation in the next stage. 

2.1.2 Evaluation Phase 

When 𝐶𝐿𝐾 = 1 , the PMOS transistor MP is shut off and the NMOS transistor MN is 

turned“on”. Depending upon the PDN topology and the input values, the output will be 

conditionally discharged. During this phase, if the PDN conducts, a resulting low resistance path 

from Out to GND transpires that discharges the output node. In the case where the PDN is “off”, 

the precharged value on the output node remains stored on CL, a combination of junction 

capacitance, wiring capacitance, and input capacitance of the fan-out gates. Note that, during the 

evaluation stage, the only possible path between the output node and supply rail is from output to 

GND. Therefore, once the output node is discharged, it will not go up to VDD until the next 

precharge phase. In other words, the output can make a maximum of one monotonic falling 

transition during each evaluation phase. 

2.1.3 Dynamic Inverter 

Take the simplest dynamic logic gate, a dynamic inverter, for example, as displayed in Figure 

2.2. In precharge phase, the low CLK signal cuts off the pull-down path and turns the PMOS on, 

and thus Out is pulled up to VDD. During this period, regardless of the value applied to the input, 

the output will not be affected. When CLK goes to high, the gate enters the evaluation phase where 

the pull-up path is turned off. In this case, two possible situations exist. If In remains low for the 
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whole evaluation phase, considering the fact that both pull-up and pull-down path are “off”, Out 

will be floating and retain its value as long as the leakage is negligible. For this reason, the clock 

frequency cannot be too low, as otherwise the evaluation phase will be so long that the output will 

gradually lose all of its charge through the leakage current. On the other side, if In goes up anytime 

during evaluation, Out will be quickly discharged due to the low-impedance path to GND. At this 

point, there is no way for Out to be recharged regardless of the input value, and it will remain low 

until the next precharge stage. 

 

Figure 2.2 Dynamic inverter 

For this dynamic inverter, the following function is thus realized: 

𝑂𝑢𝑡 = 𝐶𝐿𝐾 + 𝐴 ∙ 𝐶𝐿𝐾                                                       (2.1) 

2.2 Domino Logic 

2.2.1 Domino Logic Basics 

As discussed above, the only effective transition at the output during evaluation is from 1 to 

0, which means the output for dynamic logic is always monotonically falling. On the contrary, 

dynamic logic always expects a monotonically rising signal at its input; this is the only possible 
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way to create a conducting pull-down path during evaluation that discharges the output node. The 

case in which two dynamic inverters are directly connected is depicted in Figure 2.3. In precharge 

phase, both nodes X and Y are charged to VDD. At the beginning of evaluation phase, CLK shifts 

from 0 to 1, and turns on Mn2 and Mn4 simultaneously. Because of the fact that 𝑋 = 1, Mn3 is already 

turned on, node Y is discharged through Mn3 and Mn4 to GND. Once the output drops, it stays low 

until the next precharge phase. In other words, output Y will not change with input A. Consequently, 

directly cascaded dynamic gates will not perform the expected function correctly.  
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Figure 2.3 Directly connected dynamic inverters  

To solve the monotonicity problem, a structure called domino logic is often exerted, which 

inserts a static CMOS inverter between dynamic stages. While this may appear to conflict with the 

point of dynamic logic at first glance, the ability to avoid PMOS transistors in order to increase 

speed renders the domino logic structure very functional, as it is able to convert a monotonically 

falling output into a monotonically rising input suitable for dynamic gates. The overall speed is not 

degraded, as the static inverter connects primarily to the NMOSs in dynamic logic gates. 
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Subsequently, the P/N ratio in the inverter is often sized larger than usual to favor rising output, 

which is the transition of primary concern to us. 

The structure of two cascaded domino AND gates is depicted in Figure 2.4(a). The timing 

diagram of each signals is depicted in Figure 2.4(b), assuming inputs A, B and C are high. As can 

be observed, a falling output at W is converted by the HI-skew inverter into a fast rising signal X 

that is also an effective input for the next domino AND gate. Such a dynamic-static pair together 

is referred to as a domino gate, as the evaluation process of each precharged gate triggering the 

next precisely resembles a chain of dominos tipping over. 

CLK

X

A

Y ZW

B C

 

(a) 



 

15 

 

CLK

W

X

Y

Z

Pre-charge Pre-chargeEvaluation

 

(b) 

Figure 2.4 Cascaded domino AND gates 

2.2.2 Keepers 

Owing to the fact that inputs to dynamic logic primarily connect to NMOSs, dynamic circuits 

have poor input noise margins. If, due to noise, the input rises above Vt during evaluation, the input 

transistors would be weakly turned on and irreversibly discharge the output. Furthermore, dynamic 

circuits, as mentioned before, are susceptible to charge leakage on the output node. Voltage on a 

dynamic node will drop over time through subthreshold, gate and junction leakage, provided it is 

precharged and left floating in evaluation. Depending on process, voltage and temperature, the time 

constants are usually in the range of nanosecond to millisecond. 

Both noise margins and leakage problems, however, can be addressed by the use of a keeper 

circuit. The keeper circuit operates by stabilizing the output at the supply voltage when it would 

otherwise float or incorrectly degrade. A conventional keeper added to a domino buffer is 

illustrated in Figure 2.5. During evaluation, if the dynamic node 𝑋 = 1, then the inverted output 

𝑌 = 0, and the keeper is turned on to prevent X from floating. Considering the input signal, if it 

rises slightly above Vt and weakly turns on the pull-down path, the fact that Y is not immediately 
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affected and remains at 0 will trigger the keeper to attempt to fight against the weak conducting 

current, while subsequently holding X at the correct voltage level. However, this contention also 

exists when X falls and opposes the transition even if it is supposed to. For this reason, the keeper 

must be designed much weaker than the transistors in the PDN, allowing Y to eventually rise and 

turn off the keeper in order to avoid further static power dissipation. For a dynamic gate with small 

transistor sizes, the keeper should be weaker than a minimum-sized transistor, which can be 

achieved by increasing the keeper gate length. A number of keeper designs have been proposed to 

further address issues such as area [20], noise margin [21][22][23], and power dissipation [24][25]; 

while in this work, we will stick to the conventional keeper design so as to easily make comparisons 

between different layout level approaches. 
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Figure 2.5 Domino buffer with a conventional keeper 

2.3 SEU in Dynamic Circuits 

2.3.1 Ion Strike 

When charged particles strike a semiconductor device, charge is generated along the track. If 

the charge generation occurs in the bulk, it will simply recombine or diffuse out through supply 
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rails. If the ion strike occurs at or near the diffusion regions, the electrons and holes generated will 

be affected by the electric fields at the junctions, thus potentially creating a current that will disturb 

the correct circuit operation. The direction and magnitude of such a current largely depends on the 

structure of the hit device and the bias at its terminals. As depicted in Figure 2.6, an ion strike on 

the drain of an NMOS, or N-hit, may cause the drain voltage to drop by generating a transient 

current that flows towards the P-well and substrate. Contrarily, a hit on the PMOS drain, or P-hit, 

usually results in a current flowing towards the drain and leads to a voltage spike. When a device 

is “on”, an ion strike will essentially fortify the logic level at the hit drain. SET occurs primarily 

when an ion hits a device that is “off”, and potentially turns it on. 

In Simulation Program with Integrated Circuit Emphasis (SPICE), the SET current can thus 

be modeled by injecting a double-exponential current source at the site of particle strike [26]: 

𝐼𝑖𝑛(𝑡) =
𝑄

𝜏𝛼−𝜏𝛽
(𝑒

−
𝑡

𝜏𝛼 − 𝑒
−

𝑡

𝜏𝛽)                                            (2.2) 

In the equation above, Q represents the positive or negative charge deposited due to particle 

strike, τα is the collection time constant, and τβ is the ion-track establishment time constant. The 

values of constants τα and τβ are influenced by several process-related factors. 
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Figure 2.6 SET current generated by N-hit and P-hit on drains 
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2.3.2 SEU in Precharge 

Due to its two-phase operation, dynamic logic has a fairly different response to ion strike from 

static logic. When the circuit is in precharge, an ion hit on the drain of an NMOS can create an SET 

current that discharges the output node. Because of the fact that the precharge PMOS transistor is 

“on”, the output voltage will eventually recover. If, however, the next evaluation phase begins 

before the output voltage fully recovers, an upset may consequently occur. Such soft errors in 

dynamic logic are referred to here as SEUs instead of SETs because, unlike in static logic where 

transient current can recuperate over time, SETs that occur in the described conditions always result 

in a bit flip due to lack of pull-up path. 

This SEU mechanism is simulated using a 130 nm domino buffer circuit. Figure 2.7 depicts 

an N-hit on the drain of the sensitive NMOS transistor. The transient current deposits a total charge 

of 5.6 fC, with 𝜏𝛼 = 100 𝑝𝑠 and 𝜏𝛽 = 5 𝑝𝑠. These numbers are used as an approximation of pulse 

shapes observed in 130 nm technology TCAD simulations [27]. As demonstrated in Figure 2.8, 

because of the fact that the output node Out_inv of the dynamic inverter is not fully charged when 

evaluation starts, an upset occurs at the buffer output Out_Buf.  

The dynamic circuit is only vulnerable to such an SEU mechanism at the end of a precharge 

phase. This window of vulnerability is actually the time required for the circuit to be charged up to 

a logic high level, with the worst case existing when all the NMOS devices in the PDN are “on”. 
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Figure 2.7 N-hit on a domino buffer during precharge 
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Figure 2.8 N-hit that occurs at the end of precharge 

2.3.3 SEU in Evaluation 

The dynamic circuit is susceptible to ion strike during the evaluation phase as well. The most 

distinct difference that separates dynamic logic from its static counterpart is the use of charge stored 

on a node to represent a high logic level. It is these nodes, however, that are sensitive to radiation 

and inclined to lose charge if hit by particles. Considering the fact that a floating node has no active 

path to VDD, it is impossible to recover from charge loss until the next precharge phase. 
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The same domino circuit as in Figure 2.7 is simulated for ion hit during evaluation, with the 

results depicted in Figure 2.9. As can be observed from the waveforms, dynamic inverter output 

node Out_Inv decreases to approximately 0.7 V below GND and then remains low until fully 

charged to VDD in the precharge phase. The consequent pulse width at node Out_Buf is determined 

by the propagation delay in the circuit and the time between ion hit and the falling precharge clock 

edge. Furthermore, an upset will not happen if the pulse is not able to reach a latch before the 

precharge phase. 

 

Figure 2.9 N-hit that occurs during evaluation 
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2.4 Dynamic Logic versus Static Logic 

As mentioned in the beginning of this chapter, dynamic logic has numerous advantages over 

static logic. A series of simulations are performed in order to quantitatively compare these two 

logic families in terms of area, power dissipation, delay and critical charge. Critical charge Qcrit 

refers to the minimum amount of charge collected on a sensitive node due to a particle hit that is 

able to cause an upset. To determine Qcrit, the deposited charge is gradually increased until an SET 

appears at the end of a logic chain which causes a bit flip in the storage element that follows, as 

depicted in Figure 2.10. The transistor sizing of the unit domino buffer is demonstrated in Figure 

2.11. Considering the fact that precharge occurs while the gate is idle, the PMOS transistor width 

is chosen to deliver half driving current of the pull-down network. This, at the cost of greater rising 

delays, minimizes the parasitic capacitance and the capacitive load on the clock. To be comparable, 

all of the other circuits are sized to carry out an effective rise and fall resistance equal to that of the 

unit domino buffer. The comparison in Table 2.1 is made based on the premise that all of the 

circuits have the same switching activity, and that only the rising propagation delay is considered 

for FO4 delay estimation. 
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Figure 2.10 Logic chain used for SEE simulation 
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Figure 2.11 Domino buffer sizing 

Table 2.1 Comparisons between dynamic and static logic circuits 

Logic Area (a.u.) Power (a.u.) FO4 Delay (ps) Qcrit (fC) 

Domino buffer 1 1 62.31 3.55 

Static buffer 0.64 1.38 64.25 8.96 

Domino AND2 1.45 1.83 69.90 3.73 

Static AND2 1.09 0.73 75.55 9.68 

Domino OR2 1.18 1.20 67.17 3.94 

Static OR2 1.27 1.50 93.74 11.39 

Domino AND3 1.93 2.59 77.85 3.93 

Static AND3 1.73 1.10 86.95 10.47 

Domino OR3 1.36 1.61 71.97 4.28 

Static OR3 2.27 3.23 122.41 13.96 
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Comparing each domino logic circuit to its static counterpart from the table above, the 

following conclusions can be reached: 

1. Dynamic gates are particularly suitable for wide NOR/OR functions, as they are 

smaller, much faster, and have less power dissipation. 

2. For logic with a large number of inputs, the dynamic circuit normally requires less 

area. 

3. The power dissipation of dynamic logic varies depending on the circuit structure and 

system specifications. It would seem that dynamic logic presents an advantage over 

static logic in terms of power due to its lower physical capacitance and zero (or little) 

static-power dissipation. Such benefits, however, would be offset when the clock 

power and higher switching activity as a result of periodic precharge and evaluation 

operations are considered [28]. 

4. Due to the reduced number of PMOS transistors that are innately slow, dynamic 

circuits are always faster than static circuits. 

5. Despite its increased speed and reduced implementation area that are well suited to 

today’s high-speed very-large-scale integration (VLSI) systems, dynamic logic is at 

least twice as vulnerable to radiation effect as static CMOS logic circuits. This further 

emphasizes the motivation and importance of this work: an effective method to harden 

dynamic logic against radiation is needed. 
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CHAPTER 3 LITERATURE REVIEW 

 

Owing to its high speed performance and the ability to implement complex logic functions 

with fewer transistors, dynamic logic plays a critical role in applications such as processors 

[29][30][31] that are targeted towards high frequency operation and low pipeline latency. However, 

as the feature size shrinks, the increasing susceptibility to soft errors has become an obstacle to its 

wider application in modern designs. Some traditional circuit-level RHBD techniques can still be 

applied. However, due to the nature of dynamic logic, these improvements are often very limited. 

In the meantime, a few other rad-hardening designs that utilize the characteristics of dynamic logic 

have proven to work quite efficiently. Some of these circuit-level approaches will be introduced in 

this chapter. In terms of physical level, on the other hand, little research has been conducted in 

studying an RHBD approach specific to dynamic logic. Several layout-level rad-hardening 

techniques for static logic and memory elements will be reviewed and discussed as well. 

3.1 Circuit-level RHBD 

The circuit-level RHBD approaches focus on blocking the propagation of SEUs from hit node 

to adjacent devices by either properly sizing the gates or introducing a certain redundancy to the 

circuit.  

3.1.1 Triple-Modular Redundancy  

The TMR technique was first introduced in 1962 [32]. The basic concept can be illustrated in 

Figure 3.1, where the three blocks labeled M are identical modules, each with a single output. The 

three outputs are sent to the majority voting circuit. In contrast to the relatively complex functions 

computed in the triplicated modules, the majority voter is a very simple circuit; thus it is considered 
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much more reliable than the other TMR components. Assuming the voter does not fail, if only one 

of the three modules fails, the other two can correct and mask the fault. TMR techniques are often 

applied to SRAM-based Field Programmable Gate Arrays (FPGAs) in order to protect the 

configuration memory against soft errors [33][34]. Although TMR strategies are easy to implement 

and offer tremendous improvements in reliability, they are extremely expensive in terms of area 

and power consumption.  

 

Figure 3.1 TMR block 

3.1.2 Gate Sizing 

The following three factors determine whether a particle strike causes an SEU at the hit node: 

the total charge deposited at the node, the node capacitance, and the drive strength of the gate 

driving that node [35]. When the size of a transistor increases, both its drive strength and node 

capacitance increase, resulting in a rapid decrease in the magnitude and duration of the SET. 

However, larger transistor sizes will also lead to more area overhead. In [35], a gate sizing 

technique is used to harden combinational logic circuits with some overhead costs. The optimal 

transistor sizes are obtained by choosing the minimum W/L required to limit the worst case transient 

pulse to 0.5 VDD. In order to achieve cost-effective tradeoffs between SER reduction and overhead, 
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an algorithm is proposed to determine the gates with lowest logical masking probability, which are 

the critical ones that need to be hardened. 

According to the paper, this gate sizing technique achieves a 90% coverage for SER reduction 

across four processes ranging from 180 nm to 70 nm, with an average overhead of 38.3%, 27.1%, 

and 3.8% in area, power, and delay. 

3.1.3 Dual Interlocked Storage Cell 

Proposed by T. Calin et al. in 1996 [15], DICE-based latches, flip-flops and memory cells 

have been widely used for SEU immunity. A basic DICE storage element, as illustrated in Figure 

3.2Figure 3.2, consists of four interlocked inverters, using two nodes to store each logic state. This 

dual redundancy strategy has rendered DICE-type latch cells immune to SEUs at technology nodes 

180 nm and above [36].  
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Figure 3.2 DICE structure 

The redundancy and self-recover mechanism operate as follows: 
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Assume that the initial condition for the circuit is as follows: nodes 1 and 3 have logic value 

1, while nodes 2 and 4 have value 0. Thus, transistors N2, N4, P1 and P3 are “on”, whereas N1, 

N3, P2 and P4 are “off”. Without loss of generality, assume the drain contact of transistor N1 is hit 

by a particle. As a result, node 1 temporarily changes its logic state, and turns on P2 which was 

previously “off”, while turning off N4 which was previously “on”. The fact that both P2 and N2 

are now “on” causes voltage contention on node 2, whose voltage now depends on the sizes of 

these two transistors. This voltage shift on node 2 changes the state of P3 from “on” to partially 

“on”; in other words, node 3 is weakly driven by P3. As for node 4, because both P4 and N4 are 

“off”, it is left floating. Therefore, any transient current on node 1 will not affect the original state 

of node 3 or node 4, and node 1 will eventually recover to its previous state if no other node is 

affected by the particle strike. 

However, as feature size scales below 100 nm, the assumption that a single particle strike 

merely influences one node is no longer valid. Heavy ion experiment results in [37] indicate an 

order-of-magnitude increase of cross-section in the traditional DICE structure at an incident angle 

of 60˚ when compared to normal incidence. With smaller distance between devices, a tilted particle 

strike is very likely to hit multiple circuit nodes simultaneously, and charge sharing between 

adjacent devices becomes much easier as well. As a result, conventional DICE topology that relies 

on spatial separation of sensitive devices is no longer SEU-immune. 

3.1.4 C-pass Isolation Dynamic Logic 

The authors of [38] argue that, by suppressing the magnitude of an SEU glitch to 60%, the 

glitch will be unable to propagate to the next logic due to logical masking. In order to achieve such 

a suppression, single or dual c-pass transistors are added to isolate the hit node from the next stage. 

An additional keeper can also be added in this methodology to further suppress SEU. An example 
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of dual c-pass isolation and dual keeper implementation is depicted in Figure 3.3. Combinations 

of different numbers and sizes of the c-pass transistor and keeper undergo experimentation to 

evaluate tradeoffs between soft error suppression, speed and area. The simulation results show that, 

with 13.6% and 2.6% overhead in delay and area, respectively, 49% suppression of SEU can be 

achieved.  
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Figure 3.3 Dual c-pass isolation with dual keeper [38] 

3.1.5 Dual Redundancy Dynamic Logic 

Another SET-tolerant dynamic logic design approach is discussed in [39]. In this design 

approach, the pull-down network is duplicated to provide dual redundancy, and an OR gate is 

implemented near the output to correct the value if one of the paths is corrupted. To further improve 

SET tolerance, two feedback inverters and PMOS keepers can be added. Three design schemes are 

proposed, and the one with the best trade-off between speed and threshold LET is illustrated in 

Figure 3.4. 

The two PDN components R1 and R2 are identical. If one of them, R1 for example, is struck 

by a particle during a precharge or evaluation phase, Out1 will be pulled low. However, because 
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R2 is not affected, Out2 remains unchanged, and consequently K1 will be “on” and will try to 

recover Out1. Therefore, as long as no SET occurs on R2 before Out1 recovers, Output will not be 

affected. 
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Figure 3.4 Dual-redundant SET-tolerant dynamic logic [39] 

As compared to keeper based dynamic logic, this SET-tolerant design has an overhead of 168% 

in area and 182% in power consumption, as introduced by the duplicate PMOS keeper and inverter 

when Output switches from logic 1 to logic 0. Experiments on test chips designed in a 130 nm 

process demonstrate the following SER improvements on this proposed design technique, as 

compared to the traditional keeper based design: the threshold LET increases from 8.2 to 11.8 

MeV*cm2/mg, and at any LET ranging from 12.7 to 99 MeV*cm2/mg, the cross-section has been 

reduced by 4.5X to 6X. 
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3.2 Layout-level RHBD 

Due to the proximity of adjacent nodes and reduced node charge in advanced technologies, 

charge collection at a single node or between multiple nodes has greatly increased. Such increased 

charge collection has rendered many rad-hardening techniques that target at the circuit-level 

ineffective. Layout techniques address charge collection in a more straightforward approach. By 

making adjustments to the device structure, these techniques improve radiation tolerance by either 

isolating neighboring devices to reduce charge collection or rearranging the devices in a specific 

pattern, enabling shared charge between certain nodes to be cancelled out and thus mitigating SEU. 

3.2.1 Guard Rings and Guard Drains 

One way to alleviate charge sharing in adjacent nodes is to surround the critical node with 

guard rings. This technique was first discussed in [40] as “N-well full isolation”. For an NMOS 

device, a guard ring is formed by isolating it with P+ diffusion regions in the P-substrate. In order 

to guard a PMOS device, the transistor is surrounded by N+ diffusion regions in the N-well. The 

top and cross-section views of an NMOS with a guard ring is depicted in Figure 3.5.  

 

Figure 3.5 Top and cross-section views of an NMOS with a guard ring 

As substantiated by simulation and experimental results in previous works, guard rings are 

more effective for PMOS devices than NMOS [17]. This is due to the different charge collection 
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mechanisms of the two devices. The total amount of charge collected depends on three processes: 

drift, diffusion, and bipolar amplification. The electrical field present in a reverse-biased PN 

junction can collect charge through drift process. Diffusion collection is caused by carriers outside 

the depletion region diffusing back toward the junction due to concentration gradients. In 

comparison to drift collection, diffusion collection is a much slower process. Excessive carriers 

trapped in the well cause well potential collapse, forming a parasitic bipolar junction transistor 

(BJT) and thus enhancing charge collection. BJT amplification is usually observed in dual-well 

PMOS transistors due to the higher resistivity of the N-well than that of the P-well. After a particle 

strike occurs in a PMOS device, electrons in the N-well lower the well potential along the track. 

The collapsed N-well potential results in a forward-biased PN junction between the source and the 

N-well surrounding it, which turns on the NPN BJT with the source acting as the emitter, the drain 

as the collector, and the N-well as the base, as illustrated in Figure 3.6 [41]. With the BJT turned 

on, positive charge flows from source to drain, amplifying the SET current. In a dual-well CMOS 

process, drift is the main form of charge collection in NMOS, while bipolar amplification 

dominates the charge collection process in PMOS. 

 

Figure 3.6 Bipolar junction transistor formed in a PMOS device [41] 

Therefore, the guard ring surrounding a PMOS transistor helps to maintain the N-well 

potential, while subsequently mitigating parasitic charge collection. 
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Another famous isolation technique is referred to as guard drains. This technique was first 

reported in open literature in 2008 [17], although it had been applied in design projects before that. 

Guard drains are highly doped diffusion regions implanted close to drains. As the name implies, 

they are of the same doping type as the drains, forming reverse biased diodes to act as alternative 

charge collection regions, as illustrated in Figure 3.7.  

 

Figure 3.7 Top and cross-section views of an NMOS with guard drains 

Guard drains compete with the hit drains by collecting some of the charge that would 

otherwise be collected by the drains. Therefore, this technique is designed at reduce drift and 

diffusion charge collection. In other words, guard drains work better for NMOS devices. 

The areas of guard ring and guard drain layouts are found to be similar for different cells, with 

approximately15% more area than the conventional layout. According to experiment results, the 

maximum SET pulse width, which is proportional to the maximum collected charge, is reduced by 

20% in the guard ring circuit as compared to conventional layout circuit. In addition, the guard ring 

circuit demonstrates a 42% reduction in SET cross-section compared to the conventional one. On 

the other hand, the cross-section of the guard drain circuit is 30% to 40% lower than that of the 

guard ring circuit. 
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3.2.2 Soft Error Immune Latch 

A rad-hardened latch design scheme was proposed in 2010 by researchers in [16]. The design 

is based on an interlocked storage structure, as depicted in Figure 3.8. Two major techniques are 

applied to further reduce SER: dual clock buffer (DCB) and double height cell (DHC).  

Local clock buffers in a latch are usually small in size, and thus sensitive to SEUs. In the 

design, the clock buffers are duplicated and placed apart from each other. By doing so, a particle 

strike on one clock buffer will only cause a single node change in the interlocked structure Similar 

to DICE, an SEU will only propagate to the output if two of the four nodes are changed at the same 

time. Therefore, the DCB technique decreases the possibility of soft errors on a local clock buffer. 

Apart from hardening the internal clock, the latch is also designed in a double height manner, 

ensuring that, if two critical nodes are to be hit simultaneously, the “cancelling area” will be hit as 

well, which can offset the upset. If a particle strike hits at the same time as the drains of a PMOS 

and an NMOS, which are connected to the same node, the resulting upset will be suppressed. Such 

drain areas are referred to as cancelling areas. As illustrated in Figure 3.9, if a multiple node upset 

occurs on critical area 1 and 2, deposited charge will be collected by the cancelling area as well. 

Considering the fact that the cancelling area and critical area collect the opposite charge, the SET 

current is neutralized, given that these two areas are connected to the same node.   

A transforming example from conventional layout to DHC layout is depicted in Figure 3.10. 

Assume P1 and P3 are two critical nodes and that N1 is the cancelling area of P3. In the DHC 

layout, P1 and P3 are separated into different rows, with N1 placed in between. Because of the 

well separation between critical nodes, this design style subsequently reduces the possibility of 

MBU triggered by well potential collapse.  
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Figure 3.8 SEILA schematic [16] 

 

Figure 3.9 Cancelling area between two critical areas [16] 
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Figure 3.10 A conventional layout transformed to DHC layout 

Two SEILA structures are implemented in this research, either with or without DHC. 

Compared to the conventional latch, the latch without DHC achieves 90% SEU reduction, while 

the full SEILA latch with DHC protects 99.3% of SEU.  

3.2.3 Layout Design through Error-aware Transistor Positioning 

Another soft-error-resilient layout design referred to as LEAP-DICE was reported in [18]. 

LEAP-DICE is based on the DICE circuit structure, utilizing special transistor positioning 

techniques to reinforce its resilience to MBUs.  

As previously discussed, a particle strike on a node that is connected to drains of both a PMOS 

and an NMOS can result in partially (if not fully) cancelled SET current at the node. This principle 

is exerted in LEAP-DICE as well, in which PMOS and NMOS transistors are horizontally aligned 

to reduce charge collection at the output node, as displayed in Figure 3.11. To maximize the charge 

cancellation, LEAP applies this technique to multiple nodes in DICE through positioning 

transistors by the following rule: for any two transistors T1 and T2 that are simultaneously “off”, 

the drain contact node of an “on” transistor T3 is placed between their drain contacts. In this respect, 
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the three of them are in a horizontal line and the drain of either T1 or T2 is directly connected to 

that of T3 [18].   

 

Figure 3.11 LEAP principle illustrated with an inverter [18] 

The LEAP-DICE layout of the DICE structure in Figure 3.2 is depicted in Figure 3.12. As 

can be observed from the figure, any three adjacent drain contacts follow the above-mentioned 

positioning rule. In each cell there are six such triples in total: {nn3, nn4, np4}, {nn4, np4, np1}, 

{np4, np1, nn1}, {np1, nn1, nn2}, {nn1, nn2, np2}, {nn2, np2, np3}. For any of the triples, the 

second drain contact is directly connected to either the first or the third. Moreover, when the first 

and third drains are “off”, the second one is always “on”. In order to trigger an MBU, the first and 

third drains must be hit simultaneously, in which case the second drain in-between is inevitably hit 

as well. Thus, the charge collection is notably reduced. 
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Figure 3.12 LEAP-DICE cell layout [18] 

The LEAP-DICE in [18] is fabricated in an 180 nm process. Radiation experiment results 

indicate 5X fewer errors on average, as compared to the conventional DICE layout, and around 

2,000X fewer errors compared to the conventional D flip-flop. Because of the lateral positioning, 

however, LEAP-DICE costs 1.4X the area of the reference DICE layout. 

Recent research outlined in [42] examines LEAP performance in 28 nm bulk technology. 

Three different LEAP-DICE layouts are analyzed in the study, all of which have a similar, or even 

smaller, area than the baseline DICE. According to the experiment results, LEAP design achieves 

dramatic SER reduction in ultra-deep submicron technology. Compared to the conventional DICE, 

SER reduction of LEAP-DICE rises by two orders of magnitude.  

3.2.4 Pulse Quenching 

The concept of pulse quenching was first introduced in [43] to describe the single-event 

mechanism that limits pulse width at high LET. The schematic of two invers in a chain in Figure 

3.13 explains the finding. Assume a HIGH input at the first inverter, and an ion strike hits the drain 

of the “off” transistor P1. The charge collected by P1 drives OUT1 HIGH, resulting in a 

consequential SET pulse at OUT1. The positive SET pulse propagates through the second transistor 
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and generates a negative pulse at OUT2. On the other hand, the SET pulse at OUT1 temporarily 

turns off P2, rendering it susceptible to charge collection. Charge from the strike can easily diffuse 

to P2 when it is in close proximity to P1. The charge collected by P2 triggers a LOW-to-HIGH 

transition at OUT2, which in turn resets the voltage of OUT2 to its original HIGH state. In 

consequence, the pulse at OUT2 is effectively truncated, or quenched.  

HIGH

OUT 1 OUT 2

P1

N1

P2

N2

Ion strike

 

Figure 3.13 SET pulse propagating through two inverters 

The reduction in pulse width depends on the time differential between the arrival of 

propagated SET pulse and the collection of shared charge that occurs after. Experiments 

demonstrate that pulse quenching is more effective in advanced technologies and with angled 

single event strike [43].  

The study in [44] further investigates the pulse quenching effect, presenting an SET mitigation 

technique in layout by promoting pulse quenching in combinational logic. This study exploits pulse 

quenching between transistors inside a logic cell, such as an OR gate or more complex compound 

gates, in order to improve SET tolerance.  

To illustrate the technique used in [44] , the schematic of a two-input OR gate is demonstrated 

in Figure 3.14. The N-well portion of its layout is shown in Figure 3.15, where W, X and Y 

represent the corresponding nodes in the schematic. In a conventional layout (a), the distance 
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between X and Y renders it difficult for charge sharing to occur. The pulse quenching effect is 

influenced strongly by the strike location and incident angle, considering the fact that node Y must 

collect enough charge from X to restore its initial state and prune the SET pulse. According to the 

study, in 90 nm technology, a 10 MeV*cm2/mg normal-incidence strike at node X can result in an 

SET pulse that propagates to the next gate. 
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Figure 3.14 Schematic of a two-input OR gate 

 

Figure 3.15 Layouts of N-well portion of a two-input OR gate [44] 

Figure 3.15 (b) illustrates the OR gate layout using the technique proposed in [44]. The only 

difference between the OR gate layout and the conventional layout is transistor P3b, which is a 

duplicate of transistor P3a, and is placed to the left of P2. The gate of P3b is connected to that of 
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P3a, making the two transistors connected in parallel. Such placement benefits pulse quenching by 

enhancing charge sharing between nodes X and Y from both directions. TCAD simulation 

concludes that this layout renders the gate immune to ion strike with LET of 10 MeV*cm2/mg at 

any strike location in or near the gate (i.e., the SET pulse is completely quenched). The distance 

from P3b to node X plays a crucial part in the pulse quenching effect. To achieve full quenching, 

transistor P3b is positioned with minimal spacing (140 nm in a 90 nm process) from node Yb to 

node X. 

The tradeoffs in this design scheme are area and power dissipation. The additional PMOS in 

the example OR gate increases the N-well area by nearly 40%. In devices whose total area is much 

larger than the additional part, the area penalty will be somewhat reduced. The additional transistor 

also introduces extra capacitance on node X, which in turn increases power dissipation.  

3.2.5 Drain/Source Extension 

As we know, the parasitic bipolar effect is the main cause of SET in PMOS devices. Because 

the bipolar transistor is formed by forward-biased PN junction between P+ source and N-well, 

source diffusion plays a detrimental role in PMOS SET mitigation. In NMOS devices, on the other 

hand, SET-induced electrons and holes can easily disperse from the P-well into the substrate due 

to the absence of PN junction between the P-sub and N-well as in a PMOS. According to TCAD 

simulation findings in [45], source plays a beneficial role in NMOS SET mitigation by absorbing 

electrons that will otherwise be collected at the drain. The mechanism is described as follows: 

After an ion strike at the drain, electrons and holes are generated along the ion track. Some 

electrons are collected by the drain, creating an SET pulse at the node. The collapse of drain 

potential temporarily forward-biases the PN junction between P-well and N+ drain. Considering 

the fact that holes in the P-well can easily diffuse into P-substrate, even though P-well potential 
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slightly increases, the PN junction between P-well and N+ source remains reversed-biased. TCAD 

simulation confirms that, following ion strike, an electron current is injected from P-well into 

source, while no hole current flows from P-well to source. The electrostatic potential indicates that 

the parasitic BJT is in the forward-active region, where the drain acts as the emitter, the P-well as 

the base, and the source as the collector, as depicted in Figure 3.16. Therefore, on the contrary to 

PMOS, an NMOS source helps reduce the amount of electrons collected by the drain during particle 

strike.  

 

Figure 3.16 Forward-active parasitic BJT in an NMOS 

Based on the above mentioned mechanism, [45] proposes a layout technique to mitigate SET 

in NMOS devices by adding an extended source region beside the sensitive drain. The 

implementation of source extension technique can be divided into three different categories, 

according to the original layout. If only one gate is between drain and source, a double-finger 

structure can be used instead, as demonstrated in Figure 3.17 (a). In a double-finger structure, the 

drain is surrounded by source regions on both sides, which reduces the drain’s area by half, 

lowering the possibility of particle hit. In cases where the drain width cannot be further cut by half 

due to process restrictions, an additional source region can be placed on the other side of the drain. 

The source region is separated from the drain by an additional gate that is tied to ground. This 

structure can also be used when there is more than one gate between the source and the target drain, 
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as in Figure 3.17 (b). When the drain is in the centre of the layout, a combination of the above 

mentioned techniques can be used, as in Figure 3.17 (c).  

 

Figure 3.17 Different source extension applications in NMOS layout [45] 

The additional source does not have to connect to ground. It can be connected to VDD as well, 

and is referred to in the paper as “drain extension”. Using the three guidelines, drain/source 

extension techniques can be applied to almost any combinational logic cells. For common standard 

library cells, such as INV, NAND2, and AOI21, the area penalty is about 30% - 40%. Simulation 

with 65nm 3D TCAD models indicated that inverters using drain/source extension layout have less 

SET pulse width compared with those using a guard drain. A reduction of 12.60% or 18.57% in 

SET pulse width was achieved when the additional source was connected to ground or VDD, 

respectively. 

3.3 Review Summary 

Many rad-hardening approaches have been developed over the past several decades. 

Techniques on the circuit level often have higher area penalty due to the redundant components, 
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whereas techniques on the layout level can sometimes be more difficult to implement depending 

on the physical design limitations of the technology process. In the following chapter, the 

application of pulse quenching and drain extension techniques on domino logic will be explored, 

and a new layout-level hardening technique will be proposed and discussed as well.  
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CHAPTER 4 SEU MITIGATION BY LAYOUT 

 

This chapter will focus on the physical implementation of layout-level hardening techniques. 

A new layout technique will be proposed and, for comparison purpose, a few previous techniques 

will be discussed. 

4.1 Implementation of Layout Techniques 

4.1.1 Conventional Layout of Domino Logic 

The operation mechanisms and schematics of domino logics have previously been described 

in Chapter 2. Figure 4.1 illustrates a conventional way of sketching a domino buffer layout. 

Diffusion regions are shared between transistors wherever possible to minimize the total area. 

 

Figure 4.1 Conventional domino buffer layout 

As discussed in Chapter 2, due to the periodical precharge-evaluation-precharge operation, 

dynamic logic is especially vulnerable to N-hit during both precharge and evaluation stages. 
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Therefore, the predominant objective of this thesis is to harden the critical nodes in NMOS devices, 

i.e. X and Y in Figure 4.1. 

4.1.2 Previous Layout Techniques on Domino Logic 

In order to evaluate of the effectiveness of layout RHBD techniques, drain extension and pulse 

quenching techniques described in [45] and [44] are applied in domino logic as well.  

The layout of a domino buffer using drain extension technique is depicted in Figure 4.2. As 

indicated in the picture, an additional diffusion Z is added to the left of drain X through gate N0, 

which is tied to GND, effectively turning off the gate. Diffusion Z is connected to VDD to promote 

charge sharing with node X. An effective schematic of the circuit is displayed in Figure 4.3. 

 

Figure 4.2 Domino buffer layout using drain extension 
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Figure 4.3 Domino buffer effective schematic using drain extension 

The layout of a domino buffer with pulse quenching is illustrated in Figure 4.4. The non-

inverting nature of domino logic (inverting dynamic logic followed by a static inverter) makes it 

suitable for the pulse quenching technique. Nodes X and Y always have opposite logic values, 

rendering charge sharing between them beneficial to SET pulse quenching. Such charge sharing is 

promoted in the layout by the addition of N3’s duplicate N0 to the left of node X. An effective 

schematic of this implementation is presented in Figure 4.5. 

 

Figure 4.4 Domino buffer layout using pulse quenching 
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Figure 4.5 Domino buffer effective schematic using pulse quenching 

4.1.3 Proposed Layout Technique on Domino Logic 

Inspired by the above-mentioned drain extension and pulse quenching techniques, a new 

layout RHBD technique is proposed in this work. As exhibited in Figure 4.6, an additional 

diffusion region Z is added to the left of the drain X, similar to that in drain extension 

implementation. To promote charge sharing between X and Y, the additional diffusion is connected 

to Y, resembling the duplicated NMOS in the pulse quenching technique. As compared to the pulse 

quenching technique, however, in which a whole extra transistor is used, in the proposed method, 

only a diffusion region is added. The extra diffusion region is subsequently separated from the 

critical node by merely a gate rather than the shallow trench isolation (STI) implemented in the 

silicon. In this way, not only is the distance between two diffusions largely reduced (gate length 

vs. minimum active-to-active distance allowed by fabrication process), but the free carriers can 

subsequently diffuse more easily to the added diffusion without the blockage of STI, which is 

nominally 0.35 μm deep into the silicon in the IBM CMRF8SF process. The effective schematic 

of this technique is exhibited in Figure 4.7. 
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Figure 4.6 Domino buffer layout using proposed method 
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Figure 4.7 Domino buffer effective schematic using proposed method 

4.2 3D TCAD modeling and simulation 

4.2.1 TCAD models design 

Traditional SPICE is not sufficient for single event simulation when considering layout-based 

techniques. For accurate heavy ion simulation, TCAD models must be used. TCAD tools are able 
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to perform simulation on semiconductor devices based on customized device structure and doping 

profiles. To analyze radiation effect on different layout implementations, 3D device models of the 

4 layouts (conventional, drain extension, pulse quenching, and proposed method) were built using 

the Synopsys Sentaurus TCAD tool. Considering the fact that the 4 layouts solely differ in NMOS 

devices, only the critical NMOS devices were modelled in 3D TCAD. Other devices were 

instantiated using SPICE models and electrically connected to TCAD models. 

All NMOS devices are implemented in cubes with an edge length of 10 μm. The cubes are 

constructed with silicon and doped with boron based on the doping profile used in previous studies 

[46] [47]. The doping profiles have been edited to better match the SPICE model in the IBM 

CMRF8SF 130 nm design kit. 

The 3D TCAD structures and 2D cross-section views (cut along X-Z plane at Y=0) of each 

design are illustrated in the following pictures (drain extension technique uses the same TCAD 

model as the proposed design, but is electrically connected differently and is, therefore, not listed 

in the 3D and cross-section views). 
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Figure 4.8 3D view of conventional layout 

 

Figure 4.9 Cross-section view of conventional layout 
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Figure 4.10 3D view of pulse quenching technique 

`  

Figure 4.11 Cross-section view of pulse quenching technique 
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Figure 4.12 3D view of proposed method 

 

Figure 4.13 Cross-section view of proposed method 
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4.2.2 TCAD Model Calibration 

The NMOS models have been calibrated to match the electrical characteristics of IBM 

CMRF8SF 130 nm SPICE models. By adjusting the lightly doped drain (LDD) depth, threshold 

voltage (VT) implant, and diffusion doping depth of the TCAD NMOS device, reasonable 

agreement on Id-Vg and Id-Vd curves has been obtained between our TCAD model and the IBM 

process design kit (PDK). The correspondences between the curves are displayed in Figure 4.14 

and Figure 4.15. The NMOS devices of both TCAD and IBM PDK have the same size (W/L) of 

540 nm/120 nm. The calibrated TCAD model enhances the credibility of the mix-mode simulation 

results. 

 

Figure 4.14 NMOS Id-Vg curve of 3D TCAD model vs. IBM 130 nm PDK model 
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Figure 4.15 NMOS Id-Vd curve of 3D TCAD model vs. IBM 130 nm PDK model 

4.2.3 Mixed-mode Simulation setup 

Heavy ion simulations were performed to analyze the single event effect on the devices. The 

circuit structure depicted in Figure 4.16 was used: four domino buffers are connected in a chain, 

with the output of the last one connected to the data input of a D-latch. The latch shares the same 

clock signal with the buffers. Thus, when CLK is low, all buffers are in precharge state and the last 

state from the buffer chain output is locked up in the latch. When CLK is high, the IN signal is 

evaluated by the dynamic logics and transparently passed to the output of the latch. The critical 

NMOS devices in the first domino buffer uses a 3D TCAD model, while the rest of the circuit use 

SPICE models from the PDK. Simulations using testbenches that combine TCAD and SPICE 

models are referred to as a mixed-mode simulation. With most devices in the circuit using SPICE 
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models, mixed-mode simulation is not only time efficient, but subsequently maintains reasonable 

accuracy through complete process simulation on the critical components.  

 

Figure 4.16 Buffer chain circuit used in simulation 

In the simulations, heavy ions hit the same location on the sensitive drain contact with 

different incident angles. Some properties of the simulation and heavy ion settings are listed in 

Table 4.1. Heavy ion simulations were performed during both precharge and evaluation phases. 

Input to the buffer chain was tied to GND and therefore, the pull-down network was not partially 

charged during precharge. A clock frequency of 100 MHz was used during simulation to allow 

enough time for SET to settle before the next stage.  

Table 4.1 Mixed-mode simulation settings 

Parameter Value 

Temperature 298 K 

VDD voltage 1.2 V 

Device size (W/L) 540 nm / 120 nm 

Incident angle Normal or 30°/75° towards charge-sharing components 

Ion track length 7 μm 

Ion track radius 50 nm 

Ion LET 1 – 50 MeV*cm2/mg 
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As discussed in Chapter 2, ion hit that occurs near the end of a precharge phase has the 

potential to cause an upset in the next evaluation phase. The precharge SET pulse width determines 

the probability of such an upset; the wider the SET pulse, the higher the probability of a single 

event setup. Therefore, during the simulation, ion strike occurs at the beginning of a precharge 

phase to allow the SET to fully recover during precharge, allowing the complete pulse width to be 

measured.  

For the simulation during evaluation stage, the ion strike occurs at the beginning of the 

evaluation as well. A particle strike that deposits enough charge to lower the drain voltage below 

50% VDD will inevitably cause an upset in dynamic logics, as described in Chapter 2. The presence 

of the charge sharing components may collect some of the deposited charge, and may suppress the 

upset for a certain period of time through the pulse quenching mechanism. 

4.2.4 Simulation Results 

1. Precharge phase 

Figure 4.17 and Figure 4.18 illustrate the SET pulse width during a precharge N-hit of 

different incident angles. As expected, higher LET results in wider pulse width. Under normal 

incidence, the SET pulse width increases almost linearly with LET for all designs. Drain extension 

and the proposed design demonstrate approximately 33% pulse width reduction at 28 

MeV*cm2/mg. With a tilted incidence of 30°, approximately 45% reduction is achieved due to 

increased charge sharing.  
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Figure 4.17 Precharge N-hit with normal incidence 

 

Figure 4.18 Precharge N-hit with 30° incident angle 
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2. Evaluation 

Figure 4.19 to Figure 4.21 depict the SET pulse propagation delay (through the logic chain) 

during an evaluation N-hit. As indicated in the figures, for conventional and drain extension designs, 

the propagation delay is irrelevant to the particle LET under any incidence angle. However, for the 

proposed designs, a positive correlation between propagation delay and LET is observed when the 

incident angle is tilted to 30°. This is due to the pulse quenching effect suppressing the SET pulse 

from propagating through. Pulse quenching design demonstrates the same correlation starting from 

a 75° incident angle. The correlation is nearly linear at higher LETs (5 MeV*cm2/mg and above). 

The following definition is used for evaluating the efficacy of SEU mitigation: 

𝑈𝑝𝑠𝑒𝑡 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑡𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒

𝑡𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛
= 1 −

𝑡𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛

𝑡𝑒𝑣𝑎𝑢𝑙𝑎𝑡𝑖𝑜𝑛
                            (4.1) 

The upset probability defined above evaluates how likely it is that, during one clock cycle, an 

SEU will be captured by the latch when a particle hits the first domino buffer in the buffer chain. 

Assuming an ideal clock, if an upset occurs within tpropagation prior to the end of the evaluation phase, 

the SET pulse is unable to pass to the latch due to propagation delay. The upset probability for a 

30° incident angle at different frequencies is depicted in Figure 4.22. As can be observed, the 

proposed design can substantially reduce the evaluation upset probability under high frequency, 

high LET, and tilted incidence conditions. Note this conclusion is based on the assumption in the 

simulation that the input data is constant and that the N-hit only occurs on the first dynamic inverter 

in the chain. 
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Figure 4.19 Evaluation N-hit with normal incidence 

 

Figure 4.20 Evaluation N-hit with 30° incident angle 
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Figure 4.21 Evaluation N-hit with 75° incident angle 

 

Figure 4.22 Evaluation upset probability at 30° incident angle 
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Charge sharing between the hit drain and the pulse-quenching element can be confirmed by 

Figure 4.23. As demonstrated in the picture, immediately after the particle hit at 0.1 ns, the 

additional (pulse-quenching) drain collects almost ¼ of the total charge collected by the hit drain. 

After the peak drain current, a large number of ionized electrons flow through the additional drain. 

 

Figure 4.23 Proposed design charge and electron current at 30° incidence of 28 

MeV*cm2/mg particle LET 
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CHAPTER 5 TEST CHIP DESIGN 

 

A test chip using IBM CMRF8SF 130 nm process has been designed and fabricated for the 

purpose of radiation experiments. Due to limited electric design automation (EDA) tool resources, 

physical placement and routing of all core and IO cells, clock distribution network and power grid 

were performed manually. This chapter will describe the details inherent to the test chip design. 

5.1 Inverter and Flip-flop Chains 

Four domino buffer chains using different layout schemes were implemented in the chip: 

proposed technique, drain extension, pulse quenching, and the conventional layout as the baseline. 

Akin to the mixed-mode simulation setup, the block structure of 4 domino buffers followed by a 

DICE flip-flop was used in each chain. DICE flip-flops were used to minimize possible soft errors 

on the registers. Each buffer chain contained a total of 432 (6 rows by 72 columns) domino buffers, 

with 4 µm between any two to ensure that inter-cell charge sharing was eliminated. Transistors 

within each cell were placed with minimum space in-between, as allowed by PDK. The areas of 

the sensitive drain were kept constant across all designs for equal chance of particle hit. All cells 

in the chip had the same height of 12-track (4.8 µm). The detailed schematics, along with the 

transistor sizes of the domino buffer and DICE flip-flop, are displayed in Figure 5.1 and Figure 

5.2. 
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Figure 5.1 Schematic of domino buffer with transistor sizing 

 

Figure 5.2 Schematic of DICE flip-flop with transistor sizing 
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5.2 Clock Distribution Network 

A reverse clock distribution network was employed in the test chip. In the reverse clocking 

technique, clock signal is applied in the reverse direction with respect to data flow, ensuing that 

the risk for hold time violation is reduced. 

As depicted in Figure 5.3, the positive clock edge of capturing flop FF2 arrives earlier than 

that of launching flop FF1. Assuming clock-to-Q delay tc2q in FF1, hold time thold in FF2, local 

clock skew of tskew, and contamination (best-case) logic delay of tcd, in order to avoid hold time 

violation, the following needs to be met: 

𝑡𝑐2𝑞 + 𝑡𝑐𝑑 + 𝑡𝑠𝑘𝑒𝑤 ≥ 𝑡ℎ𝑜𝑙𝑑                                                (5.1) 

 

Figure 5.3 Flip-flop hold time constraint 

Unlike setup time failures that can be bypassed by lowering frequency, if hold time failures 

are found after fabrication, the chip must be re-designed and re-fabricated. In our designs, the short 

logic delay between flops poses a potential risk for hold time violations. The presence of useful 

clock skew from reverse clocking helps to bring down the risk of hold time failures, with the price 
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of a less balanced clock than an H-type. Moreover, reverse clocking consumes less area than 

traditional H-type clock tree. This, furthermore, leaves more room for logic cells, given the fact 

that our chip size is very limited. To reduce the risk of particle hit on clock buffers, large multi-

fingered buffers of 40X to 50X were used in the clock network.  

5.3 Well Taps, Decoupling Capacitors, and Power Grid  

N-well and P-sub taps were used in the chip to maintain well and substrate potentials and 

prevent latchup. The tap cells are built within each clock buffer as so to meet the design rule for 

maximum distance between taps.  

On-chip decoupling capacitors (decaps) were also added to address power integrity issues. 

Decaps are capacitors that are placed between power rails to overcome dynamic IR drop due to 

simultaneous core logic switching. Dynamic IR drop occurs at the active clock edge when 

sequential elements and dynamic logics are simultaneously switching and the power supply cannot 

respond instantaneously to the current draw. Decaps act as local energy storage, providing a boost 

to the power grid when the current demand is high.  

Each decap was made from both NMOS and PMOS devices, with its gate connected to VDD 

(for NMOS type) or ground (for PMOS type) and both source and drain connected to ground (for 

NMOS) or VDD (for PMOS), as in Figure 5.4. A rule of thumb for decap placement is to place as 

many as possible (ideally filling up all empty spaces in chip) and to place them in close proximity 

to switching elements. In this work, decap cells with an effective capacitance of 60 fF each were 

added into every clock buffer. There were a total of 5,472 decap cells evenly distributed in the chip, 

contributing an overall capacitance of 0.33 nF.  

Estimations for decap allocation requirement were based on available published data and 

literature. According to [48], for high performance circuits running at 200 MHz frequency and 
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above, a decap area allocation of as much as 10% of the core area should be sufficient to achieve 

a power grid voltage drop of less than 10% VDD. In this work, decap cells take up a total area of 

0.14 mm2, which is approximately 11% of the core area. In another paper [49], a decap density of 

16.2 to 54.0 nF/cm2 for 130 nm process node is recommended, based on calculated data from 

International Technology Roadmap for Semiconductors (ITRS) 2001 studies. Our design has a 

decap density of 26.2 nF/cm2, which is within the recommended range as well. Therefore, the 

amount of decap cells in this chip is considered be sufficient to ensure a less than 10% IR drop. 

 

Figure 5.4 Decap cell schematic and layout 

A power grid following the pattern presented in Figure 5.5 was constructed to provide a robust 

power supply to the core. Metal layers 5 to 8 were used solely for the power grid. A width of at 

least 2X was applied for both horizontal and vertical power straps to reduce the total resistance on 

the grid.  
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Figure 5.5 Power grid pattern used in chip 

5.4 Top-level Floorplan and IOs 

The top-level chip floorplan is illustrated in Figure 5.6. The die size is 1.5 mm by 2 mm. With 

58 IO pads in total, that leaves an effective core area of about 0.9 mm by 1.4 mm. The logic chains 

are located at the top and bottom, with designs of other projects sitting in the middle. Each logic 

chain has a separate output pad, while all chains share the same input data and clock signal.  

3 pairs of core and 2 pairs of IO p/g pads were placed each side on the west and east, while 2 

pairs of core and 1 pair of IO p/g pads were placed each side on the north and south. All of the IO 

pads were equipped with electrostatic discharge (ESD) protection. Table 5.1 presents a summary 

of implemented IO pads from IBM 130nm CMRF8SF-RVT General Purpose In-Line I/O library. 

Table 5.1 IO pads used in the chip 

Pad Name Function 

PBCOD8A Bidirectional buffer with CMOS input and 8 mA p-channel open drain output 

PVDD/PVSS Core power and ground 

PDVDD/PDVSS IO cell power and ground 

PCORNER Allows continuation power, ground and guard rings at each chip corner 
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Figure 5.6 Chip floorplan 
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The layout of the full chip is depicted in Figure 5.7. Dummy metal fillings were subsequently 

added to the outside of the IO ring to increase local metal density and mark chip corner. Several 

windows were opened on the chip for future laser experiments. No wiring metal was present in 

those windows and dummy metal filing by foundry was disabled. Each window covered at least 

one critical device accessible for the high-resolution laser beam.  

 

Figure 5.7 Top level chip layout 
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5.5 Sign-off Verification 

Design rule checking (DRC), layout versus schematic (LVS), and SPICE simulation have 

been performed for chip sign-off verification. 

Physical DRC, along with global and local density check, was verified with both Calibre and 

Assura tools provided in the PDK. Considering the fact that the whole chip was manually placed 

and routed, the LVS check was considered crucial in this work for successful tape-out. The LVS 

was performed using Calibre for only the core area, as layouts for the IO cells were not accessible 

to designers. 

Whole chip simulation was not possible, due to large cell number and limited computing 

resources. SPICE simulation was conducted for each logic chain for functionality verification. Data 

patterns of all “1”, all “0” and checkerboard was sent to each chain input, and signals at the chain 

output were observed to check data consistency. Logic chains were verified to work correctly at up 

to 1 GHz in SPICE simulation. 
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CHAPTER 6 RADIATION EXPERIMENT 

 

The test chip was fabricated through MOSIS in IBM 130nm CMOS technology. 20 packaged 

dies were shipped back using a 64-pin open cavity plastic quad flat no-lead (OCPQFN64A) 

package. Test chips were mounted on PCBs and placed under particle beams for radiation effects 

testing. An FPGA-based motherboard was used to provide input signals to test chips and send 

calculated error numbers to a personal computer (PC) in real time. Software on the PC end collects 

the error data and, subsequently, logs the error number per second and in total for each chain.  

6.1 Experiment Setup 

6.1.1 PCB Design 

Each test chip was mounted onto a PCB with a 244-pin mini dual in-line memory module 

(DIMM). The PCBs were then plugged into an FPGA-based motherboard through its mini-DIMM 

socket. 

The main function of the PCB is to connect chip inputs and outputs to the correct mini-DIMM 

pins for control and data signal transceiving by the motherboard. Four-layer PCBs were designed, 

with power and ground planes in the middle for optimal power distribution and heat dissipation. 

An additional 21 µF decoupling capacitance was added for IO and core power to maintain power 

integrity. The PCB layout is illustrated in Figure 6.1. 
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Figure 6.1 Daughter card PCB design 

6.1.2 Testing System Configuration 

The testing system for the radiation experiment is depicted in Figure 6.2. For heavy ions 

experiments, the motherboard, with device under testing (DUT) mounted, is placed in the vacuum 

chamber, and a particle beam of various energies is directly applied to the DUT. A power board 

provides 1.2 V and 2.5 V voltages to the DUT for its chip core and IO, and 5V for the motherboard. 

The motherboard communicates with a PC through an Ethernet cable. Clock frequency is 

controlled by a PC program through the FPGA digital clock manager (DCM). 

 

Figure 6.2 Radiation testing system 
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Considering the fact that the designs are hardened against SEE-induced HIGH-to-LOW 

transitions at the inverter outputs, a fixed logic LOW was fed into the chip as the logic chain data 

input. Checkerboard input pattern was not applied so as to limit burst errors triggered by clock 

buffers being hit. The clock signal for both dynamic logic and flops was running at either 10 kHz 

or 1 MHz. At a clock frequency of 100 MHz or higher, the test chip ceased to work properly, which 

was likely a result of by setup violations or signal integrity issues at high speed. Possible causes 

and explanations will be discussed later in this chapter.  

The heavy ion experiments were carried out at the Cyclotron Institute of Texas A&M 

University (TAMU), which provides a diverse range of particle beams for radiation effect tests. 

Ions of LETs ranging from 1.3 to 28.3 MeV*cm2/mg were used during the experiments. These ion 

profiles are presented in Table 6.1. The fluence of particle radiation is defined as the number of 

radiant-energy particles emitted from or incident on a surface in a given period of time, divided by 

the area of the surface. 

Table 6.1 Heavy ions used during radiation experiments [50] 

LET (MeV*cm2/mg) Ion Fluence Energy (MeV/µ) Range (µm) 

1.3 N 1.50×108 14.1 385.6 

2.7 Ne 1.00×108 13.7 273.5 

8.4 Ar 5.00×108 13 186.1 

28.3 Kr 1.00×108 11.8 128 

 

The ion beam was applied onto the DUT only. The test system ran for 5 minutes for each ion 

type and incident angle to generate enough errors. The run time and clock frequency was set from 

PC, and the number of errors was recorded at the end of each run. Figure 6.3 shows the radiation 

test facility at TAMU. 
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Figure 6.3 Heavy ion test facility at TAMU 

6.2 Experiment Results 

The DUT was first tested with 50° angled incident heavy ions at a 10 kHz operating frequency. 

The SEU cross-section is defined as number of single events per unit fluence (logic gate SEU cross-

section is expressed in area per gate), and is calculated by 

𝑆𝐸𝑈 𝐶𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟𝑠

𝑓𝑙𝑢𝑒𝑛𝑐𝑒×𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑎𝑡𝑒𝑠
                              (6.1) 

The cross-sections are demonstrated in Figure 6.4. As indicated by the picture, the proposed 

design demonstrated a lower soft error rate as compared to all other 3 designs: approximately 42% 

less than that of drain extension and 30% less than the other two at 28.3 MeV*cm2/mg. 

Ion beam 
DUT 
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Figure 6.4 Cross-sections at 10 kHz with angled incidence 

The DUT was then irradiated with normal incidence running at 1 MHz. Figure 6.5 indicates 

that all of the cross-sections increased by approximately 4X, as expected. These results are in 

accordance with the precharge simulation results, in which the drain extension and proposed 

designed demonstrated a 28% pulse width reduction as compared to the conventional method. 

 

Figure 6.5 Cross-sections at 1 MHz with normal incidence 
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The incident angle was subsequently tilted to 50° to increase charge sharing between 

components. SEU cross-sections were observed to go up by another 2X, due to increased MBUs. 

The proposed design still demonstrated the lowest soft error rate among the four: as much as 30% 

less than the conventional design. 

 

Figure 6.6 Cross-sections at 1 MHz with angled incidence 

The DUT was also tested under a 1 MHz 28 MeV*cm2/mg normal incident condition with a 

lowered 0.8 V power supply. The results are displayed in Figure 6.7. Most designs presented 

slightly fewer soft errors in lower voltage conditions, while the proposed design achieved a 

reduction of 42%.  
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Figure 6.7 Cross-sections of different supply voltages at 1 MHz clock with 28 

MeV*cm2/mg normal incident ion 

6.3 Results Analysis 
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logic family is extremely sensitive to SEE, it is extremely difficult to harden it by raising the 

threshold LET without introducing significant area cost. Furthermore, when taking into 
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Although the proposed design did outperform all other designs in this work from experiments, 

its improvement was not as optimal as indicated in the simulations. There are two possible factors: 

first, in the simulations, the definition of upset probability was introduced as an indicator to help 

evaluate the hardening performance; the circuit is considered more likely to suffer from an SEU 

when the SET pulse is wider during precharge, or when the propagation delay is larger during 

evaluation. This indicator gives a more optimistic prediction than the experimental results. Second, 

from the simulation results, the proposed design showed a prominent improvement in high-speed 

operations from at least 100 MHz. However, the highest frequency achievable in the actual 

experiments was less than 100 MHz due to system failures.  

3. High speed 

Several reasons may have caused the system failures at high speed.  

While the reverse clocking eliminated risks of hold time violations, it may have triggered 

setup time violations at a high clock frequency. 

Signal integrity (SI) issues could also lead to such failures. On-chip crosstalk between data 

and clock signals and an IR drop has the potential to cause SI problems on the DUT. Crosstalk can 

also originate from the PCB due to improper trace width and distance. 

4. Low voltage 

It is well known that higher SER in latch/flop is expected when supply voltage decreases, as 

it is easier to cause an upset at a lower voltage. In addition, according to a recent study that analyzed 

28 nm circuit [51], the SER on static combinational logic presents a weaker negative correlation to 

supply voltage. In this work, however, a very weak positive correlation was found between the 

dynamic logic SER and supply voltage for the majority of the designs, while a stronger positive 

correlation was discovered for the proposed design.  
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For a flip-flop, the critical charge decreases when the supply voltage is reduced, and the cross-

section is exponentially dependent on critical charge [52]. However, for a dynamic logic, critical 

charge plays a less important role, as the output node can easily be discharged when floating. On 

one hand, a lower supply voltage makes it faster to recover to VDD from a precharge SET. On the 

other, the fact that the trailing static inverter has a lower supply voltage renders the pulse quenching 

effect more efficient. 

5. Performance comparison 

Table 6.2 compares the performance of different logic designs. The data of TMR-based logic 

and static logic are obtained from [53]. As indicated from the table, the layout-based techniques 

have smaller delays than static logic, which is attributed to the removal of PMOS pull-up transistors. 

In terms of power consumption, all of the dynamic designs use a somewhat larger amount of power 

than static logic, due to the clocking activity. The proposed design costs only a slightly larger area 

than the conventional design, as does the drain extension design. With regard to soft error 

suppression, the proposed design exhibits comparable performance to TMR-based logic, which 

also has the most delay, power, and area costs.  

Table 6.2 Performance comparison 

 Conventional 
Drain 

extension 

Pulse 

quenching 
Proposed 

TMR-

based 
Static 

Delay 1 1.12 1.10 1.19 1.98 1.27 

Power 1 1.06 1.09 1.20 3.64 0.82 

Area 1 1.10 1.34 1.10 3.60 2.40 

Cross-

section 
1 0.70-1.20 0.72-0.94 0.69-0.70 0.64-0.79 N/A 
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CHAPTER 7 CONCLUSIONS AND FUTURE WORK 

 

7.1 Summary 

The dynamic combinational logic, or domino logic, families are a great fit for high-speed 

applications, especially in present day when the demand for high-speed performance has been ever-

increasing. However, as a result of their fast transition, dynamic logics are also much more sensitive 

to radiation effects than their static counterpart. The working mechanism of domino logics and 

what renders them vulnerable to radiation effects were discussed comprehensively in this work.  

Previous works on hardening techniques, and dynamic logics in particular, were reviewed. A new 

layout-level hardening technique was proposed and implemented, along with two other hardening 

concepts. Designs have been simulated using 3D TCAD models to compare their SEE hardness. A 

130 nm test chip containing different dynamic logic designs was designed, fabricated, and 

irradiated by heavy ion particles. Radiation experiment results confirmed the efficacy of the 

proposed hardening technique. Although only inverter/buffer designs were studied in this work, 

the proposed hardening technique can be applied to any dynamic logic circuit. 

7.2 Conclusions 

The following conclusions can be drawn from this study: 

1. Radiation can affect dynamic logics at different operation stages. Ion strikes usually 

lead to SEUs other than SETs in domino logic circuits. 

2. Layout techniques applied in a dynamic logic circuit can effectively improve its 

tolerance against radiation by introducing little overhead in speed and area. 
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3. 3D TCAD models for different hardening approaches were designed and calibrated to 

match the device characteristics of the design kit models.  

4. Mixed-mode simulations were performed on different design approaches. The 

proposed design demonstrated substantial improvement over the other two design 

techniques in high-speed simulations.  

5. The different designs were implemented on a 130 nm testing chip. The chip was 

designed to lower the risk of hold time violation and reduce IR drop.  

6. A FPGA-based testing system was used to perform radiation experiments on the DUT 

test chip. According to the experiment results, the proposed design achieved as much 

as a 30% reduction in SEU cross-section under various incident angle and frequency 

conditions. The improvement is expected to be more prominent in higher frequencies. 

The proposed design also demonstrated improved hardening performance by 42% 

SEU cross-section reduction when the supply voltage was lowered by 400 mV. This 

improvement indicates that dynamic logic is promising for low-power applications. 

7.3 Future Work 

Considering the fact that the test chip is unable to function correctly at high speed, the chip 

can be redesigned to better fit high-speed applications. A more balanced clock distribution network 

can be designed to eliminate both setup and hold time violations. The placement and routing 

procedures can be automated by utilizing advanced CAD tools so as to save design effort and 

increase reliability. A static timing analysis (STA) can also be performed in signoff to further verify 

the chip’s functionality.  
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More experiments on the chip can be carried out using the local laser facility at the VLSI lab. 

Using a high-resolution laser to induce soft errors directly on the sensitive node, experiment errors 

from particle hit on register or clock buffer components can be eliminated.  

The chip can also be fabricated using more advanced technologies such as 65 nm and 28 nm, 

in which charge sharing is more abundant.  

More factors should be taken in consideration during the PCB design as well. The optimal 

trace widths and lengths are required to control the characteristic impedance of the traces. Parallel 

running traces should be avoided during design too. SPICE simulations can be performed to check 

for SI issues on the PCB. 
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