3,858 research outputs found

    Home detection of freezing of gait using Support Vector Machines through a single waist-worn triaxial accelerometer

    Get PDF
    Among Parkinson’s disease (PD) symptoms, freezing of gait (FoG) is one of the most debilitating. To assess FoG, current clinical practice mostly employs repeated evaluations over weeks and months based on questionnaires, which may not accurately map the severity of this symptom. The use of a non-invasive system to monitor the activities of daily living (ADL) and the PD symptoms experienced by patients throughout the day could provide a more accurate and objective evaluation of FoG in order to better understand the evolution of the disease and allow for a more informed decision-making process in making adjustments to the patient’s treatment plan. This paper presents a new algorithm to detect FoG with a machine learning approach based on Support Vector Machines (SVM) and a single tri-axial accelerometer worn at the waist. The method is evaluated through the acceleration signals in an outpatient setting gathered from 21 PD patients at their home and evaluated under two different conditions: first, a generic model is tested by using a leave-one-out approach and, second, a personalised model that also uses part of the dataset from each patient. Results show a significant improvement in the accuracy of the personalised model compared to the generic model, showing enhancement in the specificity and sensitivity geometric mean (GM) of 7.2%. Furthermore, the SVM approach adopted has been compared to the most comprehensive FoG detection method currently in use (referred to as MBFA in this paper). Results of our novel generic method provide an enhancement of 11.2% in the GM compared to the MBFA generic model and, in the case of the personalised model, a 10% of improvement with respect to the MBFA personalised model. Thus, our results show that a machine learning approach can be used to monitor FoG during the daily life of PD patients and, furthermore, personalised models for FoG detection can be used to improve monitoring accuracy.Peer ReviewedPostprint (published version

    A Study and Estimation a Lost Person Behavior in Crowded Areas Using Accelerometer Data from Smartphones

    Get PDF
    As smartphones become more popular, applications are being developed with new and innovative ways to solve problems in the day-to-day lives of users. One area of smartphone technology that has been developed in recent years is human activity recognition (HAR). This technology uses various sensors that are built into the smartphone to sense a person\u27s activity in real time. Applications that incorporate HAR can be used to track a person\u27s movements and are very useful in areas such as health care. We use this type of motion sensing technology, specifically, using data collected from the accelerometer sensor. The purpose of this study is to study and estimate the person who may become lost in a crowded area. The application is capable of estimating the movements of people in a crowded area, and whether or not the person is lost in a crowded area based on his/her movements as detected by the smartphone. This will be a great benefit to anyone interested in crowd management strategies. In this paper, we review related literature and research that has given us the basis for our own research. We also detail research on lost person behavior. We looked at the typical movements a person will likely make when he/she is lost and used these movements to indicate lost person behavior. We then evaluate and describe the creation of the application, all of its components, and the testing process

    Prediction of sustained harmonic walking in the free-living environment using raw accelerometry data

    Get PDF
    Objective. Using raw, sub-second level, accelerometry data, we propose and validate a method for identifying and characterizing walking in the free-living environment. We focus on the sustained harmonic walking (SHW), which we define as walking for at least 10 seconds with low variability of step frequency. Approach. We utilize the harmonic nature of SHW and quantify local periodicity of the tri-axial raw accelerometry data. We also estimate fundamental frequency of observed signals and link it to the instantaneous walking (step-to-step) frequency (IWF). Next, we report total time spent in SHW, number and durations of SHW bouts, time of the day when SHW occurred and IWF for 49 healthy, elderly individuals. Main results. Sensitivity of the proposed classification method was found to be 97%, while specificity ranged between 87% and 97% and prediction accuracy between 94% and 97%. We report total time in SHW between 140 and 10 minutes-per-day distributed between 340 and 50 bouts. We estimate the average IWF to be 1.7 steps-per-second. Significance. We propose a simple approach for detection of SHW and estimation of IWF, based on Fourier decomposition. The resulting approach is fast and allows processing of a week-long raw accelerometry data (approx. 150 million measurements) in relatively short time (~half an hour) on a common laptop computer (2.8 GHz Intel Core i7, 16 GB DDR3 RAM)

    Joint segmentation of multivariate time series with hidden process regression for human activity recognition

    Full text link
    The problem of human activity recognition is central for understanding and predicting the human behavior, in particular in a prospective of assistive services to humans, such as health monitoring, well being, security, etc. There is therefore a growing need to build accurate models which can take into account the variability of the human activities over time (dynamic models) rather than static ones which can have some limitations in such a dynamic context. In this paper, the problem of activity recognition is analyzed through the segmentation of the multidimensional time series of the acceleration data measured in the 3-d space using body-worn accelerometers. The proposed model for automatic temporal segmentation is a specific statistical latent process model which assumes that the observed acceleration sequence is governed by sequence of hidden (unobserved) activities. More specifically, the proposed approach is based on a specific multiple regression model incorporating a hidden discrete logistic process which governs the switching from one activity to another over time. The model is learned in an unsupervised context by maximizing the observed-data log-likelihood via a dedicated expectation-maximization (EM) algorithm. We applied it on a real-world automatic human activity recognition problem and its performance was assessed by performing comparisons with alternative approaches, including well-known supervised static classifiers and the standard hidden Markov model (HMM). The obtained results are very encouraging and show that the proposed approach is quite competitive even it works in an entirely unsupervised way and does not requires a feature extraction preprocessing step

    A multi-modal approach for activity classification and fall detection

    Get PDF
    "Special issue : Intelligent multisensory systems in support of information society"The society is changing towards a new paradigm in which an increasing number of old adults live alone. In parallel, the incidence of conditions that affect mobility and independence is also rising as a consequence of a longer life expectancy. In this paper, the specific problem of falls of old adults is addressed by devising a technological solution for monitoring these users. Video cameras, accelerometers and GPS sensors are combined in a multi-modal approach to monitor humans inside and outside the domestic environment. Machine learning techniques are used to detect falls and classify activities from accelerometer data. Video feeds and GPS are used to provide location inside and outside the domestic environment. It results in a monitoring solution that does not imply the confinement of the users to a closed environment.This work is funded by National Funds through the FCT-Fundação para a CiĂȘncia e a Tecnologia (Portuguese Foundation for Science and Technology) within project PEst- OE/EEI/UI0752/2011. The work of Davide Carneiro is also supported by a doctoral grant by FCT (SFRH/BD/64890/2009). This work is also partially supported by the Spanish Ministerio de EconomĂ­a y Competitividad / FEDER under project TIN2010-20845-C03-01
    • 

    corecore