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In this paper, we discuss and investigate the advantages of an asynchronous display, called “image queue”, 

tested for an urban search and rescue foraging task.  The image queue approach mines video data to present 

the operator with a relevant and comprehensive view of the environment by selecting a small number of 

images that together cover large portions of the area searched.  This asynchronous approach allows 

operators to search through a large amount of data gathered by autonomous robot teams, and allows 

comprehensive and scalable displays to obtain a network-centric perspective for unmanned ground vehicles 

(UGVs). In the reported experiment automatic target recognition (ATR) was used to augment utilities based 

on visual coverage in selecting imagery for presentation to the operator.  In the cued condition a box was 

drawn in the region in which a possible target was detected.  In the no-cue condition no box was drawn 

although the target detection probability continued to play a role in the selection of imagery.  We found that 

operators using the image queue displays missed fewer victims and relied on teleoperation less often than 

those using streaming video.  Image queue users in the no-cue condition did better in avoiding false alarms 

and reported lower workload than those in the cued condition. 

 

INTRODUCTION 

The task of interacting with multi-robot systems (MrS), 

especially with large robot teams, presents unique challenges 

for the user interface designer.  These challenges are very 

different from those arising in interactions with a single or 

limited number of robots. Traditional graphical user interfaces 

and infrastructures have difficulties in interacting with a large 

MrS. The core issue is one of scale: in a system of n robots, 

any operator task that has to be done for one robot must also 

be done for the remaining n–1 robots (McLurkin et al., 2006). 

The interface for a large robot team needs to simultaneously 

provide for command and coordination of distributed action 

while centralizing and integrating the display of data.  

Many different applications, such as interplanetary 

construction, search and rescue in dangerous environments, or 

cooperating unmanned aerial vehicles, have been proposed for 

MrS. Controlling these robot teams has been a primary 

concern of many human-robot interaction (HRI) researchers. 

These efforts have included the use of both the theoretical and 

applied development of the Neglect Tolerance (Crandall et al., 

2006) and Fan-Out models (Olsen & Wood, 2006) to 

characterize the control of independently operating robots; 

predefined rules to coordinate cooperating robots, as in 

Playbook™ (Miller and Parasuraman, 2007) and Machinetta 

(Scerri et al., 2005); and techniques for influencing teams 

obeying biologically inspired control laws (Kira & Potter, 

2010). While our efforts to increase the span of control over 

unmanned vehicle (UV) teams appear to be making progress, 

the asymmetry is growing between what we can command and 

what we can comprehend.  

Automation can reduce excessive demands for human 

input, but throttling the information being collected and 

returned is fraught with danger. A human is frequently 

included in the loop of a MrS to monitor and interpret the 

video that is being gathered by UVs. This can be a difficult 

task for even a single camera (Cook et al., 2006) and begins to 

exceed operator capability before reaching ten cameras (Lewis 

et al., 2010). With the increasing autonomy of robot teams and 

plans for biologically-inspired robot “swarms” of much greater 

number, the problem of absorbing and benefiting from their 

output seems even more important than learning how to 

command them. 

Foraging tasks, when carried out with a large robot team, 

usually require a more detailed exploration than simply 

moving each robot to different locations in the environment. 

Acquiring a specific viewpoint of targets of interest (e.g. 

finding victims in a disaster scenario) is of greater concern, 

and increasing the explored area is merely a means to achieve 

this end. While a great deal of progress has been made in the 

area of autonomous exploration, the identification of targets is 

still typically done by human operators who ensure that the 

area covered by robots has in fact been thoroughly searched 

for the desired targets. Without the means to combine the data 

gathered by all of the robots, the human operator is required to 

synchronously monitor their output, such as by using a video 

feed for each robot. This requirement and load on the human 

operator may directly conflict with other tasks, especially 

navigation which requires the camera to be pointed in the 

direction of travel in order to detect and avoid objects. The 

need to switch attention among robots will further increase the 

likelihood that a view containing a target will be missed. 

Earlier studies (Pepper et al., 2007) confirmed that the search 

performance of these tasks is directly related to the frequency 

with which the operator shifts attention between robots, and is 

possibly due to targets missed in the video stream while 

servicing other robots.  

The problem addressed in this paper is the design of an 

asynchronous, scalable, and comprehensive display, without 
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requiring a 3D reconstruction, to enable operators to detect 

relevant targets in environments that are being explored by 

large teams of unmanned ground vehicles (UGVs). We will 

present one particular design for such a display and test it in 

the context of Urban Search and Rescue (USAR) by using 

large robot teams that have some degree of autonomy and are 

supervised by a single operator. 

 

ASYNCHRONOUS IMAGERY 

An asynchronous display method can alleviate the 

concurrent load put on the human operator and can disentangle 

the dependency of tasks that require direct attention to multiple 

video feeds. Furthermore, it is possible to avoid attentive 

sampling among cameras by integrating multiple data streams 

into a comprehensive display. In turn, this allows the addition 

of new data streams without increasing the complexity of the 

display itself.  An earlier approach to asynchronous display for 

USAR was explored in (Velagapudi et al. 2008). The method, 

motivated by asynchronous control techniques previously used 

in extraterrestrial NASA applications relied on substituting a 

series of static panoramas taken at designated locations for 

continuous video. The operator then searched through the 

panoramic images to determine the location of targets 

viewable from each of the selected locations.  In a four robot 

experiment comparing panoramas with streaming video there 

was no difference in the number of victims found or area 

explored.  A further experiment (Velagapudi et al., 2009) 

scaled the team size to eight and twelve robots on the premise 

that advantages for self paced search of imagery might emerge 

with increasing numbers of video feeds to monitor in the 

synchronous control condition.  Again, no differences were 

found.  However, this approach did not utilize all the available 

data from the video feeds that robots gather, so a huge amount 

of potentially useful information in the panorama condition 

was discarded. Furthermore, the operator must give the robots 

additional instructions on where to sample future panoramas. 

In contrast to previous work, the present approach allows 

the use of autonomous exploration. We present an 

asynchronous display that mines all of the robot video feeds 

for relevant imagery, which is then given to the operator for 

analysis. We call this type of asynchronous display “image 

queue” and compare it to the traditional synchronous method 

of streaming live video from each robot, which we refer to as 

“streaming video”. In the next section, we describe our test 

bed, along with a detailed description of the image queue and a 

comparison with streaming video. 

The goal of the image queue interface is to use the 

advantages of an asynchronous display and to maximize the 

amount of time human operators can spend on the tasks that 

humans perform better than robots. For USAR, this is 

currently the case for tasks like victim identification and 

navigating robots out of dangerous areas in which they are 

stuck. As the number of robots in a system increases with 

improved autonomy, the demands on operators for these tasks 

increase as well. Hence, another requirement for the interface 

is to provide the potential for scaling up to larger numbers of 

robots and operators. The proposed image queue interface 

implements the idea of asynchronous monitoring via a priority 

queue of images that allows operators to identify victims 

requiring neither synchronicity nor any contextual information 

not directly provided by the image queue. 

The image queue interface (Fig. 1) focuses on two tasks: 

(1) viewing imagery, and (2) localizing victims. It consists of a 

filmstrip viewer designed to present the operator with a filtered 

view of what has passed before the team’s cameras. A filtered 

view is beneficial, because the video taken contains a high 

proportion of redundant images from sequential frames and 

overlapping coverage by multiple robots. 
 

ATR 

The ATR (automatic target recognition) algorithm uses 

prior knowledge of a victim’s visual appearance, such as shirt 

color, pants color, or skin tone, to calculate an image's victim 

probability. In the cued condition, the probability P of a victim 

being present is equal to the sum of pixels in the image, 

correlated with victim colors, divided by a tuned threshold, 

which is bounded to [0.1, 1]. In addition, a target indicator 

(Fig. 1) was added in the cued condition to assist the operator 

in identifying the detected target (victims).   If an image's 

victim probability was greater than 30%, a bounding box was 

drawn around the victims estimated location.  Because color 

histogram-based target detection proved unrealistically 

accurate when used with synthetic imagery, false alarms with a 

rate consistent with that expected for real imagery were 

introduced.  If an image's victim probability was less than 

30%, a false positive was generated with a 20% probability 

and a randomly generated victim bounding box was drawn on 

the image. 

 

Figure 1. Image Queue GUI with Target Detection  

IMAGE UTILITY 

Next, the visual coverage of an image is computed by 

referencing the image in the map, as seen in Fig. 2. From this 

we compute a coverage utility score U. Images covering larger 

areas, excluding parts already been seen by other images, 

receive higher utility scores. In colloquial terms this kind of 

utility ranks images higher that cover large areas with minimal 

overlap. Fig. 2 illustrates this concept of utility with a simple 

example. We normalize utility to the bounded interval [0, 1].   
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The image is now added to the priority queue, with 

priority equal to P*U (victim probability* coverage utility). As 

the operator views images, the utility is recalculated to take 

into account the growing portion of the world the operator has 

viewed, causing the priority of the image to be recalculated 

and the queue to be rearranged as necessary. 

 

Figure 2. Determining utility for Image Queue 

By aggregating imagery with the highest priority scores at 

regular intervals, the image queue allows the operator to 

peruse a relatively small number of prioritized images that 

show most of the new area explored by the robots that is likely 

to contain targets. Notice that exploration can continue while 

operators view the image queue, as long as robots are 

sufficiently autonomous (or controlled by other operators). 

Operators can either click or scroll through a certain number of 

images in the queue. Once operators work through the first set 

of images, the image queue marks the areas covered by these 

images as already seen and retrieves the next set of images 

with high utility. Tests of this system show that after 15 

minutes of exploration, an operator can view 70% of the area 

covered by viewing the 10 highest utility frames, and 90% of 

the area covered within the first 100 frames. 

 

METHODS 

USARSim and MrCS 

The experiment reported in this paper was conducted 

using the USARSim robotic simulation with 12 simulated 

Pioneer P3-AT robots performing Urban Search and Rescue 

(USAR) foraging tasks. USARSim is a high-fidelity simulation 

of USAR robots and environments that was developed as a 

research tool for the study of human-robot interaction (HRI) 

and multi-robot coordination. USARSim supports HRI by 

accurately rendering user interface elements (particularly 

camera video), accurately representing robot automation and 

behavior, and accurately representing the remote environment 

that links the operator’s awareness with the robot’s behaviors. 

USARSim also serves as the basis for the Virtual Robots 

Competition of the RoboCup Rescue League. 

MrCS (Multi-robot Control System), a multi-robot 

communications and control infrastructure with accompanying 

user interface, developed for experiments in multi-robot 

control and RoboCup competition (“Robocup Rescue VR”, 

2010) was used in this experiment. MrCS provides facilities 

for starting and controlling robots in the simulation, displays 

multiple camera and laser output, as well as maps, and 

supports inter-robot communication through Machinetta, a 

distributed multi-agent coordination infrastructure. Fig. 3 

shows the elements of the conventional GUI for the streaming 

video condition. The operator selects the robot to be controlled 

from the colored thumbnails, with live videos appearing at the 

top right of the screen. The current locations and paths of the 

robots are shown on the Map Viewer (bottom left). When 

under manual control, robots are tasked by assigning 

waypoints on a heading-up map on the Map Viewer or through 

the teleoperation widget (lower right). 

An autonomous path planner was used in the current 

experiment to drive the robots, unlike the panorama study 

(Velagapudi et al. 2008) in which paths were manually 

generated by participants with specified panorama locations. 

As in the previous study (Chien et al. 2010), operators 

appeared to have little difficulty in following these 

algorithmically generated paths, and identified approximately 

the same numbers of victims (per operator) as those following 

human generated paths.  

 

Figure 3. GUI for the streaming video condition.  
 

Participants and Procedure 

30 paid participants approximately balanced by gender 

were recruited from the University of Pittsburgh community. 

Participants were provided with standard instructions on how 

to control robots via MrCS. In the following training session, 

participants practiced control operations for both streaming 

video and image queue conditions for 10 minutes each. After 

the training session, participants began the two 15-minute real-

task sessions in which they performed the search task, 

controlling 12 robots in teams. Experiment followed a two 

condition repeated measures design comparing the streaming 

video with an image queue display with ATR. In addition, the 

image queue condition participants have been separated into 

two sub groups: Cued and Non-cued. The environment was 

5026 m
2
, a size sufficient to guarantee that no participant 

could complete exploration. There were 100 victims 

distributed in the environment. At the conclusion of each real 

task session, participants were asked to complete the NASA-

TLX workload survey (Hart & Staveland 1998). 

 

RESULTS 

Data were analyzed using a repeated measures ANOVA to 

compare streaming video with the image queue conditions and 

a one-way between groups ANOVA to compare the cued and 

no-cue groups within the image queue condition. Participants 

were successful in searching the environment with no 

significant differences between conditions (F1,28 = .181, p 

= .674) or groups (F1,28 = .103, p = .751). On average, 

participants in the streaming video condition found 9.03 
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victims, while those in the image queue conditions found 8.73. 

The area explored by the 12 robots also showed no significant 

differences among displays (F1,28 = 0.479, p = .495). 

Every mark that a participant made indicating a victim 

was compared with ground truth to determine whether there 

was actually a victim at the location. A mark made further than 

2 meters away from any victim or multiple marks for one 

victim were counted as false positives. Victims that were 

missed, but present in the video feed and not marked were 

counted as false negatives. The number of false positives 

showed no significant difference between the image queue 

conditions and streaming video (F1,28 = .053, p = .819). A one-

way ANOVA, however, found a significant advantage for the 

no-cue group over the cued group (F1,28 = 4.974, p = .034) 

within the image queue conditions.  

 
Figure 4. Marking errors for victims 

The image queue did, however, show a significant 

improvement over the streaming video condition (F1,28 = 

7.292, p = .012) for false negatives, with the average number 

of missed victims dropping to 7.17 from the 8.67 missed in the 

streaming video condition (Fig. 4).  

 

Figure 5. Teleoperation and workload 

In MrCS control operators have frequently been observed 

(Lewis et al., 2010) to engage in teleoperation in order to 

regain situation awareness (SA) by finding the robot and 

orientation associated with a camera view.  Because both 

image queue and streaming video users are equally likely to 

need to teleoperate to free stuck robots, differences in 

teleoperation frequency provide an indirect measure of SA.  A 

repeated measures ANOVA shows a significant difference 

(F1,28 = 176.845, p < .001) for the count of teleoperation times 

between the streaming video and image queue condition with 

participants in the streaming video condition teleoperating an 

average  of 16.07 times while they chose to teleoperate only 

0.87 times in the image queue condition. 

While the full-scale NASA-TLX workload measure (Fig. 

5) revealed that no advantage for either the image queue or 

streaming video conditions, the no-cue version of the image 

queue was judged significantly less taxing than the cued 

version (F1,28 = 5.364, p = .028).  

 

DISCUSSION 

The purpose of this experiment was to examine the effects 

of the asynchronous image queue with automatic target on 

overall performance. It presents information to subjects 

asynchronously, but is ordered by a quality metric that relates 

to the utility of the information and the probability of finding a 

victim. This stands in contrast to the video stream that presents 

information as it becomes available. Additionally, our 

technical implementation of an image queue based on a 

ranking by priorities allows the addition of further utility 

criteria, such as fire and other hazards that need to be detected, 

depending on the particular application.  

Our results show that in the image queue conditions, 

which allow interruption and relevant image retrieval, a 

reviewable, location-based image queue interface leads to 

similar search performance with lower operator errors and a 

overall lower workload. In the streaming video condition, we 

observed more instances of teleoperation, while participants in 

the image queue condition avoided teleoperating the robots 

and relied more heavily on autonomy. As autonomy improves, 

we ultimately expect to see the need for navigation reduced to 

situations in which the operator has to assist robots in fixing 

unexpected errors. Furthermore, image queue participants have 

no need to teleoperate a robot, in contrast to streaming video 

participants when they encounter a victim in the video feed. 

Most importantly, they do not need to stop the robot in order 

to precisely locate the victim. In essence, we have decoupled 

the navigation and error-recovery tasks from the victim-

detection tasks, allowing the latter tasks to be completed 

entirely asynchronously without any penalties for performance 

in terms of the number of victims. Also, by decoupling these 

tasks, we reduced the number of false-negative errors that 

occur. The reduction in errors for the image queue condition is 

particularly significant, because avoiding missed targets is 

crucial to most foraging tasks. Thoroughness and correctness 

are two of the most important performance metrics, especially 

for USAR when lives depend on it. 

When examining performance and workload and 

comparing the no-cue group with the cued group in the image 

queue condition, some unexpected but interesting results may 

give a hint as to the design of an appropriate interaction 

procedure. Originally, it was expected that the cued display 

might reduce user workload and improve overall performance. 

However, the analysis of victim marking errors shows that the 

cued group marked 52.9% more victims at the wrong location 

(false positive, Fig. 4) but did not miss more victims. A similar 

disadvantage in reported workload suggests that substantial 

cognitive resources were required for the cued group to 

separate false alarms from accurately placed boxes. An 
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example of a final map for the cued group illustrates this 

problem (Fig. 6). When the operator viewed all images from a 

newly covered area or with newly detected victims, the system 

may continue to pull images from this general area because 

priority is determined by victim probability as well as 

coverage.  As a consequence, new images containing already 

marked victims may enter the queue even though they 

represent only minor increases in coverage.  Under these 

conditions, the cued display frequently confused operators 

leading them to mark the same victim twice or even three 

times at the same location. Augmenting the priority 

computation by considering whether a target may have been 

already marked by the operator could alleviate this problem. 

This poses a new challenge for ATR since it will have to 

integrate markings placed by the user with its detections.  

 

Figure 8. Example for target indication group map 

Participants in the streaming video condition were 

confronted with a bank of videos (Fig. 3), much like a security 

guard monitoring too many surveillance cameras. Informal 

observation of participants suggests that due to the frequent 

distractions of robot operation, victims appearing and 

disappearing from view, and the need to switch back and forth 

between tasks, the operator puts a great deal of effort into task 

allocation and feels intense time pressure. While we undertook 

this study to determine whether asynchronous video might 

prove beneficial to larger teams, we found performance to be 

essentially equivalent to the use of streaming video but with 

lower errors and workload. 

Suitability for multi-operator control is another potential 

advantage for asynchronous displays such as the image queue.  

Operators attempting to control or monitor robot teams in real 

time would be faced not only with the daunting task of 

controlling and coordinating their own robots but with 

coordinating with others trying to perform the same difficult 

tasks.  Asynchronous control such as the image queue provides 

convenient ways to divide tasks functionally among operators, 

such as allocating exploration and target identification to 

different operators.  Shifting focus from platforms and camera 

video to the network and regions being explored allows 

searchers to concentrate on their primary search task rather 

than on driving or monitoring robots.  Just as our image queue 

operators were called upon to teleoperate robots out of trouble 

from time to time, we envision future systems which are 

controlled at both network and platform levels.  To realize this 

kind of control architecture, we propose a call center approach 

in which some operators address independent control needs for 

monitoring and exploration of UVs, while other operators 

address independent location-based images in a queue for 

victim marking and other perceived tasks.  Because 

synchronous control operators must sacrifice a global 

perspective to maintain local control of platforms and 

asynchronous operators sacrifice temporal resolution to gain a 

global perspective losing situational awareness will be one of 

the major hazards to be addressed.  

Because of these concerns, we want to explore the effects 

of combing heterogeneous levels of control on large robot 

teams controlled by multiple operators.  In these experiments 

we hope to compare functional allocation, platform-based 

allocation, and hybrid allocation schemes employing call 

center, self-selected, and other task assignment regimes. 
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