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Design and assessment of the Data A aalysis
process for a wrist-worn smart object *o aetect
atomic activities in the smart home

Qin Ni, lan Cleland, Chris Nugent, Ana Belén Garcia Hernando «. 17 /an Pau de la Cruz

Abstract— The ability to accurately identify the different activities of Suily nvi1ng (ADLs) is considered as one of
the basis to foster new technological solutions inside the smart hrme. Cur’ ent ADL recognition proposals, still
however, struggle to accurately and robustly identify the rang ~ of diffi rent activities that can be performed at
home, namely static, dynamic and transient activities, and the .."~h variety of technologies and data analysis
possibilities to classify the information gathered by the senso:. In this paper, we describe the methodological
approach that we have followed for the processing, analy.". and classification of data obtained by a simple and
non-intrusive smart object with the objective to detect a."muc (i.e. non-divisible) activities inside the smart home.
The smart object consists of a wrist-worn 3D accelerown. “ter, which presents as its advantages its customizability
and usability. We have performed a set of ,ystem. ‘ic experiments involving ten people and have followed the
steps from data gathering to the compar .sor of a.iferent classification techniques, to find out that it is possible
to select a complete succession of da’a pro. ~s (ng steps in order to detect, with high accuracy, a set of atomic
activities of daily life with the selected su. ~rt object, which performs well with different independent datasets

besides ours.
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I. INTRODUCTION

1.1. Context of the research

Recent advances in sensing, networking and ambient intelligence technologies have .. ‘lted in a rapid emergence
of smart environments. Among these, the Smart Home (SH) has gained a lot of attertion . >r its potential in providing
enhanced quality of life within the home. If, based on the SH, it is possible to d- «ec. and mterpret the behaviour and
context of the inhabitants at home, we could think about enhancing their quality . life. This scenario could lead to
improvements in independence of people with continuing care needs (such a. the eld rly) by reducing caregivers’ time
and healthcare costs in general, without losing the safety that continuc us ».u ‘nobtrusive monitoring provides. The
ability to correctly and automatically identify human activities and in." ~ an inhabitant’s behaviour at home, has the
potential to lend itself to a wide range of applications, such as the dete. ““on ,f health emergencies [1], recommendation
services for correct execution of complex activities [2], profe. vua: auvice on routine lifestyle [3], anomaly detection
[4] or help in treatment prescription [5].

The most accepted method to model the inhabitant’s . “avicir is through the detection of the activities performed
at home. There are different types of these activities, ~u. ..~ commonality to all of them is that a non-technical person
should be able to recognize them as activities when faced with them. Activities of interest within a SH may include
Activities of Daily Life (ADLs) relating to s.'*-care and domestic tasks (sleeping, bathing, dressing, etc.) that are
routinely performed by the inhabitant, ar « ar oule ory activities relating to either specific motions or postures of the
person (e.g. sitting, standing and trans” ‘onal activities such as stand-to-sit and sit-to-stand).

In addition to the previous char cw. ization of activities [6], we can consider a different classification of activities
into atomic activities, which c-nnov = further decomposed into simpler activities (recognizable by a non-technical
person), and composite acu “t'zs. 7 his classification is more suitable for engineering purposes, enabling the
cooperation of Internet ¢ “ Thing. (IoT) and Ambient Intelligence (Aml) technologies to obtain a functional, robust,
scalable and reliable - uiution at home (see Figure 1). The IoT technologies, through the concept of smart objects, can
interact physically w.*h th- inhabitants in a seamless and unobtrusive way to detect atomic activities. The Aml
technologies proce 's and relate the atomic activities produced by the IoT technologies and deal with aspects such as

concurrency, uncertainty or context awareness to obtain composite activities used to model the inhabitants’ behaviour.
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Figure 1. Decoupling of IoT and Aml subsystems through the de >c*'on o "intermediate atomic activities.

In the proposed approach, illustrated by Figure 1, the atomic activities ai. the primitives enabling both the modelling
of the inhabitant’s behaviour (including the composite activity de. ~tiou, and the improvement of the resilience of the
whole system by decoupling both subsystems (IoT and Aml). '1.."~ paper is focused on the detection of atomic activities
through smart objects (IoT subsystem). To improve the rec. gn’aou of atomic activities, several practical issues must
be resolved, this includes issues around usability and ac. ~p. hiiity of the solution. In addition, some technical issues
difficult to solve for the solution such as the identifica..~n ot the inhabitant, calibration and power consumption, pose

significant challenges.
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Fionre © 7 nceptual model of the [oT subsystem to detect atomic activities.
Figure 2 shows a "implifi .d conceptual model of the IoT subsystem functionalities required for the detection of
atomic activities. Thr ».osystem should handle the issues related with the acquisition of raw data from the smart

objects, communicatica among devices (smart objects and other entities), data handling (data hub for the smart home)
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and the final application (detection of atomic activities). Although these are significant challenges, this paper will focus
more on the data analysis procedures for recognizing these “atomic activities” through the use ,f a specific smart object.

Regarding the detection of the activities, the main issue is the reliable translation from the quan. “ative data gathered
by the sensors to the specific activity being carried out. There are three main issues hii. 'eri.g further improvements in
activity recognition performance. Firstly, from the many features that can be calclateu, ~nly some will be relevant.
Secondly, due to the short duration of transitional activities, there are much . ~s samples of transitional activities
(minority classes) than static and dynamic activities (majority classes). Thi dly, a + ‘ngle classifier has limited ability
to classify the instances for three classes. Therefore, combining the pro’ i various base classifiers can leverage their

strengths and improve the classification performance.

1.2. Objective

This paper describes the methodology we have followed t _u.u wic complete Data-driven domain of Figure 1 to
accurately detect three types of atomic activities by using a ... ~'» low-intrusive smart object. The smart object is a
wristband provided with a 3D accelerometer. This wris. .. d is 1 wearable object commonly accepted by most of the
population and supports two interesting features: (1,, uc .2~ tification of the inhabitant (each person should have her
own wristband). And (2), the customizability of th= device (the wristband object provides an opportunity to control the
orientation and location of the device on the by 'v, sin plifying issues around its calibration).

The atomic activities will be physical ctiv des f the three main types: stationary, dynamic and transitional. The
selected activities are considered roug’. ' orthogonal with each other (cannot be performed in parallel with others).

The method to build the data @ .a:_sis functionality of the wristband will be based on several machine learning

techniques and classifiers.

1.3. Summary of the contributio.."

The main contributions of this aper are:

- To present the echnic.’ foundations of the data analysis process from a smart wrist-band that facilitates the
recognition of at~mic acuvities in smart home and verify the feasibility of detecting three types of atomic activities by
using a single non-ii. rusive data acquisition device.

- To contribute a benchmark dataset that contains sensor data of static, dynamic as well as transitional activities by

using a small, low-cost and non-intrusive wrist-worn accelerometer [7]. The data are collected from a group of



participants in a lab setting but includes elements to resemble a real home scenario (they were told what to do but not
how to do it, see section 3.1). Specifically, we focus on data collection of transitional activiti- s together with static and
dynamic activities, which is often ignored in current research.

- To develop and test a method to compare different machine learning technique. an . allow the most adequate
machine learning selection for the wrist-worn accelerometer data. By paying attertion . the class imbalance in the
dataset, which is caused by the very short duration of transitional activities, the .. o swork includes features selection
algorithms, oversampling to balance the classes and different classificatior model. including ensemble approaches.
The data processing system selected by following this method has prov- . o0 vieiu good and balanced results also for
other researchers’ datasets independent from ours.

The rest of the paper is organized as follows: Section II intro. ces the related work in activity recognition area.
Section III describes the experiment protocol and data collection. Sec. ~ns IV concentrates the methods adopted in the
development of the activity recognition approach including signal , sprocessing, feature extraction, feature selection,
data rebalance, and ensemble classifier construction. Sectior. vV discusses the experimental results and the obtained

performance on the atomic activities recognition. Finally, s *ction VI provides the conclusions and future work.

T RELATED WORK

Researchers have made significant progre 's in v~ 2 ea of human activity recognition using wearable accelerometers.
Their small size allows accelerometers to .~ .mbr tded into belts, clothes, glasses, wristwatches, jewellery, shoes and
mobile devices to make them easier f» we °+. For example, Chernbumroong et al. [8] proposed a classification method
to monitor and recognize eleven A DLs >f an elderly person including feeding, brushing teeth, dressing, washing dishes
and so on. They used a single .cceleroin. 2ter embedded into a sport watch, which can be worn by an elderly person in
an acceptable and non-intrusive . -av Wang et al. [9] used a single accelerometer placed on two different parts of the
body: the waist and the lc t ankle to monitor eight common domestic activities: sitting, lying, standing up from lying,
standing, walking, r .nning, Yicycling and jumping. Besides the single accelerometer, multiple accelerometers were
placed on distribnted bou, 1ocations to improve the classification accuracy. Gao et al. [10] placed four accelerometers
at four different loc. ions of the body (chest, left under-arm, waist and thigh) to monitor and recognize five physical
activities. Their system achieved an overall recognition accuracy of 96.4% by adopting the mean and variance features

with a Decision Tree classifier. Cleland et al. [11] described an investigation on the optimal placement of



accelerometers for the purpose of detecting a range of everyday activities. In their study, six tri-axial accelerometers
were worn at distributed body locations including the chest, lower back, hip, thigh, wrist # «d foot to collect data of
seven activities (walking, jogging, sitting, lying, standing, waking upstairs and walking downstaus, The result showed
that reasonable activity detection can be achieved using only two accelerometers an. the. increasing the number of
sensors had no significant impact on the accuracy of the classifier. One drawback of *'sing . ~ultiple sensors is, however,
related to the placement of the accelerometers that would make the activi.” rionitoring highly obtrusive and
uncomfortable. A single inertial sensor worn by the user can reduce obtrus’ veness d the minimum. In this study, we
used one accelerometer placed at the wrist to collect the data. The wri .. was cuosen as it provides a non-obtrusive
location which is comfortable to wear and has shown relatively good accuracv ,f activity recognition.

A number of activity recognition frameworks with adopting wri. *-worn s nsors have been proposed. Mehrang et al.
[12] presented an assessment of a human activity monitoring frame. ~rk that covers some of the principal building
blocks required for an activity monitoring system, and is compriseu ~f the best preprocessing and parameter choice for
an random forest classifier. Qi et al. [13] proposed a *wo-l._er activity recognition framework to classify aerobic,
sedentary and free weight activities. However, these framewv orks are mainly proposed to monitoring static and dynamic
activities, the transitions between multiple activities, whic.. make up a large part of a person’s daily activities and can
provide additional contextual information for .ctivity . 2cognition, are usually ignored in most current literature due to
their short duration. Furthermore, if this (ssv> is not addressed properly, these transitions would affect the final
performance of the activity recognition ,ysten. i ce they would be misclassified into one of the available classes. Ortiz
et al. [14] proposed a transition-aware huma.. activity recognition system for the recognition of six physical activities
(walking, walking upstairs, walk.. ~ d swnstairs, sitting, standing and lying) and six transitional activities (stand-to-sit,
sit-to-stand, sit-to-lie, lie-to-s ¢, st .nd-t2-lie and lie-to-stand) using the accelerometer embedded in a smartphone. The
result showed that the sv_port vec.or machine could achieve high classification accuracy with a heuristic filtering
approach. Noor et al. [15] '=vel ,ped an adaptive segmentation approach for recognizing not only well defined static
and dynamic activit. s, but : Iso transitional activities. In their work, a novel activity transition diagram for activity
recognition was . evu, ., ~1 to validate the activity transition and improve recognition accuracy. Because the samples
of posture transitions vere, however, much less than basic activities, it would result in a biased classification result.

As mentioned previously, the duration of transitions is very short, thus the imbalanced class distribution problem should



be taken into consideration during the classification task. Resampling is the most common approach to balance the
class distribution in dataset. It includes oversampling the minority class to generate new cl- ss samples synthetically,
such as SMOTE [16], and under-sampling the majority class by discarding data points. It is nc “ced that randomly
resampling may lead to the possibility of overfitting or useful information loss. Zh..~c ¢. al. [17] used SMOTE to
balance the class distribution in a dataset and set the percentage of data to creat= for .“e minority class to 100%.
Khoshgoftaar et al. [18] verified that a ratio of 2:1 or even 3:1 in favour of the 1. ~ic ity class would result in superior
classification performance. In this paper, we considered the transitional activ (ties an. the imbalanced class distribution
in the dataset, in order to improve the classification accuracy of transit'ui.al acuvities. Our approach is based on an
ensemble of heterogeneous classifiers.

Data-driven approaches have been widely used in acceleron. ter date analysis for activity recognition. These
approaches commonly adopted machine learning algorithms and ..~ be categorized into three types: generative
approaches, discriminative approaches and heuristic approaches [ 1>~ Generative approaches, such as naive Bayes [20]
and hidden Markov model [21], are flexible, capable of Aealin, with uncertainty in the data. However, they suffer from
the requirement of a large amount of data for training. Disc, ‘minative approaches, such as decision tree [22], K-nearest
neighbour [23], random forest [24], support vector machu.> [25] and artificial neural network [26], learn the features
mappings to activity labels by creating the .ecisior. boundaries in the feature space. For example, decision tree
classification models have been successfv (y a lopted for separating static activities from dynamic activities [27]. In
terms of dealing with more complex - ctiviti. = support vector machine and artificial neural network classification
methods have been concerned due to their ac vantages such as robustness in prediction and computational efficiency.
However, they face the problem ~f ¢ ver-fitting. Heuristic methods use a combination of both, which can generally
achieve better performance th «n a’ y sirgle technique. In addition, recent results in addressing multi-class classification
problems have indicated wat the adoption of ensembles of classifier models leads to increased classification
performance over using o. 'v si,gle classifier models [28]. However, much of the previous work on ensembles of
classifier models cor. tidered « nly the same type of classifier models [29] [30]. The single classifier has its own strengths
as well as weaki.»sse.  “en dealing with the different classes during the learning process. Moreover, the voting of
various algorithms c« 1 decrease the bias among the classes occurring in the usage of a single learning algorithm,

therefore resulting in a relatively generalized classification [31]. In our experimental study, we focus on a



heterogeneous ensemble of classifiers, which consists of classifiers of different types. Our goal is to determine if the
heterogeneous ensemble can be used to improve the classification performance by combining sarious classifiers though
the analysis of their classification performance on different activity classes. We have cre.“ed a dataset with
measurements related to different atomic activities (of three types, including transition. ' ac’.vities) and have compared
the performance of using isolated classifiers with several topologies of ensemble ~lass..”=rs in order to validate our

approach.

III. DATA ACQUISITION

We summarize in this section the experiment design and data colle ti~ .. prc cess that we have used to obtain the
dataset of the three activity types in smart home. Ten healthy adults wei. instructed to realize twelve activities (see
column “Activities” in Table 1) and the data got from an accelero.. ~ter p.aced on their left wrist were collected. These
collected data are annotated for the subsequent classification ta.'-s.

Table 1. The taxonomy and desc ipt on of monitored activities.

Type Activities Description

Standing Standing still for 5 minutes
Stat_lopgry Sleeping Sleeping on the sofa for 5 n.. “ites, si...ll movements, such as changing the lying posture,
Activities are allowed

Watching TV Watching TV while si**»o on the sofa in whatever posture the participant feels comfortable for 5 minutes,
changing sitting pe wre is « ‘owed

Walking Walking on treaa.. ' with a s t speed for 5 minutes

quamic Running Running on th treadmu. ™ 5 minutes

Activities Sweeping Sweeping w' n the ,acuum cleaner in the home area for 5 minutes
Stand-to-sit Standing stiu =~ .5s ar . then sitting on the sofa, repeat for 15 times

i Sit-to-stand Sitting ¢ . the sofa .. 10s and then standing up, repeat for 15 times

;r;?jilg::al Stand-to-walk Perfor Jin.b he "stand—to—walk—to—stand",' standing still for 15s then start to walk, keep walking for 15s,
Walk-to-stand then standing s.. " for 15s, repeat for 15 times
Sit-to-lie S* .ng « 1 the sofa for 15s and then lying down, repeat for 15 times
Lie-to-sit +_‘ng n the sofa for 15s and then sitting on the sofa, repeat for 15 times

We aim for the recognitior of 2 omi- activities that are necessary to take care of oneself and commonly occur in real
daily life. The static activ'ues, s' =h as standing and sleeping, and dynamic activities, such as walking and running, are
not limited in duratior Tra.. ** unal activities, such as stand-to-sit and sit-to-stand, commonly occur within a limited
duration, and are ch. vacteris :d by start and end times which usually vary slightly from one person to another [32].
Based on this, sta ic 2 1 dynamic activities can be executed continuously, and transitional activities can be executed
repeatedly to get sepa.ate samples. The twelve activities selected to be recognized are: standing, sleeping, watching

TV, walking, running, sweeping, stand-to-sit, sit-to-stand, stand-to-walk, walk-to-stand, lie-to-sit and sit-to-lie. Table



1 shows the classification of these twelve activities into three types and their description. The experiment protocol,

data collection and data annotation are described in detail in [7].

IV. METHODS

The acquired acceleration signals from the wrist accelerometer were analys.? us. g MATLAB programs

(MathWorks, Natick, MA) The classification task was implemented using Wek- [33 .1 zure 3 shows the conceptual

scheme of the proposed framework to select the most suitable machine learn’ .g techniyues.

|
Testing set Feature extraction Re-balance the cl- _.\N Model
. > o }—4
and selection distributior
Data Data | | f t ’ RF Model Performance
Preprocessing Segmentation assessment
Training phase: Training phas.
o feature extraction |—»| re-balance the class —{ = J48 Model
Training set and selection distric “ion |
- Ensemble model

Figure 3. Conceptual scheme of the proposed framew. "k to compare machine learning techniques.

The raw signal data were preprocessed to remove the unw. 1te 1 noise and separate the body acceleration from gravity
acceleration. Then the continuous signals were segmente.' 1.~ windows, each window in the dataset was extracted as
an input of 77 features by the feature extraction process. Based on this, the feature selection method was used to select
the optimal feature subset by choosing relevant (eau. *es and removing redundant ones. The resampling technique was
applied to rebalance the class distribution in the a. s ¢. After this, we applied a heterogeneous ensemble classification
model built by using a majority voting « *.bins Jdon function to combine the base classifiers. The computational

procedure that we have followed in ¢ ur ¢. ~erimental setup is illustrated in Figure 4.

4.1. Signal preprocessing

In general, the collected re v d7.a centain signal noise that may be caused by external vibration or loose coupling.
Thus we used a third-orcd .c 1ow-pass Butterworth filter with cut-off frequency at 20 Hz [34] to eliminate the high
frequency noise, and a thir.' ~rd-. median filter to remove abnormal noise spikes. Moreover, the collected acceleration
data were decompos 'd into t .¢ body acceleration (BA) component caused by the body movement, which can be used
to distinguish dy, au.e © ~m static activities, and the gravity acceleration (GA) component caused by the gravity, which
can be used to estin.:te the posture orientation. We used a third-order high-pass Butterworth filter with cut-off

frequency at 0.3 Hz to separate the BA and GA components from the filtered signal.
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Require:
X: Raw acceleration dataset
Y: Raw activity label array
f1(): Low-pass Butterworth filter with 20Hz cut-off frequency
f2(): Median filter
f3(): High-pass Butterworth filter with 0.3Hz cut-off frequency
buffer(): Segmentation function
a(): Feature extraction function
B(): Windows discarding function
w(): Feature selection function
resampling(): SMOTE with a 1200% boosting oversampling
procedure SignalPreprocessing(X)
fliteredX = f2(f1(X)); // remove the noise
BX = f3(filteredX); // get the body acceleration
GX = X — BX; //get gravity acceleration
return BX, GX
end procedure
procedure ObtainFeature(BX, GX, Y)
(SBX, SGX, SY) = buffer(BX, GX, Y); / segment signal into . <6 samp' s
frames with 50% overlapping
A = o(BX,GX); //extract time and frequency domain fe' .ures
B =mean (Y);
(A’, B”) = B(A,B); // discard the windows that conta’» muiuple ac’ vities
(Asub, Bawn) = W(A’, BY); // select feature subset
return (Asuba Bsub)
end procedure
procedure Classification (Asu, Bsu)
(X, y) = resampling(Agp, Bsw); //get balanced feaw. < samples
Split (x, y) into training set Tyaning and testino et T //use 10-fold cross
validation
forn=1to 10 do
/*Traning*/

for all (x;, ¥i) € Tianing do

Build heterogeneous ensemb'e mode. ;

end
/*Testing™®/

for all (x;, ¥;) € Ticsting dO

Apply (xj, y;) on ensembic Moaer «,

end
end
return classification 2 _uaia. -
end procedure

Figure 4. Pseudo code of the con,, tatic 1al procedure followed in the experimental setup.

4.2. Segmentation and Feature extraction

After the filtering phase, the datase , wh.. * consists of the BA component, the GA component and the activity labels,
was divided into windows contr.nins 256 samples each with a 50% overlap between two consecutive windows.
Therefore, each classification cask maac about the activity was performed for the duration of 2.5-second windows.
Then the time-domain feat+=s a.. ' “requency-domain features were obtained by calculating on the values of X-, Y-,
and Z-axis of both the BA and the GA components. In addition, the signal magnitude vector (SMV) was used to extract

features since it can rovide he degree of body movement intensity [35]. The formula is shown in equation (1), where

X, , Y, Z, refc « "~ 2cceleration values of X-, Y-, and Z-axis, respectively, at the sampling time t.

SMV = /x? + y? + z? (1)
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Besides the commonly used time-domain features, such as root mean squared, mean, standard deviation and median
absolute deviation [36], the signal magnitude area (SMA), which computed the energy expen .iture to distinguish a rest
state from a dynamic activity [37], and the tilt angle, which provided information on the participa..”’s orientation, were
also included in this work. The frequency-domain features contained spectral ent. “ny spectral energy, kurtosis,
skewness, largest frequency component and signal weighted average. The list of 77 feat.. ~s used in our study as well
as their formulations is summarized in Table 2. There are situations where mo. * than one activity label fell into the
same segmented window. When dealing with multiple activities within a v indow, ‘his window was discarded. As a
result, the remaining dataset contained 15,178 windows consisting of the catracicu features and unique activity labels.

Table 2. Features extracted from time an frequen- y domain.

Features domain Features Formu! “ion Data values
Mean 1 oo
;z,’:l
Root mean squared (RMS) 1 BA-X. BA-Y. BA-Z. GA
’ = "l = el = bl m Ly -
o Vo 0 X, GA-Y, GA-Z,
Time- domain Standard deviation (STD) ISy - BASMV,GASMV
features . ..
Median absolute deviation (MAD) " Lan(‘x — median (x )‘)
i JNTT
Range max, (x)~min,(x)
Signal magnitude area (SMA) g A BA, GA, BASMV,
;Z 2 GASMV
Correlation coefficient cov(x,y)/ 0,0 BA-XY, BA-YZ, BA-XZ,
’ X7y

GA-XY, GA-YZ, GA-XZ,

Tilt angle (TA) tan” (x/yfy? +22)¥180/ 7 BA-X, BA-Y, BA-Z
Spectral energy I 2
n it
Spectral entropy Z:L (¢ log(e, e, =, /Z’/’ZI s,
Skewness "
Frequency-domain E (Q)’ BA-X, BA-Y, BA-Z,
features o BASMV
Kurtosis El(x-2)")/ El(e-x)' ]
Largest .requ ncy component argmax, (x,)
1 1
Freque.. 7 gnal weighted average z (ix,) /Z” X,
i=1 j=17)

4.3. Feature selection

Feature selection aims ‘o ident fy a subset of the most discriminative features that can increase the classification
performance, as we'. as re. wove the redundant features that contribute no additional information to the classifier.
Previous research main., .sed two main categories of feature selection methods: filter methods and wrapper methods
[38]. In this experil :ntal study, three filter feature selection methods were considered: Information Gain (InfoGain),
correlation-based feature selection (CFS) with Genetic search (GS) algorithm and RelifF. These three filter methods

were selected since the filter methods for feature selection depend on general data characteristics rather than
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predetermined classifiers [39]. Since the ensemble classifier approach that we aimed to assess is based on

heterogeneous classifiers, wrapper methods were not suitable in our case.

4.4. Class distribution rebalance

Having an imbalanced number of activity instances may lead to inconsistencies in the ~ctivity recognition model.
Previous researches have demonstrated that randomly over-sampling techniques wo. 14 lead to over-fitting problems
and under-sampling techniques would result in the loss of useful information 40]. . - this study, we utilized SMOTE
boosting method to improve the representation of classes with less numbe * of inst inces, which generates synthetic
instances along the segments adding any of the k minority class to their 1ear- ... cighbours. With an oversampling rate
of 1200% boosting to increase the samples of the minority classes, 15,77 uew samples were synthesized to balance

minority and majority classes.

4.5. Classification methods

For our experimental work, we considered and assessed s« ve al classification techniques in two steps. The first step
was to generate a diverse and accurate set of base classifie. ~ b, ~omparing the performance of various single classifiers.
In this study, we considered six commonly used classiti. *<. namely: random forest (RF), k-nearest neighbours (KNN),
decision tree (J48), artificial neural network (M _P), . "aive Bayes (NB) and support vector machine (SVM) [41]. These
six classifiers belong to different classifier .ypes, . *.ch have different internal representations and may be biased in
different ways. The different outputs of ti.. rase classifiers represented the extent to which they disagree about the
probability distribution for the test d .ta. .™is diversity would lead to the disagreement with each other over the data
instances covering a range of the " catu e space.

The second step was to coml .ne the mudels into a heterogeneous set of base classifiers using combination functions.
The combination functions inten’ ¢ make the best use of the information obtained from the base classifiers for the
purpose of making class . bels pr :dictions as accurately as possible. There are two general categories of combination
functions: fusion an . select. \n. Since the output of the selection function typically depends on the characteristics of
the instance who~= class 1s being predicted, it is not suitable in this study. Thus we chose the majority voting function
[42], which is a fus, a function, to combine the outputs of the base classifiers. In majority voting, the outputs from
base classifiers are used as votes on the predicted class, and the prediction voted the most is outputted as the final

predicted class of the ensemble classifier. The majority voting function is defined as shown in equation (2).
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C(x) = argmax ZCi(x):y 1 2
As a result, 4 base classifiers (2 RF, 1 KNN and 1 J48) were selected to generate the ens .mble. The predictions of

these four classifiers, which were the results of 3 algorithms applied on 12 balanced cla<<s distrivation dataset, were

finally voted to get the final classification result.

V. RESULTS AND DISCUSSION

In this section, we present the results we have obtained in our experim .atal s~tup by applying different feature
selection methods, a resampling method and various learning algorithms - *-_ dataset. The main performance
indicators, such as accuracy, sensitivity and specificity, are based on th.. .ue p ssitive (TP), true negative (TN), false
positive (FP) and false negative (FN) figures obtained by executing the corrc sponding algorithms in Weka. This section
shows with a specific example how the followed methodology 15 -lid to select a set of suitable machine learning

technologies and detect a set of atomic activities, based on the n.. ~surements gathered by the smart object.

5.1. Performance assessment of feature selection metho-s

In order to determine the optimal feature subse* whic, contains the most relevant features, we compared the
effectiveness of the 10-fold cross validation performance ot three feature selection methods (Table 3). The performance
obtained when using all features was used as t ‘seline t r comparison. The decision tree (J48) was used here as learning
algorithm for classification. We used three .nea .ures to validate the performance of the three feature selection methods:
accuracy (defined as (TP+TN)/(TP+T" «+FP+r . )), sensitivity (defined as TP/(TP+FN)), and specificity (defined as
TN/(TN+FP)).

Table 3. Comparison ot u.~ serformance on five feature subsets by three feature selection methods.

" Fear re sut et No. of features Accuracy  Sensitivity  Specificity
TAn At es 77 88.98% 0.890 0.990
FS1: In.oGain 75 89.21% 0.892 0.990
FS2 ReliefF 40 89.32% 0.893 0.990
FS” . CFS+GS 36 89.34% 0.893 0.990

In FS1 and FS2, the “eatur.s were ranked according to InfoGain and ReliefF, respectively. The top 75 ranked features
by InfoGain yielde 1 7 1 accuracy of 89.21% and a sensitivity of 0.892. The top 40 ranked features by ReliefF produced
an accuracy of 89.32% and a sensitivity of 0.893. The CFS and GS algorithm (FS3) directly selected a feature subset

containing 36 features and provided the highest accuracy of 89.34% and the highest sensitivity of 0.893 among the
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three feature subsets. Compared to the performance of using all features, the classifiers with less features, in contrast,
produced higher accuracy and sensitivity. This is probably due to the fact that some fe .tures are irrelevant and
redundant, and their high correlation with other features would affect the classification perform.. ce. As a result, the
CFS and GS algorithm was chosen as the feature selection method to reduce the featw. = v/ ctor dimensions as well as
to improve the classifier performance. The 36 features picked by the CFS and GS al~ariti.. are given in Table 4. These
selected features were used as input to various learning algorithms in further da.w. 2r .ysis phases.

Table 4. The features selected by CFS and Gf algori. m.

Feature domain Selected features
Mean-BA-X, STD-BA-X, MAD-BA-X, MAD-BA-X, SMA BA, 7 .-. A-X, TA-BA-Y, TA-BA-Y, Mean-GA-X,
Time-domain Mean-GA-Y, Mean-GA-Z, RMS-GA-X, RMS-GA-Y, RMS =4 £, M/ D-GA-Z, Range-GA-Y, Range-GA-Z,

SMA-GA, Mean-BASMV, RMS- BASMV, SMA-BAS} "V, RMS-G* s MV, STD-GASMV, MAD-GASMV,
Range-GASMV, SMA-GASMV

Spectral Entropy-BA-Z, Skewness-BA-X, Skewness ™ A-Y, Kurt sis-BA-Y, Largest frequency component-BA-X,
Frequency-domain Frequency signal weighted average-BA-Y, Freque~cy siy. ! we ghted average-BA-Y, Spectral Entropy-BASMV,
Skewness-BASMV, Kurtosis-BASMV

5.2. Validation of base classifiers performance

In order to choose the most efficient base classifiers (1. at . 711 be also used for the construction of an ensemble of
classifiers later), we investigated and compared various ~lassification algorithms, namely: RF, KNN, J48, MLP, NB
and SVM. The preliminary activity classificati .n per. rmance of six different algorithms on the balanced dataset with
selected features is summarized in Table 5. the da.. vere processed using average 10-fold cross validation during the
training and testing phases.

For the performance validation m.thou. besides the accuracy, sensitivity and specificity, we also introduced the
following measures: mean absol .te e ror (MAE), relative absolute error (RAE), F-measure and receiver operating
characteristic (ROC) area. Th . me :n absolute error (MAE) is a quantity used to measure how close the predictions are

to the eventual outcomes. T= de.. ~' .1on of MAE is given by equation (3).
1 ’
MAE = —¥i=1aly = ¥l 3
The relative absol ‘te error (RAE) represents the error as a percentage of the true value and measures how far the

predictions are fi ‘i . . ventual outcomes. The definition of RAE is given by equation (4).

RAE = %oy nly = ¥'1/Ziz1aly’ — ¥/l “
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Where ) is the actual value, y'is the predicted value and ! is the number of samples. The ideal case corresponds

to both MAE and RAE being 0. F-measure is defined as 2*Sensitivity*(1-Specificity) / (1-Sr ccificty+Sensitivity). The
receiver operating characteristic (ROC) curve is a graphic plot of the true positive rate ~~ainst talse positive rate at

various threshold settings. Therefore the area under the ROC curve can be used to 1. rate the performance of a

classifier.
Table 5. Comparison of the performance of different learnu._ algorithms.
Algorithms Accuracy MAE RAE Sensitivity Specific y F-measure ROC Area
Random forest (RF) 96.09% 0.025 16.01% 0.961 1.997 0.961 0.999
K-nearest neighbours (KNN) 95.64% 0.007 4.80% 0.956 0.996 0.956 0.976
Decision tree (J48) 89.34% 0.019 12.41% 0.893 0.£)0 0.893 0.953
Artificial neural network (MLP) 85.97% 0.028 18.09% 0.80" " 87 0.859 0.976
Naive Bayes (NB) 63.21% 0.063 41.27% 0.632 0.967 0.616 0.933
Support vector machine (SVM) 31.86% 0.114 74.33% 481 0.938 0319 0.628

Among the six classifiers, RF, KNN and J48 showed their su, ~rior performance in evaluation metrics. Specifically,
RF contributed the highest accuracy of 96.09%. It also achie . ~d * ae vest performance in terms of sensitivity, specificity,
F-measure and ROC area measures of 0.961, 0.997, 0.7o. and 0.999, respectively. This is because RF combines
multiple decision trees with various rules, which can v *ter nandle the multi-class data characteristics. Thus, we used
RF as the baseline classifier here. Compared t u, the KNN yielded lower MAE and RAE measurements of 0.007
and 4.80%, respectively. This means that KIMN pic e 2d closer predictions to the eventual outcomes. The J48 classifier
also contributed lower MAE (0.019) ana .” 4 2 (17..41%) values than RF, whereas KNN and J48 performed better in
the classification of specific activity r.as. <. Compared to the performance of RF, the classification results from MLP,
NB and SVM were not very goor . Tl : accuracy obtained by MLP was 85.97% and SVM only contributed 31.86%
accuracy. Therefore, we consir ered Rr, KNN and J48 as the possible ensemble members.

To determine the best classific. *io". performance for each activity, we analysed the confusion matrices of the twelve
activities produced by R 7, KNN and J48 (see Table 6). We found that these three classifiers made quite different
misclassifications. T i1e mat. ‘ces revealed that the RF model often misclassified walking class (A4) to sweeping (79
instances), stand-to-wain (3 instances), walk-to-stand (24 instances) and sit-to-lie (22 instances). Standing class (A1)
was frequently com sed with walk-to-stand (50 instances). Sweeping class (A6) was sometimes misclassified to walk
(25 instances). Likely these activities shared similar movements. J48, for its part, contributed less misclassified

instances of standing (A1), watching TV (A3) and walking (A4) activities compared to RF. KNN also contributed less
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Table 6. The confusion matrices of the twelve activities obtained by the three selected learning algorithms.

Random Forest (RF)
ST SL WT WA RU SW ST-SI SI-ST ST-WA W T LI-SI  SI-LI
Al 2290 0 3 0 0 16 0 6 9 50 y 3
A2 5 2348 0 0 0 6 7 2 1 1 4 5
A3 0 0 2302 2 0 3 8 3 4 10 11 28
A4 0 1 0 2071 1 79 9 17 95 ) 8 22
A5 0 0 0 4 2270 7 0 0 2 0 0 0
A6 2 0 0 25 2 2233 11 17 17 e 10 6
A7 0 0 0 1 0 1 2279 31 4 & 2 0
A8 0 0 1 0 0 1 18 2350 1 6 0 2
A9 1 0 0 24 0 14 7 2 "331 27 8 4
Al0 4 0 2 7 0 6 3 17 46 2289 3 2
All 0 3 0 0 0 0 5 3 0 2 2338 15
Al2 0 1 0 0 0 0 1 2 o " 0 26 2375
k-Nearest Neighbours (KNN)
ST SL WT WA RU SW ST-SI o .f ST-WA WA-ST  LI-SI  SI-LI
Al 2264 2 6 9 0 10 0 A 23 56 3 0
A2 1 2353 10 1 0 2 2 0 0 0 1 6
A3 1 3 2330 6 0 0 3 ” 1 2 8 11
A4 2 0 3 2151 0 39 9 11 71 25 6 10
AS 0 0 0 4 2276 3 0 0 0 0 0 0
A6 3 0 0 60 1 2177 15 17 40 15 7 4
A7 0 0 0 3 0 8 2240 61 3 7 2 3
A8 1 1 0 0 0 o 46 2316 1 8 4 0
A9 11 0 1 40 1 1. 7 10 2225 99 5 0
Al0 100 4 3 13 0 4 13 115 2120 1 2
All 0 6 0 0 0 . 8 1 1 6 2310 34
Al2 0 3 5 0 . 0 3 3 0 0 37 2354
Decision Tree (J48)
ST SL WT WA n SW ST-SI SI-ST ST-WA WA-ST  LI-SI  SI-LI
Al 2281 0 2 4 0 20 4 9 8 47 1 3
A2 1 2332 6 0 C 5 6 1 2 10 4 12
A3 1 6 2279 6 0 8 13 7 1 20 13 17
A4 5 2 6 1960 5 75 8 20 172 47 15 10
AS 0 0 0 4 2266 8 1 0 4 0 0 0
A6 16 4 79 6 2056 28 37 55 35 11 10
A7 1 11 12 11 0 20 2022 161 18 26 21 24
A8 4 3 5 21 0 22 148 2061 35 42 19 19
A9 7 1 ’ 144 2 63 23 30 1995 129 9 12
Al0 40 1 ~0 51 1 33 35 51 145 1959 19 8
All 1 1 16 0 10 27 15 10 15 2034 214
Al2 5 3 17 16 2 7 26 22 5 8 199 2085

Al = ST = Standing A2 =SL - Sleeping, A3 = WT = Watching TV,

A4 = WA = Walking, A5 = RU= Running, A6 = SW= Sweeping, A7 = ST-SI=

Stand-to-sit, A8 = SI-¢ T= Sit-to-s ind, A9 = ST-WA= Stand-to-walk, A10 = WA-ST= Walk-to-stand, A11 = LI-SI=Lie-to-sit, A12 = SI-LI= Sit-to-lie.

misclassified insta.c2s than RF of several activities. For example, RF misclassified 79 instances of walking to

sweeping, whereas KNN only misclassified 39 instances of walking to sweeping. The results illustrated that no single

classifier performs best in all evaluation measures (even if they may be the best in a subset of the evaluation measures).
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Thus combing these three single classifiers may contribute to a better classification performance in our experiment.
Based on this result, we selected RF, KNN and J48 as ensemble members due to their .xcellent performance in
evaluation measures. These three classifiers had their own strengths on classifying differem . ctivities, they also
provided different disagreements with each other, and this disagreement was clearec “wv -.ajority voting to obtain a

final prediction. As a result, we defined an ensemble model with 4 heterogeneous r'assii,. s (2 RF, IKNN and 1J48).

5.3. Comparison of performance of our ensemble with imbalanced and all features tasets

We evaluated the classification performance of the ensemble constructed -ith 2 R 7, 1 KNN and 1 J48 classifiers by
applying it on the balanced feature subset. Table 7 presents the results, whi- .. +"owed high sensitivity and specificity
(sensitivity ranged from 0.893 to 0.995, specificity from 0.993 to 1.000, ~n each activity class, which indicates that the
ensemble model performed good both in positive and negative 1. ntif cations. The ensemble model performed
extremely well in identifying running with the highest F-mez .. u1 v.¥97. Activities such as sleeping, watching TV,
lie-to-sit and sit-to-lie were also identified very well. Com, -u . “~ the single classifiers, the ensemble model provided
97.00% accuracy, higher than the 96.09% accuracy obt. *..~d by RF alone, which was the highest accuracy among the
various single classifiers. These results indicate the. w.c = emble model is a high-performance method to achieve
relatively higher accuracy than the single classifier<.

Table 7. The performance ot .. “terog' neous ensemble model with selected features.

ST SL WT W QU SW ST-SI SI-ST ST-WA  WA-ST LI-SI SI-LI
Sensitivity ~ 0.965 0.987 0.972 r895 097, 0.956 0.979 0.988 0.964 0.962 0.989 0.989
Specificity  1.000 1.000 1.000 0.998 1.v00 0.995 0.998 0.996 0.993 0.995 0.997 0.997
F-measure  0.980 0.992 0.984 0.9 0.997 0.950 0.976 0.975 0.946 0.952 0.981 0.977

ST = Standing, SL = Sleeping, WT = Wat- ... TV, WA= Walking, RU= Running, SW= Sweeping, ST-SI= Stand-to-sit, SI-ST= Sit-to-stand, ST-WA=
Stand-to-walk, WA-ST= Walk-to-stand. _I-SI= _ie-to-sit, SI-LI= Sit-to-lie.

To evaluate the performar ce r( th- constructed ensemble classifier, we derived and compared three different
ensemble models: EM1, F M2 ar1 EM3. EM1 was derived on the raw data without applying the resampling technique,
all features extracted from v ~ =~ & data were used as the input. EM2 used all features trained on the balanced data after
performing the resan »ling te hniques. Thus the difference between EM1 and EM2 was the class distribution in dataset.
EM3 was derivea »n v o calanced data using the 36 selected features obtained by CFS and GS algorithm. The difference

between EM2 and EM.3 was the number of used features for building the ensemble models.
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Table 8 presents the performance of EM1, EM2 and EM3 in terms of accuracy, sensitivity, specificity, F-measure
and ROC area. Comparing the performance of EM1 and EM2, the accuracy of EM2 was i .creased from 95.14% to
96.01%. The sensitivity of EM2 was increased to 0.960, which was higher than that of EM1 (0.Y_"). Even though the
accuracy of EM1 was still relatively high, many instances of transitional activities “ere misclassified, this can be
shown by the sensitivity of EM1 for each activity (see Figure 5). This is perhans du. to the learning algorithms
assuming that positive and negative classes are balanced in datasets, thus they u.*a’.y maximize the overall accuracy
by a bias towards the majority class. To address the poor performance on ninorit, classes, we applied the SMOTE
with an oversampling rate of 1200% boosting to balance the dataset.

Table 8. The performance of different ensemble models g=nerated ' y 10-fold cross validation.

Dataset Accuracy Sensi’ ity Spe :ificity F-measure ROC Area
EMI: Imbalanced data with all features 95.14% 0.9. 993 0.946 0.972
EM2: Balanced data with all features 96.01% 0.960 0.996 0.960 0.978
EM3:Balanced data with 36 selected features 97.00% 0. 0.997 0.970 0.984

Figure 5 depicts the sensitivity of EM1, EM2 and EM. .= each class. It shows that after rebalancing the dataset, the
sensitivity of EM2 and EM3 on transitional activit, ..~ was significantly increased and balanced with the static
and dynamic activity classes. By applying the fe=ture selection method to obtain a feature subset that contains only
discriminative and relevant features, compareu ‘"~ EM”, the performance of EM3 was improved from 96.01% to 97.00%
in terms of accuracy, from 0.960 to 0.970 "a te' .ns ¢ “sensitivity, from 0.996 to 0.997 in terms of specificity, from 0.960

to 0.970 in terms of F-measure and fre .~ 0.978 to 0.984 in terms of ROC area.

Sensitivity
=]
O

— P A
) w 4 ‘4‘

ting sleeping  watching TV walking running sweeping stand-to-sit  sit-to-stand stand-to-walk walk-to-stand lie-to-sit sit-to-lie

Figure 5. Comparison of sensitivity of the twelve activities between EM1, EM2 and EM3.
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The results showed that not only combining the heterogeneous base classifiers by majority voting, but also
rebalancing class distribution by resampling technique as well as selecting informative and r¢ .evant features by feature

selection method, have the ability to improve the performance of activity recognition.

5.4. Performance of our ensemble applied to publicly available datasets

Previous results relate to our 10-hour dataset obtained as described in section I”. at yve. 1u this section, we show the
results of our ensemble of heterogeneous classifiers applied to three public datasets, ~amely: PAMAP2 [43], SBHAR
[44] and UoA [14]. Whereas SBHAR and UoA contain samples of transitio ‘al activ ties, PAMAP2 does not. Table 9
shows the accuracy obtained per activity by the ensemble classifier app 1ed *_ ¢ ch of these three datasets.

Table 9. Comparison of accuracy of activity recognition of our proposa. wheu applied to different published datasets.

Dataset ST SL WT WA RU SW ST->. < -ST ST-WA  WA-ST LI-SI SI-LI
PAMAP?2 [47] 0.989 0.961 NA 0.940 0.987 NA Na NA NA NA NA NA

SBHAR [48] 0.976 0.951 NA 0.924 NA NA ot 0.949 NA NA 0.928 0.926
UoA [14] 0.938 NA NA 0940 NA NA R76 0.852 NA NA 0.920 0.912
Collected dataset ~ 0.965 0.987 0.972 0.893 0.995 0.0~ 097y 0.988 0.964 0.962 0.989 0.989

ST = Standing, SL = Sleeping, WT = Watching TV, WA= Walking, RU= RumT SW= Sweeping, ST-SI= Stand-to-sit, SI-ST= Sit-to-stand, ST-WA=
Stand-to-walk, WA-ST= Walk-to-stand, LI-SI=Lie-to-sit, SI-LI= Sit-to-" ~

The classification performance of static and dynan. ~ acuvities on the three public datasets all contributed higher
than 90% in terms of recognition accuracy. On - v Nccasions, the accuracy is even higher for the other three datasets
than for the one collected by us. Moreover, the re. ~ar tion accuracy of transitional activities of our ensemble was kept
similarly high when applied to other data. ~tc diff rent and independent from ours (slightly lower, but always higher
than 85% and most of the times abo e - "%). With these results we show that the high performance of our selected
ensemble of heterogeneous classi’.ers s not completely dependent on the specific dataset that contains the activities’
samples. This, together with tb . facts u. ¢ our participants were not instructed on how to perform the activities and that
the public datasets referenced .. thi section have been provided by three different research teams who are totally
independent from ours, n akes us :onfident that our proposed method to select the classifiers, filters and oversampling
is useful to accurate! y detec” the considered three types of activities with a reasonable independence on how different

people may perform the....
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VI. DISCUSSION AND CONCLUSION

In this paper we have described the steps followed for the design of the decision-making ,ubsystem associated to a
simple and non-intrusive device to measure and classify atomic activities at home. We conside. an architecture in
which the detection of these atomic activities are provided by the IoT infrastructure presc. * n home. From these atomic
activities, Ambient Intelligence (Aml) techniques can infer, taking into accov .. *he c.atextual information also
gathered by sensors, more complex (or composite) activities that can be related to ' ¢ inhabitants’ behaviour.

The set of possible atomic activities is not fully defined and can evol e with e technology and habits of the
population. In addition, the technology to detect the activities can be ver hete=~geneous and it is even possible to have
several IoT technologies obtaining data to detect the same set of activ. ‘s. V'~ .iave proposed the use of a smart object
consisting on a 3D accelerometer embedded in a wrist-worn devi.~ We 1ave provided with the specification of a
complete procedure for the gathering, mining and cleaning of the ravwr ~ 3 rebalancing of the different classes’ number
of samples and comparison of diverse classification prc-~-ures, .0 end with the selection and assessment of an
ensemble of heterogeneous classifiers.

Our experiments showed good classification accr ~~v an.ong twelve atomic activities that cannot be overlapped in
time because of their mutually exclusive nature. These results were attained by the oversampling of minority classes
together with the selected ensemble of three ifferent :lassifiers whose results are combined using a majority voting
function. One important contribution is re’ sted .o the demonstration of the complete procedure that allows to compare
different possible machine learning mr chods to lassify the measurements coming from a simple and easily accepted
wrist-worn IoT smart object. Deper ‘ing on wae population sector and the specificities of the activities that are most
important to be detected, this same [ ocedure is applicable to select the most suitable classification technique.

On the other hand, by revie vins the xisting literature we have observed that most of the proposed activity detection
solutions are not well adjr sted fc - the different types of ambulatory activities. In fact, the so-called transitional activities
present a lower detect*~n 1.. .aan the rest, due to characteristics such as their short duration and difficulty to be
predicted. This lowe. detecti )n rate causes a higher imprecision when it comes to infer a person’s behaviour, which in
turn may lead to \ vor s uccisions being made afterwards.

In this work we have proved the feasibility of detecting a set of twelve activities belonging to three types, including

short-timed transitional activities, by using a single non-intrusive data acquisition device together with a data
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processing mechanism consisting on cleaning and balancing the sample set and using ensemble supervised-learning
classifiers. The empirical results show how, even though the detection precision we have obt .ined is moderately lower
for some static and dynamic activities, it is higher for transitional activities up to values compara. 'z to the other types
of activities. We have got similarly good results with our selected data processing and . 'as¢ fication method applied to
three publicly available data sets different from ours. Thus, we conclude that our ~ropu. ~d solution is able to attain
high success rates and, equally importantly, shows a balanced performance *hrsughout the three activity types
investigated.

With respect to the specific device type used to measure the data, i.e. .« 3D wuist-worn accelerometer, we consider
it as an object that is easily accepted among the majority of the poplation. Ir fact, many people already use watch-
like devices and bracelets on a regular basis, and they have prove - very us ible. Besides, the fact that it is personally
assigned to each person makes it easier to identify each individual a..' thus to support multi-user data. It is worthy to
note that the wrist-worn sensor has limitations to monitor some low >+ limb-related activities, such as cycling, thus the
collaboration with sensors placed on other parts of the hody, . ich as chest and ankle, is planned to be included in the
future work. On the downside of this election, we are aw. ve ihat, since all our experiments have included only one
sensor modality on the non-intrusive device, any addition..I contextual information (such as heart rate and location)
has been left out. The addition of context in”ormatio ' to the output of the ensemble classifiers is something worth
investigating to assess the possible benefi’; on both che detection precision and the tolerance to classification errors,
and gives also interesting additional inr at to ...~ sml subsystem to detect complex activities and behaviours. Another
important issue to be tackled is the assessme. ¢ of the precision that we would obtain under actual real life conditions.
In fact, all presented experiment. ~or cained activities that were adequately timed so that the classifiers did not face
windows containing mixed ¢ _tivi (es ~amples. Our hypothesis on this is that it is unlikely that the number of non-
homogeneous windows (i .. window s containing samples from different activities) in a real-life deployment would be
significant with respect to .~ m-.nber of homogeneous windows. This would facilitate to filter out non-homogeneous

windows and thus m nimize heir distortional effects.
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