193 research outputs found

    Climate change impacts and adaptation to permafrost change in High Mountain Asia: a comprehensive review

    Get PDF
    Changing climatic conditions in High Mountain Asia (HMA), especially regional warming and changing precipitation patterns, have led to notable effects on mountain permafrost. Comprehensive knowledge of mountain permafrost in HMA is mostly limited to the mountains of the Qinghai-Tibetan Plateau, with a strong cluster of research activity related to critical infrastructure providing a basis for related climate adaptation measures. Insights related to the extent and changing characteristics of permafrost in the Hindu Kush Himalaya (HKH), are much more limited. This study provides the first comprehensive review of peer-reviewed journal articles, focused on hydrological, ecological, and geomorphic impacts associated with thawing permafrost in HMA, as well as those examining adaptations to changes in mountain permafrost. Studies reveal a clear warming trend across the region, likely resulting in increased landslide activity, effects on streamflow, soil saturation and subsequent vegetation change. Adaptation strategies have been documented only around infrastructure megaprojects as well as animal herding in China. While available research provides important insight that can inform planning in the region, we also identify a need for further research in the areas of hazards related to changing permafrost as well as its effect on ecosystems and subsequently livelihoods. We suggest that future planning of infrastructure in HMA can rely on extrapolation of already existing knowledge within the region to reduce risks associated with warming permafrost. We highlight key research gaps as well as specific areas where insights are limited. These are areas where additional support from governments and funders is urgently needed to enhance regional collaboration to sufficiently understand and effectively respond to permafrost change in the HKH region

    Energy and Water Cycles in the Third Pole

    Get PDF
    As the most prominent and complicated terrain on the globe, the Tibetan Plateau (TP) is often called the “Roof of the World”, “Third Pole” or “Asian Water Tower”. The energy and water cycles in the Third Pole have great impacts on the atmospheric circulation, Asian monsoon system and global climate change. On the other hand, the TP and the surrounding higher elevation area are also experiencing evident and rapid environmental changes under the background of global warming. As the headwater area of major rivers in Asia, the TP’s environmental changes—such as glacial retreat, snow melting, lake expanding and permafrost degradation—pose potential long-term threats to water resources of the local and surrounding regions. To promote quantitative understanding of energy and water cycles of the TP, several field campaigns, including GAME/Tibet, CAMP/Tibet and TORP, have been carried out. A large amount of data have been collected to gain a better understanding of the atmospheric boundary layer structure, turbulent heat fluxes and their coupling with atmospheric circulation and hydrological processes. The focus of this reprint is to present recent advances in quantifying land–atmosphere interactions, the water cycle and its components, energy balance components, climate change and hydrological feedbacks by in situ measurements, remote sensing or numerical modelling approaches in the “Third Pole” region

    Late Quaternary paleoclimatic and geomorphological evolution at the interface between the Menyuan basin and the Qilian Mountains, northeastern Tibetan Plateau

    Get PDF
    The Tibetan Plateau is regarded as an amplifier and driver of environmental change in adjacent regions because of its extent and high altitude. However, reliable age control for paleoenvironmental information on the plateau is limited. OSL appears to be a valid method to constrain the age of deposits of glacial and fluvial origin, soils and periglacial structures in the Menyuan basin on the northeastern Tibetan Plateau. Dating results show glaciers advanced extensively to the foot of the Qilian mountains at ~. 21. ka, in agreement with the timing of the global Last Glacial Maximum (LGM) recorded in Northern Hemisphere ice cores. Comparison with results from the eastern Tibetan Plateau suggests that the factor controlling glacial advance in both regions was decreased temperature, not monsoon-related precipitation increase. The areas of the Menyuan basin occupied by glacio-fluvial deposits experienced continuous permafrost during the LGM, indicated by large cryoturbation features, interpreted to indicate that the mean annual temperature was ≥. 7. °C lower than at present. Glacio-fluvial systems in the Menyuan basin aggraded and terraces formed during cold periods (penultimate glaciation, LGM, and possibly the Younger Dryas) as a response to increased glacial sediment production and meltwater runoff then. © 2013 University of Washington

    Mountain pastures of Qilian Shan: plant communities, grazing impact and degradation status (Gansu province, NW China)

    Get PDF
    Environmental degradation of pasture areas in the Qilian Mountains (Gansu province, NW China) has increased in recent years. Soil erosion and loss of biodiversity caused by overgrazing is widespread. Changes in plant cover, however, have not been analysed so far. The aim of this paper is to identify plant communities and to detect grazing-induced changes in vegetation patterns. Quantitative and qualitative releve data were collected for community classification and to analyse gradual changes in vegetation patterns along altitudinal and grazing gradients. Detrended correspondence analysis (DCA) was used to analyse variation in relationships between vegetation, environmental factors and differential grazing pressure. The results of the DCA showed apparent variation in plant communities along the grazing gradient. Two factors – altitude and exposure – had the strongest impact on plant community distribution. Comparing monitoring data for the most recent nine years, a trend of pasture deterioration, plant community successions and shift in dominant species becomes obvious. In order to increase grassland quality, sustainable pasture management strategies should be implemented

    Actual and standard crop coefficients for semi‑natural and planted grasslands and grasses: a review aimed at supporting water management to improve production and ecosystem services

    Get PDF
    Natural and planted grasslands play a very important role in agriculture as source of various ecosystem services, including carbon sequestration and biodiversity, and are responsible for a large fraction of agricultural water use in rainfed and irrigated fields. It is, therefore, relevant to precisely know their water use and vegetation requirements with consideration of relevant climate, from extremely cold, dry, with long winter seasons, to tropical humid and hot climates, thus with a large variability of vegetation. Semi-natural grasslands are basically used for grazing and mainly refer to highland pastures and meadows, steppes, savannas, pampas, and mixed forest systems. The FAO method to compute crop (vegetation) evapotranspiration (ETc) through the product of a crop coefficient (K c ) by the reference evapotranspiration (ETo ) is adopted. The selected papers were those where actual ETc (ETc act ) was derived from field observations and ETo was computed with the FAO56 definition, or with another method that could be referred to the former. Field derived ETc act methods included soil water balance, Bowen ratio and eddy covariance measurements, as well as remote sensing vegetation indices or surface energy balance models, thus reviewed Kc act (ETc act/ETo) values were obtained from field data. These Kc act refer to initial, mid-season and end season (K c act ini , K c act mid , K c act end ) when reported values were daily or monthly; otherwise, only average values (K c act avg ) were collected. For cases relative to cold or freezing winters, data refer to the warm season only. For grasses cut for hay, K c act ini , Kc act mid , and Kc act end refer to a cut cycle. Kc act values rarely exceeded 1.25, thus indicating that field measurements reported did respect the available energy for evaporation. Overall, K c act mid for semi-natural grasslands in cold climates were lower than those in hot climates except when available water was high, with K c act mid for meadows and mountain pastures gener- ally high. Steppes have K c act mid values lower than savannas. Grasses commonly planted for hay and for landscape generally showed high K c act mid values, while a larger variability was observed with grasses for grazing. The collected K c act values were used to define standard Kc values for all grassland and grasses. Nevertheless, the tabulated Kc act are indicative values of K c to be used for actual water management purposes and/or irrigation scheduling of planted grasslands. It is expected that a better knowledge of the standard and/or indicative K c values for a wide variety of grasslands and grasses will support better management aimed to improve grass productivity and ecosystem services, including biodiversity and carbon sequestrationinfo:eu-repo/semantics/publishedVersio

    Convection-permitting fully coupled WRF-Hydro ensemble simulations in high mountain environment: impact of boundary layer- and lateral flow parameterizations on land–atmosphere interactions

    Get PDF
    Numerical climate models have been upgraded by the improved description of terrestrial hydrological processes across different scales. The goal of this study is to explore the role of terrestrial hydrological processes on land–atmosphere interactions within the context of modeling uncertainties related to model physics parameterization. The models applied are the Weather Research and Forecasting (WRF) model and its coupled hydrological modeling system WRF-Hydro, which depicts the lateral terrestrial hydrological processes and further allows their feedback to the atmosphere. We conducted convection-permitting simulations (3 km) over the Heihe River Basin in Northwest China for the period 2008–2010, and particularly focused on its upper reach area of complex high mountains. In order to account for the modeling uncertainties associated with model physics parameterization, an ensemble of simulations is generated by varying the planetary boundary layer (PBL) schemes. We embedded the fully three-dimensional atmospheric water tagging method in both WRF and WRF-Hydro for quantifying the strength of land–atmosphere interactions. The impact of PBL parameterization on land–atmosphere interactions is evaluated through its direct effect on vertical mixing. Results suggest that enabled lateral terrestrial flow in WRF-Hydro distinctly increases soil moisture and evapotranspiration near the surface in the high mountains, thereby modifies the atmospheric condition regardless of the applied PBL scheme. The local precipitation recycling ratio in the study area increases from 1.52 to 1.9% due to the description of lateral terrestrial flow, and such positive feedback processes are irrespective of the modeling variability caused by PBL parameterizations. This study highlights the non-negligible contribution of lateral terrestrial flow to local precipitation recycling, indicating the potential of the fully coupled modeling in land–atmosphere interactions research

    Characteristics of water and heat change during the freezing-thawing process at an alpine steppe in seasonally frozen ground of the Northern Tibetan plateau

    Get PDF
    Introduction: Permafrost and seasonally frozen soil are widely distributed on the Qinghai–Tibetan Plateau, and the freezing–thawing cycle can lead to frequent phase changes in soil water, which can have important impacts on ecosystems.Methods: To understand the process of soil freezing-thawing and to lay the foundation for grassland ecosystems to cope with complex climate change, this study analyzed and investigated the hydrothermal data of Xainza Station on the Northern Tibet from November 2019 to October 2021.Results and Discussion: The results showed that the fluctuation of soil temperature showed a cyclical variation similar to a sine (cosine) curve; the deep soil temperature change was not as drastic as that of the shallow soil, and the shallow soil had the largest monthly mean temperature in September and the smallest monthly mean temperature in January. The soil water content curve was U-shaped; with increased soil depth, the maximum and minimum values of soil water content had a certain lag compared to that of the shallow soil. The daily freezing-thawing of the soil lasted 179 and 198 days and the freezing-thawing process can be roughly divided into the initial freezing period (November), the stable freezing period (December–early February), the early ablation period (mid-February to March), and the later ablation period (March–end of April), except for the latter period when the average temperature of the soil increased with the increase in depth. The trend of water content change with depth at all stages of freezing-thawing was consistent, and negative soil temperature was one of the key factors affecting soil moisture. This study is important for further understanding of hydrothermal coupling and the mechanism of the soil freezing-thawing process
    • …
    corecore