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Abstract

We propose a novel application of the ant colony optimization algorithm to ef-

ficiently allocate a swarm of homogeneous robots to a set of tasks that need

to be accomplished by specific deadlines. We exploit the local communication

between robots to periodically evaluate the quality of the allocation solutions,

and agents select independently among the high-quality alternatives. The eval-

uation is performed using pheromone trails to favor allocations which minimize

the execution time of the tasks. Our approach is validated in both static and dy-

namic environments (i.e. the task availability changes over time) using different

sets of physics-based simulations.
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1. Introduction

Swarm robotics is an approach to distributed robotics, in which large groups

of robots execute tasks of which the complexity exceeds the capabilities of an

individual robot. It holds promise as a useful approach for many real-world tasks

through reducing costs, risks and execution times [1]. Many of the tasks for

which swarm robotics can provide an efficient solution are associated with time

constraints (i.e. deadlines). Examples of time-constrained tasks include rescuing
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humans or objects in a disaster site before some level of harm is reached [2],

collecting objects/products and transfer them to an aggregation point for further

processing [3], or planting and harvesting of large fields using an automated

agricultural robot team [4]. Thus, the consideration of time constraints when

designing robot swarms represents a fundamental requirement for successful

application of these systems in real-world scenarios.

In general, the design of robot swarms can follow either a microscopic-to-

macroscopic paradigm or a macroscopic-to-microscopic one. The first approach

starts from the individual (i.e. the microscopic) level by defining the behavior

rules that are followed then by each robot. These rules are in general simple

and often probabilistic, yet they result in a collective behavior observed at the

swarm (i.e. the macroscopic) level. Applications that are associated with this

design approach take inspiration from nature and aim either to create large-scale

autonomous artificial systems or to validate functionalities that are observed in

nature. Examples of these behaviors include; foraging [5, 6, 7, 8], flocking and

motion coordination [9, 10], aggregation [11, 12]. The second design paradigm

starts by defining a desired swarm behavior and attempts to derive the individ-

ual rules that lead to achieving this particular behavior. Due to its complexity,

only a few works in the literature design robot swarms following this paradigm

[13, 14, 15, 16]. In this paper, we apply a macroscopic-to-microscopic approach

to design a swarm that collectively executes a set of time-constrained tasks, in

which the task’s deadlines represent the macroscopic conditions that we aim to

satisfy.

We propose an autonomous task allocation algorithm for deriving the micro-

scopic behavior rules in the robot swarm. These rules allow the robots to allocate

themselves to the different active—i.e. of which the deadline is not exceeded

yet—tasks considering their time constraints. Few works in the literature have

tackled the problem of task allocation in swarm robotics for time-constrained

tasks [17, 18]. Nevertheless, in these works, a priori knowledge of the task’s

execution time is assumed in addition to considering only static environments

(i.e. the density of items doesn’t change over time). Differently, in our study, we
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don’t assume any a priori knowledge of the items’ execution time. Moreover, we

treat this time as the parameter we aim to optimize. Additionally, we address

dynamic as well as static environments. In our study, we propose a novel use

of the ant colony optimization (ACO) algorithm [19] to optimize the number

of robots assigned to each task from a set of time-constrained tasks. To the

best of our knowledge, there are no works which attempted to apply ACO for

allocating robot swarms to time-constrained tasks.

The rest of the paper is organized as follows. In section 2, we give a brief

background on the ant colony optimization algorithm and how solutions are

constructed. In section 3, we formulate the particular allocation problem that we

are focusing on and the scenario we use to study our problem. The ACO details

and representation are explained in Section 4. In Section 5, we present the

individual behavior rules that robots apply to allocate themselves autonomously

to the different tasks. We validate the proposed algorithm in Section 6 using

different sets of physics-based simulations. Conclusions are drawn in Section 7.

2. Background

In this section, we present a brief description of the Ant Colony Optimization

(ACO) algorithm. Readers familiar with ACO may skip this section.

ACO is an optimization technique that draws inspiration from the foraging

behavior of ants. It is a meta-heuristic approach that was proposed originally

by Marco Dorigo to find the optimal path in a graph [20]. Later on, several

variations were proposed to the original algorithm [21]. Optimization problems

that are solved using ACO are combinatorial problems—optimal solution has to

be identified from a finite set of solutions—that can be modeled using (directed

or undirected) graphs, in which nodes represent discrete states whose combi-

nations provide different solutions. In general, specific costs are assigned when

traveling over the edges of the graph. An individual ant decides to travel from

node i to node j with a probability:

P tij =
[τij ]

α[ηij ]
β∑

l∈Gi
[τij ]α[ηij ]β

, (1)
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where Gi is the set of neighbors of node i, and t is the current time step. ηij

is the heuristic information available for the individuals to help their decision

(e.g., the distance between two nodes). Finally, τij is the amount of pheromone

assigned to the selected solution—i.e. switch from i to j—based how good this

solution is according to the collected experiences. α and β are two parameters,

which respectively determine the relative influence of the heuristic information

and the pheromone on the selection of the next step. The two parameters define

the weights of the exploration and exploitation behaviors that are applied by

each individual at each time step. The parameter α represents the tendency of

the individual to exploit the information that is collected by other individuals

and that is coded using the pheromone trails. The parameter β reflects the

tendency of the individual to explore the problem state space looking for new

solutions (i.e. paths). Finding a proper balance between the exploration and the

exploitation (how to tune α and β for an optimized performance) is one of the

main challenges when applying any variant of ACO. Therefore, in most studies,

one of the inevitable steps is to tune these two parameters [22, 23]. Accordingly,

we investigate in our study the fundamental role of both parameters is achieving

a desired allocation of the robots under the different assumptions in static and

dynamic environments.

In ACO, a number of artificial ants iteratively build solutions of an opti-

mization problem and use pheromones as a mean of communication to exchange

information concerning the quality of the constructed solutions. In general, the

pheromone update process continuously evaluates the solution by rewarding

good choices and forgetting bad ones by pheromone deposition or evaporation

respectively:

τij(t+ 1)← (1− ε)τij(t) + ∆τij(t) (2)

where τij(t) is the amount of pheromone at time t, and ε is the parameter used

to enable the algorithm to forget previous bad decisions through the evaporation

of the pheromone. ∆τij(t) is the amount of pheromone to deposit on edge eij

at time step t. Note that the pheromone update is a global process, i.e. the
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whole problem graph is updated by a central component.

ACO has been applied to a wide range of combinatorial optimization prob-

lems such as scheduling problems [24, 25], routing problems [26, 27], assignment

problems [28, 29], etc. It has showed a high efficiency in finding near-optimal

solutions within reasonable execution times.

3. Problem Description and Scenario

We consider a homogeneous swarm of N robots, which is used to execute

a set of M time-constrained tasks in parallel. Each of the M tasks consists

of a large number of identical work items (sub-tasks). Each task mi is thus

characterized by its minimum number of items to execute (Si) and its deadline

Di. The items of a task can be executed in parallel and in arbitrary order.

This abstracted description of robotic tasks can be translated to a large range

of real-world application domains, such as agriculture [30], construction [31],

transportation [32], and others. For example, in agriculture tasks robots need

to pick-up a particular number of products or plant a number of seeds within a

given time duration. The seeds and plants are the task items. In more general

scenarios, the robotic task can be a combination of several missions to be carried

out simultaneously at different sites, e.g., picking-up and planting at two fields

in parallel. In this study, we tackle the general case of having M tasks presented

at different locations. Both the time to seek the locations at which the robots

will find the plants or plant the seeds, and the times the robots spend in avoiding

obstacles, are stochastic due to the dynamic nature of the navigation activity.

Therefore, the execution time of the single item becomes stochastic as well.

We model the execution time of a single item to include three time intervals:

1. The seeking time, which is the time the robot spent in searching for an

item since it entered the task site (as explained below) or since it finished

the execution of the previous work item.

2. The processing time of the item. This time is task-specific but constant

for all items.
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3. The avoidance time, which is the time spent in avoiding collisions with

other robots.

Both seeking and avoidance times are stochastic. Their stochasticity depends

on the item density, the spatial distribution of the items and the intensity of

the physical interferences at the task site (more robots will lead to more inter-

ferences). Consequently, the execution time of a single item that sums up all

three times (mentioned above) is stochastic, and so is the total time required to

execute a particular number (Si) of items of task mi.

Let the average seeking time of an item of task mi be denoted by θ̂i.

Similarly, the average avoidance time is denoted by ω̂i. The key goal of our

proposed allocation algorithm is to find an allocation A(t) at time step t—

A(t) = {N1(t), N2(t), . . . , NK(t)(t)}, where K(t) is the set of tasks whose dead-

lines are not exceeded yet—that assigns Ni(t) of robots to task mi at time step

t so that task execution time is minimized. The minimization of the task’s

execution time is achieved by minimizing the average seeking time θ̂i and/or

the average avoidance time ω̂i at the site of task mi. Minimizing the execution

time of a single item will impose a maximization of the number of executed

items, and consequently increasing the probability of executing the minimum

number of items (Si) required, before the deadline (Di) is exceeded. In the most

general case, the density or the spatial distribution of items changes over time,

e.g. because executed items are not replaced. Such environments are referred

to as dynamic environments, in which the average seeking (θ̂j) and avoidance

(ω̂j) time changes over time. In this paper, we consider dynamic but also static

environments, in which θ̂j and ω̂j stay constant over time.

Formally, our setting can be represented as the following multi-objective

optimization problem:

minimize
A(t)={N1(t),N2(t),...,NK(t)(t)}

 θ̂i(t) = f(Ni(t)) ∀mi ∈M

ω̂i(t) = f(Ni(t)) ∀mi ∈M
(3)

The functions θ̂i(t) and ω̂i(t) are not known a priori. Therefore, the opti-

mization problem is solved online and distributively by the individual robots.
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Our proposed approach exploits the well-known ant colony optimization [33] to

solve the above optimization problem. Because ACO is executed by individual

robots, we refer to our allocation algorithm as Local Ant System (LAS).

Fig.1 depicts the concrete scenario that we use in our study to illustrate

the above-defined problem. We have M = 4 task locations. On each location,

a random number of work items of that task is deployed. The task locations

are connected via a common space referred to as the nest. Robots start at the

nest, select a task, move to the task site, search and execute zero, one or more

work items. Robots re-visit the nest during specific periods, referred to as the

synchronization periods. These periods are used to exchange information among

the robots. Robots communicate only in the nest. After each synchronization

period, robots re-select their next task, using the LAS algorithm based on the

information they have collected while interacting with their neighbors at the

nest. The time periods during which robots are at the task sites are referred to

as execution phases. The execution phase may differ from one robot to another,

when the robots select random times to spend at the task site before coming

back to the nest.

Nest

Task	3

Task	1 Task	4

Task	2

Figure 1: A simplified scenario for the studied task allocation problem.
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4. Local Ant system for the task allocation problem (LAS)

Our task allocation problem can be represented using a connected graph

G = {V,E}, see Figure 2. The nodes V represent the set of tasks and its

edges E represent a robot decision to switch from one task to another. Our

graph is fully connected since robots can switch from any task to any other

task. We modify the traditional ACO algorithm by applying a local pheromone

update (i.e performed by the robot) instead of having a centralized and global

procedure, as we will explain in the following.

v3

v1 v4

v2

e12 (τ12)

e13 (τ13)

e14 (τ14)

e23 (τ23)

e24 (τ24)

e34 (τ34)

Figure 2: A graphic representation of the task allocation problem.

4.1. Solution Construction

Initially, a robot selects randomly one of the given tasks, and the allocation

solution is constructed periodically over several steps, which are executed each

time the robot visits the nest. At each construction step (i.e. during the syn-

chronization period), the robot applies the probabilistic choice rule in Eq. (4)

to select the task to work on during its next execution phase. The probability

of switching from task mi to task mj is then computed as follows:

P tij =
[τij ]

α[ηij ]
β∑

l∈K(t)[τij ]
α[ηij ]β

(4)
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where K(t) is the set of active tasks at time step t, ηij is a heuristic value,

and τij is the pheromone value. In the following, we present both the heuristic

information used to capture the information available for helping the allocation

decision and the pheromone information used by the LAS allocation algorithm.

4.2. Heuristic Information

As mentioned above, each task is characterized by the minimum number of

items to execute (Si) and its deadline. We use these two parameters to define

the task’s priority γi as given in Eq. (5):

γi =


Si
Di

for t ≤ Di

0 for t > Di

(5)

The task priority is a quantitative measure that reflects the urgency of the

task. It is higher when the number of items that need to be executed is higher

and/or when the deadlines are shorter.

We exploit the priority of the task as the piece of information available for the

robots to help their allocation decision in light of the task’s urgency. Thus, the

task’s relative priority—i.e. its priority relative to the priority of other tasks—is

used as the heuristic information. ηj is the heuristic information associated with

the switch from any active task to the active task mj , and it is given by:

ηj =
γj∑

kεK(t)

γk
(6)

where the set K(t) is the set of active tasks at time step t. Note that the

heuristic information of task mj does not depend on the currently chosen task

mi, as the switching cost between any two tasks is assumed to be equal.

Robots keep track of the tasks deadlines, and as soon as a deadline is expired

the priority of that task is set to zero and consequently the heuristic information

as well. This prevents the task from being chosen when its deadline is exceeded.

With this definition of ηj , the parameter α in Eq. (4) determines the importance

of assigning robots based on the relative priority of the tasks.
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4.3. Pheromone Update

Different from traditional ACO-based schemes, in our proposed solution the

pheromone update is performed individually by each robot. Consequently, each

robot develops its individual solution for the given macroscopic optimization

problem in Eq. (3). For doing so, each robot maintains a pheromone table

that contains the pheromone amounts assigned to the different switching op-

tions (including staying at the currently selected task). The robot updates its

pheromone table during each visit to the nest (i.e. each synchronization period).

In the nest, before to update the pheromone table, the robot exchanges

information with its neighbours concerning their collected experiences during

their latest execution phases. These experiences involve both the seeking time

θi and avoidance time ωi that each robot experience in its previous execution

phase. By averaging all the communicated values, the robot calculates new

estimates θ̂i and ω̂i for each task mi. The robot then deposits a pheromone

update (positive or negative) on each edge eij , calculated as follows:

4τij =
θ̂j × ω̂i
ω̂j × θ̂i

(7)

Eq. (7) translates the macroscopic goal of minimizing the task’s execution

time—by minimizing both of the avoidance and the seeking times—to the in-

dividual behavior. For the avoidance time ωi, it is straightforward that in-

creasing the density of robots at a specific task site beyond a particular limit

increases physical interferences ([5]) among robots and consequently, the time

robots spend in avoiding each other. Hence, by depositing a smaller amount of

pheromones for tasks with higher avoidance times, the number of robots at that

task site will decrease accordingly.

The decision on increasing or decreasing the number of robots allocated to a

particular task based on the estimated item’s seeking time θ̂i is more complicated

if defining the seeking time to include the item the robot searches for the item

and avoiding other robots. This is due to the fact that a large seeking time can

result from either (i) having to spend a long time in avoiding other robots or
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(ii) a low item density at the task site. In the first case, the number of robots

assigned to the task needs to be reduced, whereas in the second case the number

of robots needs to be increased in order to find the items faster. In order to avoid

such conundrum, we define the seeking time as the time spent by the robot to

find an item after subtracting the time this robot spends in avoiding obstacles

(e.g., other robots). Thus a large average of the seeking time indicates only

the need to increase the number of robots allocated to this particular task and

hence a higher amount of pheromone is deposited to encourage the switching to

this task.

According to the above-described macroscopic-microscopic behaviors, pheromone

trails are added to reinforce a switch between two tasks, when this switch allows

to gain in terms of the average avoidance time or/and the average item’s seeking

time.

5. Implementation of the local ant system (LAS)

In this section, we describe how we have implemented the algorithm de-

scribed in the previous section into a behavioral model of the robots. Our im-

plementation meets the requirement of simplicity that is imposed by the limited

capabilities associated with swarm robotics.

Robots can be in one of the following two states: (i) Uncommitted: an

uncommitted robot is a robot that doesn’t decide yet for its next task. Each

time a robot visits the nest to exchange information with the other robots, it

becomes uncommitted. (ii) Committed: a committed robot is a robot that has

decided for its next task. This decision is taken by each robot individually using

the LAS algorithm executed locally by the robot.

Initially, robots start scattered at the nest site. A robot selects its next task

randomly with a probability biased by the task’s priority. Afterwards, robots

sample the time period for their visit to the selected task site. These times

are sampled from a normal distribution with the mean µexecute and standard

deviation σexecute, and referred to as the execution phase. Robots use their
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cameras to identify the led associated with their selected tasks and start moving

in that direction. The robot detects the task site using a combination of the

ground sensors reading (all tasks have gray grounds) and their cameras (the

specific led of the selected task). As soon as the robot arrives at the task site,

the execution phase starts to count-down while the robot is searching for items.

During the execution phase, the robots wonder following a random walk with

collision avoidance. When an item is found, the robot spends a constant time

executing the item before it resumes its random walk. As mentioned above, in

static environments, the items are regenerated at new locations over the task

site. Whereas in dynamic environments, the executed items are removed from

the task site, and hence the density of the items decreases over time.

Robots continue executing the items of their selected task until their exe-

cution phase is over. Afterwards, robots start to move towards the nest for

executing a new synchronization period, in which they exchange the experi-

ences collected during their last task’s visit.

During the synchronization period, robots use their range-and-bearing sys-

tem1 to exchange messages from the following format: (i) Byte-0 to exchange

the robot ID, (ii) Byte-1 is set to 0 when exchanging avoidance time, to 1 when

exchanging item seeking time, and to 2 when exchanging the task ID. (iii) Bytes-

(2-9) for exchanging the actual data. The receiver robot will check the message

for the sender id and the time-stamp to avoid accounting for the same message

more than once.

At the end of the synchronization period, the robot exploits the information

exchanged during this period to evaluate the average of the seeking and the

avoidance times of each task. These two averages are used in Eq. (7) to update

the pheromone amount assigned to each active task, and consequently, the al-

location probability for each task Eq. (4). Algo. 1 illustrates the behavior of

the individual robot during the experiment time over both the execution phase,

1The range-and-bearing system of simulated footbots allows the exchange of 10-byte mes-

sages
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and the synchronization period.

Algorithm 1: The robot’s (microscopic) behavior

1 while K(t) is not empty do

2 select next task using Eq. (4);

3 sample a new execution phase to spent at the selected task;

4 while execution phase > 0 do

5 seek items at the task site;

6 measure and average the avoidance time;

7 measure and average the item seeking time;

8 end

9 return to the nest;

10 while synchronization period > 0 do

11 exchange with the neighborhood and estimated:

12 (a) the average avoidance time;

13 (b) the average seeking time;

14 end

15 update pheromone trails using Eq. (7);

16 end

6. Results and Discussion

6.1. Arena setup

To verify our approach, we conducted a set of physics-based simulations

implemented using the ARGoS simulator2. Fig. 3 depicts the 26× 26 m2 arena,

which consists of one nest and four task sites. The nest is the central part

of the arena (10 × 10 m2) where robots meet to communicate and exchange

2ARGoS is a discrete-time physics-based simulator. It can simulate various robots in large

numbers and at different levels of details.
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their individual experiences. The communication range of the robot is set to

1 m. Each task site measures 8 × 8 m2 and can be reached from the nest by

an entrance with a width of 2 m. Robots distinguish between the different task

sites through colored LEDs (red, yellow, blue, and green), which are placed at

the entrance of each site and the colors are used to label the tasks. To help the

robots returning from a task site to the nest, orange LEDs are placed at the

nest side of each task entrance. The items of each task are simulated as black

spots, which are scattered over the task site. The execution time of an item is

constant per task and can differ from one task to another representing the level

of difficulty.

Figure 3: A birds-eye view of the arena. The part with the white floor is the nest used

by the robots to communicate and update their pheromone trails as well as their allocation

probabilities. The other four parts represent the task sites (in the snapshot with different

item densities).
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6.2. Benchmark

For task allocation in robot swarms, one of the widely-applied models is the

“Response Threshold Model” (RTM) [34, 35, 36, 37, 38]. This model is inspired

from the principle of division of labor that is observed in social insects and

other animal groups. It is used by the individuals to allocate themselves to the

different tasks and to specialize on these tasks [39]. In the RTM model, each

individual measures one or more stimuli in its environment and when the level

exceeds a particular threshold (in most studies this threshold is constant over

time) the individual probability to switch its task increases. For example in a

set of sequential tasks, in which an agent is allocated to task B but needs to

wait until some task A is executed, the waiting time is defined as the stimulus.

When the agent waits longer than a specified threshold, its probability to switch

to task A increases. In robot swarms, RTM is mostly used to optimize the num-

ber of robots allocated to each task, accounting for physical interferences. We

refer to the optimal number as the number of robots that maximizes the swarm

performance under spatial interferences.

We have selected this optimal number of robots to use as our benchmark when

evaluating the performance of the LAS algorithm. Please note that the optimal

number of robots is generally computed in static environments. Nevertheless,

since we consider both static and dynamic environments—i.e. the density of

the task changes over time—, we developed an approximated function to char-

acterize how the optimal number of robots changes over time and used this as

our benchmark in the dynamic environments.

• Static environments: in static environments, we have determined the op-

timal number of robots for the four tasks, accounting for spatial inter-

ferences. To do so, we have run exploratory simulations, in which we

measured the total number of executed items over 1000 time steps, in the

arena of Fig. 3, with only items in one of the task sites. We ran simu-

lations with the number of robots in the range of {20, 520} with steps of

10. Initially, the number of executed items increased with the number of
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robots allocated to the task. However, due to spatial interferences, this

number started to decrease again when the number of robots exceeds a

specific limit—i.e. the optimal number of robots. Based on our simula-

tions, the optimal number of robots is {260, 230, 240, 210}, for the yellow,

the green, the red, and the blue tasks, respectively. Please note, that the

summation of the optimal number of robots for the different tasks is 940,

which is considerably above the swarm size (N = 300). Note that our

experimental setup is purposely designed so that the swarm is not large

enough to assign the optimal number of robots to each task.

• Dynamic environments: Due to the change in the number of items over

time , the optimal number of robots is not constant. Therefore, in order

to compare the number of robots allocated by LAS to each task with the

optimal number, under the current item density, we derive a function to

compute the optimal number of robots in terms of the number of available

items. For this purpose, we perform experiments with different item den-

sities [50 − 600] with a jump of 50 items per configuration. Afterwards,

we extrapolate the optimal number of robots as a function of the items

number:

Nopt = −0.0004755x2 + 0.711x+ 29.45, (8)

where x is the current number of items available at the task site.

In the following, we study the influence of the exploration (α) and exploitation

(β) parameters on the performance of LAS and compare the obtained per-

formance to the optimal number of robots computed in a set of independent

simulations.

6.3. Influence of the exploration exponent (α)

We first investigate the influence of the exploration exponent α on the per-

formance of the algorithm LAS. We recall the reader that the value of α de-

termines how important it is to assign the robots to the different tasks based

on the heuristic information (i.e. the relative priority of the task). Since the
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priority of a specific task is computed as in Eq. (5) using its deadline and the

minimum number of items to execute of that task, to quantify the influence

of α, we consider static environments where tasks have different priorities but

their relative priorities (i.e. how urgent this task in comparison to the other

active tasks) do not change over time. The task and the experiment parameters

are shown in Tab. 1 and Tab. 2, respectively. The task sizes and deadlines are

selected such that we cover a range of differences between task priorities.

Task Deadline # of items Size Execution time Priority

Yellow 12000 200 2000 8 0,16

Green 9000 120 3000 5 0,33

Red 6000 160 3000 10 0,5

Blue 3000 50 2000 5 0,66

Table 1: Task parameters including from left to right: task deadline, initial number of items

available at the task site, the minimum number of items need to be executed of the task, the

execution time of each item, and the task’s priority computed using Eq. (6).

Parameter Value

Swarm size 300

Mean of foraging time µexecute 300

Standard deviation of foraging time σexecute 10

Nest time 200

The exploitation exponent β 1.0

Table 2: The experiment parameters.

We apply LAS with α = 2.5 and β = 1.0. Setting a higher value of α

compared to β assigns a higher importance to the relative task’s priority as a

decision motive when applying the probabilistic decision in Eq. (4).

In Fig. 4, we can notice that robots are assigned during the first 3000 seconds

(until the deadline of the blue task with the highest priority) to the blue task
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hitting its optimal number of robots (the horizontal blue dotted line). The

number of robots allocated to the other tasks is significantly far from their

optimal numbers. When the deadline of the blue task is exceeded, the red

task becomes the task with the highest relative priority, hence the allocation

algorithm (LAS) pushes the number of robots allocated to this task as near as

possible to its optimal number (up to its deadline 6000 seconds).

Reaching the optimal number (230 for the red task) was not possible due

to the requirements of robots at the other task sites (the green and the yellow)

reflected in their pheromone trails (β = 1.0). Hence, a specific number of robots

needs to be assigned to these tasks as a result of the exploitation parameter.

As soon as the deadline of the red task expires, the green task is assigned the

highest number of robots (around its optimal number 240), and the yellow task

(i.e. with the lowest priority) is assigned all robots when it becomes the only

active task.

opt_num=210

opt_num=230
opt_num=240

opt_num=260

Figure 4: The number of allocated robots to the different tasks for α = 2.5 and β = 1.0

in comparison to the optimal number computed under spatial interferences. Experiments

performed in a static environment (i.e. no change in the number of items available at the site

of each task).

In Fig.5, we compare the performance of the allocation algorithm (LAS)
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for three α values (i) low influence α = 0.5, (ii) high influence α = 2.5, and

(iii) extremely high influence α = 5.0, all with β = 1.0. In this figure, we can

notice similar dynamics to the one observed in Fig. 4, by favoring tasks based on

their relative priorities. Nevertheless, having β > 0 imposes the exploitation of

the experiences collected by the robots—during their visits to the task sites—in

the decision process (see Eq. (4)), and hence LAS continues allocating a number

of robots > 0 to the tasks with lower priorities as well. In this figure, we can

see that even with the lowest value used for α = 0.5, tasks with higher priorities

are favored, although the number of assigned robots is far below the optimal

number of robots for all tasks. Conversely, for the highest value of α = 5, the

number of assigned robots is far above the optimal number.

Consequently, tuning the parameter α for an efficient performance of LAS is a

critical task that needs to be addressed for (i) static environments by assigning

higher importance to the heuristic information of the ant system (i.e. the α

value is set higher than the β value), and (ii) identifying the upper-bound of

α, so that the robots’ experiences reflected in the pheromone trails still have

an influence on the robots’ allocation. Such an upper-bound can be found by

using an automatic parameter tuning [40] over the data generated from robotics

simulations.

Fig. 6 depicts the total number of items executed of each task using the

different three values of α ∈ {0.5, 2.5, 5.0} and β = 1.0. In this figure, we can

notice that LAS was able to meet all deadlines by executing (and in most cases

exceeding) the minimum number of items Si required of each task. The blue

task is the one with the highest relative priority and was satisfied for two values

of α ∈ {2.5, 5.0}, but has missed its deadline for α = 0.5. Interestingly, we can

notice that having extremely high values of α can lead in some cases to over-

assign robots to tasks, so that the physical interferences between robots lead to

decrease the number of items executed, such as the case of the green task with

α = 5.0.

Finally, for static environments, we conduct a set of experiments to verify

that, both averages of the seeking and avoidance times, which are estimated
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Figure 5: The number of allocated robots to the different tasks using 3 values of α ∈

{0.5, 2.5, 5} and β = 1.0, experiments performed in a static environment (i.e. no change

in the number of items available at the site of each task).

Figure 6: The number of items executed of each of the four tasks using α ∈ {0.5, 2.5, 5.0} and

β = 1.0. Experiments performed in a static environment (i.e. no change in the number of

items available at the site of each task).
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by the individual robots (during their execution phases) are distributed around

the total average (computed over all robots), and to infer the variances of the

individual estimations. Fig. 7 and Fig. 8 show our results, which verify a minimal

variance for the total average overall tasks for both types of times.

(a)

(b)

Figure 7: A comparison between the average seeking time estimated by the robots individually

and the total average computed over all robots (the vertical line).

(a)

(b)

Figure 8: A comparison between the average avoidance time estimated by the robots individ-

ually and the total average computed over all robots (the vertical line).
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Task Deadline # of items Size Execution time Priority

Yellow 18000 400 400 200 0,02

Green 13500 600 600 200 0,04

Red 9000 600 600 200 0,06

Blue 4500 400 400 200 0,08

Table 3: Task parameters including from left to right: task deadline, initial number of items

available at the task site, the minimum number of items need to be executed of that task, the

execution time of each item, and the task’s initial priority computed using Eq. (6).

6.4. Influence of the exploitation exponent (β)

After highlighting the influence of the exploration exponent α on the per-

formance of the allocation algorithm LAS, we investigate the influence of the

exploitation exponent β. β reflects the importance dedicated to the pheromone

amount assigned to each task in defining the number of robots to allocate to

that task. The pheromone is allocated by the algorithm in response to the

estimated averages of (i) the item’s seeking time and (ii) the avoidance time

associated with each task, see Eq. (7). Therefore, for a better investigation

of the influence of the β parameter, we consider for this set of experiments

dynamic environments, in which the density of items change over time, while

the robots are executing new items. Each time a robot executes an item, this

item disappears from the task’s site, hence the density of items decreases over

time. The task parameters are shown in Tab. 3, in which the execution time of

single items is set much higher than in the experiments conducted in Sec. 6.3.

These special settings is performed to avoid having all the items of a particular

task disappearing immediately during the first execution phase of the assigned

robots (items disappear when robots execute them). Setting the execution time

of single items higher implicates setting the deadlines of the tasks higher as well

(in comparison to the tasks’ deadlines in Sec. 6.3).

We use the function in Eq. (8) to predict the change in the optimal number

of robots over time, and we depict this change in Fig. 9. In the same figure, we
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can notice the number of robots assigned by LAS with α = 1.0 and β = 1.5. In

spite of assigning the highest number of robots to the blue task (the one with the

highest initial priority), however, the synchronization periods performed before

its deadline is reached were not enough to allow coping with the dynamic change

of the seeking and avoiding times. Differently, for tasks with longer deadlines

(e.g., the red, green, and yellow tasks) the allocated number of robots hits and

even exceeds the current optimal number for robots over most of the experiment

time. Remarkably, the priority in assigning robots to the different tasks stays

in alignment with the tasks’ initial priority.

Figure 9: The number of allocated robots to the different tasks for α = 1.0 and β = 1.5

in comparison to the optimal number computed under spatial interferences. Experiments

performed in a dynamic environment (i.e. density of items decreases over time while robots

are executing new items).

We have ran our experiments for the same task set using three β values

(i) low influence β = 0.5, (ii) high influence β = 1.5, and (iii) extremely high

influence β = 5.0, all with α = 1.0. Fig. 10 shows very similar behavior for the

three values of β. The number of executed items for the three tested values of β

is illustrated in Fig. 11. In this figure, we can notice that changing the β value

doesn’t have a remarkable influence on the performance of LAS, and hence on
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Figure 10: The number of allocated robots to the different tasks using 3 values of β ∈

{0.5, 1.5, 5.0} and α = 1.0, experiments performed in a dynamic environment (i.e. density

of items decreases over time while robots are executing new items).

the number of items executed up to the task’s deadline.

For further investigation of the influence of the β exponent, we have run ex-

periments with different β values but also with different length of the execution

phase at the different tasks, and consequently for a different number of synchro-

nization periods included within the task’s deadlines. we have concluded that

tasks with relatively short deadline benefit from long execution phases and low

β values. This is because, for such tasks, it is better for the robots to spend

the time in executing items rather than in performing synchronization period

to tune their allocation using their short experiences to update the pheromone

trails. Whereas, for tasks with relatively long deadlines, a higher number of syn-

chronization periods and shorter execution phases are of a higher benefit and

hence large β value can be useful. This hypothesis was verified by the results

captured in Fig. 12 and Fig. 13, which show the number of executed items of the

four tasks for β = 1.5 and β = 10.0, respectively. We have changed the dura-

tion of the execution phases to constants and set them to {5000, 10000, 15000}
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Figure 11: The number of items executed of each of the 4 tasks using β ∈ {0.5, 1.5, 5.0} and

α = 1.0. Experiments performed in a dynamic environment (i.e. density of items decreases

over time while robots are executing new items).

simulated tick—i.e. 0.1 of the simulated second. In Fig. 13, we can see how for

tasks with longer deadlines such as the red or the green tasks, shorter execution

phases (i.e. 1000 ts or 5000 ts) can lead with higher β values (i.e. β = 10.0) to

larger number of executed items.

7. Conclusion

In this paper, we have proposed an efficient task allocation algorithms (LAS)

for robot swarms to execute tasks under specific time constraints. The allocation

algorithm extends the well-known Ant Colony Optimization (ACO) for a local

computation and update of the pheromone trails using the experiences collected

by the individual robots while executing their tasks. To our best knowledge, this

was the first approach to implement the ant system on robot swarms to optimize

their task allocation. Our results demonstrate a high benefit particularly in cases

where (i) the size of the swarm is smaller than the summation of the optimal

number of robots under physical interference over all tasks, or (ii) for cases where
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Figure 12: Number of executed items over the four tasks with β = 1.5.

Figure 13: Number of executed items over the four tasks with β = 10.0.

environments are dynamic, i.e. the optimal number of robots changes over time

as a result of e.g., a changing item density (i.e., task availability). As a future

work, it would be of a high interest to implement individual mechanisms (at

the robot’s level) to distinguish static from dynamic environments, and hence
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decides individually whether to increase the weight of the exploration exponent

(α) or the exploitation one (β) for achieving a more efficient allocation.
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