
A Hormone Inspired System for
On-line Adaptation in Swarm Robotic

Systems

James Stuart Wilson

DOCTOR OF PHILOSOPHY

UNIVERSITY OF YORK
ELECTRONIC ENGINEERING

October, 2019





Abstract

Individual robots, while providing the opportunity to develop a bespoke and specialised system,

suffer in terms of performance when it comes to executing a large number of concurrent tasks.

In some cases it is possible to drastically increase the speed of task execution by adding more

agents to a system, however this comes at a cost. By mass producing relatively simple robots,

costs can be kept low while still gaining the benefit of large scale multi-tasking. This approach

sits at the core of swarm robotics.

Robot swarms excel in tasks that rely heavily on their ability to multi-task, rather than

applications that require bespoke actuation. Swarm suited tasks include: exploration,

transportation or operation in dangerous environments. Swarms are particularly suited

to hazardous environments due to the inherent expendability that comes with having multiple,

decentralised agents. However, due to the variance in the environments a swarm may explore

and their need to remain decentralised, a level of adaptability is required of them that can’t

be provided before a task begins. Methods of novel hormone-inspired robotic control are

proposed in this thesis, offering solutions to these problems. These hormone inspired systems,

or virtual hormones, provide an on-line method for adaptation that operates while a task is

executed. These virtual hormones respond to environmental interactions. Then, through a

mixture of decay and stimulant, provide values that grant contextually relevant information to

individual robots. These values can then be used in decision making regarding parameters

and behavioural changes.

The hormone inspired systems presented in this thesis are found to be effective in mid-task

adaptation, allowing robots to improve their effectiveness with minimal user interaction. It is

also found that it is possible to deploy amalgamations of multiple hormone systems, controlling

robots at multiple levels, enabling swarms to achieve strong, energy-efficient, performance.
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Chapter 1

Introduction

Individual robots, while providing the opportunity to develop a bespoke and highly specialised

system, suffer in terms of performance when it comes to executing a large number of tasks.

By introducing additional agents to a system in which multiple tasks must be completed, it is

reasonable to assume that the tasks as a whole would be completed faster. With the groups

of robots operating in parallel with one another to increase the productivity of the system.

However, the introduction of additional robots comes at a cost. More robots must be produced

and, to abide by the same budget as the initial robot, the subsequent robots must be made

more simple. Swarm robotics is an example of this process taken to it’s furthest state. A large

quantity of robots with simple functionality are produced but, given the larger number, they

are able to provide a powerful method for parallel task execution (Beni (2004)).

Producing a large quantity of robots that will be able to operate effectively in the long term

comes with its own set of problems, namely the coordination of such a large group of agents. A

simple solution to this would be to introduce a central coordinator which could then delegate

tasks amongst the entire group of robots. However, this would contradict one of the key

features of a robot swarm; a swarm should be able to perform successfully even if any given

robot were to fail at any point during a task. This feature allows for swarms to be inherently

robust and suitable for volatile tasks in constantly changing environments (Şahin (2005)).

Conversely, with a central computer or leader providing instruction, large groups of robots can

gain the benefit of global knowledge, as each member of the group can contribute information

to a centralised agent. In turn, this information can be used to create a efficient strategy for

effective utilisation of individual robot capabilities. If executed properly this can be a very

powerful methodology for multi-robot control. However, for this system to work, individual

agents must remain connected to the central agent. Without the ability to react or coordinate

themselves without this centralised agent, a lack of instructions from the leader may result

in disconnected members becoming lost to the group. Lost swarm members may get locked

into a repetitive task that is unhelpful to the goals of the multi-robot system or may simply be
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unable to navigate back to a centre of operations, resulting in the permanent loss of the agent.

In an attempt to avoid situations such as this, most work involving swarm robotics aims to

allow individuals within a swarm to self regulate, creating an emergent coordination which

requires no designated leader for the swarm to function effectively. The difficulty with this

method comes when a robot must have some understanding of the context in which they are

operating in. In a uniform environment with a well understood task, robots operation can

be programmed discreetly with a user planning and optimising each step in their behaviour.

However, with multiple agents operating in real environments, agents must have some of their

own understanding to react to unforeseen events. This understanding can then be actualised

in the alteration of behaviour or parameters.

Hormone inspired systems look to amend this problem by providing a computationally

inexpensive manner for evaluating an environment over time, using this information to

alter the temperament of individual robots amongst a swarm.

1.1 Hormone Inspired Systems For Robotic Control

Examples of hormone regulation can be seen throughout nature (HARANO et al. (2008);

Watanabe & Kuczaj (2012)). In these examples they can been seen working as an alternative to

neural signalling, which typically acts as a direct and deliberate control signal to an organisms

limbs, instead operating over greater periods of time in response to stimuli. The changes

produced from hormone signals can vary between substantial morphological changes (as seen

in tadpoles Riddiford & Truman (1993)) to changes in how the organisms might interact at a

behavioural level (such as levels of aggression Watanabe & Kuczaj (2012)).

Drawing from these natural examples of hormone function, virtual hormone systems take

stimuli in the form of a robots interaction with the environment, measured via simple sensors,

creating hormone values which rise as interaction increases and fall at a rate imposed by a

decay value attached to the virtual hormone equation. By monitoring these values over time

and comparing similar hormone equations to one another features such as success rate, swarm

density and locomotive efficiency can be extrapolated. These features are discussed in much

greater detail throughout Chapters 3-6.

1.2 Thesis Contributions

Chapter 3 By re-purposing a technique previously designed for obstacle avoidance a novel bio-

inspired method for robot deployment and dispersion is proposed, creating an effective

method for mapping complex environments with no prior knowledge of environmental

features.
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Chapter 4 presents a method of hormone inspired behaviour state regulation not previously

explored. While other studies have explored the use of hormones to define the boundary

between two behaviour states, these have had to include virtual pheromones and pre-

defined thresholds. While this system shows an original use in which the relative

balance between multiple hormones generate adaptive thresholds capable of successfully

reacting to a greater range of environmental dynamics.

Chapter 5 introduces a system of robotic self evaluation not previously studied. Using the

transmission of hormone values from robot to robot within a swarm along with various

environmental stimuli robots are able to create preference for a particular environment,

using a computationally inexpensive method of ranking their performance against other

robots encountered during a task.

Chapter 6 first presents a novel system of speed regulation, using a hormone system to

directly control motor speeds during demand lead following. Later in the chapter, a first

case combination of multiple hormone types is introduced. The combination includes

hormones for speed regulation, behaviour state control and environmental preference.

The simplicity in combining these systems is shown and an argument is made for the

development of multi-hormone systems for real world swarm robot applications.

1.3 Thesis Structure

This thesis concentrates on the design, innovation and implementation of multiple virtual

hormone types, looking at different levels of behavioural control and the benefits each level

provides to a swarm robot system. Through the examination and experimentation with

multiple virtual hormone systems, this thesis is guided by the following general hypothesis.

Hypothesis: A swarm robotic system can obtain a greater efficiency or effectiveness against

a comparison technique through the implementation of a hormone inspired system. Hormone

inspired systems will help agents within the swarm adapt over time, without prior knowledge of

the environment properties. Adaptation provided by the hormone systems will regulate either

robot features or behaviour states.

The content in the chapters of this thesis are summarised as follows.

Chapter 2 This chapter explores the background work to the thesis. Examining past literature

to provide context to the experimental work it precedes. This literature includes sections

which discuss the fundamentals of swarm robotics, establishing what makes a group of

robots truly swarms like, with examples of previous implementations and potential

applications, a background to other bio-inspired systems, placing the innovations
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in swarm and hormone based system within the context of a larger field and the

various methods of adaptation available to robotic systems along with their potential

shortcomings.

The content within each of these sections is then evaluated and a summary provides

instruction on which elements may be applicable to the content of each experimental

chapter.

Chapter 3 The first experimental chapter, this examines the potential of a virtual hormone

system capable of directly controlling the motors of a robot. The virtual hormone in

this example is stimulated by a combination of transmitted hormone values from other

swarm members and the distance at which they are transmitted. The goal of the system

was to increase the mapping capabilities of the swarm by finding appropriate dispersion’s

after deployment and maintaining effective distance from other swarm members for

strong mapping capabilities in a variety of complex environments. The chapter concludes

that virtual hormone systems can be effectively implemented for this purpose. However,

it is noted that hormone systems are not ideal for actuator control as, implementing a

hormone system for the direct control of anything more complex than a wheel based

system would be heavily time consuming and would be achieved more effectively with

traditional control methods.

Chapter 4 This chapter develops a new hormone inspired behavioural arbitration system to

regulate the sleep states of a swarm of foraging robots. Sleep states have been shown

to increase the energy efficiency of item collection while foraging as they allow for

de-cluttering in environments by momentarily preventing less successful robots from

participating in the foraging task. The experiments in this chapter compare the virtual

hormone regulation with a genetic algorithm optimised sleep system, which selects a

single sleep time for each robot as they return to the nest. The chapter concludes that

the variability in sleep time afforded by the hormone system makes it at least as effective

a method as the optimised case in the simple environment while also not requiring the

same level of information as the system it is compared against. In the more dynamic

environment, the hormone system consistently outperforms the optimised system which

has to select a compromised value for before and after the change in the environment,

highlighting one of the weaknesses of a system tuned by genetic algorithm.

Chapter 5 This chapter continues to investigate hormone inspired behavioural arbitration.

However, rather than coordinating states, the hormone system presented in this chapter

looks to create preference amongst a heterogeneous swarm. Allowing robots to select an

environment they are best suited for working in without having exact knowledge of the

environments they are presented with or their own capabilities. The chapter concludes

that substantial improvements can be made compared to a random system when it
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comes to correct allocation percentage when given the option of two environments.

When given the option of three, increases can still be made, though not as large due to

the difficulty of the problem.

Chapter 6 This chapter combines all of the levels of hormone control presented in Chapters

3-5 to identify if the positives each type of system provide can be compiled into one,

powerful, virtual hormone system without significant drawback. To begin this chapter a

new wheel-motor controlling hormone system suitable for a foraging task is developed

to replace the system worked on in Chapter 3. This new system improved the energy

efficiency of a swarm by fluctuating the sleep based on a specified demand, keeping

energy consumption low but also attempting to retain a good collection rate verses the

stated demand. Once this is tested, the systems are combined, testing and identifying

the potential negatives as each new system is added. The chapter concludes that the full

combination of the hormone system experiences minimal negative interference between

hormone types, producing the best combination of results of the systems tested.

Chapter 7 This chapter concludes the Thesis, providing a summary of the findings of each

chapter and returns to the general hypothesis, examining it’s validity and providing

examples of future work.
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Chapter 2

Background

2.1 Introduction

The information provided within this chapter introduces the fields of swarm robotics, robotic

adaptation and biomimicry. This provides a basis to the understanding of each field’s

fundamental principles. Additionally, the chapter gives an insight to the shortcomings of each

subject and recent advancements that seek to reduce issues that have been identified within

these fields. By analysing the previous advancements of each area, the chapter will highlight

features that should be considered when designing swarm robotic systems with elements of

adaptation and biomimicry.

Through the review of these fields, this chapter will supply the reader with the fundamental

knowledge required to adequately interpret the systems developed as a part of this thesis.

2.2 Features of Robot Swarms

Robot swarms attempt to provide a solution to complex robotic tasks, not through intricate

and complex designs of individual robots, but through the use of numerous robots, each

with basic features. Swarms of robots are capable of creating robust systems, in part due to

their inherent redundancy. In an ideal robot swarm, should any one robot fail, the effect to

the entire system’s performance should be negligible. The ideal robot swarm will have no

system wide vulnerabilities or dependency on an individual (Winfield & Nembrini (2006)),

allowing the rest of the swarm to continue as normal in the event of a fault, performing the

tasks required of the collective. Furthermore, as a collective, the swarm can perform multiple

tasks and functions in parallel, providing a large benefit to the efficiency of exploration and

logistical tasks over that of a single, complex robot. However, a swarm of robots is not purely

defined by a large group of robots operating at the same time. There are distinctions that

need to be made in terms of decentralisation, individual capability and simplicity in design.
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The next section discusses these stipulations and elaborates on the difference between a true

swarm and a multi-robot system.

2.2.1 Robot Swarms Vs Multi-Robot Systems

Şahin (2005) provides a set of criteria for a system to be defined as a swarm of robots. These

criteria are as follows:

1. The ability to autonomously interact with the environment as individual members.

2. Groups of robots should be at a minimum of 10-20 robots in size.

3. Robots within groups should be relatively homogeneous with groups of robots that

contain more heterogeneity being less swarm-like.

4. Robots making up a swarm should be incapable or inefficient as individuals, only capable

of performing complex actions as a group.

5. Coordination throughout the swarm should be distributed, with members having only

local communications and sensing available to them.

To elaborate on these points, the homogeneity referenced in point 3 can be interpreted as the

requirement for each robot within a swarm to have a similar ability to execute any simple task

presented to the swarm. It is possible for heterogeneity amongst a group of robots to avoid

reducing its swarm-like nature, if individual specialities only improve an individuals ability to

complete a task, but do not give the agent the capability to perform a task which differs from

those available to other swarm members. If small individual differences did in fact reduce the

swarm-like qualities of a system, a realistic swarm of robots would be at risk of becoming less

swarm-like over time, as actuator degradation or other damage experienced over time create

a difference in capability amongst a swarm. As such, the homogeneity in point 3 must refer to

homogeneity as a lack of bespoke ability. For example, disallowing a sub-group of robots in a

swarm the ability to lift an item or having a select few swarm agents with the ability to fly.

This idea of speciality extends to point 4. Robots should only be incapable or inefficient

relative to an individual robot with a complex bespoke designed for a task. Swarm robots

should be able to perform simple tasks individually, without having such a complex design

as to be indispensable. When it comes to more complex tasks, it is acceptable for individual

robots to be incapable of execution. However, with the help of additional members said task

should be performable. For example, an individual robot may not be able to move a large,

heavy object. But, with the assistance of a few additional robots the swarm should be able to

complete the task, rather than the swarm being incapable of performing the task at all.

To address point 5, the distribution of a swarm prevents the reliance on any individual swarm

agent. No robot within the swarm should be fully dependant on another to function. This
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means that the swarm is able to continue operation should any member of the swarm be

damaged or otherwise compromised. With this in mind, general communication between

robots, or the sharing of knowledge through a network would still be considered swarm-like

With the points 3,4 and 5 interpreted as above, the criteria defined here align with the

hormone inspired system implementations presented in later experimental sections. Thus, the

systems presented in this thesis can be considered to be swarm-like.

These give a set of features that can be used to separate swarms of robots from multi-robot

systems. While these constraints mean that individuals amongst a swarm are very simple

in design, the uniformity of each robot means that typically, any member of the swarm

is capable of swapping function with any other member, allowing for greater flexibility in

tasks. A multi-robot system may be well suited to forming a production line from a group of

specialist robots, each capable of completing a single complex task. But such a system would

struggle should something unexpected happen during the construction process. In such an

unexpected instance, task allocation or roll-swapping may be difficult if not impossible due

to the level of specialisation within the multi-robot system. Therefore, robot swarms in their

relative simplicity provide a good platform for adaptation, reallocation and reconfiguration.

Though the tasks they are instructed to enact should be more general and require minimal

specialisation.

The versatility of a swarm of robots comes in part from their potential fault tolerance, with

redundancy amongst the large group of robots allowing the possibility for multiple failures

during the performance of a task. The concept of this swarm fault tolerance has been refuted

by Bjerknes & Winfield (2013) pointing out exceptions to this tolerance. They highlight a

susceptibility to failure as swarm size increases, in cases where swarms are not aware of

faults within their own members. However, there have been several proposed methods for

fault detection within robot swarms including the use of a behavioural feature vector system

(O’Keeffe et al. (2017)), artificial immune systems (Ismail et al. (2015)) or visual indication

(Christensen et al. (2009)). These fault detection systems, when implemented, address the

issue of robot fault ignorance and allow additional upscaling of the swarm size.

2.2.2 Applications For Robot Swarms

Swarm robotics, though studied by many (with experiments including: McLurkin & Yamins

(2005); Nam & Shell (2018); Jones et al. (2006); Liu et al. (2007)), is still in a developmental

phase and most swarm robotic systems are used only in lab environments. It is very rare for a

true swarm robot system to form a solution to a real world problem. At present, applications

for swarms of robots are typically considered theoretically. Şahin (2005) suggests that robot

swarms would be well suited to a multitude of tasks, including those involving: the monitoring

of a large space, dangerous tasks where swarm members can afford to be expendable, tasks
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that require scalability, calling on more or fewer robots to solve a problem, or tasks that require

redundancy i.e. a robust communication network. A review conducted in Brambilla et al.

(2013) furthers these points, suggesting four key categories for swarm behaviour currently

studied in literature:

1. Spatially organising behaviours

2. Navigation.

3. Collective decision making

4. Other collective behaviours that do not fit into any one of the categories mentioned

prior.

These collective behaviour categories, and the behaviours that comprise them, are captured in

the section on testing applications that follows.

Testing Applications

When studying swarm robot systems there are several basic behaviours that can be used to

test the proficiency of a robot swarm and are frequently used as an experimental foundation

of a newly developed system. These behaviours, as identified by Navarro Oiza & Matía Espada

(2013) and Brambilla et al. (2013) are shown in Table 2.1.

Behaviour Description

Aggregation The gathering of a robot swarm, typically a basic requirement for

the implementation of a more complex task.

Dispersion Effective distribution amongst a space. Used to create networks,

explore environments, form a distributed sensor etc...

Pattern Formation Producing a shape or morphology as a swarm. This can be used

for task allocation or self repair.

Chain Formation Robots position themselves to connect two points, these chains of

robots can then be used as navigational guides. This process is not

dissimilar to robot pheromone use, discussed further in Section

2.3.3.
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Self Assembly A method in which individual robots are able to connect to one

another, forming a new morphology. The new configuration of

robots should then allow the robot group to perform a task more

effectively or perhaps perform something it was previously unable

to do. Examples of this can be seen in Christensen et al. (2008)

where a group of simulated robots are able to connect to one

another, enabling them to traverse large gaps or steep inclines

which were previously impassable as individuals.

Clustering and

Assembly

Robots move objects scattered around an environment, for either

the purpose of assembling a structure or simply to gather items

to a predefined location. Item collection such as this has been

used in the testing of multiple swarm behaviour implementations

(Liu et al. (2006); Campo & Dorigo (2007); Krieger et al. (2000))

as the task involves several sub behaviours (searching, collecting,

retrieving, etc.) and collected items can be easily abstracted to

objects of value, energy sources or even people requiring rescue

in disaster situations, allowing the task to be likened to real world

examples.

Collective Moment Within swarm robotics group coordination is important to achieve

a task that requires large amounts of co-operation members of

a swarm must be able to cohesively move without collision or

significant interruption to direction.

Source

Search/Collective

Exploration

Swarms lend themselves well to search tasks due to their capability

to explore in parallel. This behaviour acts well as a test of multiple

levels of behaviour, typically requiring aggregation, dispersion,

collective movement and potentially collective mapping.

Collective

Transport of

Objects

Another more complex behaviour, this task typically performed

from a combination of all other previously mention behaviour

types. The swarm may have to deliver objects that no single

member could carry, or the large swarm size could be used to

increase the rate at which objects are discovered and transported.

Task Allocation With multiple robots and multiple tasks labour must be divided

efficiently. In experimentation, the specifics of the tasks can be

abstracted while testing and focusing on the methods of allocation

instead. This is discussed is greater detail in Section 2.2.3.
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Consensus

Achievement

With no centralised unit making decisions for a swarm, if a swarm-

wide decision needs to be made the individual agents must come

to a consensus with one another. This is usually difficult due to

the dynamics that can be expected while a swarm is operating;

the best choice may be unclear or may change over time. As

such there have been several explorations into networked decision

making or decision making between multiple agents.

Fault Detection Swarms executing a task for significant periods of time will

experience wear and eventually faults. In order to reduce the

effect of swarm agent degradation it can be beneficial for swarms

to identify faulty members. This can be achieved by comparing

the performance of swarm members or by looking for key features

that might indicate faults. Examples of such fault detection can

be seen in O’Keeffe et al. (2017) and Tarapore et al. (2019)

Group Size

Regulation

This is the capability of regulating a group of robots to be a

particular size. Too many agents in one location can reduce swarm

performance due to heavy traffic (Lerman & Galstyan (2002)) and

too few can lead to a task having insufficient resources to complete

when required. Thus, finding the balance between these factors is

important for the effective implementation of swarm systems.

Human Swarm

Interaction

Due to the autonomy that is associated with a swarm of robots,

they can be difficult to influence by an external agent i.e. a

Human. Human-swarm interaction looks to understand how a

human operator might be able to control a swarm or receive live

performance information as the swarm executes its task.

Table 2.1: Descriptions of various swarm robot behaviours commonly used in testing.

Of the behaviours listed in Table 2.1, object clustering will be the most relevant to the

contributions presented in later chapters. This is due to the fact that almost all of the

experiments conducted with the systems proposed in this thesis involve foraging. Group size

regulation also has some relevance to Chapters 4 and 6 which involve the implementation of

a hormone sleep system, removing individual agents from a task for a period of time.

Amongst others, work involving foraging behaviours has included: providing a test bed

for examining errors as robots cover more distance Buchanan et al. (2016), improving the

efficiency of search behaviour Schroeder et al. (2017), exploring methods of task allocation,

creating periods of inactivity when workload is low Charbonneau & Dornhaus (2015) and

increasing the efficiency of motion, reducing congestion by letting swarm members rest Liu
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Figure 2.1: Cocoro swarm performance mid task. This group of robots exhibit true swarm-like
behaviour as they conduct aquatic data collection. The members of the swarm are labelled
into groups, executing different stages of the task: (a) robots exploring the seafloor, (b) robots
creating a communication chain, (c) floating deployment station. Mintchev et al. (2014)

et al. (2007). These have provided an insight into what makes a foraging swarm and will be

used in later sections to aid in the construction of experiments.

Practical Applications

Though presently rare for swarm systems to be implemented to solve real world issues, there

have been a small number of studies that attempt to design and implement a swarm of robots

for practical use. The study in Schmickl et al. (2011) is an example of one such system

that can be used to exhibit true swarm-like behaviour, the experiments conducted in this

study look at aquatic data collection in a swarm of robotics with self-awareness (Shown mid

operation in Figure 2.1). The proposed system uses bioinspired taxis behaviour to dictate

the movement of the swarm and decentralised wireless communication to find quorum when

deciding communally within the swarm if a task was completed. The project later went on to

produce a swarm of hardware robots capable of performing such behaviour (Mintchev et al.

(2014)).

Similarly Duarte et al. (2016) successfully performed a swarm-like environmental monitoring

task using a set of simple robots. By using evolved controllers to perform a variety of

tasks requiring self-organisation (homing, clustering, dispersion and area monitoring), the

swarm was capable of performing tasks effectively, despite the unpredictable conditions

associated with real aquatic surfaces (shown in Figure 2.2). While the number of robots used

in the hardware experiment was small for a swarm (a maximum of ten robots were used)
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Figure 2.2: This photo shows a group of simple aquatic robots performing a homing task on a
real aquatic surface. This provides an example of the effective implementation of a swarm-like
system for a real world task. Duarte et al. (2016)

the autonomous interaction, homogeneity, simplicity of individual design and the lack of a

centralised point of instruction qualified the system as swarm-like by the definitions in Şahin

(2005).

Outside of these examples most swarm systems are usually either simulated behaviours where

experiments take place virtually or hardware experiments that only deal with an abstracted

problem in a heavily controlled environment, testing the fundamentals of robot to robot

interaction. At present, due to a combination of hardware availability and the algorithmic

capabilities available for regulating swarms system behaviour, swarm robotic systems are

almost at a stage ready for effective real world deployment. To make the leap into solving real

world problems well-defined formal notation and verification techniques will need to be put

in place, such as those proposed by Ribeiro et al. (2017). Once implemented these techniques

will provide guarantees on the behaviour of swarms in complex environments, with controller

code being automatically generated from mathematically verified definitions. At such a point,

swarm robot systems will become a more attractive prospect for wide spread use. As such, the

experiments shown in later sections have been developed to empirically prove that systems

presented can provide utility to the field of swarm robotics, with testing taking place primarily

in simulated environments.

2.2.3 Task Allocation

The size and flexibility of robot swarms comes with the issue of having to organise the members

efficiently. The following section explores methods that offer solutions to task allocation. These

methods will look at both task allocation performed co-operatively by an entire swarm, forming

networks that can then assign and trade tasks explicitly, and task allocation performed without
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Figure 2.3: This figure illustrated how desired assignments transition from null or incorrect
allocations. Desired task assignments are given in percentages of dark grey, green (medium
grey) and light grey. The illustration here shows the goals of each algorithm; allocating
unassigned or incorrectly assigned robots to the desired task (or colour) distribution. McLurkin
& Yamins (2005)

robot to robot communication, with the individuals that comprise a swarm making personal

decisions on task acceptance. In this latter case, organisation becomes emergent from these

individual decisions.

Task Assignment Through Swarm Networks

McLurkin & Yamins (2005) compares the performance of different network algorithms capable

of broadcasting tasks to an entire swarm of robots. In the analysis presented the robots

were capable of communicating with their immediate neighbours and the network algorithms

under investigation were used to create desired distributions of robot modes (three states

represented by the different colours shown in Figure 2.3).

The three network algorithms presented are as follows:

1. Extreme-Comm: An algorithm requiring a large amount of robot to robot communication,

as messages are propagated through the swarm neighbour to neighbour seeking to

deterministically converge to the correct task distribution.

2. Card-Dealer: This algorithm is much slower than the Extreme-Comm system but also

requires very little memory and minimises inter-robot communication. The robots choice

in task is educated by a system that selects the next task type to most closely approximate

a target distribution.

3. Tree-Recolour: This algorithm creates a spanning tree of a network. Instructions are

passed down the tree layer by layer as a gradient message, containing the information

required to swap robots at each level from task to task.

This study showed that the Extreme-Comms algorithm was by far the fastest solution to the

task allocation problem, though requiring a relatively large amount of memory to perform.

The most consistent and reliable solution however, was the card-dealer’s algorithm with the
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Figure 2.4: This figure illustrates the convergence properties of each of the network algorithms
for task assignment experiments conducted in McLurkin & Yamins (2005). In the test of each
algorithm, robots started from a random initial assignment and the normalised distance to
the goal allocation was measured as the robot groups performed allocation over time. This
experiment was conducted with 8 trial repeats for each algorithm. McLurkin & Yamins (2005)

added benefit of requiring minimal memory to perform. Both algorithms are examples of

heavily engineered systems, providing exhaustive solutions to task allocation through group

made decisions in a decentralised manner.

This study shows that in order to exhaustively task allocate a swarm quickly, a large amount of

memory is required. In the contributions shown in later experimental chapters, task allocation

is attempted without a large amount of memory, instead the swarm will regulate tasks through

behavioural control; finding the appropriate tasks through emergent means. In addition to this,

in order to keep robot composition simple, many robot swarms have limited communicative

abilities. It is therefore important to explore methods of task allocation that allow robots to

decide on their own task with no knowledge other than the stigmergic information taken from

interacting with their local environment.

Natural Task allocation

Task allocation can also be found in natural examples, it has been shown that some species

of ants are able to adjust the number of individuals working on a task based on encounters,

switching to appropriate tasks without knowledge of swarm size, number of ants involved

in a task or making an informed assessment of which task should be performed Gordon &

Mehdiabadi (1999). The study observing this behavioural allocation inspected a swarm of

harvester ants, paying attention to the interaction between dedicated midden ants (ants sorting

and carrying the colonies refuse) and ants engaged in other tasks. The study found that there

was a positive correlation between the number of midden ants encountered and the likelihood

of an ant swapping to perform midden work. This work has since been used to educate the

construction of robotic systems, making effective task allocation methods for groups of robots

by mimicking harvester ant behaviour (Zhao (2013)). The contributions featured in the later

experimental chapters of this thesis have kept the idea of these natural examples in mind,
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using a naturally inspired system as an approach for robot coordination. The work contributed

in this thesis attempts to step away from explicit coordination and organisation and instead

attempts to allow robots to settle into tasks in an emergent, reactive manner. This copying

of natural systems to produce effective solutions is referred to as ‘biomimicry’, discussed in

further detail in the next section.

2.2.4 Energy Consumption

Energy consumption is an interesting aspect of swarm robotics as, while multiple robots may

be able to complete a task much more quickly than a single robot, they may not complete that

task in an energy efficient manner. Aspects such as collisions and redundancy can mean that

as swarm density increases, robots amongst the swarm use energy more wastefully.

Studies have been conducted to look at mechanisms in which the energy efficiency of robot

redundancy can be reduced. Liu et al. (2007) investigates a mechanism in which labour can

be divided amongst the swarm by invoking a low energy sleep state in robots after they have

completed their task. These periods of sleep post task reduced the number of robots actively

performing a task (in this case foraging for food items) to reduce environmental clutter. The

length of the sleep period was adapted in each robot across the length of the experiments,

with the successful retrieval of food reducing sleep time in successful robots and their peers,

increasing the number of robots in the environment, and failure to retrieve food increasing

the sleep period, reducing the number of robots in the environment (simulation screen shot

shown in Figure 2.5). By adapting sleep times through individual success and social cues the

system was found to be capable of effectively guiding the swarm to energy optimisation. The

results from these experiments were promising, though the swarm sizes used did not exceed

10 meaning that the behaviour tested was only borderline swarm-like. These experiments

formed a foundation for the system proposed in Wilson et al. (2018) in which sleep and

foraging states were arbitrated by virtual hormones to attempt to further optimise energy

efficiency. The hormone system and the benefits of behavioural adaptation it provided are

discussed in detail in Chapters 4 and 5.

Other works such as Palmieri et al. (2017) have investigated the energy consumption of

bio inspired robotic coordination procedures. The paper explored strategies of recruitment

including a Firefly-based team strategy, a particle swarm optimisation technique and an

artificial bee colony algorithm. The comparison performed experiments with each type of

energy saving procedure in which a swarm would have to explore an environment, identify

a number of targets and then perform a task requiring a specific number of robots. The

fundamental features of each of these procedures are as follows:

1. Firefly-based team strategy: This strategy, initially proposed by Yang (2009), mimics

the flashes exhibited naturally by fireflies to attract and coordinate with one another,

45



2.2. Features of Robot Swarms 46

Figure 2.5: Simulation screen shot depicting an octagonal area containing a small swarm of
robots foraging for food items(shown as the small red squares within the environment). In the
most east corner of the environment is a light source, used by the robots to align themselves
and return to the nest site upon finding food items.(Liu et al. (2007))
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the flashes in this case being replaced with the broadcast of a short range signal from

each robot. This signal was used to draw robots together. By combining this attraction

with a dynamic leadership system (i.e. robots that discovered target locations were able

to act as a primary coordinator and attract other swarm members) a method of formal

coordination was produced that allowed the swarm to reach target locations as a group.

2. Particle swarm optimisation: This optimisation technique, proposed initially by Eberhart

& Kennedy (1995), used the social observations of neighbouring robots velocity and

position, along with a set of best previous positions and used this information to decide

on the direction individual robots within the swarm would next move. This method of

coordination is only called upon when a robot discovered a target location and requested

recruits, while not recruited all of the swarm members explored the environment.

3. Artificial bee colony algorithm: As an algorithm proposed by Karaboga & Akay (2009)

that took inspiration from honey bees, the behavioural elements of this algorithm are

split into bee-like roles: scout, onlooker and employed bees. Scouts identify new

food positions (or in the case of Palmieri et al. (2017)’s comparison, target locations)

and update the stored list of available food coordinates. Employed bees travel to

food locations and provide information about the target, while onlooker bees use this

information to decide which position to travel to.

The experiments performed with these three strategies highlighted that when increasing the

swarm size and arena size simultaneously while keeping the number of targets within the area

the same, the energy consumption for every strategy decreased for almost every increment of

scale between 10 robots and 60 (incrementing in steps of 5 robots, graph shown in Figure

2.6). Conversely, when increasing swarm size, arena size and the number of tasks, energy

consumption typically increased as the parameters did (shown in Figure 2.7). This emphasises

the need to understand the task and environment a swarm will be performing in and the

importance of identifying the correct swarm size if a swarm is to operate in an efficient manner.

It also strengthens the need for self-allocating systems such as Liu et al. (2007); Wilson et al.

(2018) that can modulate the number of active robots performing a task. These self-regulating

systems reduce the need for a centralised decision on swarm size and instead means that

swarms perform multiple different tasks or in a series of environments, without needing to

return and redeploy.

Even if the energy efficiency of a task is not of concern, for a swarm to execute tasks

productively and over long periods of time, the recharging protocol of the swarm must

be designed so as to not fall victim to the cluttering associated with high swarm density.

Kernbach & Kernbach (2011) showed a method of coordination that attempted to reduce

clutter within the swarm and prevent bottlenecks at charging stations to allow the system

to move towards energy homeostasis. By broadcasting numerical information from robot to
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Figure 2.6: This figure shows three graphs illustrating how the Total Energy System Consumed
(TESC) can reduce as the number of robots increases in multiple item collection scenarios.
The environment dimensions for each of these graphs are as follows: (a) 40x40, (b) 50x50
and (c) 60x60. (Palmieri et al. (2017))
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Figure 2.7: This figure shows how for almost all systems of various robot quantities, the Total
Energy System Consumed (TESC) will increase as the number of target items increases. The
graphs each represent experiments conducted in environments of the following sizes: (a)
40x40, (b) 50x50 and (c) 60x60. (Palmieri et al. (2017))
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robot, a network was created within the swarm that allowed for a collective calculation of

energy consumption. The value for swarm energy consumption then provided individual high

and low energy robots with the information required behaviour switching. As a result robots

amongst the swarm were able to switch between the swarms collective task and recharging

when appropriate. The primary drawback to the proposed system was the configuration of the

charging stations. If a robot were to run out of power just before reaching a charging station,

said station would be blocked by a robot unable to move. If implemented in a system with a

slightly more intelligent group of robots, this would most likely not be an issue. If the system

was able to identify a blocked docking station, fully charged robots could be used to clear the

path to the docking stations before beginning their primary tasks.
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Subsection Title Key Points
Robot Swarms
Vs Multi-Robot

Systems

Five criteria points for robotic swarm definition provided by Şahin
(2005):

1. The ability to autonomously interact with the environment as
individual members.

2. Groups of robots should be at a minimum of 10-20 robots in size.

3. Robots within groups should be relatively homogeneous with
groups of robots that contain more heterogeneity being less swarm-
like.

4. Robots making up a swarm should be incapable of inefficient as
individuals, only capable of performing complex actions as a group

5. Coordination throughout the swarm should be distributed, with
members having only local communications and sensing available
to them.

The section also emphasises the versatility achieved by swarms through
members performing tasks in parallel and redundancy amongst each task
as the primary benefits of swarm-like implementations over a multi-robot
systems.

Applications
For Robot
Swarms

Testing Applications: While there are many behaviours that can be used
as a test bed for swarm robotic systems, the focus of the experiments
presented in this thesis will be on foraging. Foraging behaviours provide
a complex, yet easily explainable proving ground to test novel swarm
systems.

Practical Applications: Though there are not many real world
implementations of true swarm robotic systems, experiments have
shown the benefits large groups of decentralised robots offer, examples
including: environmental exploration, data collection and logistical
tasks.

Task Allocation Task allocation plays an important role amongst swarms, whether due
to social assignment or individual decisions. By observing the methods
investigated within the section, it is clear that allocation can be achieved
through both: heavily engineered methods and high level, naturally
inspired behaviour changes. The variety of coordination methods
explored within the section showed that the split of tasks amongst a
swarm was typically the root of its effectiveness, no matter the method.

Energy
Consumption

This subsection reviews several papers investigating the rate at which
swarms use power to maximise the efficiency of energy depending on
the type of task presented. Identifying a group of the correct size for a
task was shown as a common theme amongst work looking for energy
optimisation. Systems capable of automating this process mid task, were
highlighted as a valuable asset to robot swarm performance.

Table 2.2: Summary Table for Section 2.2 Features of Robot Swarms
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2.3 Biomimicry In Robotics

While biomimicry has been used for centuries, the term itself was made popular in Benyus

(1997) in which biomimicry is defined as ’Innovation inspired by nature’. The book discusses

various projects in which natural discoveries have lead to a design or made a design possible.

Examples the book provides include the manufacture of crystal wind shields using SAM (self

assembled monolayers), taking inspiration from organic templating seen in sea shells, the

discovery of life saving drugs using a method referred to as ’biorational drug prospecting’

which pertains to following various primates through jungles and observing their dietary

habits to identify plants with potential medical value. More relevantly to robotics, the book

discusses naturally inspired computation and the various issues at present in bridging the

gap between how human brains function and how this can be achieved by a silicone based

computer. The literature in this section attempts to demonstrate the designs and behaviours

that have been produced through biomimicry and how beneficial they can be to the world

of robots. These examples have been showcased in an attempt to demonstrate the reasoning

behind pursuing ideas inspired by natural systems, as has been done to produce the systems

contributed within this thesis.

2.3.1 Bio-Inspired Design

The developments discussed in Benyus (1997) are not the limit of Bio-inspired design for

robotics. However, it is very common for nature to influence robotic design. This can clearly be

seen in the development of humanoid-like robots, namely the ATLAS robot created by Boston

Dynamics (illustrated running in Figure 2.8). This full scale humanoid robot was designed to

operate dependably in varying terrains and it is hoped that it will be able to perform complex

human-like tasks such as tool manipulation Kuindersma et al. (2016). Boston Dynamics

have also created an autonomous quadruped robot named BigDog, illustrated in Figure 2.9,

designed to travel in extreme environmental conditions, carrying loads of up to 154Kg Raibert

et al. (2008). BigDog achieves animal-like mobility and is not just inspired by pack animals

but manages to replace them as a more reliable, controllable and arguably ethical system.

Bio-Inspired methods of movement are not restricted to horizontal surfaces, Clark et al. (2007)

analysed the leg coordination in cockroaches and Geckos and used the knowledge gained

from these creatures in the testing of a two legged wall-scaling robot (Figure 2.10). The

wall-scaling robot produced was capable of reproducing the examined gaits, creating a fast

moving climber and also creating a testbed for analysing animal movements.

In addition to locomotion, bio-inspired actuators have been produced that allow for soft

interaction. These manipulators have taken inspiration from mammalian tongues, elephant

trunks and octopus arms to create tools capable of performing delicate tasks in congested

environments (Trivedi et al. (2008)). Soft actuators also have strong applications within the
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Figure 2.8: Snapshots of ATLAS, a bipedal humanoid robot, in simulation, running at 2m/s.
Kuindersma et al. (2016)

Figure 2.9: Illustration of BigDog, a quadruped robot designed to travel in extreme
environmental conditions. Raibert et al. (2008)
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Figure 2.10: Wall Climbing robot hanging on a climbing track. This robot was capable of
reproducing the gaits of cockroaches and gekos in order to examine vertical surface locomotion.
Clark et al. (2007)
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Figure 2.11: Soft actuators formed in a hand structure for prosthetic use, creating a tool that
can be used by children while minimising the risk of injury to themselves or others that comes
with typical hard prosthetic hands. Fras & Althoefer (2018)

development of prosthetic hands (example shown in Figure 2.11), providing a solution to

children who are likely to injure themselves on traditional hard prosthetic limbs, while also

remaining replaceable and easily scalable as the child grows (Fras & Althoefer (2018)).

2.3.2 Genetic Algorithms

Currently, one of the most common, naturally inspired, methods for computational learning

is the genetic algorithm (GA). A process which copies natural selection by breeding features

of a system based on a decided fitness. By allowing only the fittest to survive generation to

generation, systems result in an increased performance in what the designer has selected as

the ’fitness’. Davis (1991) provides an extensive review of various GA’s discussing methodology,

their accuracy and use to solve real world issues.

Off-line

The most common use of GA optimisation is off-line. The optimisation takes place in some

simulated environment pre-task and parameters discovered from this optimisation can then

be used when the task is enacted. Multitudes of this type of GA are presented in Davis (1991)

which are still used presently to effectively solve problems. However, within the field of

robotics, systems operating in dynamic environments will require a level of adaptability that

an off-line GA cannot offer. For repetitive tasks this is not an issue but as the tasks robots are

expected to perform become more complex, an off-line GA may only be capable of producing

compromise parameters for the system. Additionally, simulation of the real world task may

not be accurate enough, a problem identified as the ‘reality gap’ (Jakobi et al. (1995)). This is

an issue that can be addressed by adding the appropriate amount of noise to a simulation. The

type of noise required and to which parameter the noise should apply may not always be clear

when modelling an environment. Thus, the parameters generated by an offline simulation

when applied to a real system may not be truly optimal. This can be seen in Hecker (2015)
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where parameters evolved with simulated error and evolved with no error are ported into a

real system producing significantly disparate results.

On-line

Bredeche et al. (2009) addresses the lack of mid-task adaptation typically present in GA’s by

combining a genetic algorithm system with a swarm performing a live task. The paper studied

the implementation of a virtual genome consisting of neural network weightings that explicitly

controlled the robot. These genomes were then evolved using a (1+1)-Online evolutionary

algorithm in which a singleton population was able to dynamically trail new genomes to

attempt to defeat a current champion neural network weighting. The generational trials were

made dynamic by changing the size of the parameters sets based on performance change.

If a small change to parameters yielded improvement, the next generation would continue

to make small changes. However, if the small change to parameter value produced minimal

change, the next change would be much larger so as to avoid settling at a local optimum.

Similar work was conducted in Bredeche et al. (2012) though in this study a swarm of robots

were introduced, capable of sharing genome information between one another through the use

of the MEDEA algorithm. With this system implemented it was found that large populations

were capable of emerging to a consensus, displaying unique behavioural strategies formed in

a computationally lightweight manner.

In addition to on-line behavioural adaptation there have been proposals for the development

of on-line morphological adaptation. Projects such as those detailed in the works of Eiben

et al. (2013) have suggested providing swarms of robots with a hub or ’birthing clinic’ in

which they are capable of reproduction by either recycling the parts of parent robots or

constructing new robots from scratch. These new robots would take on a combination of

morphological traits from parent robots that had already been evaluated to be successful in

their task performance and then be set free to perform the same task. Over time this process

should evolve a progressively more effective system. However, the proposing paper highlights

that for the evolution to be brought on-line, firstly the generated structures will need to be

inspected for viability to succeed prior to their birth and a robot nursery will be required for

‘infant’ robots to learn the functions of their newly located sensors and actuators. This process

is illustrated in Figure 2.12.

Issues presented by GA adaptation and optimisation

While GA’s can be a powerful method for improving a system, they do suffer from some

drawbacks. If the correct rules are not put in place, the wrong measure of fitness is requested

or errors exist within a simulation, genetic algorithms are likely to exploit this system. Lehman

et al. (2018) lists several examples of genetic algorithms behaving unexpectedly. These
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Figure 2.12: Illustration of on-line adaptation and learning concept. The illustration features
a birthing clinic, robots school, playground (in which developed robots will perform tasks)
and recycling plant which would allow for a full robot life-cycle, ending in the reuse of old
robot parts and rebirth into a new, slightly more developed, robot. Eiben et al. (2013)
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Figure 2.13: Example of a GA evolved robot taking advantage of evolutionary criteria and
using gravitational potential energy to produce speed by falling. Lehman et al. (2018)

examples include the attempted evolution of interesting locomotion methods. However, the

fitness of the evolving creatures was defined as the ‘average ground velocity during it’s lifetime

of ten simulated seconds.’ This caused the simulated creatures to priorities tall structures that

would simply fall over to reach high velocities, taking advantage of potential energy rather

than creating legs or other propulsion methods, shown in Figure 2.13 (Sims (1994)).

The ability for GAs to exploit the underlying fitness metric can sometimes make it difficult

to understand how or why the generated solution performs the way it does. This can be

problematic when it comes to extending the system, requiring long periods of time relative to

that of an engineered system when it comes to studying and understanding the evolution and

the systems viability. In addition to this, behaviours evolved in simulation can be untrustworthy.

If the simulation design suffers from the flaws previously mentioned, the evolved behaviour

could be unexpected or dangerous when reproduced outside of the simulation and expecting

reality to mirror the flawed virtual environment.

2.3.3 Hormone-Like Systems

In nature, hormones exist as a live adaptation technique in the form of chemical signalling

providing behavioural changes. As stimuli reach cells or organs, hormone chemicals are

produced and diffused throughout the anatomy of an individual. The build up and gradual

decay of these hormones as they are metabolised gives an individual information on how

frequently various stimuli are received. The balance and concentration of various hormones

can then affect the behaviour of the individual to react beneficially to the stimuli they are

receiving.

The human ’fight or flight’ response described initially by Cannon (1929) provides an example

of a hormone response. In the presence of perceived danger a neural signal is sent to the
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adrenal glands which in turn emit the hormone epinephrine, as the epinephrine diffuses

throughout the body organs react to it in different manners, the heart pumps harder, the liver

produces more glucose and blood vessels dilate to allow more blood to flow to muscles. This

prepares the body to run or fight by providing ample energy to the required muscles and thus

effectively reacting to the presented stimuli.

Pheromones

Pheromones act very much like hormones though they are secreted and left to exist outside

of an individuals body, they are dispersed according to stimuli and decay over time just as

hormones would be dispersed internally to a system. Pheromones are then sensed by other

individuals, conveying messages and information. By laying down pheromone chemical signals

as they move, several species of insects are able to communicate through stigmergy to identify

the best way to navigate Garnier et al. (2007). The identification of the shortest route can be

implicitly discovered through a the gradual build up of deposited pheromones. This is due to

the fact that it takes less time to travel shorter routes to and from a food source and as a direct

result of this, insects travel along the shorter route more frequently. With greater frequency,

more pheromone is deposited and thus the optimal path is identified through the pheromone

concentration, higher pheromone concentration indicating a shorter route. The deposited

pheromones also decay over time meaning that the less travelled paths eventually have no

trace of pheromone at all. This process is shown in Figure 2.14.

Figure 2.14: This figure displays the operation of pheromone based guidance: (a) An ant
follows a BHD path by chance, (b) Both paths are followed with the same probability and (c)
A larger number of ants follow the shorter path. Ioannidis et al. (2011)

The largest issue with the currently presented pheromone techniques is viability for hardware

experimentation. Simulated systems can create pheromone path finding very easily as the

pheromone can be abstracted virtually. Unfortunately, creating a synthetic pheromone for a

swarm to track in a real world situation can be problematic. In most tasks placing physical
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medium in an environment is deemed unacceptable, studies involving the guidance through the

use of chemical sensors Deveza et al. (1994); Fujisawa et al. (2008) highlight the importance

of an appropriate medium to be sensed and the difficulties of laying chemical trails in real

environments with chemicals that could potentially interfere with robot sensors, leading a

robot in the wrong direction.

An interesting attempt at trail following with a physical medium is shown in Schmickl &

Crailsheim (2006) which appropriates a foraging example to complete a load moving task. In

this study the object source is a mound of dirt that must be transported to a dump site (to

extend the parallels to foraging this can be thought of as the nest). As the robots travelled and

passed the dirt between one another small amounts of dirt were deposited on the ground. This

dirt contrasted with the clean environment and was identifiable by the robots in the swarm.

This allowed the dirt to act as a stigmergic marker, simultaneously acting as a pheromone

abstraction and the object to be foraged. This method allowed robots to successfully identify

short routes, sometimes multiple if two equidistant paths where presented, and provided an

acceptable guiding trail given the nature of the task.

This dirt moving task is an exception to most modern studies, with the majority of pheromone

based research moving towards potential virtual pheromones that remove the need for

physical medium. One such example is presented in Ducatelle et al. (2011) on cooperative

robot swarms. This method utilised a homogeneous swarm built from aerial eye-bots and

ground based foot-bots. The pheromones in this example were emulated by the eye-bots as

they formed an array above the environment in which the foot-bots would traverse. These

eye-bots monitored the movement of the foot-bots, repositioning themselves to monitor the

maximum number of foot-bots. Repositioning of the eye-bots was controlled through a simple

algorithm; If there were more foot-bots observed in one direction than in others the eye-bot

shifted towards that direction.

The instructions given to the foot-bots indicated which direction they should move next. The

instructions were initially given at random, though as the eye-bots observed foot-bots avoiding

obstacles, the system learned about the positioning of objects. As a result, a larger weighting

was given to the probability of instructions being chosen that would lead foot-bots in directions

away from known obstacles. In addition to these rules, foot-bots would ignore any instruction

given to them that would cause them to return to a direction they had just been instructed to

move away from in order to prioritise dispersion.

The combination of these behaviours created a pheromone-like response in which the foot-bots,

without directly communicating with one another, found the shortest route to an objective and

created a trail (in this case a trail of eye-bots) along the optimal path to their goal to inform

other members of the swarm which direction would be the best to take.

Another example of robot pheromone implementation looks at a flying swarm capable of

virtually depositing pheromone signals via short range communication (Hauert et al. (2008)).
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Figure 2.15: Image of Virtual pheromone trailing using foot-bots as foragers and eye-bots
as virtual pheromone trackers. Eye-bots can be seen forming a path over the foot-bots,
demonstrating their ability to create a guiding trail. (Ducatelle et al. (2011))
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The proposed work took inspiration from army ant foraging patterns. Exploring aerial vehicles

began their task by using ant-like behaviour to navigate their environment. To do this aerial

vehicles already deployed acted as nodes, creating communication links and transmitting a

pheromone value. These pheromone values were used by ant-state robots to select their next

target nodes to efficiently navigate the network.

Should an exploring robot break the communication link with its reference node, it was

assumed that an area unoccupied by any robots within the swarm had been discovered.

The exploring robot at this point entered the node-state for other robots to communicate

with. Once an aerial vehicle swapped from an ant-state to a node-state it received an initial

pheromone value. Interactions with adjacent node robots and passing robots exhibiting the

ant behaviour increased the stored pheromone value. This resulted in well travelled routes

experiencing large pheromone values, indicating an effective path, and infrequently travelled

routes experiencing an deficiency in pheromone values. In addition to this, pheromone values

would decrease over time, emulating evaporation seen in natural pheromone examples. Once

a pheromone value had decreased to 0, the node robot storing the value would swap back to

the ant behaviour, taking advantage of the fact that its current location was not in use by the

rest of the swarm.

Through this searching method the system eventually identifies a target location, the target

being a user in the case of the experiments featured in the work, and collapses the remaining

redundant branches to the established network.

This system was found to efficiently produce communication networks in a robust and

scalable manner. Whats more, with no requirement for physical medium, as typically used

for pheromone mimicking behaviours, the produced system was very viable for real world

implementation.

The lack of physical medium in Hauert et al. (2008) made the system very similar to that of a

virtual hormone system. Systems that likewise take advantage of chemical signalling seen in

nature but do not place these markers stigmergically. The features of virtual hormones will be

discussed in greater detail in the following section.

Virtual Hormones

Fundamentally virtual hormones are constructed from a decay and a stimulus. The decay

reduces the level of the hormone value over time and the stimulus exists as a condition,

which when met, increases the level of the hormone value. Stimuli can take the form of an

interaction with the environment or another robot. Examples of these interactions might

include discovering a point of interest, colliding with another robot or the presence of another

robots hormone value. Some systems might also use inhibitors, triggered by interactions in the

same way as stimuli, but instead decreasing the hormone level. Hormone values constructed
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in this manner are in accordance with the properties highlighted as intrinsic to hormone

messages in Shen et al. (2000) i.e. hormone messages must:

1. Float in a distributed system with no particular destination.

2. Have a life time i.e. have a decaying element.

3. Be capable of triggering different actions at different receiving sites.

Early work related to virtual hormones for robotic control was conducted by Neal & Timmis

(2003) with the development of an artificial endocrine system. The presented work established

a combination of a neural network and artificial endocrine system for the control of a single

robot in a office environment. The neural network was designed to control robot motors

and avoid obstacles within the chosen environment, however the selected weightings for the

neural network were found to be inadequate for effective obstacle avoidance. Specifically, as

the environment varied, robots began to react poorly to larger amounts of clutter, unable to

navigate the small spaces successfully with the standard avoidance distance established prior

to the experiment. The endocrine system was introduced to regulate the robots avoidance

distances, implemented as a ‘gland’ which would influence synapses within the neural network.

The hormone levels produced by the virtual gland was designed to create a ‘more expeditious

retreat’ as obstacles were encountered closer to the robot. This mechanism was found

to produce behaviour in the robot which may be beneficial to exploration in dynamic

environments. This work was furthered in Vargas et al. (2005) making the system more

biologically plausible by introducing a hormone level repository and hormone production

controller. These were respectively responsible for monitoring and secreting hormones when

appropriate to achieve homeostasis (in this context regarding a stable equilibrium within

the robot controller allowing for orderly control of a robot). This work demonstrated the

process by which external environmental factors can be used to regulate a robotic system,

demonstrating the foundation upon which most of the virtual hormone systems in this thesis

will be built upon.

Explicit Control Virtual hormones and hormone-inspired systems have also previously been

used more directly, controlling the motor functions of a single robot. In Stradner et al. (2009)

the authors presented a method that modelled a robot as two cells controlling the left and

right motor of a puck robot, each motor was driven by their own hormones Hr and Hl with

wheel speed changing proportionately with the magnitude of hormone value. The hormones

for each cell were stimulated by a proximity sensor and were capable of diffusing between

cells, acting as an inhibitor to the apposing hormone when present in the neighbouring cell.

With the hormone values corresponding to the wheel speeds on the respective sides of the

robot, this produced an effective hormone controlled method for obstacle avoidance, displayed
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Figure 2.16: Obstacle avoidance trajectories from virtual hormone controlled robots with
varied hormone parameters for hormone decay, velocity and sensor range (λ, v & r
respectively) Stradner et al. (2009)

in Figure 2.16. The study found that this system could be successfully implemented in

hardware and could be well studied with an exhaustive parameter sweep at ‘reasonable

computational cost’. Through the implementation of this first case example, evidence was

given for the viability of a virtual hormone controlled robot system.

Similarly, Kernbach et al. (2008) produced a system which allowed hormones to regulate

the movement of individual robots in a similar manner to Stradner et al. (2009). This work

added additional function to the virtual hormone, using the same hormone to regulate an

additional behaviour state. In this new behaviour state the robots conjoined to produce a

larger, specialised morphology (depicted in Figure 2.17). The hormone in this state was

re-purposed to create a hormone gradient, regulating the size of the newly formed conjoined

organism. The proposed hormone system in this case, was to have its parameters stored within

the virtual genome of the robot system and allowed to evolve as a control method for the

system.
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Figure 2.17: The figure shows a swarm of robots combining to create a new quadrupedal
robot with a more specialised morphology. The combined robots are now capable of traversing
more complex terrains than individual wheeled robots. Kernbach et al. (2008)
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Figure 2.18: Group of robots (blue circles) using morphogen gradients to create a ring
formation from an initial random deployment. The paths of these robots are highlighted in
green as they move from their initial random positions to form a ring shape relative to one
another. Jin et al. (2009)

Behavioural Control While explicit control over a robot is attainable with a virtual hormone

system, it has been shown that virtual hormones are very effective at arbitrating behaviour

states. Hormone-inspired controllers have been successfully implemented to adapt swarm

morphology, giving context to environments via stimuli and then constructing appropriate

formations Jin et al. (2009); Kuyucu et al. (2013). These studies show that hormone-inspired

systems can be engineered to provide an effective, computationally inexpensive method for

robot control.

Jin et al. (2009) shows a hormone inspired method for shaping formations of robot groups

using a hormone diffusion model to create a morphogen gradient. The presented system

treats each robot as a single cell, each only storing local information and interacting through

virtual proteins and the morphogen gradient. The virtual proteins emitted from each robot act

as a away to avoid colliding with one another, with robots moving away from proteins that

are detected to be coming from other robots. The morphogen gradient is embedded with a

predefined shape to regulate the dynamics of the system and allow them to form the desired

structure. The resultant system was capable of consistently self organising into predefined

shapes and was robust to system and environmental changes. Figure 2.18 shows a group of

robots forming a ring (as predefined) using hormone gradients to guide them.

Kuyucu et al. (2013) presents a hormone method regulating a swarm of robots between two

behaviour states. In the first state a swarm of homogeneous robots explore an environment
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individually, quickly surveying the area they are restricted to and placing a virtual pheromone

as they explore. Once layed the pheromone marks areas that have already been explored. In

the second state, the robots form a ‘Modular Snakebot’ a robot formed from a chain of the

individual swarm members, allowing for better stability, better traction and ability to operate

in difficult terrain. The hormone in this method represents a value of "impatience" which is

stimulated when the robot detects a high concentration of pheromone. Once an individual’s

hormone level reaches a predefined hormone threshold the robot seeks to dock with other

robots that have already docked or are searching to dock. Once docked and formed, the

‘Modular Snakebot’ allows the swarm to escape the confinement of their current environment,

passing over walls previously impassable by robot individuals, shown in Figure 2.19. In the

new unexplored environment the snakebot detects the low value of pheromone and then

disassembles, returning to the swarm searching state. This method provided a good solution

to exploring an unknown environment, though it did heavily depend on a placed pheromone

to convey information about the environment. As discussed earlier in this chapter, a fully

applicable solution to placed pheromones for robotics has not yet been proposed outside of

a heavily controlled environment. Which means, while this hormone regulated behaviour

switching performed well in simulation, implementing the system to explore genuine unknown

environments is not yet possible.

Other hormone-like behavioural control systems include the methods proposed by Neal &

Timmis (2005); Vargas et al. (2005), developing an artificial endocrine system to regulate an

individual robot. The studies present a method for modelling hormone secretion glads as they

exist within a mammalian body. This method, used a combination of stimuli to induce the

increase of hormone values, which in turn decayed over time. An implementation that aligns

with the previously mentioned defining traits of hormone messages. Vargas et al. (2005)

introduced the aforementioned artificial endocrine system to a simple robot, carefully selecting

the stimuli to the hormone values to manage the internal states of the robot. In the case, the

endocrine system managed the desire to recharge the batteries of the navigating robot (both

in simulation and in hardware experimentation). The study identified an adaptive method for

autonomous navigation in which a robot had a basic understanding of its energy limitations.

Subsequently the robot was able to decide when it was appropriate to explore an environment

and when it was time to return to a charging station.

This work has since been built upon and used to regulate the behaviour of autonomous sailing

robots capable of recharging via solar panel (Sauzé et al. (2010)). Rather than conducting

experiments in lab-like conditions with predefined charging point such as the experiments

in Vargas et al. (2005), this endocrine system regulated the time of day that sailing robots

would consume energy, using battery level and available sunlight as stimulating factors. The

work found that it was possible to use an artificial endocrine system to improve the power

usage from solar sources based on the availability of daylight. With the hormone system
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Figure 2.19: Screen shot of an experiment in which a swarm of robots form a modular
snakebot to navigate over small ledges to areas previously inaccessible to individual robots.
Kuyucu et al. (2013)
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implemented the sailing robots performing the majority of energy-expensive tasks during an

abundance of light and reduced the likelihood of ever reaching a battery level of 0.

There are also examples of hormone-like behavioural control systems forming hybrid systems

with existing methodologies. Timmis et al. (2010) demonstrates a behavioural controller

formed from a combination of a neural network and an endocrine system used to manage

the behavioural processes of a foraging swarm. The neural-hormone system was specifically

used to modify the movement-based actions of individual robots. Examples of movements

examined in the study include: obstacle avoidance, separation (the preference for robots to

move away from other robots), cohesion (the preference for robots to move towards other

robots), seeking items for foraging, seeking charging stations and seeking the bin (or nest

site) to deposit found items. The movement of the robots was decided by summing the output

values of the neural endocrine system. Subsequently, the behaviours with the largest current

value according to the neural endocrine system would have the greatest effect on the desired

movement. The results of the study found that simple neural-endocrine systems could be

easily used for the development of foraging swarm systems. Though, as frequently found in

the development of swarm systems, the performance within the proposed system began to

suffer as more robots were introduced to the environment.
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Subsection Title Key Points
Bio-Inspired

Design
The design of robotics systems can be heavily guided by natural
examples. This is clear in the common production of human-
like, dog-like or other mammalian based foundations for robotic
anatomy.

Bio-Inspired design extends past pure structure and can also
influence methods of locomotion, as seen in geko or insect like
robots capable of travel upon vertical surfaces.

Invertebrates have also provided guided the design of new forms
of actuators. Leading to the development of soft robotic grippers
with applications in surgery or as components in prosthetic limbs.

Genetic algorithms Genetic algorithms can be used as a method for innovating
or optimising a system. This is typically achieved off-line in
simulation prior to a task, though it is also possible to create
a system capable of synthetically ‘breeding’ and exchanging
genomes based on fitness.

While GA’s can provide a powerful option for improving a system,
the unpredictability and heavy handed changes associated with
evolved designs and behaviours could prove to be a cause of
concern, leading to poor performance in tasks or the presentation
of abnormal behaviours, especially if a system is allowed to adapt
during a task with no human intervention.

Hormone-Like
Systems

The defining traits of hormone messages were established as:

1. Hormone messages must float in a distributed system with
no particular destination.

2. Hormone messages must have a finite life time.

3. Hormone messages must be capable of triggering different
actions at different receiving sites.

Differences between general virtual hormones and pheromones
were distinguished. The most noteworthy of the differences being
that pheromones exist outside of an individuals body, secreted or
left in a location, to be sensed by another individual. Moreover,
works in which pheromones had been successfully used where
highlighted, though it was pointed out that most pheromone
systems are fundamentally flawed by the fact that placing physical
medium amongst a working environment is generally required.

As well as pheromone systems, examples of virtual hormone
systems for the direct control of motors and for behavioural
coordination where given. These emphasised the advantage
virtual hormones provide in the adaptability they give a system.

Table 2.3: Summary Table for Section 2.3 Biomimicry in Robotics.
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2.4 Robotic Adaptation

2.4.1 Behavioural Adaptation

Robotic behavioural adaptation can be constituted as a robotic system that modifies its

behaviour based on environmental interaction to enhance its performance in a task. This

description gives a broad scope for what might be classified as behavioural adaptation, most

of the systems described in Section 2.2.3 on task allocation and Section 2.2.4 on energy

consumption can be fitted within this category.

Due to the breadth of examples that exist within the field of behavioural adaptation, the

existing literature reviewed within this chapter will be limited to Sections 2.2.3 and 2.2.4 or

highlighted as they are discussed in future sections.

The experimental work presented in later chapters will focus on adaptation within task

allocation and energy consumption as they are representative of the broader scope of

behavioural adaptation. Adapting energy consumption (which can be achieved through

task allocation) creates a complex challenge which is suitable for optimisation and has a

grounding in real world applications. Observing energy consumption also give the opportunity

to investigate system trade offs, some times the most energy efficient solution is not always

the most effective for a task, especially if it is critical for tasks to be completed urgently.

Task allocation is probably the most important aspect of swarm robotic behaviour, the

benefits of good allocation being shown in Section 2.2.3 to have considerable affect on

task performance. Having robots performing the correct actions at the correct time defines the

fundamental principle of an effective swarm, whether the allocation was achieved explicitly or

through emergence. Due to this and the large variety of methods and behavioural strategies

that task allocation encompasses, investigating task allocation as a primary behavioural

adaptation will provide an expansive and complex testbed for proposed contributions.

2.4.2 Morphological Adaptation

In this section, morphological adaptation refers to changes to shape or design a system is

able to make to itself without an evolutionary or generational element assisting the process

whether online or offline (evolutionary and genetic algorithms are discussed in more detail in

Section 2.3.2).

Morphological adaptation exists as a much smaller field than behavioural arbitration due to

the hardware constraints in having robots change their shape. Some swarm robotic systems

attempt to create adapting morphologies through the change in behaviour of individual robots.

By creating a desire to dock with other robots in the swarm, multiple robots are able to

construct larger shapes capable of different types of locomotion i.e. crawling, walking or
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rolling. Some examples of these types of morphological adaptation are discussed in some

detail within Section 2.3.3, the works of Kuyucu et al. (2013) providing a good simulated

example of the morphology switching. These multi-robot structures have also been produced

in physical experiments. In the REPLICATOR and SYMBRION projects (Kernbach et al. (2008))

prototype modular robots with linking capabilities were produced which were able to form

a four legged multi-robot organism. This organism was designed as a potential solution to

passing a barrier separating the swarm in the test environment.

There are also examples of robots that are capable of adapting their morphology without

relying upon other robots to form structures. Kim et al. (2013) developed a transforming

wheel capable of traversing obstacles of heights greater than the wheel radius (Figure 2.20).

The wheels in question where able to unfold to create three legs, these legs allowed the robot

to climb up to 2.6 times the radius of the wheels. These legs were passively deployed whenever

a vertical surface was encountered, adapting to the encountered problem. This adaptation

allowed the robots to access difficult terrains that would typically only be accessible by robots

with actuated legs, while maintaining the high performance and mobility while operating on a

flat surface, gained by having wheels. However, this additional option of locomotion may act

as a trade off between versatility and robustness, with the additional features of the wheel

creating new points of potential failure.

Morphological adaptations have also been used to increase environmental versatility in aerial

robots. Zhao et al. (2017) designed an adaptive quad-rotor drone capable of expanding and

contracting airframe size to trade between flight stability and agility, capable of navigating

spacial challenges created by complex environments (drone shown in Figure 2.21). The

scissor-like folding structure designed to allow for this adaptive airframe was found to provide

‘excellent obstacle surmounting performance, minimal aerodynamic influences, and great

flight adaptability.’

In some cases robots may be designed to dramatically switch between locomotion types. For

example Daler et al. (2013) produced a prototype ‘Deployable Air Land Exploration Robot

(DALER)’. The robot was capable of fixed wing flight but was also capable of using its wings

as ‘whegs’ to move over rough terrains (illustrated walking in Figure 2.22). Repurposing the

wings for ground based transport reduced the weight of the platform and enabled effective

movement on carpet, snow, grass, road and parquet while maintaining the ability to fly at

roughly 14m/s. While this platform was capable of successful movement on land and through

the air, the use of wings for legs does produce the concern that delicate control surfaces or the

aerodynamic characteristics of the wing may be damaged over time.

From the examples given in this section it is clear that the added versatility platforms gained

from morphological adaptation can be a large positive. However, due to physical constraints,

it is clear that effective adaption of morphology requires the design of bespoke platforms.

The design of these platforms must take into account the multiple features that may be
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Figure 2.20: Transformable wheel capable of swapping between rolling and leg-like movement
based on the context of the terrain it is being used to cross. Kim et al. (2013).

Figure 2.21: Adaptive quad-rotor drone capable of expanding and shrinking in size when
required . This allows it to take advantage of the additional stability associated with wider
placement of rotors, while still having the capability to fit through tight spaces when required.
Zhao et al. (2017)
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Figure 2.22: Photographs showing frames of each step in the DALER’s walking method as the
robot re-purposes its wings to locomote on the ground. Daler et al. (2013).

required for adaptation and as a result, the platforms are typically quite complex or form a

compromise system due to their non-specialist nature. Additionally, without the ability to

perform genuine self-reconstruction, the platform will never be able to truly and universally

adapt its morphology, though this is where genome-like adaptation such as that proposed

in Eiben et al. (2013) will come into play (discussed previously in Section 2.3.2). For these

reasons when versatility is required it may be worth considering the use of simple robots,

incapable of morphological adaptation, but each with different capabilities and as a group

forming a diverse multi-robot system.
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Subsection Title Key Points

Behavioural Adaptation

This type of adaptation covers most complex robotic systems.
If robots in a system are able to react to environmental
features and change their behaviour as a result of this, it
could be argued that said robot is capable of behavioural
adaptation. However, this section highlights that the
research contributions within this thesis will be focused upon
behavioural adaptation for task allocation and to affect energy
consumption.

Morphological
Adaptation

Morphological adaptation is seen less within robotics and
is mainly constrained to modular systems, capable of
reconstructing their morphology to react to a problem, or
robots designed with hybrid locomotive capabilities, with
examples of wheel-leg and wheel-wing combinations given
within the section.

Table 2.4: Summary Table for Section 2.4

2.5 Summary

The content of this literature review will guide the experimental work undertaken in later

chapters. Each of the following chapters will involve the content discussed in Subsection 2.3.3

on Virtual Hormones and it will also be important to take into account the properties and

abilities intrinsic to robot swarms as reviewed in Section 2.2. While the sections cover the

fundamentals, individual chapters will require additional aspects of the reviewed literature,

these cases will be highlighted as follows:

Chapter 3 - Virtual Hormones for Explicit Control These experiments are based on the use

of virtual hormones to directly control motor functions. The design of the virtual

hormone controller attempted to create a fast dispersion system for mapping an

environment, adapting based on swarm density. This work represents the first step

towards adapting biological hormone examples to engineer a solution and as a result,

only requires a fundamental understanding of swarm and virtual hormone systems.

Chapter 4 - Virtual Hormones for Energy Efficient Task Allocation The second series of

experiments presented in this thesis, explore behavioural adaptation in greater depth,

along with the viability of Hormone-like signals as state arbitrators. For this section it

is important to have a strong understanding of the problems involved in creating an

energy efficient swarm, principally work on the energy consumption of scaling swarms

and works that provide dynamic methods for changing swarm sizes. Referenced in

Subsection 2.2.4.

Chapter 5 - Virtual Hormones for Task Allocation by Self Identifying Traits The work in

this chapter extends the behavioural control of virtual hormone system, though this
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time looking at the regulation of a heterogeneous swarm. The different features and

traits of the robots in this swarm are limited, but Subsection 2.2.3 does provide a good

insight to systems containing members of different capabilities and previous methods of

arbitrating allocation.

Chapter 6 - Virtual Hormones for Creating Dynamic Traits The discussion in Section 2.2.1

mentions versatility as one of the greatest strengths of a swarm robot system. Capitalising

on this, Chapter 6 looks to explore the adaptability granted by hormone systems, in

complex and realistic situations, combining work from previous chapters to identify

what is required to create an adaptable, but sustainable Virtual Hormone controlled

robotic swarm. Attributing to this, Section 2.4 contains important background to this

system, proving context to the adaptability of the system.

Through each of these chapters, virtual hormone systems will be tested and analysed with

the goal of presenting a validated method for engineering hormone inspired systems. These

chapters will also identify the appropriate applications for such systems, showing the benefit

and disadvantages encountered through testing.
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Chapter 3

Virtual Hormones for Explicit Control

3.1 Introduction

As discussed in Section 2.3 behaviours based on biological systems can provide inspiration in

solving complex engineering problems. In recent years work has been undertaken to mimic

the behaviour of cellular systems. More specifically, work that uses the natural interactions

seen in proteins, peptides, steroids or other hormones to inspire robot control (Neal & Timmis

(2003); Levi & Kernbach (2010)).

As previously described, hormone inspired controllers have been used predominantly for the

control of swarm structure. In these cases it is not uncommon for hormones to indicate when

it is appropriate to change morphology. In these structure and morphology changing systems,

a hormone value is typically used to select behaviour states rather than to directly control

robot actuators. Hormones within these systems are used primarily for coordination. As

hormone values build they provide context to the system based on their stimuli and thus allow

systems to coordinate the transformation into pre-planned structures at the appropriate time.

Along side this, hormone inspired systems have also been used for the direct control of robot

movement, previous works have represented wheel motors of a robot as a cell to be hormone

driven (Stradner et al. (2009)).

The work presented in this chapter looks to verify the viability of virtual hormone based

control for robot swarms by investigating a simple arena mapping example. The information

gained from the experimentation in this section is used to educate investigation in ensuing

chapters, identifying areas that should be avoided, areas worth exploring and how a hormone

inspired system should be designed in regard to a swarm of robots.

This chapter introduces a hormone inspired system which combines multi-cell movement

controllers and behaviour swapping systems to produce an adaptive dispersion controller. The

controller directs a swarm capable of inducing either dispersion or attraction behaviour when

beneficial to the mapping of an environment. Effective use of these behaviour states allows
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for concentrated deployments of robots to disperse efficiently, improving the consistency

and speed that the swarm is able to map various environments verses a system exploring at

random. The performance of the controllers proposed in this chapter will be based upon the

number of unique coordinate points the swarm is able to store, these points are only recorded

when a robot identifies an obstacle so by collecting the points stored by every member of the

swarm a map of walls and objects within the environment will be produced. For the purpose

of measuring performance, duplicate coordinate points within 15 cm of one another will be

ignored when counting the number of points recorded. The individual swarm members are

not aware of coordinate points already mapped by other robots due to their distributed nature,

therefore the dispersion and coordination provided by the proposed systems will have a large

bearing on the measured performance.

Two sets of hormone equations comprise the proposed controller. One controller adapts

a single parameter based on environmental context and optimises a second parameter to

find the best value for each environment. The second controller self modifies all parameters

subject to environmental factors in an attempt to eliminate the need for optimisation prior to

encountering new scenarios.

3.2 Hormone Controller

The proposed hormone controllers operate at two levels. The first directly controlling the

wheel motors of the robots within the swarm and the second controlling their behaviour state.

In this section the specifics of the controller operation are detailed for systems 1, 2 and the

base line test system.

3.2.1 Motor Control

Similar to previous work (Stradner et al. (2009); Kernbach et al. (2008)) the system described

in this chapter divides a robot into two cells, each capable of storing a hormone value. These

cells each activate the motor on their corresponding side.

Rather than using virtual hormones to proportionality modify wheel speed, as would be similar

to systems discussed in earlier works, the systems presented in this chapter have the motor

cells on-board each swarm member compete directly with one another. The cell with the

highest hormone value activating the respective cell’s wheel while the other wheel remains

stationary. This means that the speed of the robot is not proportionate to the hormone value

stored in each cell, allowing the robots to always disperse or map at full speed. It is also

important to note that, in this chapter, the hormone values effecting each of the motor cells

associated with a robot do not effect one another. As a result, the only factor reducing these

hormone values will be the decay present in the equations. Thus the controller will rely purely

78



3.2. Hormone Controller 79

on decay to reach equilibrium. Equilibrium in this case referring a state in which hormone

values on board a robot show no substantial difference between one another, allowing the

robots to travel without hormone values having an effect on behaviour.

The primary hormone stimulant in this new controller is the presence of a foreign robot.

The presence is communicated as robots transmit and receive up to date records of their

current hormone values at each time step. This approximates natural cell to cell hormone

communication without the requirement of a physical medium in the operating environment

as is required in most pheromone communication tasks (the negatives of which have been

discussed previously in Section 2.3.3).

The transmitted hormone values were detected via line of site range and bearing sensors. The

sensors were capable of both detecting transmitted hormone values and reporting the direction

of a transmitting robot relative to the detecting robot. The direction of the received signal was

used to decide whether the hormone value of the left or right motor cell was affected by the

detected hormone. With signals coming from the right of the robot making changes to the

right cell and signals coming from the left making changes to the left cell (illustrated in Figure

3.1).

The hormones in the proposed controller are stimulated or inhibited by the detected presence

of other robots. The magnitude of the hormone value in the detected robot relative to

the hormone value of the detecting robot determines whether an individual is inhibited or

stimulated by the presence of another robot. Receiving higher hormone values stimulates the

hormones in the detecting robot and receiving lower hormone values inhibit the hormones in

the detecting robot (this has been illustrated in Equation 3.1).

while: 1 < HL(t)&HR(t) < 250

HL(t+ 1) = α+ λHL(t) +

ng∑
i=0

D

di
−

nl∑
i=0

di
D

HR(t+ 1) = α+ λHR(t) +

ng∑
i=0

D

di
−

nl∑
i=0

di
D

(3.1)

HL(t): Left hormone value at previous time step (This must be positive and saturates at 250).

HR(t): Right hormone value at previous time step (This must be positive and saturates at

250).

α: Regular increase in hormone value.

λ: Hormone decay rate.

ng: Number of robots connected with a greater Hormone Value than current robot.

nl: Number of robots connected with a lesser Hormone Value than current robot.
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Figure 3.1: Illustration of the signals received by a central robot and how these signals will
effect the robot’s hormone values. In the image the robot in the centre is receiving the total
hormone values (the sum of the left and right hormones) of the robots within line of sight. It
can be seen that the robots to the left of the central robot transmit values that will then only
effect the hormone value associated with the left side of the central robot and the robots to
the right will effect the hormone value associated with the right side in a similar manner.
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di: Distance between current robot and connected robot ’i’.

D: Scaling value defining the relative hormone change based on robot concentration.

HR(t) and HL(t) were set to saturate at 250 and were not able to take a value lower than 0.

This limits the total hormone value in each robot (HTotal = HL(t) + HR(t)) between 0 and

500. The importance of this is discussed further in Section 3.2.3.

It is worth noting that while distance is not considered for the comparison of hormone values,

distance does change the effect a foreign robot’s hormone value has in stimulating or inhibiting

a motor cell, though not by the magnitude of the foreign hormone. In the stimulating case,

the rate of increase in hormone value is reduced as distance between the detecting and

transmitting robot increases. In the inhibiting case, the effect a foreign hormone has on a

motor cell increases proportionately with distance. The result of this distance based change

means that robots with a large distance between them have a minimal influence on dispersion,

but a large influence on attraction.

This effect was engineered so that robots with high hormone values, which imply the near

presence of other robots, would move away from clusters and towards robots with low

hormone values. These low hormone values in turn imply a location in the environment with

few close neighbours. This produces an effective push and drag dispersion effect with the

hormone values dictating whether a robot should travel towards to away from a robot based

on the current environmental context.

With this arrangement, each member of the swarm builds up hormone values in the cell

facing the highest concentration of robots. On deployment this caused the robots to turn

away from the cluster and disperse (this is exhibited in robot 1 and 3 in figure 3.2) reducing

chance of robots remaining in an already mapped area. This system also ensured that later

in the simulation, should a cluster form within an enclosed section of the map, swarm

members in a cluster were able to connect to low HTotal robots outside of the enclosed space,

attract towards them and navigate openings without explicit knowledge of the environment

(attraction behaviour is shown in robot 2 in figure 3.2). This attraction could only take place to

guide robots away from obstructions due to the nature of the line of sight sensors; robots were

not attracted to robots with obstructions between them and as a result, were only attracted

through clear paths.

3.2.2 Behaviour Switch

In addition to the direct control of the motors, the artificial hormone also provided important

information about the swarms’ environment. As stated HTotal will be high when robots are

clustered together and low when the robots are dispersed. Due to this trait, each member of

the swarm could use the hormone value to decide which behaviour they should exhibit.
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Robot 2:
Higher HTotal

Robot 3:
Lower HTotal

Robot 1:
Lower HTotal

di
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Figure 3.2: The Illustration shows separation hormone values effecting the movement of three
robots. The close proximity of robots 1 and 2 has resulted in a larger hormone value in the
hormone cells facing one another. This subsequently results in the robots turning away from
one another. Robot 2 turns away from robot 1 regardless of the fact robot 3 is to its left as
the greater distance between the robots means that the stimulant to the hormone cell facing
robot 3 is not as great as that of the hormone cell facing robot 1. Robot 3 however, will still
turn away from robot 2 as it has no other robot effecting its left hormone cell. The resultant
trajectories are marked with dashed lines headed with arrows.
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S0
Forwards

S4
Wall Follow

S3
Avoid object

S5
Avoid Robot

S1
Turn Right

S2
Turn Left

Right cell 
hormone 
value higher.

Left cell 
hormone 
value higher.

Total hormone value 
above threshold.

Total hormone value below 
threshold & obstacle 
detected at close range

Robot detected 
at close range.

Obstacle detected 
at close range.

Unmapped 
coordinate found.

S6
Map

Figure 3.3: State Diagram for context aware hormone system. Systems 1 and 2 differ only
by the type of threshold required for transitioning between state S0 and S4. As the baseline
system contains no hormone mechanism it does not use this state diagram at all. Instead
robots avoid one another and move randomly until a non-robot obstacle is detected, at which
point the individual detecting an obstacle begins mapping.

Along side the hormone motor control state detailed in Section 3.2.1 the robots comprising

the swarm are also able to swap into a mapping behaviour state. In the mapping state, the

motor cells still store hormone values and interact with one another as described previously.

However, the hormone values no longer have control over the motors. Instead the robots use

their short range proximity sensors to identify obstacles and attempt to maintain a constant

distance from said object as they move forward, tracing the object they have found. In this

mapping state the range and bearing sensors are used to identify if two robots are within

close proximity of one another, preventing mapping if two robots are within a short range (1

robot length diameter) of one another. This ensures that the only environmental features are

mapped. The state transitions for this system are detailed in Figure 3.3.

While tracing around obstacles, robots record and store coordinate points to form a map of

environmental discoveries. If at any point during mapping any individual robot’s HTotal value

exceeds the behaviour switch threshold (Thb) that individual swaps back into the diffusion

state, with its motors once again controlled in the manner described in Section 3.2.1.

3.2.3 System 1 - Single Parameter Adaptation

The parameter D, acts as the scaling factor for both stimuli and inhibitors and has the largest

effect on performance (discovered through preliminary analysis of parameters, a deeper review
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of hormone parameters is given in Section 3.4). After observing the behaviour of the swarm

with a static D value repelling other mapping robots in cramped areas, often to the detriment

of the systems mapping performance. It was theorised that it may be beneficial for this value to

adapt based on the context of the robots’ environment. The adaptive replacement of D further

regulated hormone fluctuation to be appropriate for both cramped and spacious environments,

encouraging a switch in behaviour relative to the current density of the swarm. This approach

was intended to outperform a static value in complex environments and required minimal

optimisation prior to deployment.

while: 0 < HR(t)&HL(t) < 250

HL(t+ 1) = α+ λHL(t) +

ng∑
i=0

(Hsat + 1)−HL(t)−HR(t)

di
−

nl∑
i=0

di
(Hsat + 1)−HL(t)−HR(t)

HR(t+ 1) = α+ λHR(t) +

ng∑
i=0

(Hsat + 1)−HL(t)−HR(t)

di
−

nl∑
i=0

di
(Hsat + 1)−HL(t)−HR(t)

(3.2)

In order for each robot to adapt effectively, a measure of the current swarm density within

communication range was required. Based on this measure, the robot was able to increase or

decrease the rate at which hormone values were stimulated or inhibited, modifying the effect

that each connected robot had on the hormone value.

To implement an adaptive element to the D value, the system was designed so that greater

HTotal values of the detecting robot produced smaller D vales. The D values within the

equations were subsequently replaced with (Hsat + 1) −HL(t) −HR(t) (where Hsat is the

maximum value Htotal can take), designed to range between 1 and Hsat. In the experiments

in this chapter Hsat was set as 500 for ease of calculation, due to the fact 500 was the

largest value di could take. The values available for di were restricted by the maximum

communication range robots could achieve with the equipped range and bearing sensor (RAB).

Across the available communications range a value of 500 would be returned at the maximum

distance and 1 at the minimum.

The new D value’s lower limit was restricted to 1 to avoid an undefined result in the case of

a division by 0. By keeping the denominator and numerator limited to the same maximum

and minimum values, the stimulant per connected robot was limited to a value between

0 and 1. Preliminary tests found that these equations produced acceptable changes to the

hormone values, rarely saturating or remaining at 0. The behaviour emerging from this system

prevented concentrations of robots forming in the environment. It also prevented robots from
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interrupting the mapping of one another at inappropriate times, should the environment force

the swarm to stay close together.

With an adaptive D value in place, the first contextually aware hormone controller is presented

in Section 3.3.

3.2.4 System 2 - Multiple Parameter Adaptation

In order for the system to be viable for hardware application, optimisation of the swarm on

an environment to environment basis would be laborious and time consuming. Therefore, to

simplify use while still maintaining a high performance, all parameters that have a significant

effect on the system can be either: optimised for a general case (thus not perform optimally in

all environments) or adapt to the requirements imposed by the environment. In System 2, the

latter will be achieved by adding an adaptive behaviour switch threshold (Thb).

The Thb value was configured to change with an inversely proportionate ratio to the density

of the swarm, tuned through parameter investigation. This was achieved by utilising the A test

as described in Alden et al. (2014) (an effect-magnitude test which quantifies the difference

between data groups, discussed in greater detail within section 3.3.2) which produced results

for the single parameter adaptation that clearly showed the behaviour switch threshold should

range between 100 and 300 to provide the maximum benefit across each environment tested

while not branching into values of limited effect on performance.

Taking into account the required proportionality and value limits, the following adaptive

parameter was created:

Thb = Ulim − (Ulim − Llim) ∗ n
N

(3.3)

Where N is the total number of robots in the swarm, n is the number of robots connected to

the controlled robot, Ulim is the upper limit for Thb (300) and Llim is the lower limit for Thb
(100). With this additional adaptive parameter the aim was that this system should be able to

achieve a similar or greater performance than a static optimised threshold.

3.2.5 Base Line Test

In order to obtain a set of results to act as a baseline in the mapping comparison, a simple

controller was developed. In this system the robots, once deployed, would move randomly

until they discovered a wall or obstacle. While exploring, robots were still able to avoid one

another using the same short range distance sensors available to the robots utilising systems 1

and 2 as control methods. Non-robot features in the environment were also detected with

these sensors (at a maximum range of 50 cm). In order to ensure that detected items were

not robots, simple robot-to-robot messaging was deployed. Throughout the experiment robots
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communicated through a separate sensor capable of sending and receiving small packets

of data from other robots, as well as detecting the distance between them. If this sensor

identified another robot within 50cm of the robot detecting an item, it was assumed that the

discovered item was a robot and not an obstacle worth mapping. On discovery of a non-robot

feature, the robots would begin to trace around the object, using the short range sensors to

maintain a constant distance from the detected obstacle. As previously mentioned, mapping

was prevented when a robot was detected within 50cm of another robot. This actually created

an additional benefit to robots already mapping as, if a wall following robot collided with

another robot, it most likely meant that the section of wall they were about to travel along had

already been mapped. As a result of identifying the near-by robot, a mapping robot would stop

the wall following behaviour, and begin to move away from both the wall and the presented

robot. This would allow the robot to explore a new area that had potentially received no

mapping as of yet, rather than circling an already mapped obstacle indefinitely.

Additionally, other than identifying robots within close proximity, the base line random

movement system would have no restrictions on when robots were able to begin mapping.

Instead of waiting to reach a threshold point as in systems 1 and 2, as soon as a robot using the

random controller identified an obstacle it was able to record a coordinate (assuming it was

previously undiscovered). As a result, the swarm using this system was able to begin mapping

in the early stages of the experiments, gaining an advantage over the robots using system 1

and 2. This was implemented by design to highlight how the other systems would have to

provide an adaptive method capable of making up for lost mapping time in the beginning of

the experiment.

3.3 Experiments

3.3.1 Experimental Set up

The simulations performed in these experiments were produced using ARGoS (Pinciroli et al.

(2012a), a system capable of simulating arenas with multiple robots. For all experiments the

controllers detailed previously were implemented on a swarm of 10 foot-bots (designed for

the Swarmonoid project Ducatelle et al. (2014))).

To test the performance of the proposed controllers the total number of unique coordinates

plotted by the swarm was summed. This number was recorded every 100 time steps up to 8000

for small environments and 16000 for larger environments. This provided a good measure for

mapping ability throughout the experiments and made behaviours easy to monitor.

To obtain conclusive results a variety of environments were used in the simulations. Each of

these environments were produced to test different capabilities of the swarm controller. The

environments are shown in Figures 3.4, 3.5, 3.6 and 3.7. Of these environments the Obstacle
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Figure 3.4: Simple Obstacle Environment: A small environment, this is the most basic in terms
of object complexity. This environment should be easy to navigate and map, putting minimal
strain on the system.

Figure 3.5: Maze Environment: A large environment. This is the most complex environment
to navigate and was designed as a compilation of all the environments, creating a problem
that should be more challenging to optimise for.
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Figure 3.6: Corridor Environment: The difficulties posted by this small environment are the
narrow hallways the swarm will be required to navigate. This environment should show that
smaller values of D are beneficial to wall following in enclosed spaces.

Figure 3.7: Office Environment: Another large environment, however, this one is made up of
several compartmental rooms. This environment should make it difficult for robots in the same
room to disperse and will test the swarms ability to operate with minimal communication.
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λ α Hsat Ulim Llim
0.94 2 500 300 100

Table 3.1: Parameter values selected for hormone mapping system.

environment offers a simple, open and easy environment to map, the Maze environment

creates a variety of problems, narrow openings, large spaces and complex obstacle shapes,

creating a challenging environment to map that will be difficult to optimise a static value for,

the corridor environment has been designed to observe the effectiveness of the swarm systems

in long, narrow spaces and the office environment creates several cubicles with small openings

that should make diffusing for effective mapping difficult.

The investigated data for each trial is the result of 100 repeated experiments as indicated by

the consistency analysis conducted. This is discussed in greater detail in Section 3.4.1.

3.3.2 Parameter Values

The parameters selected for the experiments are shown in Table 3.1. The hormone specific

variables λ (decay rate) and α (base stimulant increment) were chosen to reflect an appropriate

relevance period (the time during which a hormone should maintain value before decaying

below a value deemed relevant) and settling point for the hormone values. To do this, λ was

the first parameter considered, chosen to decay the hormone from saturation (Hsat, in this

case 500) to the lowest value deemed relevant (Hfin, in this case 1) within 100 time steps

when no stimulant was present. This number of time steps (n) was then converted to a decay

rate using Equation 3.4. This was approximately the amount of time taken to perform a long

manoeuvre when avoiding a wall or robot in close proximity.

λ = n

√
Hfin

Hsat
(3.4)

The value for decay could then be used to find α using the equation: Hset =
2α

(1−λ) where Hset

is the decided settling point.

Due to the nature of the small environments the robots were exploring, in combination with

the relatively short range of their communications devices (5 meters), long range transmission

of hormone values would be fairly uncommon. It was therefore assumed that robots capable

of communicating hormone values (i.e. robots with a clear line of sight of one another) were

more likely to be in close proximity than far apart from one another. As a result this would

induce hormone values of greater magnitude.

To cater for this, the setting point for the hormone value was designed to give a greater range

of values above than below, allowing for greater resolution when comparing hormone values

and reducing the likelihood of hormone saturation. It was therefor decided that the settling
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Figure 3.8: A-Test results comparing the total area mapped at the final tick of simulation for
each environment tested. For each environment the parameter for separation threshold was
modified, ranging between 0 and 500 in steps of 10, to observe the systems sensitivity to
said parameter and the potential ranges that should be explored when creating a dynamic
separation threshold. The parameter sweep used to produce this graph was also used to
identify optimal values of separation threshold for each environment.

point should be establish at approximately one eighth of the saturation point.

After initial parameter adjustments, the Spartan package A-Test was applied to analyse the

effect of the behaviour switch threshold on the system. This was performed across a range of

values between 0 and 500 in steps of 10 for each of the four environments tested. The trials

for each parameter value of the set were formed from 100 experimental runs. Each data group

was compared to the Thb = 150 results giving an A-test score relative to the performance

achieved with this value. The results for each environment are shown in figure 3.8.

Before obtaining the results from this parameter robustness test the following predictions

were made:

1. Low values of Thb (under 100) would produce a large change in results compared to

the 150 set as the robots would never be able to switch into their mapping state.

2. Very high values would produce largely different results due to minimal dispersion.
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3. The best results would be achieved between 100 and 300 for each environment.

The first and third predictions were confirmed by the results showing large changes in

performance with values lower than 100 in most cases and optimal performance identified at

270, 130, 250 and 90 for the Obstacles, Maze, Corridor and Office environments respectively.

The office result is some what anomalous to the expected parameter value, although this small

value is most likely due to the large separation required by such a complex environment.

Contradicting the second prediction, the results showed that only the obstacle environment had

largely different results for high values of Thb although there were no optimal performance

values found above 300, suggesting that the minimal dispersion of robots does decrease

performance.

The highest performing parameters were taken from this parameter analysis and used in the

comparison as an optimal case for system 1.

3.3.3 Comparison

For the proposed controllers to be proven successful they were tested against the following

null hypothesis:

H0: System 1 will have a mapping performance no different to a random wall follow controller.

(rejected with 95% tolerance)

H1: System 2 will have a mapping performance no different to system 1. (rejected with 95%

tolerance)

The results of the controller comparison can be seen in figures 3.9 and 3.10 showing the

performance of the office environment near the start and at the end of the experiments.

Additionally figure 3.11 shows box plots of the mapping performance for each controller at

the final tick of each simulated environment.

Observing the performance of system 1 verses the random controller it can be seen that in all

cases except the obstacle arena there is an initial delay in mapping from system 1. During

this time it is outperformed by the random controller. This effect is most obvious in the office

environment where the hormone controller does not start mapping until roughly 1000 ticks

into the simulation (figure 3.9). The random system has this early advantage in mapping

due to the fact that the random controller starts plotting points as soon as an object is been

identified. Meanwhile, system 1 waits until the hormone reaches a level that exceeds the

static threshold value before plotting points. The initial wait before mapping creates some

inefficiency in System 1, this can be explained by the high Thb value identified as being

optimal for maximum area mapped by the end of the experiment. While this value gave the

best mapping by the end of the simulated time, it was clearly required to maintain a good
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(a) Random Controller (b) System 1 Controller

(c) System 2 Controller
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(d) Box plot of results for System 2 (Full Adapt), Random System and System 1
(Single Adapt)

Figure 3.9: Image capture of the Office environment for each system at 1000 ticks showing
the area mapped within the environments at this time stamp (indicated by black dots seen
on the floor of the environment). Image (d) displays the results of the office environment at
1000 ticks, showing that the single adaptation system completes no mapping at this stage of
the experiment while the fully adaptive method and the random method are able to begin
mapping early.
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(a) Random Controller (b) System 1 Controller

(c) System 2 Controller
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(d) Box plot of results for System 2 (Full Adapt), Random
System and System 1 (Single Adapt)

Figure 3.10: Image capture of the Office environment for each system at 16000 ticks showing
the area mapped within the environments at this time stamp (indicated by black dots seen
on the floor of the environment). Image (d) displays the results of the office environment
at 16000 ticks, showing that the single adaptation system is able to recover from the poor
mapping quantity early in the experiment to create a strong performance alongside the fully
adaptive method against the random system.

93



3.3. Experiments 94

●

150

175

200

225

250

275

300

325

350

375

400

425

450

475

500

525

550

575

600

625

650

675

700

725

750

775

800

Full Adapt Random Single Adapt

System Type

N
um

be
r 

O
f P

oi
nt

s 
M

ap
pe

d

Plot for Number Of Points Mapped in 100 Trials At Different Swarm Sizes

(a) Maze environment
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(b) Corridor environment
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(c) Obstacle environment

Figure 3.11: Box plots of results comparing the mapping performance by the final time step
of the experiment of the system 1 controller (Single Adapt), the random controller and the
system 2 controller (Full Adapt).
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Controller Obstacles Maze Corridor Office
Random Vs
System 1

P < 0.001 P < 0.001 0.523 P < 0.001

Random Vs
System 2

P < 0.001 P < 0.001 P < 0.001 P < 0.001

System 1 Vs
System 2

0.013 0.494 P < 0.0039 P < 0.551

Table 3.2: P values for comparisons between three controllers for each environment. Results
that reject H0 or H1 are highlighted in bold.

level of separation later in the experiment, offsetting the initial time taken to begin mapping

considerably. The selected optimal Thb value is most likely larger than that required for the

initial dispersion, which highlights the need for an adaptive threshold value which system 2

attempts to amend.

Even though the random controller outperforms system 1 early in the simulations, as time

and mapping progresses, system 1 overtakes the random controller in terms of performance.

By the end of the simulations, the mean area mapped across all trials was higher than the

random controller in every environment tested.

Using a Mann Whitney test, the difference between these data sets was confirmed to be

significant in three of the four environments (results table 3.2). Each of the results comparing

the Random System and System 1 reject H1 with the exception of the Corridor environment.

The similarity of results in the corridor environment could be due to the fact that almost all of

the environment would have been mapped by both controllers by the final time-step.

Through the observation of System 2’s performance it can be seen that the issues of the

static threshold values are resolved to some extent. In the office environment System 2 takes

advantage of the initial high obstacle density, starting mapping early with a similar mapping

approach to the random dispersion. Post-dispersion System 2 behaves more similarly to

System 1, keeping distant spacing between robots. Comparing the results for System 1 and 2

in each of the box plots displaying final area mapped (Figure 3.11), it can be seen that system

2 provides a greater average mapping in every environment. However, the Mann-Whitney tests

only confirmed the increase as significant in Corridor environment. Even without a consistent

significant increase, the results of System 2 are still encouraging as no parameter optimisation

has taken place prior to the swarms deployment and System 2 is still capable of achieving a

statistically indistinguishable performance from System 1 by the end of the simulation.
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3.4 Analysis

This section details supplementary analysis of the proposed systems providing: statistical

evidence supporting the number of replicate trials required for consistency amongst results,

insight to the decisions made when deciding which parameters to adapt and how to adapt

them, as well as the results from tests on scalability, undergone to ensure the systems function

in a truly swarm-like manner.

3.4.1 Consistency

In order to determine the number of trials needed to ensure statistical consistency an A-test

based consistency analysis was performed on the mapping example data sets as directed in

Alden et al. (2013). The number of repeats required was identified by comparing distributions

of simulated data at each recorded time point (100 ticks of simulation, resulting in 10 seconds

of simulated time). As data sets get larger, the probability of creating distinguishable data sets

reduces, with the difference in distribution typically getting smaller as data size increases. In

this case the size of the data set was dependant on the number of repeated experiments. Once

the difference between distributions became negligibly small it was implied that the stochastic

nature of the simulated results has been mitigated by the number of trials. Figures 3.12, 3.13,

3.14 and 3.15 show the need for 100 repeated trials as there are still time points showing a

large or medium difference in A-Test score in repeat sizes of 5, 50 and 75, indicating that a

greater number of repetitions are required.
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Figure 3.12: A-test scores for data sets at 100 tick intervals for 5 experiment repetitions,
showing all measured ticks reporting in large difference in results.
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Figure 3.13: A-test scores for data sets at 100 tick intervals for 50 experiment repetitions,
showing no large differences, but majority medium difference across all time steps.
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Figure 3.14: A-test scores for data sets at 100 tick intervals for 75 experiment repetitions,
showing some small difference and some time steps approaching a medium difference.
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Figure 3.15: A-test scores for data sets at 100 tick intervals for 100 experiment repetitions,
showing all ticks reporting only a small difference, confirming statistical consistency for this
number of repetitions.
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3.4.2 Sensitivity

The initial hormone equation shown in Equation 3.1 contains three parameters of interest α, γ

and D. The effect produced by α and γ are somewhat predictable, α producing an offset from

Zero to prevent the system from reaching a permanent settling point and γ changes the rate

of decay for the system, returning hormone values to the settling point more quickly or slowly

after a perturbation in hormone value is experienced by a robot, depending respectively on

how far or close γ is from 1.

This left the final parameter in the equation, D, the parameter influencing hormone gain/loss

in the presence of other robots. This parameter was not well understood and in an attempt

to gain a greater insight in to the effects of the parameter and exhaustive value sweep was

performed on D for each of the test environments. The sweep covered values for D in

increments of 10 between 0 and 600, running 100 experiment trials for each parameter

and using an A test to give a score of difference between each parameter and the baseline

parameter (selected to be 300 in each of these tests). Results are seen in Figure 3.16, 3.17,

3.18 and 3.19. The technique for this analysis is similar to that used in the consistency analysis.

Data sets are compared using an A-test to identify the magnitude of distribution difference. In

this case each data set (containing 100 repeats as indicated by the consistency analysis) is

compared to the data set for a baseline parameter value of D, here chosen to be the middle

value of 300.

From these results it is obvious that there was no single optimum value for D. Large differences

in distribution to the middle value took place in low values of D in some environments and

high values of D in others. This highlighted the need for a contextually aware adaptation of

this value to create successful robot interaction for a general system that required no bespoke

optimisation for environment changes.
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Figure 3.16: A-test results for parameter D in the office environment sweeping through a
range of parameter values for D between 0 and 600, incrementing in steps of 10.

● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ●

●

●
●

●

●
● ● ●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

● ●

●

●
●

●
● ● ●

●
●

● ●
●

● ●
● ●

●

●
● ●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A−Test Scores when adjusting parameter 
D at Timepoint: 8000 Ticks

Parameter Value

A
 T

es
t S

co
re

0 30 60 90 130 170 210 250 290 330 370 410 450 490 530 570

●

Measures

Area_Mapped

no difference

large difference

large difference

Figure 3.17: A-test results for parameter D in the obstacle environment sweeping through a
range of parameter values for D between 0 and 600, incrementing in steps of 10.
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Figure 3.18: A-test results for parameter D in the maze environment sweeping through a
range of parameter values for D between 0 and 600, incrementing in steps of 10.
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Figure 3.19: A-test results for parameter D in the corridor environment sweeping through a
range of parameter values for D between 0 and 600, incrementing in steps of 10.
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Figure 3.20: Scalability tests in the obstacle environment showing a linear increase to the
number of points mapped as the number of robots increases from 5 to 55 in steps of 5 robots.

3.4.3 Scalability

In order to prove that the composed system is indeed swarm like, tests for swarm scalability

were made to see how performance changed as the number of robots in the swarm increased.

In these tests the number of robots in the swarm was increased from 5 to 55 in steps of 5. The

results for this are displayed in boxplots shown in Figures 3.20, 3.21, 3.22 and 3.23. These

graphs show the total area mapped at the 8000th time step for swarms of robots of various

sizes. Every robot in these trials ran System 2 for 100 experiment repetitions across each of

the four test environments.

As would be expected, with greater swarm size comes a greater performance as more robots

are able to map in parallel. In most cases, the increase to performance by adding an additional

5 robots begins to reduce as the swarm reaches a high density, unable to map more effectively

in the given space. The results for the obstacle environment (Figure 3.20) are an exception

to this, gaining a fairly linear rise in mapped area as the swarm size increases. This is most

likely due to the large open space provided by this test environment, allowing for dispersion

to prevent excessive clustering of robots.

As System 2 sees no large drop in performance in the tested swarm sizes, even with relatively

large robot numbers. The system has been proven to function well at swarm-like sizes and

fulfils the second criteria for true swarm-like behaviour as highlighted in Section 2.2.1.
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Figure 3.21: Scalability tests in the maze environment showing a gradual increase in number
of points mapped as swarm size increases, performance can be seen starting to plateau after
20 robots.
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Figure 3.22: Scalability tests in the office environment showing performance increasing but
with diminishing gains as more robots are added, similarly to the maze environment.
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Figure 3.23: Scalability tests in the corridor environment showing performance increase
initially but remaining at a similar level between 20 and 55 robots.

3.5 Chapter Summary

The experiments in this chapter offer a fair comparison between the base line and systems 1

and 2 as both methodologies are implemented on swarms of the same functional capabilities.

i.e. the swarms use the same fundamental obstacle avoidance system, the same distributed

communications system and the same number of robots are used in each of the compared

experiments. The primary differences between these systems are the regulation of dispersion

and the activation of mapping behaviour. Systems 1 and 2 regulate dispersion and the

activation of the mapping state through hormone inspired methodologies, while the baseline

system disperses randomly, only avoiding other robots in close proximity. The intention of this

comparison was to explore initial ideas regarding how hormone adaptive systems, represented

by systems 1 and 2, might outperform a brute force method, represented by the base line

system.

The work described in this chapter has provided an insight into the workings of hormone

inspired systems within the context of robot swarms. It has indicated that virtual hormones can

be engineered to create a beneficial system for swarm motor control and that this performance

can be increased by introducing additional adaptive factors to hormone equations. The results

of the experiments suggested that it is possible to use adaptive values to act as stimuli within

a hormone equation and as thresholds to compare hormone values against, subsequently

triggering behavioural change. As hormones themselves can provide a level of adaptivity,

due to their time based nature, two areas have been highlighted for further investigation in

forthcoming chapters:

1. It may be worth exploring the use of hormone values acting as a stimulus to other

hormones: By feeding a hormone value into another hormone equation, it may be
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possible to provide an adaptive method of control closer to those seen biologically, rather

than designing engineered functions to influence hormone values.

2. As hormone values can be designed to change value according to environment stimuli, it

may be worth creating behavioural threshold values in the form of additional hormones.

These hormones could operate across a different time scale and take into account

different stimuli. Subsequently, threshold hormone values may be able to provide

comparative information to allow swarm agents to change behaviours at sensible points

in time, improving the performance of the swarm.

While using a virtual hormone controller to directly affect motor movements was indicated to

be effective in these experiments, it is clear that the next stage in hormone control related

work needs to look at larger and more complex systems. However, this work should look

further than direct actuator control as the work in this chapter has highlighted that adaptive

behavioural control may be where the strength of virtual hormone systems lies. The designs

and experiments in the next chapter will therefore look at higher level behavioural control

using hormone systems to arbitrate behaviour states. With low-level operations programmed

explicitly amongst executable states. This will allow for the execution of more complex tasks,

with a greater requirement for adaptation further testing virtual hormone systems without

requirement for unnecessarily complex designs.

Hormone style equations may provide a method of control in situations where common

implementations for control, such as PID controllers, may be difficult. In order to implement a

PID controller a desired quantifiable output must be specified, the error between the current

and desired output is then used to modify behaviour (Ang et al. (2005); Knospe (2006)). The

PID controller will be used to reach the desired output in an acceptable manner, designed for

a combination of speed, accuracy or stability. For some swarm behaviours the desired output

for each agent may not be easily measurable at any given moment, as the required behaviour

of swarm agents may seem counter intuitive to the goal of the task (e.g. robots sleeping to

conserve energy Liu et al. (2007); Sauzé et al. (2010)). As a result, it may be difficult to

provide a quantifiable, continuous measurement of desired output that is directly relevant to

swarm behaviour.

Even in swarm applications where PID systems may be relevant, PID controllers may require

the use of additional methods of control to be deployed for effective management of swarm

behaviour. For example, in the mapping experiments addressed in this chapter, a PID controller

could be implemented to obtain a pre-defined optimal separation distance for swarm agents,

regulating this separation by affecting the left and right motors of the robots to guide robots

away from one another. However, as also shown in this chapter, there may be different

requirements for dispersion at different points in the experiment. Therefore, to achieve

effective mapping with the PID system, an optimal value for separation would have to be
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known at each moment of swarm exploration. Thus, for the successful use of a PID controller

in this situation an additional, adaptive, means of control may need to be implemented. It may

be possible to implement these adaptive means through the use of hormone systems providing

environmental context to a PID controller. However, due to the aforementioned drawbacks of

PID control in swarm systems, and having identified the benefit multiple hormone inspired

systems might provide to behaviour state control, points 1 and 2 (previously mentioned in

this summary) were deemed to be the priority for the experimental exploration featured in

the following chapters.
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Chapter 4

Virtual Hormones for Energy Efficient

Task Allocation

4.1 Introduction

A system’s parameters can often be optimised for a given task to improve performance. This

optimisation will typically take into account environmental factors, thus tailoring a system for

a strong performance. If a robotic system is deployed in a dynamic environment, the chosen

parameters must either take a suboptimal value or be re-optimised during the task, taking

into account new environmental properties. The former of these options reduces the system’s

capability in each setting and the latter wastes time that could be spent executing the assigned

task. Additionally, both of these options are difficult to execute given that a thorough analysis

of the environment would be required.

This chapter illustrates, in a series of specific environments and tasks, that it is more energy

efficient to use a hormone inspired system than an optimised timer-based system to control

state transitions in a foraging swarm. The work in the previous chapter showed that hormone

systems could be used to directly control the motor functions of individuals amongst a swarm

of robots, providing an effective method for dispersion and attraction for a group of mapping

robots. In this chapter, the work diverges from the low level actuator control and instead

considers the use of a hormone system to increase the performance of a foraging swarm.

The hormone system will regulate the swarm on a behaviour by behaviour basis, providing

conditions for the robot to shift states upon.

Rather than waiting for events or direct instructions to act as indicators for state transition,

hormone systems receive information in the form of stimuli. These stimuli affect the values of

virtual hormones, causing them to fluctuate over time. By having a variety of hormone values

triggered by different stimuli, information about environmental aspects can be obtained by

observing the relationships between each of these values.
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By using a combination of hormone release, stimulated by environmental factors, and constant

hormone decay, artificial hormone systems create a simple yet powerful method for controlling

robots (Shen et al. (2000)). Through the appropriate selection of stimuli, hormone systems

can be used to arbitrate the states of individuals in a swarm, meditating actions such as resting,

searching or returning to the nest site.

Additionally, the use of such a system means that each robot in the swarm produces its own

hormone without requiring a lead robot to act as an emitter, in contrast to the hormone control

for the CONRO robot (Shen et al. (2000, 2004)). This decentralises the system and makes it

all together more swarm-like.

Work in this chapter uses a foraging system, a well studied example in swarm robotics with a

history of research on energy efficiency. Examples of this work cover: improving the efficiency

of search behaviour (Schroeder et al. (2017)), exploring methods of task allocation, creating

periods of inactivity when workload is low (Charbonneau & Dornhaus (2015)) and increasing

the efficiency of motion, reducing congestion by allowing swarm members rest (Liu et al.

(2007)). While these studies address the issue of energy efficiency, some even including

methods of online adaptation, they do not apply any form hormone arbitration system in their

method of control. This chapter contributes to current literature by identifying how a hormone-

inspired system increases the performance of a foraging swarm or how a hormone-inspired

system might make a swarm more robust to environmental change.

4.2 Hormone-Inspired Systems

Previously a number of hormone-inspired implementations have been aimed at controlling the

behaviour of a single robot rather than a swarm, focusing more on providing a strong insight

to the construction of a hormone system (Stradner et al. (2009)). While others have explored

swarm examples for hormone behaviour arbitration, in Kuyucu et al. (2013) a system is evolved

over several iterations to complete a task with notable improvements. The stimuli featured

in the study took the form of virtual pheromones. The system thus required a centralised

element to record pheromone values at their location, meaning that their system could not be

considered completely swarm-like by definition Şahin (2004). Additionally, the experiments

carried out had no real base-line comparison to show the hormone implementation as a

superior system.

Other swarm-based hormone systems have exhibited chemotatic behaviour, emulating the

biological diffusion of hormones in cells to organise and structure a swarm (Shen et al.

(2004)). Using this system the swarm was capable of navigating and exploring an obstacle-

filled environment. However, again the experiments were performed with no quantifiable

base-line to compare the performance of the system against.
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By examining a complex hormone system with a quantifiable measure of performance and

providing a comparison optimised for each case examined, this chapter will establish a

precedent for future development.

4.2.1 Comparability Of Proposed System Vs Other Hormone Inspired Systems

The system proposed in this chapter shares some similarity with other hormone systems, the

hormone equations follow the typical rules for hormone messages as suggested in Shen et al.

(2000) and these signals are used to influence the behaviour of other robots, similarly to the

work in Kernbach et al. (2008) where a ‘Hormone Driven Robot Controller’ is used to create

robot structures from a swarm. However, these systems are not directly comparable due to the

fact that the Hormone system presented in this chapter uses the relative values of multiple

hormone signals to adapt and improve the performance of the swarm in long-term tasks, while

the other system coordinates robots towards known patterns and morphologies.

Systems such as those shown in Kuyucu et al. (2013) using hormone signals to make the

decision to swap morphology states, are more similar to the system presented in this chapter.

Although, the fact that Kuyucu et al. (2013)’s system still only uses a single hormone per robot

to make these decisions, makes strong comparisons between the two systems difficult.

4.3 Controllers

Base on the definition of a swarm of robots discussed in 2.2.1, the robots used in this chapters

experiments where designed to have very simple functions. This would allow the design

of the robots to adhere to simple design goals set out within the field of swarm robotics

(Miner (2007)) and would keep the cost of producing a swarm, if developed in hardware, to a

minimum.

As a result, the robots comprising the swarm in this example had the ability to identify

obstacles at short range (50cm) for avoidance purposes and were able to "see" food items

within 2 meters (assuming there was line of sight between the robot and the food item). By

using these sensors, the robots within the swarm were able to easily navigate towards the

items once they were discovered. The robots were also equipped with a simple, two wheel,

method of locomotion, changing the robots direction via skid-steering. Aside from these

simple actuators, and the processors used to manage the two arbitration systems detailed

below, the robots in this chapters experiments implemented no other capabilities or features

and had no method of communicating directly between one another.

The swarm robot systems in these experiments were designed to perform a foraging task.

Foraging has been commonly used to test swarm behaviour and, has been used in the past to

test a sleep-based system for energy efficiency in a swarm of robots (discussed further in the
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section 4.3.1). Within the simulated experiments conducted, food items that would be foraged

were represented by black dots on the environment floor. Once discovered and "picked up" by

a robot, the item would disappear and, upon the robots return to the nest, the the collection

of the item would be recorded. It is worth noting that the robots in this chapters experiments

were assumed to be able to only carry a single item at a time.

In order to produce a measure of energy efficiency (the value which would be used to compare

the performance of the systems developed in this chapter) the approximate amount of energy

consumed by each robot was measured during the task. The total energy consumed by the

swarm by the completion of the experiment, in combination with the number of food items

collected, formed the value of energy efficiency. The process of calculating energy efficiency is

described in greater detail in Section 4.4.1.

4.3.1 System 1: Hormone Arbitration

Previous work Liu et al. (2007); Charbonneau & Dornhaus (2015) has suggested that an energy

efficient system can be produced by modifying a rest time for individual swarm members

upon the completion of a task. In Liu et al. (2007) this was done by modifying the duration

of various counters to mediate the amount of time robots would spend ‘sleeping’ in the nest

site and the length of time they would spend searching for food items. The length of these

time periods were changed based on the number of collisions experienced by members of the

swarm, along with the successes and failures of each robot. Success or failure in this case

were defined by whether the robot returned to the nest with or without a food item. This

work on foraging efficiency inspired the elements that would be controlled by equations 4.1,

4.2 and 4.3. These equations regulate the sleep period and conditions required for robots to

return to the nest.

The artificial hormone system proposed here is constructed from several hormone inspired

equations. As in the previous chapter these virtual hormones can be produced by taking a base

increment (α), a decay (λ) and weighting assigned to stimuli (γ), the equations produced

from these elements approximate the behaviour of hormones used for biological control.

The variables in these hormone equations work in the same manner as those in Chapter 3:

• λ defines how quickly the system reacts to a lack of stimuli; the smaller the value λ

takes, the faster the system will return to the settling point without stimuli.

• α and λ combine to make the settling point of the hormone without stimuli (calculated

via α
1−λ) when α is 0, the system settles at 0.

• γ defines how quickly the hormone will deviate from the minimum settling point when

stimulated.
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Using this simple format, multiple hormone equations can be created, each affected by

different stimuli, building together to arbitrate behaviour states. The equations produced for

the experiments in this chapter are as follows:

Avoidance Hormone: HA(t) = λAHA(t− 1) + γAA (4.1)

Where A is a Boolean value detecting whether or not the robot is avoiding another robot or

surface .

Hunger Hormone: Hh(t) = αh + λhHh(t− 1) + γhC (4.2)

Where C is a Boolean value representing whether or not the robot successfully returned a

food item to the nest site.

Sleep Hormone: HS(t) = λSHS(t− 1) + γSHA(t− 1) (4.3)

The avoidance hormone (HA) has been designed to return swarm members to the nest when

an environment is too cluttered. While in the search state the robots will move randomly

to explore their environment. If an obstacle is detected during this search the HA value is

stimulated and increases slightly. Rather than specifying a search time, which could inhibit the

discovery of food items, HA is used in a more dynamic manner, with robots sent back to the

nest only in the case of overcrowding. Overcrowding is detected by the relationship between

HA and the hunger hormone Hh, whenever the avoidance hormone exceeds the value of Hh

the robot changes state to return to the nest. To allow some small obstacle detection prior to

returning to the nest and to ensure that decay leads the system to settle in the search state,

the α term in Hh is present to provide a higher settling value than in HA.

Hh was created to build a resistance in the system against HA. As Hh rises (depending on the

success of the robot), the robot associated with the hormone becomes less likely to return to

the nest. Upon each success, the resistance increases and then begins to decay slowly until the

next success. The importance of this resistance is clear when you consider the implications of

a successful robot; Either the robot has access to a large concentration of food or the robot

has minimal competition and is clearing its immediate area of food quickly.

Considering the first of these cases, a high concentration of food may attract a large number

of robots, each collecting food in close quarters. Because of this, avoidance is more likely to

take place. Without accounting for food density, robots with a threshold that is too low could

return to the nest before discovering food items or the swarm may be allowed to aggregate

too tightly in an area of low food density with a threshold that is too large. Both of these cases

would waste energy and use the members of the swarm ineffectively. By allowing a certain

amount of avoidance, and allowing that amount to vary based on context, better performance
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can be achieved.

In the second case, with food items close to the nest removed, the successful robot will then

have to travel a longer distance to discover new food. If the robot has a single collision prior

to travelling the greater distance, harder-to-find food items will not be discovered. This would

leave a potential food source untapped. The swarm is thus more effective if successful robots

are allowed to travel further and avoid more objects before returning to the nest.

In addition to controlling behaviour switching, the avoidance hormone acts as a stimulant for

the sleep hormone (HS). The sleep hormone controls how long the robot stays in the sleep

state. In this state the robot waits in a low power mode at the nest, this minimises energy

consumption when the swarm size is too large for the current work load. The amount of time

spent in the low power state depends on how long HS takes to decay below the Hh value.

This means that time spent in the nest is dependent upon both robot success and the amount

of avoidance performed while searching. The state transitions controlled by these hormone

equations are illustrated in Figure 4.1.

Figure 4.1: State machine for foraging hormone system illustrating state names and the
relative hormone ratios required for transition.

Additionally, a demonstration of the hormone value movements during the experiments can

be seen illustrated in Figure 4.2. This illustration can be used to see the effect hormone

values have on one another and how relative changes in hormone value will trigger behaviour

state transitions. The diagram clearly shows that the presence of the avoidance hormone will

increase the value of the sleep hormone. Additionally, the successful collection of an item can

be seen represented by spikes in the hunger hormone.
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Between approximately 800 and 1100 ticks, several item collections can be seen to gradually

build the average value of the hunger hormone. This provides the robot with a slight resistance

to entering the sleep state as several brief periods of avoidance behaviour are unable to trigger

behaviour change by raising the avoidance hormone value above that of the hunger hormone.

However, with enough time spent in the avoidance behaviour (at approximately 1200 ticks),

the avoidance hormone is able to build above the hunger hormone. At which point the robot

enters the sleep state, indicated on graph by the lack of collections spikes in the hunger

hormone, and the robot waits for the built up sleep hormone to decay below the hunger

hormone value before searching for items again.

Graph showing Hormone behaviour in a single robot.
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Figure 4.2: Graph showing the hormone values of a single robot across a selected time period
in single experimental trial. The sleep hormone can be seen to take a much larger value than
the other two hormones. Implemented to create longer periods of sleep when the swarm is
substantially cluttered. Additional behaviours such as successful collection of items or obstacle
avoidance can be seen in spikes in the respective hormone values.
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λA γA αh λh γh λS γS
0.999 0.2 0.005 0.999 5 0.999 0.05

Table 4.1: Parameter values selected for hormone arbitration through the mathematical
reasoning explained at the end of Section 4.3.1

The parameters for the hormone equations (shown in Table 4.1) were chosen empirically to

create a desirable response to environmental factors.

Decay parameters were chosen by considering the amount of time across which the hormones

would have to act. These time scales were chosen based on the approximate expected time of

relevance for each hormone type which when included in Equation 4.4 as the value for n, in

combination with an hsat of 250 (the hormone saturation point) and an hfin value of 1 (the

lowest relevant hormone value considered in the application) appropriate decay values were

produced.

λ = n

√
Hfin

Hsat
(4.4)

Parameters for stimulus weightings (γ) were the applied by considering the value for γ that

would saturate the hormone given continuous stimulation. This was found by using Equation

4.5 with the relevant values λ value and Smax (The largest value the stimulant attached to the

weighting might take). To arrive at a suitable γ value the calculated value was adjusted by

considering how frequently the stimulant might be active, rather than the constant activation

assumed in Equation 4.5.

γ =
Hsat(1− λ)

Smax
(4.5)

Outside of this manual tuning no optimisation was performed to increase the performance

of these parameters. The parameters were also not changed across any of the trials in the

experiments section of this chapter.
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4.3.2 System 2: An Offline Optimised System

To form a comparison for the hormone arbitration controller, a simple timer-based system was

produced. In this system, the functions performed by the hormones designed in the hormone

inspired system were replaced with timers. In order to make this a fair comparison the timer

lengths were optimised using an elitist genetic algorithm (GA). The GA in question was a

fitness proportionate roulette wheel trained across 50 generations with a population of 30.

The resultant best cases were taken as the parameters for the baseline tests. This was an

attempt to simulate a system that had perfect knowledge of its environment and could choose

parameter values prior to deployment, capable of producing competitive results.

The two parameters optimised where avoidance threshold (ThA) and sleep threshold (ThS).

ThA represents the maximum amount of time a robot would spend avoiding obstacles prior to

returning to the nest site. ThS represents the amount of time that would be spent resting in

the nest upon returning. Neither of these values changed during the simulation and instead the

system’s performance relied upon having the best parameters for swarm size and environment

type.

4.4 Experiments

The goal of the following experiments was to identify how the hormone-inspired system and

the timer-based system compared. The success of the hormone-inspired system was dependent

upon the rejection of the following null hypotheses:

H0: The optimised hormone-inspired system’s performance will have no significant difference

from that of an optimised timer-based system in a simple environment (rejected with a

95% confidence level) and will not provide greater energy efficiency on average.

H1: The optimised hormone-inspired system’s performance will have no significant difference

from that of an optimised timer-based system in a dynamic environment (rejected with

a 95% confidence level) and will not provide greater energy efficiency on average.

To test these hypotheses two different experiments were designed. The purpose of these

experiments was to discover:

• Whether System 2 could be optimised for a variety of situations and thus be capable

of changing its parameters to suit an environment with high accuracy, hence it would

outperform System 1.

• If given a highly dynamic environment formed from two areas with a large difference

in food density, would parameters optimised for such a situation take too much of a

compromise to outperform the adaptive hormone system.
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It was predicted that, in the following experiments, it would be shown that it is viable to use a

hormone inspired system, with parameters tuned based on simple principals, to grant a level of

adaptivity to a swarm. It was also predicted that the implementation of this hormone inspired

system would allow the swarm to perform at least as effectively as a swarm with parameters

tuned via genetic algorithm before the start of the experiments, albeit tuned parameters that

are non-adaptive.

4.4.1 Energy Efficiency

The performance of the swarms in each of the experiments was measured by energy efficiency,

calculated with Equation 4.6 where Ee represents energy efficiency, EF represents energy

from total food stored, EC represents total energy consumed by the swarm and EA represents

the total energy available in the environment from food.

Ee =
EF − EC

EA
(4.6)

When food items are returned to the nest they provide the swarm with 2000 units of energy.

This reward value was approximately four times that of the average cost of a single robot

searching for and collecting a food item in the smallest environment, under optimal conditions.

With this much energy as a reward, traffic caused by the swarm and any other energy wasting

difficulties arising from coordination amongst a large group should still allow for a reasonable,

positive percentage value of energy efficiency to use as a comparison for the two systems

tested.

The process for robot energy consumption was kept consistent between the two systems.

However, the rate of consumption was based on the behaviour state of the robot at any given

time step. Each robot consumed 8 units of energy per second while driving forwards, 4 while

turning, 1 while stationary and an additional 2 while carrying a food item. The single unit of

power consumed while stationary accounts for the power needed for basic, crucial functioning

of the robot. By adding power consumption, even when robots were not moving, more value

was added to having robots perform the tasks quickly; Should robots successfully clear the

environment of food items before the allotted simulation time, less energy will be wasted

by sleeping robots. This will provide experimental results more relevant to what would be

expected in reality and means that the system cannot produce the best results by limiting

foraging to a single robot.

4.4.2 Simulation

All experiments were conducted in the ARGoS simulator Pinciroli et al. (2012b) a multi-robot

simulator used to simulate large robot swarms. The simulated robots used in these experiments

116



4.4. Experiments 117

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Mean & Confidence Intervals, EnergyEfficiency

Number of Replications

C
um

ul
at

iv
e 

M
ea

n

n=
21

Figure 4.3: Graph showing the cumulative mean (red line) and confidence intervals (dashed
lines) as the number of replications increases for the 20 robot hormone system used in the first
set of experiments. A vertical line at n = 21 marks where the deviation reaches an acceptable
point (less than 0.05).

where based on the marxbot Bonani et al. (2010) a miniature wheeled robot, assumed in these

tests to be capable of travelling at 10cm/s and identifying food items within a 2m radius.

Consistency Analysis

The number of replicates required for consistent results was determined by performing a

cumulative mean test as specified in Robinson (2004). This method was used over the A-Test

previously used in Chapter 3 to identify the number of required repetitions as it required

considerably fewer data sets to perform, finding an acceptable number of experimental trials

much faster.

This method of testing uses the cumulative mean of a data set, along with a calculated

confidence interval to give an estimate of the range in which the true mean lies. These tests

indicated that amongst all of the swarm sizes and systems in the first experiments, 21 trials

would be the minimum number of replicates required for the results of the experiments to

be an accurate representation of the simulation responses (illustrated in Figure 4.3). For this

reason 25 replicate experiments were performed in the first set of experiments.
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Figure 4.4: Graph showing the cumulative mean (red line) and confidence intervals (dashed
lines) as the number of replications increases for the 20 robot hormone system used in the
second set of experiments. A vertical line at n = 183 marks where the deviation reaches an
acceptable point (less than 0.05).

In the second set of experiments, involving a more complex environment, the cumulative mean

test showed that a minimum of 183 repetitions would be required for reasonable consistency

(illustrated in Figure 4.4). Thus 185 repetitions were selected to ensure consistency. The large

increase to the number of required trials was expected due to the increase of arena complexity

and environmental dynamics associated with the environment of the second experiment set.
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Figure 4.5: Simulated ARGoS environment for experiment 1. The grey area represents the
nest site, the black spots mark the location of food. 20 robots can be seen in the nest area
awaiting the beginning of the experiment.

4.4.3 Investigating The Effect Of Swarm Density

Environment

The environment for the first set of experiments was an octagonal arena (this arena shape has

previously been used in foraging research Liu et al. (2007); Lau (2012)). The arena measures

8mx8m and the northern most 2m of arena is coloured grey to represent the nest site. Outside

of the nest site 100 food items have been randomly distributed (represented by the black

circles as seen in Figure 4.5).

Experimental setup

In this experiment swarms of 5, 10, 15 and 20 robots were deployed in the nest area of the

foraging environment. Each trial lasted 1500 seconds (with each time step being 0.1 seconds)

or until every food item was collected and returned to the nest. The energy efficiency of

the swarm was measured at the termination of the simulation and used as the measure of

performance. By allowing the system to terminate early upon completion of the task, the

effectiveness of the swarm was challenged in addition to the efficiency. This meant that a
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System
Swarm Size Avoidance Counter (ThA) Sleep Counter (ThS)
5 1992 40.9
10 34.9 1960
15 48.9 3672
20 35.4 4510

Table 4.2: System 2 parameters optimised via genetic algorithm across 30 generations for
experiment 1. These results show that, as would be expected, the smallest group of robots
require low levels of sleep with a large resistance to avoidance, allowing for continual
operation. Groups larger than this required relatively low avoidance counters, allowing robots
to return to the nest after brief collisions. In terms of sleep counter, times gradually increased
with swarm size, reducing traffic outside of the nest to account for the increased population.

swarm capable of collecting food items quickly could also be rewarded, rather than completing

the task and wasting energy waiting for the end of the simulation timer.

As mentioned in Section 4.3.2, the timer-based system was optimised for each swarm size

before the experiments, these optimised parameter values are shown in Table 4.2.

Results

Observing the median performances illustrated in the box plots shown in Figure 4.6 it can be

seen that the hormone-inspired system has an increased performance relative to the timer-

based system in swarm sizes of 5, 10 and 15. Performing a Wilcoxon test on the data sets

shows that this increase in performance is significant in the 5 and 10 robot case with p

values (shown in Table 4.3) lower than 0.05, rejecting H0. These results also show that,

in general, efficiency decreases as the swarm size increases. This was expected, as a more

cluttered environment is more difficult to navigate. However, as the swarm size increased the

performance of the hormone-inspired system also decreases relative to that of the timer-based

system, resulting in a significantly lower performance in the 20 robot case. This suggests that

the initial parameters chosen for the hormone-inspired system are more suited to swarms of a

smaller size.

The significant increase in performance of the hormone system at smaller swarm sizes,

compared to the timer-based system, shows that the hormone-inspired system is capable

of adapting parameters to small environmental changes. The dynamics of removing food

items in this case provided a distinct enough change in environment to allow the timer-based

system to adapt mid-task and thus perform better. Even the 15 robot case, in which the

hormone-inspired system achieves no significant difference in performance to the timer-based

system, shows the benefits of a hormone arbitration method. The hormone-inspired system is

capable of achieving these results having no knowledge of the environment before performing

the task.
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Figure 4.6: Box plots showing energy efficiency in the simple environment used for experiment
1 for both the Hormone inspired system and the timer-based system. The graph shows the
results for swarm sizes of 5, 10, 15 and 20. The results show that the Hormone-inspired
system is capable of obtaining competitive results versus the GA optimised system without the
Hormone-inspired system having received bespoke optimisation itself.

Swarm Size P-value
5 P < 0.001

10 P < 0.001
15 0.4034
20 P < 0.001

Table 4.3: Wilcoxon rank sum tests comparing the two systems for each swarm size with
results for energy efficiency taken from the first, simpler, experiment environment. Significant
difference can be seen at all swarm sizes with the exception of 15.
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Figure 4.7: Simulated ARGoS environment for experiment 2. This environment is larger at
8mx15m and features a wall, removed at the 500 second point in the experiment to future
diversify the arena properties.

In contrast to this, the significantly lower performance with a swarm size of 20 may be an

issue. In the next experiment, the 20 robot swarm will be examined to identify whether a

larger swarms cause a problem for the hormone system Vs the optimised system, even in a

more dynamic environment.

4.4.4 Investigating The Performance Of Large Swarms In A Highly Dynamic

Environment

Experimental setup

In the experiment performed in Section 4.4.3 it appeared that the swarm implementing the

hormone inspired system was able to modify its behaviour according to the dynamics induced
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by the consumable food sources. This allowed the swarm to achieve competitive energy

efficiency verses an optimised system. After observing this behaviour the following set up

was devised to further test the reaction of the hormone arbitration system to environmental

dynamics. The notable changes made to the environment (shown in Figure 4.7) to test the

hormone arbitration system’s reaction to dynamics are as follows:

1. Zones of two different food densities were included, separated by a wall, to create a

stark contrast in food availability.

2. The environment was expanded, now measuring 8x15 meters, to accommodate for the

second search space.

3. The dividing wall, formed from the lower three walls of the octagon, was removed 500

seconds into the experiment to enable travel between the low food density area and

the high food density area. A time of 500 seconds was chosen to enable travel between

areas at a time past the point at which the hormone system would already have begun

to settle, requiring reaction from the hormone system to find a new settling point.

4. To account for the larger environment and increased travel time, the maximum length

of the experiment was extended to 3000 seconds.

With the listed changes implemented, both of the tested methodologies would be further

challenged. The hormone-inspired system would have to quickly adjust values to obtain

effective performance, compensating for time and performance lost due to initial poor values.

While the the timer-based system would have to produce a robust set of parameter values to

perform well with greater environmental contrast.

The parameters of the timer-based system were re-optimized for the new environment. Using

the same genetic algorithm as used to optimise parameters for the first experiment, the values

shown in Table 4.4 were chosen for ThA and ThS .

It is important to note the parameters for the 5 robot swarm. In such a large environment

the most efficient method for food collection was to never enter the sleep state and always

persist in the environment until a food item was discovered. With a ThA greater than 1000,

robots would never return to the nest unless they had a food item and with a ThS of 0, upon

returning to the nest they would never sleep.

Results

The energy efficiency of both systems in this experiment is significantly reduced, even

producing some results with a negative efficiency (i.e. more energy is used than gained

from foraging). The reduction in performance was expected given the increased distance the

robots were required to travel to obtain food.
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System
Swarm Size Avoidance Counter (ThA) Sleep Counter (ThS)
5 >1000 0
10 646 6612
15 120 6609
20 101 7388

Table 4.4: System 2 parameters optimised via genetic algorithm across 30 generations for
experiment 2. The second experiment shows a clearer gradient of values for avoidance counter.
It is clear that robots get less resistance to collision as the swarm size increases, promoting
the more frequent return to the nest of robots in more dense populations. Conversely, the
sleep counter shows little difference within larger groups of robots, taking a value of 0 for
the smallest. This implies that robots in the smallest group should never sleep to get the best
performance. However, in groups of more than 5 robots they will sleep for approximately a
fifth of the experiment time if they enter the avoidance state for long enough to return to the
nest.

Swarm Size P-value
5 P < 0.001

10 P < 0.001
15 P < 0.001
20 0.145

Table 4.5: Wilcoxon rank sum tests comparing the GA optimised and Hormone based systems
for each swarm size with results for energy efficiency taken from the second, more dynamic,
experiment environment. A significant difference can be seen in all tested swarm sizes except
20.
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Wilcoxon tests between the Hormone and Timer systems of the same swarm size (illustrated in

Table 4.5) show significant difference in swarm sizes of 5 to 15, but no significant difference in

the 20 robot example. Observing the results displayed in Figure 4.8 the significant difference

in the 5 robot example is clear, with the Timer-based system outperforming the hormone

system. The relatively weak performance from the hormone system in this case is most likely

due to the fact that the best performance from the optimised timer system resulted from never

entering the sleep state. The hormone system would take some time to adapt towards this

solution, requiring that each robot proved consistently successful at food retrieval, building

the Hh to prevent robots returning home and ensuring that sleep periods are very short.

However, with the larger swarm sizes of 10 and 15 the environments become more dynamic

with sleep state allocation becoming more important with a more crowded environment and

the increased rate of food collection. Because of this, adaption becomes more effective verses

the small swarm size where no robots are required to sleep for optimal function. As a result of

this more effective adaptation, a significant increase in performance relative to the timer-based

system is found. The strong performance of the hormone system at these swarm sizes shows

that an online system can not just achieve the performance of an optimised system, but the

sensitive adaptation provided by the hormone system can allow it to outperform an optimised

case. This greater performance can be achieved as the hormone system reacts to smaller

elements in an environment providing specific, context-based solutions to issues as they are

encountered.

As a result of the strong performance and significant difference in the results produced by

swarm sizes of 10 and 15, the null hypothesis H1 can be rejected in these cases.

In contrast, the results produced by the swarm size of 20 in this experiment were found to be

statistically similar to one another. While not outperforming the optimised system, this is an

improvement from the first, simple experiment. The statistical similarity in the two systems at

this swarm size shows that given a dynamic enough environment, online hormone adaptation

can still produce good results without optimisation or re-calibration, even when given a large

number of robots to control.

4.5 Chapter Summary

This chapter has shown that an adaptive, online hormone arbitration system can be used

to increase performance (in this case energy efficiency) while foraging in environments of

varying robot and food densities. In swarms of relatively small size the performance increases

were significant when compared to a system with optimised but static parameter values. The

observed performance of the hormone-inspired system in a simple environment depreciates as

the size of swarm increases.
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Figure 4.8: Box plot results showing the energy efficiency for swarm sizes of 5 to 20 in the
larger, more complex, experimental environment. Even in this more complex environment, the
Hormone-inspired system is capable of obtaining competitive results versus the GA optimised
system without the Hormone-inspired system having received bespoke optimisation itself.
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In a more complex arena, the Hormone system performed better relative to the timer system

at higher swarm sizes, only struggling to create a competitive performance in the 5 robot

experiments. This was partially due to the fact that the timer-based system was easy to

optimise in this case, with robots never needing to sleep or return to the nest site unless to

drop off food.

While the performance with larger swarm sizes in the second experiment were better than the

first, the relative performance of the hormone system did decrease to match the timer-system

in the 20 robot case. This indicates that in order to obtain the best performance from a swarm,

an appropriate method for task division and swarm dispersion may be required. The next

chapter will aim to amend this by investigating if virtual hormone systems can be used to

evaluate the performance of individual swarm members, relative to others, and subsequently

allocate swarm members to an area in which they would perform a task the best. This should

alleviate congestion in a more productive manner than the allocation of ’Sleep States’.
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Chapter 5

Virtual Hormones for Task Allocation

by Self Identifying Traits

5.1 Introduction

Adaptation is commonly used as a technique for improving the performance of swarm robot

systems Bahceci et al. (2003). Commonly, adaptation is performed before a task begins, tuning

robot parameters to get an optimal performance for a specific problem as is the case for

more genetic algorithms. However, in many situations it is not possible to know the exact

requirements of a task and thus it is not possible to perform this tuning before the task begins.

Systems have been proposed that attempt to transfer offline optimisation to operate during

a task. Some studies have investigated migrating the concept of genetic algorithms, which

are used frequently in offline optimisation, to allow swarms to adapt mid-task Haasdijk

et al. (2014); Bredeche et al. (2012). This adaptation is achieved by giving each swarm

member their own virtual genome. These genomes directly affect the behaviour of individual

robots and by sharing genetic information with one another virtual generations are produced.

By choosing appropriate fitness parameters, these genetic systems can promote successful

genomes to adapt swarms to a task and obtain a better performance. Another method is to

enable members of a heterogeneous swarm to chose tasks based on their abilities Jones et al.

(2006). In this system, swarm members bid for tasks they are capable of performing and then

work from a ‘play book’ to complete them. Working in this manner allows swarms to form

from robots of very different types, creating what the study refers to as a ‘pickup team’.

These online adaptation techniques prove successful within the context of the study’s goals

even with robots of mixed ability. However, the previously mentioned studies all require the

members of a swarm to have an understanding of at least their own abilities. Having such an

understanding is not always possible. During long term deployment factors may change: tires

may wear down or robots may experience motor or actuator failure. These factors may change
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the abilities of individual robots, having a negative effect on their interact with one another or

the environment. Changes such as these will most likely cause reduction in performance over

extended periods of time unless each robot in the swarm is capable of receiving an up to date

diagnosis of their capabilities, using this to modify their behaviour to the most fitting option.

Moreover, there may be situations in which there is no opportunity to inform a robot of its

capabilities before a task starts. The Triangle of Life project Eiben et al. (2013) proposed a

system in which robots are developed without humans in the loop, suggesting methods that

would have robots in a swarm share both morphology and control systems through virtual

genomes. These genomes are then shared in a reproduction-like manner. In the iterative

design presented in these systems, ‘infant’ stage robots have no context for their own abilities.

The combination of parent robot morphology, control system and external mutation leave the

new generation of robot’s abilities ambiguous.

In the aforementioned cases, greater performance could be achieved with a method of

adaptation that does not require the swarm to have any initial understanding of their own

capabilities. In this chapter a method is presented that achieves this, instead of relying on an

initial understanding of their abilities, robots implicitly gain information about themselves

and other robots by monitoring the values of virtual hormones.

A system utilising virtual hormones was proposed in previous work, capable of arbitrating

roles within a foraging swarm Wilson et al. (2018). The previous system used hormone values

to select either a low-power sleep state or a searching state for each robot with the goal to

conserve the overall power consumption of the swarm. The study found that an adaptive,

online hormone arbitration system can be used to increase performance (energy efficiency

in this case) while foraging in environments of varying swarm sizes and food densities. In

swarms of relatively small size the performance increases were significant when compared

to a system with optimised but static parameter values. The performance observed in the

hormone-inspired system depreciated as the size of swarm increased. However, the swarms of

large sizes were still capable of outperforming a simple but optimised system when introduced

to an environment with more pronounced dynamic effects. The environmental change used to

demonstrate this came in the form of a removable barrier which, 5000 tick into the experiment,

was removed to reveal an area of high food density.

In this chapter a new hormone-inspired system will be presented that will deal with more

complex foraging examples and arbitrate the states of multiple robot types within a swarm.

Arbitration will entail the decision between environment types, with each robot in the swarm

using hormone values to make their environmental choice. Using a hormone responses to

dictate environmental preference is not unheard of, there are natural examples of animals

exhibiting exactly this. For example, desert amphibians leave spawn in pools that are

intermittently filled and then dried depending on weather. Based on this environmental

stimuli (i.e. water availability) hormone levels in the spawn change, accelerating or inhibiting
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metamorphosis based on the need to stay or leave the pool they are currently in Denver

(1999).

The system proposed in this work will not only take into account environmental stimuli, but

will also use various transmitted hormone values from other swarm members. These values

will then be used to gauge the capabilities of each robot individually during the task. With the

information gained from the hormone values, the new system will allocate behaviour states to

each robot based on how suited they are for the task.

The system presented in this Chapter will achieve a contextual awareness and environmental

preference using a similar structure to the hormone examples presented in previous chapters.

Equations produced from a decay, reducing the level of the hormone value over time, stimuli,

a condition which when met increases the level of the hormone value, and potentially the

inclusion of inhibitors, triggered by interactions in the same way as stimuli, but instead

decreasing the hormone level.

The combination of decay and stimuli allow hormone values to fluctuate based on interactions,

keeping a live record of the factors related to each stimuli. By using a variety of hormone

values, each triggered by different stimuli, the relationships between differently affected

hormone values can be examined to extrapolate information about environmental aspects.

This information can then be used to educate or create preference within a swarm.

5.2 Hormone-Inspired Behaviour Arbitration System (HIBAS)

The hormone-inspired controller presented in Chapter 4 arbitrated states for a homogeneous

swarm, allowing each robot to choose between sleeping at a nest site or searching the

environment for food. By making this choice, the number of robots foraging was scaled by the

hormone system to prevent large swarms from cluttering the environment. By reducing clutter,

collisions between robots were less frequent and thus the swarm collected food in a more

energy efficient manner. To build upon this work, the new system (HIBAS) removes the sleep

state, instead the swarm is presented with the option to explore different environments. In

addition to this the swarm is modified to contain different robot types, some more capable in

one environment than others. With no prior knowledge of their capabilities individual members

of the swarm are able to identify their strengths and form a preference for environment by

using the hormone set shown in equations 5.1, 5.2 and 5.3.

Hx(t) = λ1Hx(t− 1) + γ1Hfx + γ2Estim (5.1)

Hfx(t) = λ2Hfx(t− 1) + γ3Fx (5.2)
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Symbol Meaning
Hx Hormone for suiting to environment x.
Hfx Food discovery hormone for environment x.
Hc Hormone for environment/robot collisions.
λ1 Acts as a decay affecting all environmental preference hormones (Hx),

taking a value between 0 and 1.
λ2 Acts as a decay affecting all environmental preference hormones (Hfx),

taking a value between 0 and 1.
λ3 Acts as a decay affecting all environmental preference hormones (Hc),

taking a value between 0 and 1.
γ1 Weighting of Hfx that acts as stimulus to Hx.
γ2 Weighting of Estim that acts as stimulus to Hx.
γ3 Weighting of Fx that acts as stimulus to Hfx

γ4 Weighting of C that acts as stimulus to Hc

Estim An integer variable that counts how many robots in the same state are
transmitting suiting hormones that are larger than the detecting robot’s.

Fx Boolean variable that becomes true for a single time step while picking up a
food item.

C Boolean variable that becomes true if something encounters the robots
obstacle avoidance sensors.

t Current time step in experiment.

Table 5.1: Key for the symbols used in the hormone equations.

Hc(t) = λ3Hc(t− 1) + γ4C (5.3)

The subscript ’x’ in these equations is used to denote instances where duplicate functions

and variables will have to be made. In order for the system to operate, robots require one of

these equations for each environmental option they are presented with. By numbering these

environments and creating hormone values that relate to each environment, copies of Hx

would become H1, H2 and H3 relating to environments 1, 2 and 3 respectively. Other symbols

used in the hormone equations are defined in table 5.1.

Hx shown in equation 5.1 is the primary hormone for controlling environment preference. In

a two environment example each robot in the swarm will have an H1 and an H2 value. When

arriving at a nest site the robot will chose between going to environment 1 or environment

2 based on which of the two hormone values is greater. During a task every Hx value is

broadcast from every robot, allowing other members of the swarm to compare hormone

values. Hx values are the only values broadcast with Hfx and Hc being used only internally

by each robot.

In a two environment foraging example (Illustrated in Figure 5.1), considering a robot

with a preference for environment 1, while exploring that environment EStim would keep

track of how many robots are transmitting an H1 value higher than the robot’s own. EStim
then increases the value of every Hx value other than the hormone giving preference to
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the robots current environment. In this example H2 would be affected by EStim while H1

would not be. This system allows robots to constantly compare their performance in their

current environment and, if their performance is relatively poor given the context, start

building a preference for another environment. Providing stimuli to hormones unrelated to

the environment the robot is currently exploring is crucial. Without this the decay present in

each hormone would slowly bring all non-stimulated hormones in the system to 0, preventing

any preference for an environment from forming outside of the initial environment choice.

Figure 5.1: Two robots, A and B, operating in environment 1. Robot A has successfully
discovered a food item and as a results its H1 value is increasing. Robot B has entered
the environment and is under performing relative to Robot A as indicated by its lower H1

percentage. These robots transmit H1 values and as Robot B receives an H1 greater than its
own H2 is stimulated, as Robot A receives an H1 value lower than its own no such stimulation
occurs and H2 is left to decay. The net result is an encouragement for Robot B to change
preference to environment 2 and for Robot A to continue operating in the same environment.

Hfx is a stimuli hormone, given two environments, Hfx is present in the system as Hf1 and

Hf2, feed into H1 and H2 respectively. The purpose of Hfx is to create a stimulus for Hx

which operates across a greater length of time than that of the initial stimulus trigger. This is

accomplished by taking the initial impulse of the stimulus received when a robot picks up a

food item (Fx) and providing a decaying the value over time.

Stretching the stimuli over an additional length of time is important due to the repelling
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nature of the Estim variable. If the Hfx hormone value was to immediately increase upon

picking up food, it would immediately be at its greatest value. This would mean that almost

any robot that had not just picked up a food item would be encouraged to change environment

preference. With the slow increase provided by Hfx the system is able to compare performance

between robots no matter their stage in the task. This increase also better mimics the stimuli

found in biology. Typically a fast acting neurological signal will trigger the production of a

hormone in one organ which in turn will change the production of hormones in other organs,

modifying the behaviour of the whole organism.

The hormone Hc is an element of the system kept from previous work Wilson et al. (2018).

Its purpose is to monitor the frequency of collisions in the environment, returning robots to

the nest should they encounter an area too cluttered with objects or other robots. Frequency

of collisions is monitored with a slowly decaying hormone, stimulated by a Boolean value, C,

triggered whenever the robots proximity sensors detect an entity. Hc is compared to every Hx

value the robot currently stores. Should Hc exceed any of these values, the robot returns to

the nest.

Figure 5.2 shows the hormone value dynamics when the swarm of robots are able to chose

from three environments (one North, one South and one West). The diagram shows the

robot beginning exploration in the west environment, though not performing particularly

well. At just after 100 ticks of experiment time it appears that the robot swaps to explore

the north environment (the environment this particular robot is designed for) where a good

performance is then seen with multiple items returned to the nest (indicated by the arcing

increases in hormone value). After 500 ticks these items become scarce, preventing success

and reducing the hormone value for the environment currently being explored. It is foreseen

that when there are minimal items available for collection, the hormone system will not be

able to accurately allocate robots to their most suitable environment. However, this is not

an issue, as a lack of items would indicate the completion of a foraging task, thus no longer

requiring environment categorisation.
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Figure 5.2: A graph displaying the dynamics in the hormone values used in an experiment
in which a swarm of three different robot types had an option of three varied environments
to forage in. Curved increases in hormone value seen in this graph typically represent the
collection of an item, while more abrupt increases will be caused by other robots transmitting
hormone values.
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Environment Floor Type
Wheel Type Wood Speed (cm/s) Grass Speed (cm/s)
Wood Wheel 30.9 18.8
Grass Wheel 24.6 21.1

Table 5.2: This Table lists the speeds recorded when each of the wheels were tested in hardware
examples. The figures listed represent the average speed recorded across 10 repetitions.

5.3 Creating a Heterogeneous Swarm

In order to test a system in simulation with robots capable of self classifying, robots of

different capabilities had to be identified in hardware that could provide a realistic reference

point for parameters in the simulated experiments. To keep the system simple, an existing

swarm formed from the psi swarm robot Hilder et al. (2016) developed by the York Robotics

Laboratory was altered to allow the attachment of different wheel types to their drive train. A

disparity in robot capability was then created by designing different wheel types that could

be 3D printed and easily attached, creating a heterogeneous swarm from groups of robots

with the same fundamental construction. Once each of the designed wheel types were printed,

they were tested in trials of 10. The average speeds when moving in each environment were

recorded, allowing loss of traction and instability in these terrains to affect these speed values

(shown in table 5.2).

5.3.1 Wheel Type: Wood Environment

The first wheel type (shown in figure 5.3) was a simple design, the only constraints being that

the wheels would have to: allow a robot to travel quickly on a wooden surface and the robot

should at least be capable of entering and exiting the grass environment.

The first factor to consider in designing the wheel was the diameter. By increasing the wheel

diameter from the 31mm of the standard robot to 60mm, the robot would gain an additional

14mm clearance between the bottom of the robot and the ground (initially 6mm, now 20mm)

and have a largely increased wheel circumference. This additional circumference allowed the

robots to travel faster and, with the added height, they were able to effectively transition from

a wooden floor to the deep grass whereas previously this was impossible.

The next consideration was the wheel width, given that the wheels were being designed for a

smooth surface, there was no real benefit to having wide wheels, as such a thickness of only

3mm was chosen. These thin wheels reduced the amount of force required to turn them by

minimising weight, allowing them to accelerate more quickly.
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Figure 5.3: Wheel designed to specialise in the environment with a wooden floor. The wheel
has a large diameter, creating a higher top speed as well as a lightweight, thin and hollow
design to allow for quick acceleration. The wheel affixes to the robot via bolts attached
through the three holes in the middle of the design. The wheel was designed in Autodesk
Inventor Professional 2018.

5.3.2 Wheel Type: Grass Environment

The second wheel (shown in figure 5.4) was a more complex design as it had to perform well

in the grass environment. To achieve this, a spoke-like design was produced. These spokes

gave the robot additional traction in soft grounded environments, digging into the surface and

catching on imperfections in the ground to propel the robot forwards. At 14mm this wheel

was also much wider than the wheel designed for the wooden environment. This additional

width made the robot much more stable when travelling through the rough grass environment

and, with more area in contact with the ground, made it less likely for wheels to fall into

divots in the environment, causing momentary wheel slip.

5.3.3 Wheel Type: Conceptual

This wheel was not designed in hardware but instead was created as a theoretical competitor

to the first two wheels. This wheel was designed to travel at a constant speed in any

environment. This speed was lower than the slowest speed in either the grass or wooden

floored environments but would still travel at the same speed in areas of very difficult terrain

where the other two robot types would be much slower. This was an attempt to simulate a

robot with either large tracks, very wide wheels or even a robot with hovering capabilities.
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Figure 5.4: Wheel designed to specialise in the environment with a grass floor. The spoke-like
outer rim of the wheel provided traction for the wheel, preventing slippage when travelling
over uneven surfaces. The substantially wider wheel also provided stability, preventing the
robots from moving off course when encountering small bumps. The wheel affixes to the
robot via bolts attached through the three holes in the middle of the design. The wheel was
designed in Autodesk Inventor Professional 2018.

Parameter
Symbol

λ1 λ2 λ3 γ1 γ2 γ3 γ4

Parameter
Value

0.999 0.999 0.995 0.005 0.1 50 0.2

Table 5.3: Table listing the parameters used in all software experiments. Parameter symbol
meanings are described in Table 5.1

5.4 Experiments

To test the proposed HIBAS two experiments were designed. The goals of these experiments

were to identify the categorising capabilities of the HIBAS and the performance increases such

a system may give. In each of the experiments the swarms are given a foraging challenge.

Their task is to discover, pick up and return food items to a nest area. Foraging is a well studied

task in swarm robotics and has previously been found to provide a strong experimental testbed

for coordinated systems and acts as a convenient abstraction for real-world applications Lu

et al. (2016). By choosing foraging as the task for this experiment it is possible to build upon

previous work in which the effect of hormone systems on foraging tasks were examined Wilson

et al. (2018).

Success in these experiments will be measured by the percentage of correct categorisations

made by the systems and by the rate at which food is collected.
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5.4.1 Parameters

All of the following experiments were conducted with the parameters listed in Table 5.3. Decay

parameters were chosen by considering the amount of time across which the hormones would

have to act, in the case of the suiting hormones (Hx)) item collection should be relevant across

a large time scale. This time scale was arbitrarily chosen as 5000 ticks in this experiment,

which when included in Equation 5.4 in combination with an hsat of 100 (the hormone

saturation point) and an hfin value of 1 (the lowest relevant hormone value) a decay value

of 0.999 is produced for λ1 and λ2. A similar calculation was conducted for the collision

hormone though instead the relevant time scale for collisions was chosen at 1000 ticks to

produce a λ2 value of 0.995.

λ = n

√
Hfin

Hsat
(5.4)

γ =
Hsat(1− λ)

Smax
(5.5)

Once the decay values were chosen, the parameters for stimulus weightings (γ) were assigned

by using Equation 5.5. This equation takes into account the maximum hormone value that

could be present Hsat, the decay rate and the maximum value a stimulus might take (Smax). A

gamma value is then produced that will only allow the hormone values to saturate if a constant

input stimulus is given at maximum magnitude (implying the worst of best case scenario for

the performance of the hormone value). An exception to this method of calculation is found

in gamma3, as this weighting attributes food collection it will be activated, at most, once

per search. As a result of this gamma3 immediately adds a large quantity of stimulus to the

relevant hormone value and if said hormone is not able to decay quickly enough and saturates,

it simply means that there is an abundant food source very close to the nest site of which all

robots in a swarm should be taking advantage of.

5.4.2 Simulation

All experiments were conducted in the ARGoS simulator Pinciroli et al. (2012b) a multi-robot

simulator used to simulate large robot swarms. As previously mentioned the robots used in

these tests were assumed move at the speeds shown in table 5.2 based on the simulated wheel

type and terrain. Additionally, it was assumed that each of the robots was equipped with a

food sensor, allowing them to identify food items within a 2m radius.

Each experiment was set up to run for 1000 seconds, each simulation time step was 0.1

seconds with samples recorded for every 10 seconds of simulated time.

The number of repeat trials required for consistent results were determined via cumulative
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mean tests. These tests and the number of replicates required are detailed in Section 5.6.1.

5.4.3 Comparison System

To provide baseline data in these experiments a random arbitration system was produced. This

system performs the exact same tasks as the HIBAS with the exception of the two following

changes:

Random Arbitration

Rather than using a series of hormones to decide which environment should be explored by

each robot, each robot picks randomly giving each environment an equal weighting.

Collision Hormone Threshold

With no Hx values to compare Hc against the system instead uses a flat rate of 10 as the

threshold value. If this value is exceeded before a robot finds a food item, the robot returns to

the nest and picks another environment to explore at random. This threshold value indicates

that the robot has been colliding with a robot or obstacle for a notable amount of time and

will ensure robots do not get stuck in a single environment.

5.4.4 Experiment 1 - Swarm Preference Between Two Environments with Static

Features

The swarm in the experiment is made up of 7 robots with the wheels specialising in wooden

floors and 7 robots with the wheels specialising in grass flooring. The environment for this

experiment (shown in figure 5.5) measures 8mx20m, split into three parts. The two larger

areas are both 8mx9m containing 50 food items, each of these areas has a different floor type.

The third section is a strip down the middle acting as a nest site measuring 8mx2m.

5.4.5 Experiment 2 - Swarm Preference Between Two Environments with Mid

Experiment Terrain Swap

This experiment was designed to test the robustness of the categorisation technique. Using the

exact same setup as the first experiment, this test had only one difference: when the simulation

reached 100 seconds the environment floor types switch. This sudden change should test

the swarms ability to categorise once already acclimatised to the environment. This change

could represent a landslide or other catastrophe, clearing one side of a task environment but

making the other more difficult to travel in. The percentage of correct categorisations from
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Figure 5.5: Screenshot of simulation environment used in experiment 1. Black dots represent
food items, white ground represents wooden flooring, green represents grass and the grey area
in the centre represents the nest site. Robots of different types (represented by red and black
wheels either side of the robots) can be seen moving to and from respective environments,
some carrying food items (represented by black rings above them).

this experiment should be expected to suddenly drop at the 100 second point. A successful

system will then steadily increase back to the same or greater categorisation percentage than

that of the switch point as the system re-adapts.

5.4.6 Experiment 3 - Swarm Preference Between Three Environments With

Static Features

The third experiment is a more challenging test of the system. The arena is much larger (see

Figure 5.6), introducing a third floor type for robots to explore with the same dimensions

(8mx9m) as the environments in the first experiments. The new environment also included

an additional 50 food items, making for a total of 150 in the whole arena. The nest area

is also expanded in this arena, measuring 8mx8m to give an equal perimeter to each of the

three environments. This experiment also sees the addition of a third robot type bringing the

swarm composition to: 5 robots with grass specialising wheels, 5 robots with wood specialising

wheels and 5 robots with wheels specialising in the difficult terrain (red flooring). In the new

environment, the robots that specialised in the grass and wooden floored environments moved

at 11.1cm/s and 8.8cm/s respectively, both 10cm/s slower than in the grass environment to

account for additional difficulty.

The purpose of this new environment, while having measurements from hardware, is to give

an example of a hazardous area in which two thirds of the swarm are not able to viably

operate in. With such a large disparity in ability, successful categorisation of robots will benefit

the overall performance of the swarm as items are foraged faster and more efficiently.
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Figure 5.6: Screenshot of simulation environment used in experiment 3. Black dots represent
food items, white ground represents wooden flooring, green represents grass, red represents
very rough terrain and the grey area represents the nest site. Robots of varying type (indicated
by the presence of red, green and black wheels) can be seen moving to and from respective
environments, some carrying food items (represented by black rings above them).
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5.5 Results

5.5.1 Experiment 1 - Swarm Preference Between Two Environments With Static

Features

The results from the first experiment are shown in Figure 5.7. From this graph it can be

seen that in experiment 1 the HIBAS outperforms random arbitration in terms of ability to

categorise. For the first few samples it appears as though the hormone system performs

identically to the random system. To confirm this Wilcoxon tests were performed, comparing

the categorisation percentage datasets recorded for both systems at each time step. These tests

showed that the 600th time step was the first sample with a significant difference between

each systems results, giving a p value of less than 0.05. This marked the point at which the

HIBAS and random system diverge. This initial starting period is to be expected; it will take

time for the HIBAS to begin adapting to the new environment. From the 600th time step

onwards it can be seen that the random arbitration remains with a correct categorisation

percentage of roughly 45% while the the hormone-inspired arbitration increases gradually,

peaking at just over 75%. Showing that the HIBAS gives a large improvement to categorisation

over random allocation.

After this peak, the HIBAS starts to decrease in its ability to categorise environment, falling

gradually to just below 50% and then fluctuating near the performance of the random system.

This can be explained by the reduction in food items in the environment. As the source of

primary stimuli reduces, the hormone system has no reward for item discovery and is therefore

unable to accurately categorise. Once this source of stimuli is fully depleted, the system will

behave essentially the same as a system arbitrating at random. This drop in performance is

of no concern as, when the task nears completion, there is little to no need for the system to

categorise successfully.

5.5.2 Experiment 2 - Swarm Preference Between Two Environments with Mid

Experiment Terrain Swap

In the second experiment, the average performance between random system and the HIBAS is

less disparate than the first (shown in Figure 5.8). By swapping the arena floor types just as

the system starts to acclimatise, the hormone values must be re-evaluated by the swarm. This

re-evaluation can be seen between the 1000th time step, where the switch occurs, to just after

the 5000th. During this time period, robots reallocate themselves as their hormone values

decay and it becomes apparent that their performance is lacking in their current environment.

After the 5000th time step, in a similar manner to the first experiment, there is not enough

food left in the environment for the robots to appropriately categorise themselves and as a

result, the percentage of correct categorisation begins to tend towards random selection.
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Figure 5.7: Graph showing the mean results across 150 trials in experiment 1. The performance
of both the random and hormone-inspired system is shown in terms of correct categorisation
and food items foraged. The small difference between food collection rate verses the large
disparity in allocation type shows that, even given a small difference in collection capability,
categorisation is still possible using the hormone system in this environment.
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Figure 5.8: Graph showing the mean results across 150 trials in experiment 2. The performance
of both the random and hormone-inspired system is shown in terms of correct categorisation
and food items foraged. The large flip in correct categorisation percentage seen in the hormone
system illustrates the point at which the environment types swapped. The hormone system
is subsequently able to recover from this, eventually outperforming the random system once
more.

These first two experiments shared some commonality in that the rate of food collection was

marginal between system types. Performing Wilcoxon tests on the food collection data at every

time step showed that, for almost all of the time steps past the 150th, there was a significant

difference in the food collection data. However, performing an effect magnitude test using the

A-test Alden et al. (2013) of the 100 time steps sampled for each experiment, only 22 datasets

from the first experiment and 0 datasets from the second had a significantly large difference

(an A-test score of over 0.75) from the random systems datasets. This lack of difference in

food collection rate is due to the minimal difference in speed between the two robot types.

This actually speaks to the benefit of the HIBAS as it was capable of assisting robots in their

choice of environment even with a small difference in robot ability.
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5.5.3 Experiment 3 - Swarm Preference Between Three Environments With

Static Features

The third experiment shows what the system is capable of achieving in a more complex system

and how the HIBAS can give a large increase to performance when there are larger disparities

in robot ability.

Even given the added complexity in this final experiment (results shown in Figure 5.9), the

HIBAS behaves similarly to the previous two experiments. The categorisation percentage takes

an initial dip and then begins to diverge from the percentage of the random categorisation.

However, in this experiment the percentage of robots correctly categorised fluctuates at

around 40% which is much lower than the previous tests. With an additional robot type and

environment choice this is still a good result as the HIBAS still outperforms the random system

by upwards of 10% once the system has adapted.

The third experiment highlights two other key features of the hormone-system. First, due to

the increased number of food items in the three environment experiment, not all of the food is

foraged. As a result of this, the categorisation percentage does not taper off by the end of the

experiment. Second, due to the increased difference in robot capability, for the first time in

these experiments there is a clear difference in food collection. This is confirmed by running

A-tests for each of the 100 time steps sampled showing a significantly large difference between

the food collection in the two systems across all results from the 1500th time step onwards.

The results for the third experiment show that, given a large enough difference in capabilities,

the HIBAS can provide a large improvement to foraging collection by correctly categorising

robot ability to environment.

5.6 Analysis

Surplus to the results confirming the performance of the systems presented in this chapter,

this section conducts additional analysis to verify the validity of the system. Starting with a

consistency analysis, this section identifies the number of replicate results required for results

that accurately represent the performance of the system. The section then looks into the

scalability of the system in the environments tested in the previous experiments with the

intention of identifying whether or not the system can be considered swarm-like.

5.6.1 Consistency

The number of replicates required for consistent results were determined by performing

cumulative mean tests as specified in Robinson (2004). By using the cumulative mean of a

data set, along with a calculated confidence interval, an estimate can be produced for a range
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Figure 5.9: Graph showing the mean results across 180 trials in experiment 3. The performance
of both the random and hormone-inspired system is shown in terms of correct categorisation
and food items foraged. With the introduction of the red environment there is a greater
penalty to assigning robots to search an arena area they are not suited to. As a result, the
effect of correct categorisation can be seen more clearly in the rate at which food is collected
by the hormone system versus that of the random.
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in which the true mean lies. By taking cumulative mean tests across multiple time steps it was

indicated that 150 trials was required for the two terrain experiments (graph shown in Figure

5.10) and 180 trials was required for the three terrain experiments (illustrated in Figure 5.11)

in order to accurately represent the simulation responses.

Figure 5.10: 2 robot types - Cumulative mean and confidence intervals for experiment with
two terrain types and time step requiring the largest number of replicates. The vertical line at
n = 150 marks where the deviation reaches an acceptable value (less than 0.05).
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Figure 5.11: 3 robot types - Cumulative mean and confidence intervals for experiment with
three terrain types and time step requiring the largest number of replicates. The vertical line
at n = 180 marks where the deviation reaches an acceptable value (less than 0.05).

5.6.2 Scalability

To introduce a key element of difficulty to the system presented here, with more robots in

the swarm, the more difficult it will be to categorise them effectively. The system will have

to cope with elements such as cluttering and high levels of communication. Cluttering will

come into play as the swarm increases the environment remains unchanged, creating a high

robot density area in which collisions will be frequent, potentially having a greater effect

on collection than that of the wheel types and, as a result, it will be very difficult for the

swarm to identify robot suitability to environment. The high level of communication may

also effect the system, with transmitted hormones potentially over stimulating neighbouring

robots. Due to the line of sight nature in the communication systems the robots in the swarm

are equipped with, this should be less of a factor in the reduction of performance, with closer

robots blocking the transmitted hormone values to others as they forage.

Data for the scalability tests was taken from the 500th time step, giving the system the

opportunity for multiple food retrievals but without operation being diminished by a lack of

food items in the environment. Observing the results of the scalability tests shown in Figures

5.12 and 5.13. The success of the system in the two environment is clear, showing that a

categorisation median of above 50% (the performance expected of a randomly allocating

system) was possible up until a swarm size of 42. At which point performance levels out to

effectively the same as a random system, with it being very difficult to distinguish between

wheel types for the reasons previously mentioned. The systems ability to obtain a performance
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Figure 5.12: Correct categorisation percentages recorded 500 seconds into the experiment, at
a variety of swarm sizes in an experiment containing two robot types and two terrain types to
chose from. The horizontal line through the graph displays the expected median percentage
performance for a system categorising at random between two options.

increase at a group size of 42 confirms that the system can indeed function at swarm like sizes

within the two environment context.

The experiment containing three robot types and environments did not fair as robustly when it

came to increasing swarm size. With results for 18 and 20 robots being the only data sets with

a mean above 33% (the expected correct categorisation percentage for a system with three

choices, decided at random). However, it should be taken into account that, while marked at

33% due to the size of the nest, typical categorisation percentage for a random system is most

likely below this number. This is confirmed by the previous results illustrated in figure x in

which the random system settles to a correct categorisation percentage of approximately 27%.

If 27% is taken as the boundary for a poor median result from the data sets, the three robot

system performs similarly to the two robot, dropping below the expected random performance

threshold at a swarm size of 42.

150



5.6. Analysis 151

●●
●●●●
●

●●

●

●●●●
●

●

●●●●

0
10

20
30

40
50

60

Graph Showing Correct Categorisation Percentages
 In Robot Swarms Of Increasing Scale

With Three Environments To Chose From

Number Of Robots In Swarm

P
er

ce
nt

ag
e 

O
f R

ob
ot

s 
In

 T
he

 C
or

re
ct

 E
nv

iro
nm

en
t (

%
)

12 18 24 30 36 42 48 54 60

Figure 5.13: Correct categorisation percentages recorded 500 seconds into the experiment, at
a variety of swarm sizes in an experiment containing three robot types and three terrain types
to chose from. Statistical expected median percentage is marked with a dark solid line, the
expected median percentage based off of previous results is marked with a dark dashed line.
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5.7 Chapter Summary

The work presented in this Chapter has shown that by using a hormone-inspired behaviour

arbitration system a heterogeneous swarm of robots can categorise their abilities based on

their performance in a selection of environments. In all experiments it has been shown that

given stimulus availability the HIBAS was able to outperform the random system in terms

of percentage of correct categorisation. It is also clear from the presented results that, given

a simple choice between two environments, the hormone-system is capable of categorising

successfully with even a small difference in robot traits.

By observing the collection of food in the environment with three terrain types and an

additional robot type, it is clear that:

1. The HABAS can increase likelihood of correct categorisation when presented with more

complex choices.

2. The categorisation provided by the hormone-inspired system can be beneficial to the

performance of a task, so long as there is a large enough change in robot capability.

These results found in this chapter indicate that the HIBAS is a system worth exploring further

in terms of its ability to categorise hormone ability, though it does also highlight a weakness

to the system. Realistically robots within the swarm will encounter a range of difficulties not

limited to the type of terrain they are navigating. While a strong categorisation percentage

may be achievable in these cases, it has been shown that strong categorisation does not always

equate to strong task performance. This was seen in the set of experiments with only two

environment types to chose from. In said experiment the difference between the robot wheel

type was relatively small regarding their performance across each terrain and it was seen that

the rate of collection was only marginally better on average than the random allocating system.

These difficulties could be overcome by introducing additional levels of hormone adaptation

assisting the swarm with not only preference but more advance behaviour switching and

explicit control elements. To an effect the research conducted within this thesis has provided

a strong foundation for this, having presented and examined multiple levels of hormone

control. These layers have existed as direct control over motors, behavioural control and,

most recently, behavioural preference. The next chapter within this thesis will attempt to

combine each of these hormone control types controlling a swarm at multiple levels of control

at once. Through this combination of hormone control types it will be identified whether or

not the implementation of a hormone amalgamation to improve the energy efficiency of item

collection is possible.
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Chapter 6

A Multi-Hormone System for

Arbitrating Traits and Behaviours in

Dynamic Environments

6.1 Introduction

To this point previous chapters have only tested swarm systems with relatively simple

experimental scenarios. While these chapters have shown that virtual hormone systems

can be engineered to arbitrate and adapt swarms of robots amongst a small set of behaviours,

it is yet to be shown how hormone systems could be used when a large array of behaviours and

task types are available to a swarm. Evidence of virtual hormones being used to control such

systems in simulation would prove the viability of virtual hormone control in non-abstracted

tasks and create an argument for their implementation in physical systems.

Having already explored several applications for hormone inspired systems in previous

chapters, virtual hormone systems have been shown to effectively regulate behaviours and

preferences, respectively selecting appropriate states in dynamic environments and allocating

robots to environments based on their performance across different terrains. This final chapter

of experiments will attempt to combines these applications to create an energy efficient

foraging swarm regulated by numerous, simultaneously functioning hormones. This will show

that virtual hormone systems can be used to effectively adapt and regulate large, complex

systems with diverse behaviours.

The hormones comprising the amalgamation operate at different levels of a behavioural

hierarchy (illustrated in Figure 6.1), controlling preference, behavioural control and actuator

control. Combining systems acting at these different levels of behaviour allows for the swarm

to be controlled by hormones at every stage of operation, truly testing the combined systems

capabilities and compatibility. This, alongside the fact that more than three times the number
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of individual hormone types previously studied have been used in these experiments means

that the number of hormones used in this amalgamation can be considered numerous.

Actuator Control

Behavioural Control

Preference

The likelihoods through which a system
selects behaviours. 

A systems preference changes 
throughout operation, creating possitive 

and negative biases to the selections 
made in behavioural control.

The system arbitrating which action
should be performed next. Transistioning 
states based on the current context of a

task and potentially the preferences 
within the established system.

Direct control over actuators providing
very explicit instructions to complete 

a specialised behaviour such as 
movement, navigation, manipulation,

etc...

Figure 6.1: Behavioural hierarchy for the behaviours investigated within this Thesis.

To begin the experiments, Section 6.2 first investigates virtual hormone driven motor control

as a method to improve energy efficiency in the foraging swarm. This will focus on the need

for adaptive motor speeds and their implementation, building upon the work described in

Chapter 3.

Section 6.3 explores the compatibility between this new system and one governing sleep,

similar to the system designed in in Chapter 4 will be investigated. The potential energy

efficiency benefits of combining a sleep system and a virtual hormone framework are examined.

In Section 6.4, the swarm will be diversified, using the heterogeneous wheel types designed

in Chapter 5, and a system capable of self analysis for task reallocation is combined with the

previously established hormone speed and sleep regulation. Thus creating a system with 6 or

more simultaneously acting virtual hormones in each member of the swarm, depending on

the number of environments available to the swarm.

By testing the combination of these systems, a complex hormone system capable of arbitrating

different elements of behaviour, will be shown to be effective for live adaptation. The

implementation of this complex virtual hormone system will be effective for live adaptation

and produce significant improvements to energy efficiency in foraging examples over individual

hormone systems.

Finally, Section 6.6 gives a number of conclusions of the work and suggests future areas of

investigation.
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6.2 HIBAS Implementation for Control of a Foraging System with

Deviating Motor Speeds

Hormone Inspired behavioural arbitration systems (HIBAS) have been studied using energy

efficiency as the target output, as seen in previous chapters. However, the speed at which

robots move and the efficiency of their movement, vital to energy efficiency, have not been

investigated. When simulating the energy consumption of robots it is typically assumed that

robots in the swarm are either moving at a specific speed, stationary or consuming a fixed

quantity of energy in a given behaviour state Wilson et al. (2018); Liu et al. (2007); Lee &

Ahn (2011); Pang et al. (2017). The start of this chapter will investigate the viability of virtual

hormone implementation to directly control and adapt wheel speeds to achieve improved

energy efficiency when foraging. A ‘demand’ concept will be present in the task that allows

the user to specify, prior to or during use, the number of items to be gathered in a given time

period. The purpose of this is to add an additional complexity for the swarm to overcome

through adaptation.

6.2.1 Energy Characteristics of Psi Swarm Robot Hardware

To obtain realistic results from the simulated experiments, data was taken from the PSI swarm

robot platform (Hilder et al. (2016)) to obtain a power model similar to that produced in

Bonani et al. (2010) for the MarXbot. To construct a power model, power consumption

was measured using a Keysight N6705B power analyser (Key (2016)). Results for power

consumption as speed increases were recorded through 10 repetitions and a quartic trend line

was fit to the mean of these results, this is illustrated in Figure 6.2. The resultant equation for

power consumption with speed as the input was:

1.05− 7.76× 10−3s+ 2.2× 10−3s2 − 8.89× 10−5s3 + 1.14× 10−6s4 (6.1)

Where P is power consumption per second (Watts) and s is the current speed of the robot

(cm/s).

When implementing this equation in the robot swarm simulation, the offset of 1.05 was

reduced to 0.05, as it was assumed that most of the offset was due to the base consumption of

energy used by robot peripherals. The offset of 0.05 was left to ensure a negative power was

never experienced during experiments. The equation was also scaled for the appropriate time

frame, ensuring that the correct amount of power per wheel was collected per experiment tick.

This equation was then used at each time step to calculate the current energy consumption

based on the speed of each individual robot. Energy consumption could then be used to feed

into the value of energy efficiency that would be used to measure the fitness of the systems

tested in the experiments presented in this chapter’s experiments.

155



6.2. HIBAS Implementation for Control of a Foraging System with Deviating Motor Speeds 156

Figure 6.2: Graph displaying the results of the power consumption of a Psi Swarm robot
increasing motor speed gradually. 10 repetitions were taken for these results and a trend line
has been fit to the mean of these results and is shown in red. The equation forming the trend
line is shown in Equation 6.1.

After implementing Equation 6.1 in the simulation, the analyses of energy efficiencies at

different speeds were conducted. In these tests, 20 robots foraged in a simple environment

for 500 simulated seconds or until 100 food items were gathered. The average final energy

efficiency (food item per unit of energy consumed) from 50 trials at speeds ranging from 1 to

50 cm/s were then plotted (illustrated in Figure 6.3). Taking the peak value of energy efficiency

for a given speed, a value was chosen to act as a baseline for the following experiments.

6.2.2 Hormone Interaction With Motor Speed

To produce a hormone equation that controlled motor speed in a direct manner and at

appropriate speeds given context, it was decided that the two primary influencing factors

should be the item demand from the user and the evidence of negative performance.

The presence of frequent collisions and the decay present from failing to achieve task goals

have been demonstrated as good indicators of negatives performance in the previous examples

of hormone systems. These features were therefore used as the first step in the implementation

of the new hormone system. The decay would reduce the hormone, and subsequently the

speed, to an efficient settling point. Collisions would also reduce the hormone, thus inhibiting

the speed of poorly performing robots and limiting their impact on energy consumption.

156



6.2. HIBAS Implementation for Control of a Foraging System with Deviating Motor Speeds 157

0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Graph of Average Food Collected Per Energy Consumed For a Swarm 
of 20 Robots Maintating Static Speed

Speed (cm/s)

F
oo

d/
E

ne
rg

y 
(I

te
m

/J
ou

le
s)

Speed = 35

Figure 6.3: Graph showing average food gathered per energy unit consumed in a swarm of 20
foraging robots across 50 trials. The speed showing the greatest food collection per energy
consumed is marked at 35cm/s.

Demand

‘Demand’, as a new feature to the virtual hormone system, required the development of a

novel formula accounting for: a target number of items to be collected (to be specified before

deployment), the allotted time to collect said items, the current collection rate throughout the

experiment. Following this, Equation 6.2 was created:

D(t) =
IT
tT

− Ic + 1

t
(6.2)

In this equation D(t) represents the demand function, IT is the total number of items desired

by the end of the allotted time period, tT is the end time for the allotted period, Ic is the

current number of stored items and t is the current time step. Decentralisation is required to

remain ‘swarm like’ during the experiment, therefore the ‘demand value’ is only accessible

to individual robots in the nest. The value is updated as they leave and used as their stimuli

throughout their next period of exploration.
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Equation 6.2 models the demand value to fluctuate as items were collected without incurring

an exponential increase near the end of the experiment should the swarm only be a few items

away from the target collection. By setting the demand as the difference between the required

average rate of collection and the current rate of collection, the hormone value and speed

could increase with repeated failure to meet target collection rates. This meant that speed

would only slightly deviate from the optimal speed of travel. Gradual incrementation in this

manner prevented an inefficient burst of speed late in the experiment to compensate for a

lack of items collected.

With a function for demand in place, the two Hormone equations were produced (Return

Hormone and Speed Hormone, shown respectively in Equations 6.3 and 6.4) to regulate

the speeds and behaviours of each robot in the swarm. The hormones produced in these

experiments were designed in the same format as Chapters 3, 4 and 5 with λ representing

decay and γ representing the coefficient of stimuli.

Return Hormone

Hr = λrHr + γrC (6.3)

Where t is the current time step Hr is the return hormone, λr is the decay for the system and

γr is the stimuli weighting.

The return hormone has a single stimulus, C, for collision detection. Although it does not

regulate speed, it does feed into the speed hormone. The primary function of the Return

Hormone is to identify the frequency of collisions detected by a robot, between walls or other

robots. This information can then be used to decide if an individual robot should return to

the nest having been unsuccessful, typically by exceeding either a fixed or similarly adaptive

threshold. At this stage the threshold for returning was set to 50, with any value of Hr

exceeding that resulting in a given robot changing behaviour state and travelling back to the

nest site.

Speed Hormone

Hs = λsHs + γs1D(t)− γs2Hr (6.4)

Where Hs(t) is the Speed Hormone, λs is the decay rate for the system, γs1 is the weighting

for the stimuli and γs2 is the weighting for the inhibitor.

The speed hormone had two influencing factors. A stimulus, D(t) (Demand), and an inhibitor,

Hr. With these features in place, higher demand would result in faster activity, consuming

more energy but reducing the item demand. Conversely, the system would slow down robots

in poor positions or in areas densely populated by other members of the swarm, consuming
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less energy while in a compromised position. It is worth noting that Hr was used in this case

rather than C in order to smooth the response to collisions, rather than experiencing a sudden,

large value inhibiting the system upon encountering a collision, Hr allows for the reduction to

Hs to be smooth and gradual. This avoids the sudden loss of mobility in what could potentially

be a one off collision.

While the speed of a robot does increase with the Speed Hormone, it doesn’t have true direct

control over the motor speed as has been seen in studies such as Stradner et al. (2009).

Instead, the Speed Hormone system allows the robot to operate at the optimal travelling speed

for energy efficiency. To avoid deviation from this speed at low hormone levels, the speed

hormone has no effect on speed until it exceeds the value of 10. Values below 10 in speed

hormone would have very minimal effect on the actual speed of the robot while still reducing

energy efficiency by deviating from the optimal speed. After the value of 10, the speed

hormone effects the speed with the relationship shown in Equation 6.5, providing potential

speeds ranging between 35, for Hs values below 10, and 50 when HS is fully saturated.

S = 33.33 +
Hs

6
(6.5)

Parameters

Parameter values for the hormone equations (shown in Table 6.1) were selected empirically

using the context of the experiments to decide on appropriate time scales for decay, these

time scales were then converted to decay values using Equation 6.6, taking values for Hsat

(the numerical value at which the virtual hormone will saturate) and Hfin (the smallest value

deemed relevant to the hormone system) as 100 and 1 respectively. The period of decay

chosen for the sleep hormone was based on the amount of time it would take for an ideally

operating robot to locate and retrieve two food items. i.e., the time it would take to reach

the centre of available items and return twice, travelling in a straight line while operating at

optimal speed. This meant that under ideal operation stimuli from the previous collection

would still be present when returning for the second time, allowing the hormone value to build.

The period for decay for the return hormone was calculated for only a single full collection

and the collisions in a previous search period should have minimal bearing on that of the next.

λ = n

√
Hfin

Hsat
(6.6)

Stimuli coefficients were subsequently chosen to provide adequate response when interacting

at expected minimum and maximum values of decay and rate of collision.

Figure 6.4 shows the hormone value dynamics of the speed regulating hormone system. As

previously mentioned the return hormone, indicated by the green line, inhibits the speed
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hormone. The relationship between these two hormones can be seen in the graph. With severe

reductions to the speed hormone value at the points in time where the return hormone is

present. It is also worth noting, between 300 and 400 ticks, despite the lack of return hormone

value, the speed hormone does not increase. This is indicative of the fact that item demand

will have been met by the swarm for the given period. However, the speed hormone is seen

to increase at approximately 450 ticks, indicating that the swarm is again behind schedule

in item collection. As a result, the individual robot being monitored increases its speed to

address this.
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Figure 6.4: A graph displaying the dynamics in the hormone values used in an experiment in
which a swarm with hormone regulated speeds conducted a foraging behaviour. The graph
displays the hormone values of an individual robot within this swarm across 500 experimental
ticks.
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λr γr λs γs1 γs2
0.9977 5 0.999 9 0.01

Table 6.1: Parameter values for the Return and Speed Hormones. Where Hs(t) is the Speed
Hormone, λs is the decay rate for the system, γs1 is the weighting for the stimuli and γs2 is
the weighting for the inhibitor.

6.2.3 Comparison Systems

In order to test how effective the designed hormone systems were, two additional systems

were produced for comparison. The first had no adaptive element, keeping all robots at

optimal speed (35 cm/s) while foraging. This system was not influenced by ‘demand’ and

should highlight the point at which speed adaptation is required to obtain remaining items

required in the collection. In order to keep environmental awareness consistent across the

three systems, the return hormone was implemented across all systems, allowing swarm

members to return to the nest site should they encounter too many collisions.

Engineered Adaptive Comparison

The second comparison system featured an on-line adaptation method similar to reinforcement

learning. This engineered adaptation was driven by the same function for demand as featured

in the virtual hormone system. This style of online engineered adaptation has been used in

the past to modify swarm traits, finding optimal partition lengths in Buchanan et al. (2016)

modifying travel distances based on success and failure of swarm individuals.

The adaptive system, designed for speed control, stepped the robot motor speeds up or down

depending on the value of demand upon returning to the nest site. Positive demand values

would increase speed, and negative values would decrease it. As with the hormone system,

this would allow speed to be increased or decreased (and hence increase or decrease energy

expenditure) in relation to collection requirements.

The increments and decrements made by the engineered system were influenced by demand,

providing a variable adaptation to the system. A base change of 1 was applied based on

the sign of the demand in addition to a change proportionate to the value of demand itself,

increased by a coefficient of 20 to make suitable changes to the speed value. These values

were tuned via iterative selection to produce strong rates of collection and energy efficiency

across a wide variety of task demands.

The base change was used so that the swarm can catch up to the required collection rate

even when demand is small. If this change was not implemented, increments based solely on

demand would be too small to have a perceivable effect on robot speed. The same effect could

not be achieved by increasing the coefficient of demand because the system could react too

quickly to large disparities in current collection rate versus required rate, overcompensating
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by a large margin.

6.2.4 Analysis Of Systems Highlighting The Need For Adaptation

After designing these systems, preliminary tests were conducted demonstrating why adaptation

is required for the foraging task. This section will elaborate on the environment in which

the systems where tested, detail the key features of the simulations and discuss the results

produced from the experiments.

Environments

The three systems discussed in this paper were tested in two environments. The first is a square

environment measuring 15 × 15 m. The first 2 meters of the environment were assigned as

the nest area, highlighted in grey as illustrated in Figure 6.5. This environment provided an

arena for simple operation, identifying whether the system, under only the pressure of the

specified demand could operate effectively.

Figure 6.5: Screenshot of first simulated environment used in initial experimentation with the
new speed regulating systems. Food items are shown as black circles in the white environment,
puck robots can be seen waiting in the nest area (light grey).
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Figure 6.6: Screenshot of second simulated environment used in initial experimentation
with the new speed regulating systems. Food items are shown as black circles in the white
environment, puck robots can be seen waiting in the nest area (light grey). Obstacles creating
corridors are illustrated in dark grey.

The second environment (illustrated in Figure 6.6) instead measured 20x10 metres though

retained a similar nest layout to the first. Four funnelled corridors were included in this

environment to act as obstacles. These increase swarm density during exploration and

provides additional difficulty to the tested systems, akin to that of a group of robots attempting

to complete tasks in industrial settings such as mines, power plants or drainage systems, where

space could be limited. This congestion will not only limit the success of the robots by slowing

them down, but short range collision sensors will be triggered more frequently, meaning that

the return hormone will potentially instruct robots to return home too early. This will heavily

test the adaptability of the system, giving the combination of hormone systems a greater

challenge, making the probability of one system disrupting the other in a negative fashion

more likely.

Simulation

The experiments were performed in the ARGoS simulator (Pinciroli et al. (2012b)) a multi-

robot simulator used to simulate large robot swarms. It was assumed that each of the robots
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was equipped with a food sensor, allowing them to identify food items within a 2m radius.

Each test was executed for 500 simulated seconds (each simulation time step lasting 0.1

seconds) or until the target number of food items were collected.

The number of replicates required for consistent results were determined by performing

cumulative mean tests as specified in Robinson (2004). This test indicated that the minimum

number of trials required for consistency was 36. Therefore, 36 was the lowest number of

replicates used when testing these systems.

6.2.5 Results

The data collected from the experiments conducted was compiled into box plots, showing the

performance of each system in terms of energy efficiency and collection rate. These results are

illustrated in Figure 6.7 for environment 1 and Figure 6.8 for environment 2.

Environment 1

Visual inspection of the first environment (Figure 6.7) shows that the static speed system has

a fairly consistent level of food collected per energy unit used as the demand increases. This

is expected due to the lack of change in speed, though the lowest target number for item

collection does see a drop in energy efficiency when compared with the rest of the collection

rates. This is because not all of the robots in the swarm will have returned to the nest by the

time the experiment terminates having reached the target number of items. This will result in

unnecessary energy consumption from the robots unable to return food items within the short

period of the experiment.

The downside of this consistent energy consumption is the inability to reach greater item

target numbers. This drawback can be seen in the discolouration of the box plots starting at

100 food items required and saturating to red, indicating a collection of less than 70% of the

required items, by 130 required items.

Disregarding the lack of success in large item demand experiments, the results from the static

speed system provide a strong baseline for energy efficiency. Giving a clear target for the other

two more intelligent systems to aim for.

When inspecting the results of the two adaptive system it is immediately obvious that target

collections are met more consistently with the demand function introduced to the system,

with discolouration starting at 120 in the engineered system and 130 in the hormone system.

In the engineered system the collection rate drops to approximately 80% by the 150 item goal

while the hormone system still manages to collect upwards of 90%.

In terms of energy efficiency the engineered adaptive system follows a similar initial trend

to the none adaptive system. The similarity is maintained until an item target of 50, at
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Figure 6.7: Results for the three systems tested in in environment 1. Target number for items
collected ranged from 10 to 150 items of food. Percentage of the items requested versus those
collected by the end of the simulation is indicated by colour (Green 100% and Red <70%).
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which point the engineered system becomes increasingly less efficient. Table 6.2 supports

this, showing that there is no significant difference in the data sets of the Engineered and

static systems until 70 target items. At this point the systems diverge as the engineered system

consumes more energy.

These results also show that the hormone system managed to outperform both systems in

regard to energy efficiency. With a significant difference versus the engineered adaptation

and increased median result at every collection target excluding 10, the hormone system

results can be seen arcing over those of the engineered system after starting at a similar point.

Similarly, when compared to the static system, the hormone system shows significant increases

to the food collected per energy used in all cases but targets of 10, 120 and 130 items. The

similarity in energy efficiency of the hormone and speed systems at item targets of 120 and

130 can be explained by the speed increase of the hormone system in cases of very high item

demand, actually reaching collection targets while the static system misses them by a large

margin.

The efficiency of the hormone system over the static and engineered systems was explained by

three factors:

Sensitivity: The hormone system is sensitive to collisions and capable of not only returning

robots to the nest due to collisions, but also reducing speed due to the prolonged

influence of collisions.

Dispersion: Rather than consistent speeds, or speeds of specific increments, the speeds of

the hormone driven robots fluctuate during the search. This leads to not only more

efficient speeds, but also more heavily dispersed robots, as a by product of diverse speeds

amongst the swarm. This in turn will lead to less traffic and more energy efficient item

collection.

Gradual Variability : Due to the fact the hormone system fluctuates over time, speed can

build across the length of a search rather than having to react immediately at the nest

in a manner that is potentially exaggerated or understated. As was the case in the

engineered system, in which relatively large changes in speed had to be taken upon

returning to the nest, potentially stepping over the best value of speed for the next

exploration.

Environment 2

The results for the second environment, the increased length of environment and introduction

of corridors, predictably show a notable decrease in percentage of target collection completed.

The static system started to fail collection targets at 50 items and the engineered adaptive
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System Type Engineered Vs Static Hormone Vs Static Hormone Vs Engineered
Item Target
Number
10 0.8550 0.0330 0.0053
20 0.1648 p < 0.0001 p < 0.0001
30 0.1800 p < 0.0001 p < 0.0001
40 0.2626 p < 0.0001 p < 0.0001
50 0.0906 p < 0.0001 p < 0.0001
60 0.8227 p < 0.0001 p < 0.0001
70 0.0068 p < 0.0001 p < 0.0001
80 0.0262 p < 0.0001 p < 0.0001
90 p < 0.0001 p < 0.0001 p < 0.0001
100 p < 0.0001 p < 0.0001 p < 0.0001
110 p < 0.0001 p < 0.0001 p < 0.0001
120 p < 0.0001 0.0199 p < 0.0001
130 p < 0.0001 0.3984 p < 0.0001
140 p < 0.0001 p < 0.0001 p < 0.0001
150 p < 0.0001 p < 0.0001 p < 0.0001

Table 6.2: Environment 1: Wilcoxon rank sum tests comparing the three systems for the tested
item collection targets between 10-150 in terms of energy efficiency. Significant differences
(indicated by a p value of < 0.05) are highlighted in bold.

system starting to fail at 70. Compared with these, the change to collection rate in the

hormone system is substantially less reduced. The results show the hormone system falling

to a 70% collection rate at the 130 item target mark, showing a considerable increase in

collection performance versus the two comparison systems.

In terms of energy efficiency there is again an expected drop in performance, when compared

to the first environment, across all experiments due to the larger, more cluttered arena.

Analysing the systems tested in this environment, there is very little statistical similarity. Table

6.3 shows that almost all of the data sets at each item target number, with the exception of

the first 5 item targets of the engineered versus static system, are all significantly different.

The data produced from this environment does however follow very similar patterns those

of the first environment. The static system maintains a consistent energy efficiency, though

dipping slightly in the case of the smallest collection target. The Engineered system, while

improving collection, does little to benefit energy consumption and lessens as target numbers

increase. The hormone system, while exceeding the two comparison systems in both collection

and energy efficiency, as it did in the first environment, does so in a much more exaggerated

manner in the second environment.

6.2.6 Section Summary

The results from these experiments show that with a system taking variable demand for

a number of actions complete/items collected adaptive systems can be implemented to
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Figure 6.8: Box plot results for the three systems tested in in environment 2. Target number
for items collected ranged from 10 to 150 items of food. Percentage of the items requested
versus those collected by the end of the simulation is indicated by colour (Green 100% and
Red <70%).
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System Type Engineered Vs Static Hormone Vs Static Hormone Vs Engineered
Item Target
Number
10 0.2482 p < 0.0001 p < 0.0001
20 0.6918 p < 0.0001 p < 0.0001
30 0.3432 p < 0.0001 p < 0.0001
40 0.1010 p < 0.0001 p < 0.0001
50 0.0817 p < 0.0001 p < 0.0001
60 0.0020 p < 0.0001 p < 0.0001
70 0.0002 p < 0.0001 p < 0.0001
80 p < 0.0001 p < 0.0001 p < 0.0001
90 p < 0.0001 p < 0.0001 p < 0.0001
100 p < 0.0001 p < 0.0001 p < 0.0001
110 p < 0.0001 p < 0.0001 p < 0.0001
120 p < 0.0001 p < 0.0001 p < 0.0001
130 p < 0.0001 p < 0.0001 p < 0.0001
140 p < 0.0001 p < 0.0001 p < 0.0001
150 p < 0.0001 p < 0.0001 p < 0.0001

Table 6.3: Environment 2: Wilcoxon rank sum tests comparing the three systems for the tested
item collection targets between 10-150 in terms of energy efficiency. Significant differences
(indicated by a p value of < 0.05) are highlighted in bold.

achieve requested goals effectively. The results have shown that, while in some cases this

adaptation can contribute to additionally expended energy, adaptation can be implemented

in a manner that improved energy efficiency in low demand tasks and sacrifices very little in

high demand tasks. This was proven through the successful implementation of the HIBAS

in two environments of varying complexity, and the significant improvements the hormone

inspired system subsequently provided versus both the adaptive and static systems.

This has shown that the a hormone system for direct motor speed control can viably improve

operation in a foraging context. The next section investigates the practicality of combining

the hormone system presented in this section with a hormone sleep system, based on the

controller discussed in Chapter 4.

6.3 Introduction Of The Sleep Hormone To A Foraging Swarm

The foundations of this introduced sleep hormone system are very similar to those presented in

Chapter 4, following the same behaviour states as shown in Figure 6.9. The hunger hormone

detailed in previous chapters was given an identical structure. However, due to the slight

change in context to the foraging system, the stimuli to the sleep hormone (now represented

by Hσ(t) to avoid confusion with the speed hormone system) in the system was edited from
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ασ λσ γσ1 γσ2 αh λh γh
0.01 0.999 0.01 0.06 0.0.015 0.999 10

Table 6.4: Parameter values for the hunger hormone and new sleep Hormone. Parameter
descriptions can be seen alongside Equations 6.7, 6.8 & 6.9.

the original equation:

Sleep Hormone (Chapter 4): Hσ(t) = λσHσ(t− 1) + γσHA(t− 1) (6.7)

To include both an α value and an inhibitor in the form of γSl2d (where d(t) is the function of

demand presented earlier in this chapter) resulting in the new equation:

New Sleep Hormone: Hσ(t) = ασ + λσHσ(t− 1) + γσ1HA(t− 1)− γσ2dt (6.8)

The introduction of an α value offsets the settling point of the hormone. This allowed for the

implementation of the demand based inhibitor (γAl2dt) and ensured that the hormone could

fluctuate below the settling point without producing a negative value. The demand inhibitor

itself created a larger decrease to the sleep hormone under high demand circumstances,

assisting the decay already present in the hormone and reducing sleep times when the swarm’s

rate of collection was inadequate.

Meanwhile Hh was kept in the same format, using the equation:

Hunger Hormone: Hh(t) = αh + λhHh(t− 1) + γhC (6.9)

Where C is a Boolean value representing whether the robot successfully returned a food item

to the nest site or not.

The parameters used for the hunger and sleep hormones were calculated in a similar manner

as Section 6.2.2, using the approximate time scale across which the hormones were expected

to operate and thereafter tuning stimuli for the fitting reaction. The parameter values selected

for the coming experiments are displayed in Table 6.4.

6.3.1 Preliminary Tests For Sleep Hormone In A Demand Lead Foraging Task

The initial tests conducted on the new sleep hormone system used the same environments as

the previous section and operated until a time limit of 500 seconds or until the target number

of items was reached. A cumulative mean test indicated that a minimum of 14 trials were

required. To ensure certainty, 20 trials were run.
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Figure 6.9: State machine for foraging hormone system illustrating state names and the
relative hormone ratios required for transition as first displayed in Chapter 4. HS is now
replaced by Hσ.

Environment 1

Observing the results for the first environment (illustrated in Figure 6.10) the results appear

very different to those of the previous three systems. The energy efficiency starts low, peaking

momentarily and, after a dip to median performance, increases as the number of target items

does. This pattern leads to an increased energy efficiency at all item targets compared to the

previously tested static speed system and considerably better efficiency performance at item

targets greater than 120 for the other two adaptive systems.

The initial spike in performance from this pattern is explained by the removal of poorly

positioned robots at deployment. Those robots starting off in large groups will enter the

sleep state either immediately or very soon after exploration. This initial state selection is

then diluted as robots make more passes between the nest and the food area, seen as the

Food Collected Per Energy used (FPE) reduces to a similar level as the non-adaptive system

seen in Section 6.2.5. The gradual increase to FPE thereafter is due to the sleeping of poorly

performing robots across greater periods of time, while robots with better positioning within

the arena are able to collect food items more effectively.

While this system sees several increases to performance in terms of energy efficiency, it

sacrifices this for poor performance in terms of item collection, with collection starting to

drop at item targets of 90, lower than even the static system in the previous section. This

is expected as the system actively impedes collection speed, with the sleep state removing
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Figure 6.10: Box plot results for the hormone inspired sleep system tested in environment
1. Target number for items collected ranged from 10 to 150 items of food. Percentage of the
items requested versus those collected by the end of the simulation is indicated by colour
(Green 100% and Red <70%).

swarm members for brief periods of time.

Though the collection percentage is lower in the sleep system than in the systems previously

examined, this does show that it may be beneficial from the perspective of energy efficiency

to combine the speed and sleep systems. With the intention of reducing the decrease to FPE

seen in the adaptive speed systems as item target increases and using the speed system to

compensate for the poor collection performance seen at targets above 90.

Environment 2

The benefit of this enhanced hormone system is further proven in the second environment.

Following a similar pattern to the first environment, the energy efficiency increases with the

target number (illustrated in Figure 6.11). In this environment, the sleep system is able to

outperform the static and engineered system in terms of energy efficiency across all item

target values. In addition to this, while not able to compete at lower item targets, after 80

items the sleep system largely outperforms the hormone speed system.
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Figure 6.11: Box plot results for the hormone inspired sleep system tested ed in in environment
2. Target number for items collected ranged from 10 to 150 items of food. Percentage of the
items requested versus those collected by the end of the simulation is indicated by colour
(Green 100% and Red <70%).

This increase to energy efficiency is due to the sleep system regulating the number of robots

present in the corridors at any given moment, retaining poorly performing robots until demand

is high and as a result increasing the productivity of the foraging swarm.

Again these results, while producing good values for energy efficiency, sacrifice collection rate.

With collection similar to the static system, failing past 50 items.

6.3.2 Combining the Sleep Hormone With The Speed Deviating System

In an attempt to combine the benefits of both hormone systems and to identify the viability of

combining existing hormone systems, the speed hormone was added to the already established

sleep system. The parameter values established in prior testing were again used for the

combined system. The speed hormone acted explicitly on motor speeds during exploration

and the sleep hormone system regulated higher level behaviours.

The performance of this new combined system is illustrated in Figure 6.12. The first obvious

improvement to the system can be seen in the results from the first environment, this set of
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Figure 6.12: Results for the combined hormone sleep and speed system tested in both
environments. Target number for items collected ranged from 10 to 150 items of food.
Percentage of the items requested versus those collected by the end of the simulation is
indicated by colour (Green 100% and Red <70%).
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data achieves the highest average collection rate of any system at a required collection of 150,

obtaining an average of 92.3% of the needed items.

In addition to this the combined system achieves a significantly greater energy efficiency

versus the sleep system at all item targets between 50 and 110 in the first environment and all

item targets before 100 in environment 2 (p values for these tests can be found in Table 6.5).

At higher value item targets the energy efficiency still crosses over, though the exceptional

item collection rate more than compensates for this.

Relative to the adaptive speed system the combined hormone system obtains very similar

results in the first environment at target item values below 70. Though there are large

improvements to the energy efficiency at item targets larger than this. This increase to

performance is mirrored in environment 2, though with a consistent increase at all item target

values.

The substantial improvement in performance is proposed to be the mutually beneficial actions

of the separate systems. It allows the system to avoid the circumstance in which positioned

poorly robots in a high demand context might travel at high speeds that a cause large drain to

power for poor returns.

It is clear from these results that these systems work better in combination than separately.

This shows a strong symbiosis of already established hormone control, verifying the viability

of combining hormone systems.
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Item Target
Number

Hormone Speed Vs
Hormone Combination

Hormone Sleep Vs
Hormone Combination

(Environment 1) (Environment 2) (Environment 1) (Environment 2)
10 0.9680 0.0047 0.2315 0.019
20 0.8830 0.0040 0.1653 0.0056
30 0.5290 p < 0.0001 0.5831 p < 0.0001
40 0.6017 p < 0.0001 0.0810 p < 0.0001
50 0.5290 p < 0.0001 p < 0.0001 p < 0.0001
60 0.0809 p < 0.0001 p < 0.0001 p < 0.0001
70 0.0283 p < 0.0001 p < 0.0001 p < 0.0001
80 0.0047 p < 0.0001 p < 0.0001 p < 0.0001
90 0.0675 p < 0.0001 p < 0.0001 p < 0.0001
100 0.0024 p < 0.0001 p < 0.0001 0.0430
110 0.0910 p < 0.0001 0.0024 0.0002
120 0.0763 p < 0.0001 0.9042 p < 0.0001
130 0.1081 p < 0.0001 0.0211 p < 0.0001
140 0.0227 p < 0.0001 p < 0.0001 p < 0.0001
150 0.2648 p < 0.0001 p < 0.0001 p < 0.0001

Table 6.5: Wilcoxon rank sum tests comparing the combined hormone system with both the
speed hormone system and the sleep hormone system, in both of the previously established
environments. Tests were conducted for item collection targets between 10-150 in terms of
energy efficiency. Significant differences (indicated by a p value of < 0.05) are highlighted in
bold.

6.4 Introduction Of Environment Selection Hormones With Sleep

and Speed Regulating Hormone Systems

With the viability of a larger hormone system confirmed, the next step taken was to combine

the hormone combination system presented in the last section with yet more hormone

arbitration. This was an important step because, while it has been shown that hormone

systems can interact to produce satisfactory results, the current combination of hormone

systems experience minimal detrimental interactions. In terms of behavioural arbitration, the

speed and sleep hormone systems do not interfere with one another.

This section presents the amalgamation of the speed hormone, sleep hormone and a hormone

system capable of monitoring the emergent success of the swarm under different conditions,

implementing the designs shown in Chapter 5. The monitoring of success and ensuing

environmental preference, was driven by the speed at which items could be collected from

the environments. Therefore, it is essential to investigate if the preference system will still

be capable of categorising robots within a heterogeneous swarm effectively with an adaptive

speed mechanism in place.

As such, the environment for these tests required a diverse terrain and multiple directional

options alongside heterogeneity amongst the swarm.
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Terrain Type Wood Suited Wheels Grass Suited Wheels
Grass 0.6 0.7
Wood 1 0.8

Table 6.6: Speed Coefficients for Heterogeneous Robot Wheels on Different Terrains. These
values were used to simulate different capabilities amongst a heterogeneous swarm of robots.
This created a requirement to assign robots to appropriate environments in order to obtain
efficient performance from the swarm.

6.4.1 Environmental Setup

The new environment used for testing in this scenario was identical to that used in Chapter 5

Section 5.4.4, featuring two different terrains designed to challenge robots with two specific

wheel types.

In order to incorporate heterogeneity into the swarm, while still using the energy characteristics

presented in Section 6.2.1 to measure energy efficiency at different speeds, each wheel type

was given a speed coefficient for respective terrains. These coefficients (displayed in Table

6.6) inhibited the speed properties of the wheels based on the ground a given robot was

travelling on, these values are shown in Table 6.6. While not as realistic as the data used for

wheel speeds in previous environment preference experiments, this allowed for the testing the

combination of systems without extensive testing of robotic hardware.

6.4.2 Effect Of Demand On Environment Selection When The Speed Hormone

Is Combined With Environmental Preference Hormone

Before fully combining the systems, the speed hormone was added to the Environmental

Preference System. The performance of the selection system was then measured in the same

manner as Chapter 5, looking at the proportion of robots active in the environments they were

best suited to as a percentage.

In order to incorporate the speed hormone to the directional preference hormone system,

demand functions identical to that previously produced in Section 6.2.2 were created for both

the north and south environments, taking only items collected in the respective environment

into account when producing demand. Depending on the environmental preference when

returning to the nest site, robots within the swarm would then update their demand stimuli

with the corresponding demand value.

The full results of these tests are illustrated in Figure 6.13. Minimal differences were found

in median categorisation across the range of item targets. Further, these were not found to

differ from median categorisation found when the speed hormone was not included in the

system. As the speed hormone did not appear to have a negative effect on the environmental

preference hormones, it was deemed reasonable to further add the sleep hormone to the
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Figure 6.13: Effect of item target values driving different demands in the speed hormone on
the percentage of robots taking preference to their optimal environment. The categorisation
system running with no speed hormone present is marked as ’no adapt’. Results show a
fairly consistent percentage of categorisation relative to item target, indicating that the speed
hormone has minimal effect on the categorisation abilities of the combined hormone system.

system.

With minimal negative interaction between the speed regulating and environmental preference

hormones, it was deemed reasonable to continue with the implementation of the combined

hormone system with the introduction of the hormone driven sleep system.

6.4.3 System combining Sleep, Speed and Preference Hormones.

To observe the performance of this new system, the various combinations of hormone systems

were tested in combination in the new multi-terrain environment. First the preference system

was tested on its own, the results from this are illustrated in Figure 6.14. These results would

act as a baseline to the additional systems as results from this new environment, with new
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Figure 6.14: Box plot results for the hormone preference system tested in the environment
containing two difference terrain types. Target number for items collected ranged from 10 to
150 items of food. Percentage of the items requested versus those collected by the end of the
simulation is indicated by colour (Green 100% and Red <70%).

task complexities, would be incomparable with data from previous experiments.

When adding the sleep hormone to the system (results illustrated in Figure 6.15), results for

energy efficiency are consistently raised past the first item targets of 5, as shown by median

results increasing by approximately 25% for item targets past 70. While there is a large

improvement in terms of energy efficiency, adding the sleep hormone only results in a slight

increase to collection rate, with the cut off point for collection becoming poor (below 90% of

the target item collection) shifted from 80 to 90.

When the speed hormone is added to the system in the absence of the sleep hormone energy

efficiency suffers considerably. This is seen with the consistent drop in efficiency results

illustrated in Figure 6.16 when compared to the baseline results. However, this drop in

efficiency is traded for a substantial improvement to collection rate, moving the cut off

point for poor collection to 120 target items. These results are expected with the additional

speed fluctuation and if the results from previous hormone combinations hold consistent, the
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Figure 6.15: Box plot results for the hormone preference system, combined with the sleep
hormone system tested in the environment containing two difference terrain types. Target
number for items collected ranged from 10 to 150 items of food. Percentage of the items
requested versus those collected by the end of the simulation is indicated by colour (Green
100% and Red <70%).
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Figure 6.16: Box plot results for the hormone preference system, combined with the speed
hormone system tested in the environment containing two difference terrain types. Target
number for items collected ranged from 10 to 150 items of food. Percentage of the items
requested versus those collected by the end of the simulation is indicated by colour (Green
100% and Red <70%).

addition of the sleep system to the preference/speed hormone regulation should amend the

poor energy efficiency while maintaining the item collection rate.

Combining all three systems provides the best result in terms of item collection, maintaining

adequate collection until the 130 target item trial (illustrated in Figure 6.17). Simultaneously,

the system that combines all three hormone types is capable of accomplishing competitive

values for energy efficiency. These values show improvements across all item targets for the

standard preference and combined speed hormone results. The three hormone system only

marginally under performs in energy efficiency versus the combined preference and sleep

system, although it shows much greater item collection percentages. These results suggest

that the fully combined system as the strongest of the system permutations when considering

both item collection and energy efficiency.

These results show the strength of these combined hormone systems and as a result the
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Figure 6.17: Box plot results for the hormone preference system combined with both the sleep
and speed hormone system, tested in the environment containing two difference terrain types.
Target number for items collected ranged from 10 to 150 items of food. Percentage of the
items requested versus those collected by the end of the simulation is indicated by colour
(Green 100% and Red <70%).
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feasibility of large, connected, hormone systems. In order to further test these systems, the

next section investigates the robustness of combined hormone systems, presenting the system

with additional complexities within the given task.

6.4.4 Scalability of Final Amalgamated Hormone System

To introduce a key element of difficulty to the system presented in this chapter a scalability test

was conducted. With more robots in the swarm, the more difficult it will be to move effectively

within the environment without slowing due to clutter. Along side this, with greater swarm

density robots may receive over-stimulation from the transmitted hormones of the increased

number of robots or there may be too much competition for food items, with multiple robots

travelling to the same item simultaneously. With these additional negative features present it

will be difficult for robots to form accurate preferences to terrain due to the fact that these

negative features may have a greater effect on performance than the speed variance provided

by the different wheel types.

The scalability tests were conducted by increasing the number of robots in each simulation by

6 for each set of trials, testing swarm sizes ranging between 12 and 60. In each experiment

the target number of items was set to 100 and in every test all of these items were retrieved.

The experiments conducted terminated after 500 simulated seconds or if the target number of

items was reached. The item target of 100 was chosen due to the variability in performance

at said target number across each of the previously tested systems. This indicated that this

number of items is an area of interest, providing substantial challenge to some systems while

still an achievable goal to others.

The results of the scalability test can be seen illustrated in Figure 6.18. It can be seen that

energy efficiency decreases linearly with the increase in members of the swarm. This was

expected with the increased difficulty to the task as, while the amalgamated system is able to

augment performance with a given swarm size, additional or unneeded robots will still create

detriment to performance. Through the linear nature of this performance degradation, a user

can select a swarm size which is suitable for a given task, trading off energy efficiency for the

speed at which items should be gathered.
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Figure 6.18: Results for energy efficiency as the number of robots in the swarm increases from
12 to 60. The introduction of additional robots can be seen to decrease energy efficiency in
an almost linear fashion. This is to be expected when increasing swarm size but confining
operation to a confined environment. With more robots present traffic when collecting items
will slowly build, making it more difficult for the swarm to collect items efficiently.
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Figure 6.19: Test environment for hormone amalgamation containing two areas of different
terrain, highlighted in white and green as well as funnel like obstacles designed to increase
swarm density for a section of both terrains.

6.4.5 Reintroduction Of Obstacles For Amalgamated System

As previous experiments had introduced a second environment containing an obstacle in

the form of corridors, it was deemed appropriate to reintroduce these obstacles to test the

amalgamated system and be certain in its capabilities compared to the other hormone systems

presented in this chapter. The environment, with these obstacles introduced to both available

terrains, can be seen illustrated in Figure 6.19.

As was found with the introduction of previous obstacles, performance in terms of energy

efficiency and collection rate was reduced (results shown in Figure 6.20).

The amalgamated system seems to deal quite well with the addition of obstacles. The global

median of the results taken from the environment with the obstacles Vs the clear environment

shows a change of no more than 23%. The robustness of the amalgamated system to the

introduction can be seen when comparing the to the drop in energy efficiency to other systems

that have been introduced to an obstacle filled environment. The speed regulated system

tested in section 6.2 showed a drop of 41.5% and the sleep regulated system tested in section

6.3 showed a 36.7%.
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Figure 6.20: Results from the hormone amalgamated system in an environment with two
directions to forage in, each with different terrain types and both containing obstacles. Target
number for items collected ranged from 10 to 150 items of food. Percentage of the items
requested versus those collected by the end of the simulation is indicated by colour (Green
100% and Red <70%).

In addition to this the drop in collection rate sits between the two initially tested systems,

experiencing a 41.6% drop in target collection success (target collection success referring to

the last item target the system was capable of collecting above 70% of the required items)

versus the 44.4% drop seen in the sleep system and the 33.3% drop seen in the speed system.

Showing that collection rates were not dropping by a large margin to accommodate for the

success of the amalgamations energy efficiency robustness.

The relative robustness of the amalgamated system is due to the fact that there are multiple

arena options for the robots to explore. Subsequently they are able to avoid areas of high

density, instead performing tasks in a different environment, still acting productively. This

shows that the system is able to work well to reallocate robots when presented with a challenge

and furthers the argument for the benefit of multiple hormone adaptations acting at once.
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6.5 Robustness Analysis - Modelling Wear Over Time To Test System

Robustness

As robots explore environments, they experience degradation of their actuators due to exposure

to environmental factors. Over time performance can be effected by dirt clogging gear boxes,

heat putting strain on motors or tires breaking down, among other faults. Testing systems

susceptibility to faults is not a new concept. However, most previous work look only at the

extreme cases of faults in locomoting robots i.e. complete motor or sensor failure (Tarapore

et al. (2015); Winfield & Nembrini (2006); Ferrell (1994)). The robustness tests executed

on the combined hormone system explored in this section seek to identify what effect the

degradation of robots locomotive systems has over time.

The model the deterioration of the robots in the simulation, a coefficient (Mc) was added to

the speed at the wheels. The coefficient would take a value between 1 and 0, reducing the

speed at which the robots could travel at, while still consuming the same amount of energy as

they would had the speed not been decreased. This multiplier was defined by the following

equation:

Motor Degradation Coefficient: Mc(t) =Mc(t− 1)− s

ζ
(6.10)

Where s is the current speed and ζ is a weighting attached to the motor speed. ζ was

introduced to modify the severity of the deterioration. This variable would be modified from

trial to trial in the robustness tests, decreasing and increasing the rate of decay in speed with

the respective rise and fall of ζ.

6.5.1 Wheel Wear Results

Using the Spartan package Alden et al. (2014) an effect magnitude test was performed across

a range of ζ values, producing A-test scores for the various data sets versus a system where

the motor coefficient had no effect. ζ was modified across a range that resulted in an expected

reduction to speed of 0%-100% after travelling 1.75Km (the expected distance travelled if

maintaining optimum speed consistently across the entire experiment). In this test the item

target was fixed at 120 as this had previously been shown as a value that required adaptation

and could be improved by each of the independent systems operating constructively.

The results for this robustness analysis are illustrated in Figure 6.21. As can be seen, the

system is capable of adapting and obtaining results with little difference to that of a system in

perfect working conditions. Through the several adaptations available to the system, resting

robots that are poorly performing, increasing the speed when collection rates do not match

demand and allocating environments based on success or density. Due to this the system only
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Figure 6.21: Graph showing the A-Test scores of the combined hormone system from trial to
trial as Zeta increases in effect, degrading the motor system more quickly over time. The Zeta
value can be seen starting to have a greater effect on the system as it approaches 100%.
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encountered substantially different data sets when the system was presented with failure of

motor speed on a large scale i.e. greater than 90%.

6.6 Chapter Summary

This Chapter has explored the viability of numerous simultaneously functioning hormone

inspired systems. To address this, a speed controller for a foraging swarm was designed using

a hormone inspired system and proven to be effective for energy efficient item collection

at a number of different item targets. This system was then combined with a previously

developed sleep system. The combination of these two systems addressed issues found

amongst each of the individual systems, creating large increases to performance with minimal

drawbacks. Based on this success a third hormone system was introduced, allowing members

of a heterogeneous swarm to form a preference for environment, based on how successful

individual robots assessed themselves to be in a given terrain. This new system tested with

the speed adapting virtual hormone, identified as the system that would cause the most issue

when attempting to categorise robots, was still able to effectively categorise robots, with

limited change as demand increased.

Finally, the combination of all of the hormone systems was tested. While not producing the

best energy efficiency of the tested systems, the amalgamated hormone system produced the

best combination of collection rate and energy efficiency for the environment the system was

tested in. Considering the total performance of the system should definitely take into account

both energy efficiency and item collection, as the values they represent show task effectiveness

and task completion respectively.

This system was also found to be very robust, showing an expected reaction to increases in

swarm density and scalability. Additionally, the system was found to be resistant to wear over

time. With little change to the baseline system found as the rate of motor degradation was

modified across a large spectrum.

The results from the work in this chapter have shown that a complex system controlled almost

entirely by virtual hormones can be an effective adaptation system within a swarm robotic

context.
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Chapter 7

Conclusions and Future Work

This chapter compiles the findings and contributions of this thesis, presenting the conclusions

and contributions made in each chapter. Content from the thesis will be summarised within

both the context of these chapters and the thesis as a whole, readdressing the General

Hypothesis made in the introduction.

7.1 Thesis Summary

The breakdown of each chapter within this thesis is as follows:

7.1.1 Chapter 2 - Background

This chapter reviewed a wide range of articles relevant to the understanding of later chapters.

In particular, this chapter provided background specifying robot swarm features presenting

arguments for definitions along side the positives and negatives of their implementation. The

chapter then visits the topic of biomimicry, explaining its relevance and previous engineering

work that it has been utilised to improve. Of particular importance this section introduces

virtual hormones for the first time, highlighting instances of the first cases uses of virtual

hormone system for robotic control. Finally the chapter reviews methods of robotic adaptation,

highlighting the fact that typical adaptation is performed offline and how this may be

unsuitable for the tasks swarm robots are best suited for.

7.1.2 Chapter 3 - Virtual Hormones For Explicit Control

As the first experimental chapter, the work introduced here is preliminary and identifies

the initial feasibility of re purposing virtual hormones to improve performance in within a

swarm context. The findings here showed that virtual hormones could be used to improve the

mapping potential of a swarm. This was achieved through the addition of the adaptive traits
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inherent to hormone systems, allowing for appropriate dispersion of the swarm in a variety

of environment types. Additionally this work identified that, in order to further test virtual

hormone systems effectively, investigating different levels of control will more productive than

creating bespoke hormone control systems for actuators.

7.1.3 Chapter 4 - Virtual Hormones For Energy Efficient Task Allocation

Continuing from the previous chapter, this work now moves to behavioural control. In this

chapter a previously tested system introducing a sleep state to a swarm of foraging robots

was augmented with a virtual hormone system. The introduction of this system allowed

for fluctuation in sleep time, based on the environmental interaction of individual robots.

This hormone system proved more effective than a similar swarm with a general sleep time

optimised via genetic algorithm. The success of this systems control of behaviour states

suggested that it may be interesting to investigate an even higher level of abstracted control,

prompting the design and examination of the system introducing the concept of preference to

a foraging swarm in the next chapter.

7.1.4 Chapter 5 - Virtual Hormones For Task Allocation By Self Identifying

Traits

This chapter features a more complex and diversified heterogeneous swarm. This intention of

this chapter’s investigation was to identify whether a freshly deployed swarm with no explicit

knowledge of the capabilities of individual robots could use hormones to rank one another

on their performance across different terrain types. The robots in the swarm would then use

this information to collect items in the environment they were best suited to exploring. This

was found to be more effective than a system randomly selecting robots to an environment

even with a relatively small difference in robot capability. Having tested a variety of different

levels of control across the experimental chapters covered so far, it seemed that with these

promising results the final set of experiments should research the amalgamation of the control

systems designed so far.

7.1.5 Chapter 6 - A Multi-Hormone System For Arbitrating Traits and Behaviours

in Dynamic Environments

This chapter investigated the amalgamation of all of the levels of hormone control previously

analysed within the thesis, combining actuator control, behavioural control and behavioural

preference. Creating an amalgamated system first required that a new actuator control system

was developed, relevant to a foraging system. For this reason the chapter first investigates

the potential of a speed regulating hormone which optimises the energy consumption of the
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swarm based on demand by fluctuating the speed appropriately. Once this system was found

effective the chapter investigates the combination of the sleep hormone system and preference

hormone system to ensure that the adaptive traits they provide a swarm could be implemented

without negative disruption. The implementation of these systems was found effective, with

results showing that each system was typically capable of introducing benefit to the swarms

performance in terms of either collection rate or energy efficiency. These positives were found

to be introduced with minimal negative trade offs. Showing that, in the context of the tested

systems, hormone amalgamation is indeed viable, the next steps being that a multi-hormone

system could be found useful implemented in less abstracted tasks as a solution to real world

problems.

7.2 Concluding Remarks

Throughout this thesis it has been regarded that swarms of robots excel in dynamic and

dangerous environments. The destruction or removal of individual robots is not a problem

due to the relative low cost and ability to complete tasks as a group even with many members

of the swarm expended. However, for these swarms to perform consistently well they must

adapt and remain versatile long after deployment. The initial tuning of parameters for task

execution or the initially established behaviour cycle may need to adapt to changes in the

environment as tasks develop. Virtual hormone systems as explored in this thesis offer a

solution to this, adapting over time from deployment as the interact with the environment

and encounter problems. This thesis began with the following general hypothesis:

Hypothesis: A swarm robotic system can obtain a greater efficiency or effectiveness against

a comparison technique through the implementation of a hormone inspired system. Hormone

inspired systems will help agents within the swarm adapt over time, without prior knowledge of

the environment properties. Adaptation provided by the hormone systems will regulate either

robot features or behaviour states.

In each of the systems produced, including the amalgamation of the systems adaptability has

been consistently demonstrated with hormone system competing against systems equipped

with random selections, optimised parameters and even competing engineered systems. By

matching the performance of or out performing said systems, it has been shown that virtual

hormones can be implemented to adapt a system over time without prior knowledge of a task

or the use of computational optimisation techniques. In addition to this these hormone systems

have not only regulated robot features and behaviour states, but have done so concurrently

with the introduction of the amalgamated hormone system.

Virtual hormone systems have been shown as an alternative to optimisation both when

optimisation is not possible due to a lack of environmental knowledge or when dynamics
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within an environment make producing single parameter values very difficult. Additionally

virtual hormone systems can act as an alternative to reinforcement learning (as seen in the

comparison to the engineered speed system in Chapter 6) as the decay element within the

hormone equations means that values can fluctuate based on time rather than only based on

interactions, returning to baseline values for normal operation if no stimuli are encountered

across enough time. This also means that behaviours and arbitration are less likely to reach an

state of non-recovery as adaptations, as explored in this thesis, modify only a known selection

of states or actions rather than the robotic behaviour at a fundamental level.

7.3 Further Work

Having rigorously tested Virtual Hormone systems in a simulated setting the next steps in

testing will be to test the systems using a physically implemented system, rather than further

decreasing the reality gap. By using genuine robots to perform similar abstracted tasks such

as those executed in this thesis (i.e. foraging), the demonstrated capabilities of the physical

systems will provide evidence to suggest that swarms, equipped with complex hormone

systems, would be capable of functioning well in real world applications that require on-line

adaptation. While these new tests would be valuable to all of the experiments conducted

throughout this thesis, real world tests would prove particularly valuable to the preference

selection system presented in Chapters 5 and 6. These tests would provide an opportunity to

study the viability of selecting preference in real environments and if, in reality, performance

would be consistently different enough in environments of alternate terrains to appropriately

categorise heterogeneous swarm members. Additionally, it may be worth exploring the

potential of physically modifying the morphology of swarm agents during a task via virtual

hormone. This would allow systems to use hormone values to not only select appropriate

robots for a task, but modify swarm members to create a swarm more suited or specialised

to a current terrain or assignment. Such a system should also able to revert to the initial

morphological state, keeping the versatility that is required for the effective application of a

swarm system.

Following these abstracted, though real, experiments, the element of abstraction should be

removed, using the swarm to execute tasks that would provide an actual real world service.

These tasks will not need to be significantly more complex than the abstracted tasks previously

tested, but will potentially require bespoke hardware to perform activities such as item sorting,

area searching or environmental monitoring. These relatively simple tasks scaled up to more

consequential activities, could see virtual hormone equipped swarms involved in applications

involving disaster relief work. Robot swarms using virtual hormone systems could be tasked

with investigating vast areas of volatile and changing environments associated with disaster

aftermath, securing survivors or sustaining resources. Equally, hormone systems could be
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implemented to enable searching for valuable minerals or suitable areas for habitation on

foreign planets with hostile and erratic weather, potentially making a large impact to the future

of extra-planetary industry and exploration. The implementation of hormone amalgamations

in these roles would grant large portions of autonomy to the agents performing the tasks.

These agents would be able to regulate themselves and one another through the use of shared

hormone values, providing a frame of reference to the tasks they are executing. This shared

information maintains the distribution required for a swarm to function robustly, as robots are

not issuing commands to one another in a centralised manner. Instead, swarm agents offer

one another contextual information which individual robots can then use to make decisions in

a decentralised manner. These hormone amalgamations would require little to no influence

from human users once deployed to robustly enact a task, while still leaving room for user

input should the desired output from the swarm change.

The future of swarm robotics could see vast numbers of versatile robots supporting societies

by taking advantage of parallel operations. Their efficiency in performing tasks will result

in not just establishing industries or cities, but also helping to maintain them. The rapid

and task efficient methods that swarm technology affords, allows for quick construction or

repair projects on infrastructure such as roads or railways, creating minimal disturbances.

This sort of technology will not be viable for implementation until the capabilities of swarm

systems are acknowledged. This will not happen without proof of robot swarms robustness and

adaptability to presented tasks, something which this thesis provides evidence for, furthering

the argument for the use of swarm robotics as a solution to real problems.
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