549 research outputs found

    Distributed sequential task allocation in foraging swarms

    Get PDF
    When designing a practical swarm robotics system, self-organized task allocation is key to make best use of resources. Current research in this area focuses on task allocation which is either distributed (tasks must be performed at different locations) or sequential (tasks are complex and must be split into simpler sub-tasks and processed in order). In practice, however, swarms will need to deal with tasks which are both distributed and sequential. In this paper, a classic foraging problem is extended to incorporate both distributed and sequential tasks. The problem is analysed theoretically, absolute limits on performance are derived, and a set of conditions for a successful algorithm are established. It is shown empirically that an algorithm which meets these conditions, by causing emergent cooperation between robots can achieve consistently high performance under a wide range of settings without the need for communication

    Local ant system for allocating robot swarms to time-constrained tasks

    Get PDF
    We propose a novel application of the Ant Colony Optimization algorithm to efficiently allocate a swarm of homogeneous robots to a set of tasks that need to be accomplished by specific deadlines. We exploit the local communication between robots to periodically evaluate the quality of the allocation solutions, and agents select independently among the high-quality alternatives. The evaluation is performed using pheromone trails to favor allocations which minimize the execution time of the tasks. Our approach is validated in both static and dynamic environments (i.e. the task availability changes over time) using different sets of physics-based simulations. (C) 2018 Elsevier B.V. All rights reserved

    Quality-sensitive foraging by a robot swarm through virtual pheromone trails

    Get PDF
    Large swarms of simple autonomous robots can be employed to find objects clustered at random locations, and transport them to a central depot. This solution offers system parallelisation through concurrent environment exploration and object collection by several robots, but it also introduces the challenge of robot coordination. Inspired by ants’ foraging behaviour, we successfully tackle robot swarm coordination through indirect stigmergic communication in the form of virtual pheromone trails. We design and implement a robot swarm composed of up to 100 Kilobots using the recent technology Augmented Reality for Kilobots (ARK). Using pheromone trails, our memoryless robots rediscover object sources that have been located previously. The emerging collective dynamics show a throughput inversely proportional to the source distance. We assume environments with multiple sources, each providing objects of different qualities, and we investigate how the robot swarm balances the quality-distance trade-off by using quality-sensitive pheromone trails. To our knowledge this work represents the largest robotic experiment in stigmergic foraging, and is the first complete demonstration of ARK, showcasing the set of unique functionalities it provides

    Auction and Swarm Multi-Robot Task Allocation Algorithms in Real Time Scenarios

    Get PDF
    A group of several autonomous robots (multi-robot system) can perform tasks that with only one of them would be impossible to carry out or would take much more time, moreover, they are more robust and even can be cheaper, etc than systems with a single robot. In general, the problems that have to be solved to benefit from all these advantage

    Sophisticated collective foraging with minimalist agents: a swarm robotics test

    Get PDF
    How groups of cooperative foragers can achieve efficient and robust collective foraging is of interest both to biologists studying social insects and engineers designing swarm robotics systems. Of particular interest are distance-quality trade-offs and swarm-size-dependent foraging strategies. Here we present a collective foraging system based on virtual pheromones, tested in simulation and in swarms of up to 200 physical robots. Our individual agent controllers are highly simplified, as they are based on binary pheromone sensors. Despite being simple, our individual controllers are able to reproduce classical foraging experiments conducted with more capable real ants that sense pheromone concentration and follow its gradient. One key feature of our controllers is a control parameter which balances the trade-off between distance selectivity and quality selectivity of individual foragers. We construct an optimal foraging theory model that accounts for distance and quality of resources, as well as overcrowding, and predicts a swarmsize-dependent strategy. We test swarms implementing our controllers against our optimality model and find that, for moderate swarm sizes, they can be parameterised to approximate the optimal foraging strategy. This study demonstrates the sufficiency of simple individual agent rules to generate sophisticated collective foraging behaviour

    Asynchronous control with ATR for large robot teams

    Get PDF
    In this paper, we discuss and investigate the advantages of an asynchronous display, called "image queue", tested for an urban search and rescue foraging task. The image queue approach mines video data to present the operator with a relevant and comprehensive view of the environment by selecting a small number of images that together cover large portions of the area searched. This asynchronous approach allows operators to search through a large amount of data gathered by autonomous robot teams, and allows comprehensive and scalable displays to obtain a network-centric perspective for unmanned ground vehicles (UGVs). In the reported experiment automatic target recognition (ATR) was used to augment utilities based on visual coverage in selecting imagery for presentation to the operator. In the cued condition a box was drawn in the region in which a possible target was detected. In the no-cue condition no box was drawn although the target detection probability continued to play a role in the selection of imagery. We found that operators using the image queue displays missed fewer victims and relied on teleoperation less often than those using streaming video. Image queue users in the no-cue condition did better in avoiding false alarms and reported lower workload than those in the cued condition. Copyright 2011 by Human Factors and Ergonomics Society, Inc. All rights reserved

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    A Hormone Inspired System for On-line Adaptation in Swarm Robotic Systems

    Get PDF
    Individual robots, while providing the opportunity to develop a bespoke and specialised system, suffer in terms of performance when it comes to executing a large number of concurrent tasks. In some cases it is possible to drastically increase the speed of task execution by adding more agents to a system, however this comes at a cost. By mass producing relatively simple robots, costs can be kept low while still gaining the benefit of large scale multi-tasking. This approach sits at the core of swarm robotics. Robot swarms excel in tasks that rely heavily on their ability to multi-task, rather than applications that require bespoke actuation. Swarm suited tasks include: exploration, transportation or operation in dangerous environments. Swarms are particularly suited to hazardous environments due to the inherent expendability that comes with having multiple, decentralised agents. However, due to the variance in the environments a swarm may explore and their need to remain decentralised, a level of adaptability is required of them that can't be provided before a task begins. Methods of novel hormone-inspired robotic control are proposed in this thesis, offering solutions to these problems. These hormone inspired systems, or virtual hormones, provide an on-line method for adaptation that operates while a task is executed. These virtual hormones respond to environmental interactions. Then, through a mixture of decay and stimulant, provide values that grant contextually relevant information to individual robots. These values can then be used in decision making regarding parameters and behavioural changes. The hormone inspired systems presented in this thesis are found to be effective in mid-task adaptation, allowing robots to improve their effectiveness with minimal user interaction. It is also found that it is possible to deploy amalgamations of multiple hormone systems, controlling robots at multiple levels, enabling swarms to achieve strong, energy-efficient, performance
    • …
    corecore