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Abstract— The ability to accurately identify the different activities of daily living (ADLs) is considered as one of 

the basis to foster new technological solutions inside the smart home. Current ADL recognition proposals, still 

however, struggle to accurately and robustly identify the range of different activities that can be performed at 

home, namely static, dynamic and transient activities, and the high variety of technologies and data analysis 

possibilities to classify the information gathered by the sensors. In this paper, we describe the methodological 

approach that we have followed for the processing, analysis and classification of data obtained by a simple and 

non-intrusive smart object with the objective to detect atomic (i.e. non-divisible) activities inside the smart home. 

The smart object consists of a wrist-worn 3D accelerometer, which presents as its advantages its customizability 

and usability. We have performed a set of systematic experiments involving ten people and have followed the 

steps from data gathering to the comparison of different classification techniques, to find out that it is possible 

to select a complete succession of data processing steps in order to detect, with high accuracy, a set of atomic 

activities of daily life with the selected smart object, which performs well with different independent datasets 

besides ours. 
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I. INTRODUCTION 

1.1. Context of the research 

Recent advances in sensing, networking and ambient intelligence technologies have resulted in a rapid emergence 

of smart environments. Among these, the Smart Home (SH) has gained a lot of attention for its potential in providing 

enhanced quality of life within the home. If, based on the SH, it is possible to detect and interpret the behaviour and 

context of the inhabitants at home, we could think about enhancing their quality of life. This scenario could lead to 

improvements in independence of people with continuing care needs (such as the elderly) by reducing caregivers’ time 

and healthcare costs in general, without losing the safety that continuous and unobtrusive monitoring provides. The 

ability to correctly and automatically identify human activities and infer an inhabitant’s behaviour at home, has the 

potential to lend itself to a wide range of applications, such as the detection of health emergencies [1], recommendation 

services for correct execution of complex activities [2], professional advice on routine lifestyle [3], anomaly detection 

[4] or help in treatment prescription [5]. 

The most accepted method to model the inhabitant’s behaviour is through the detection of the activities performed 

at home. There are different types of these activities, but the commonality to all of them is that a non-technical person 

should be able to recognize them as activities when faced with them. Activities of interest within a SH may include 

Activities of Daily Life (ADLs) relating to self-care and domestic tasks (sleeping, bathing, dressing, etc.) that are 

routinely performed by the inhabitant, and ambulatory activities relating to either specific motions or postures of the 

person (e.g. sitting, standing and transitional activities such as stand-to-sit and sit-to-stand).  

In addition to the previous characterization of activities [6], we can consider a different classification of activities 

into atomic activities, which cannot be further decomposed into simpler activities (recognizable by a non-technical 

person), and composite activities. This classification is more suitable for engineering purposes, enabling the 

cooperation of Internet of Things (IoT) and Ambient Intelligence (AmI) technologies to obtain a functional, robust, 

scalable and reliable solution at home (see Figure 1). The IoT technologies, through the concept of smart objects, can 

interact physically with the inhabitants in a seamless and unobtrusive way to detect atomic activities. The AmI 

technologies process and relate the atomic activities produced by the IoT technologies and deal with aspects such as 

concurrency, uncertainty or context awareness to obtain composite activities used to model the inhabitants’ behaviour.  
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Figure 1. Decoupling of IoT and AmI subsystems through the detection of intermediate atomic activities. 

In the proposed approach, illustrated by Figure 1, the atomic activities are the primitives enabling both the modelling 

of the inhabitant’s behaviour (including the composite activity detection) and the improvement of the resilience of the 

whole system by decoupling both subsystems (IoT and AmI). This paper is focused on the detection of atomic activities 

through smart objects (IoT subsystem). To improve the recognition of atomic activities, several practical issues must 

be resolved, this includes issues around usability and acceptability of the solution. In addition, some technical issues 

difficult to solve for the solution such as the identification of the inhabitant, calibration and power consumption, pose 

significant challenges.  

 

Figure 2. Conceptual model of the IoT subsystem to detect atomic activities. 

Figure 2 shows a simplified conceptual model of the IoT subsystem functionalities required for the detection of 

atomic activities. This subsystem should handle the issues related with the acquisition of raw data from the smart 

objects, communication among devices (smart objects and other entities), data handling (data hub for the smart home) 
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and the final application (detection of atomic activities). Although these are significant challenges, this paper will focus 

more on the data analysis procedures for recognizing these “atomic activities” through the use of a specific smart object.  

Regarding the detection of the activities, the main issue is the reliable translation from the quantitative data gathered 

by the sensors to the specific activity being carried out. There are three main issues hindering further improvements in 

activity recognition performance. Firstly, from the many features that can be calculated, only some will be relevant. 

Secondly, due to the short duration of transitional activities, there are much less samples of transitional activities 

(minority classes) than static and dynamic activities (majority classes). Thirdly, a single classifier has limited ability 

to classify the instances for three classes. Therefore, combining the proper various base classifiers can leverage their 

strengths and improve the classification performance. 

1.2. Objective 

This paper describes the methodology we have followed to build the complete Data-driven domain of Figure 1 to 

accurately detect three types of atomic activities by using a single low-intrusive smart object. The smart object is a 

wristband provided with a 3D accelerometer. This wristband is a wearable object commonly accepted by most of the 

population and supports two interesting features: (1), the identification of the inhabitant (each person should have her 

own wristband). And (2), the customizability of the device (the wristband object provides an opportunity to control the 

orientation and location of the device on the body, simplifying issues around its calibration). 

The atomic activities will be physical activities of the three main types: stationary, dynamic and transitional. The 

selected activities are considered roughly orthogonal with each other (cannot be performed in parallel with others).  

The method to build the data analysis functionality of the wristband will be based on several machine learning 

techniques and classifiers.  

1.3. Summary of the contributions 

The main contributions of this paper are: 

- To present the technical foundations of the data analysis process from a smart wrist-band that facilitates the 

recognition of atomic activities in smart home and verify the feasibility of detecting three types of atomic activities by 

using a single non-intrusive data acquisition device. 

- To contribute a benchmark dataset that contains sensor data of static, dynamic as well as transitional activities by 

using a small, low-cost and non-intrusive wrist-worn accelerometer [7]. The data are collected from a group of 
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participants in a lab setting but includes elements to resemble a real home scenario (they were told what to do but not 

how to do it, see section 3.1). Specifically, we focus on data collection of transitional activities together with static and 

dynamic activities, which is often ignored in current research.  

- To develop and test a method to compare different machine learning techniques and allow the most adequate 

machine learning selection for the wrist-worn accelerometer data. By paying attention to the class imbalance in the 

dataset, which is caused by the very short duration of transitional activities, the framework includes features selection 

algorithms, oversampling to balance the classes and different classification models, including ensemble approaches. 

The data processing system selected by following this method has proven to yield good and balanced results also for 

other researchers’ datasets independent from ours. 

The rest of the paper is organized as follows: Section II introduces the related work in activity recognition area. 

Section III describes the experiment protocol and data collection. Sections IV concentrates the methods adopted in the 

development of the activity recognition approach including signal preprocessing, feature extraction, feature selection, 

data rebalance, and ensemble classifier construction. Section V discusses the experimental results and the obtained 

performance on the atomic activities recognition. Finally, section VI provides the conclusions and future work. 

II.RELATED WORK 

Researchers have made significant progress in the area of human activity recognition using wearable accelerometers. 

Their small size allows accelerometers to be embedded into belts, clothes, glasses, wristwatches, jewellery, shoes and 

mobile devices to make them easier to wear. For example, Chernbumroong et al. [8] proposed a classification method 

to monitor and recognize eleven ADLs of an elderly person including feeding, brushing teeth, dressing, washing dishes 

and so on. They used a single accelerometer embedded into a sport watch, which can be worn by an elderly person in 

an acceptable and non-intrusive way. Wang et al. [9] used a single accelerometer placed on two different parts of the 

body: the waist and the left ankle, to monitor eight common domestic activities: sitting, lying, standing up from lying, 

standing, walking, running, bicycling and jumping. Besides the single accelerometer, multiple accelerometers were 

placed on distributed body locations to improve the classification accuracy. Gao et al. [10] placed four accelerometers 

at four different locations of the body (chest, left under-arm, waist and thigh) to monitor and recognize five physical 

activities. Their system achieved an overall recognition accuracy of 96.4% by adopting the mean and variance features 

with a Decision Tree classifier. Cleland et al. [11] described an investigation on the optimal placement of 
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accelerometers for the purpose of detecting a range of everyday activities. In their study, six tri-axial accelerometers 

were worn at distributed body locations including the chest, lower back, hip, thigh, wrist and foot to collect data of 

seven activities (walking, jogging, sitting, lying, standing, waking upstairs and walking downstairs). The result showed 

that reasonable activity detection can be achieved using only two accelerometers and that increasing the number of 

sensors had no significant impact on the accuracy of the classifier. One drawback of using multiple sensors is, however, 

related to the placement of the accelerometers that would make the activity monitoring highly obtrusive and 

uncomfortable. A single inertial sensor worn by the user can reduce obtrusiveness to the minimum. In this study, we 

used one accelerometer placed at the wrist to collect the data. The wrist was chosen as it provides a non-obtrusive 

location which is comfortable to wear and has shown relatively good accuracy of activity recognition. 

A number of activity recognition frameworks with adopting wrist-worn sensors have been proposed. Mehrang et al. 

[12] presented an assessment of a human activity monitoring framework that covers some of the principal building 

blocks required for an activity monitoring system, and is comprised of the best preprocessing and parameter choice for 

an random forest classifier. Qi et al. [13] proposed a two-layer activity recognition framework to classify aerobic, 

sedentary and free weight activities. However, these frameworks are mainly proposed to monitoring static and dynamic 

activities, the transitions between multiple activities, which make up a large part of a person’s daily activities and can 

provide additional contextual information for activity recognition, are usually ignored in most current literature due to 

their short duration. Furthermore, if this issue is not addressed properly, these transitions would affect the final 

performance of the activity recognition system since they would be misclassified into one of the available classes. Ortiz 

et al. [14] proposed a transition-aware human activity recognition system for the recognition of six physical activities 

(walking, walking upstairs, walking downstairs, sitting, standing and lying) and six transitional activities (stand-to-sit, 

sit-to-stand, sit-to-lie, lie-to-sit, stand-to-lie and lie-to-stand) using the accelerometer embedded in a smartphone. The 

result showed that the support vector machine could achieve high classification accuracy with a heuristic filtering 

approach. Noor et al. [15] developed an adaptive segmentation approach for recognizing not only well defined static 

and dynamic activities, but also transitional activities. In their work, a novel activity transition diagram for activity 

recognition was developed to validate the activity transition and improve recognition accuracy. Because the samples 

of posture transitions were, however, much less than basic activities, it would result in a biased classification result. 

As mentioned previously, the duration of transitions is very short, thus the imbalanced class distribution problem should 
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be taken into consideration during the classification task. Resampling is the most common approach to balance the 

class distribution in dataset. It includes oversampling the minority class to generate new class samples synthetically, 

such as SMOTE [16], and under-sampling the majority class by discarding data points. It is noticed that randomly 

resampling may lead to the possibility of overfitting or useful information loss. Zhang et al. [17] used SMOTE to 

balance the class distribution in a dataset and set the percentage of data to create for the minority class to 100%. 

Khoshgoftaar et al. [18] verified that a ratio of 2:1 or even 3:1 in favour of the majority class would result in superior 

classification performance. In this paper, we considered the transitional activities and the imbalanced class distribution 

in the dataset, in order to improve the classification accuracy of transitional activities. Our approach is based on an 

ensemble of heterogeneous classifiers.  

Data-driven approaches have been widely used in accelerometer data analysis for activity recognition. These 

approaches commonly adopted machine learning algorithms and can be categorized into three types: generative 

approaches, discriminative approaches and heuristic approaches [19]. Generative approaches, such as naïve Bayes [20] 

and hidden Markov model [21], are flexible, capable of dealing with uncertainty in the data. However, they suffer from 

the requirement of a large amount of data for training. Discriminative approaches, such as decision tree [22], K-nearest 

neighbour [23], random forest [24], support vector machine [25] and artificial neural network [26], learn the features 

mappings to activity labels by creating the decision boundaries in the feature space. For example, decision tree 

classification models have been successfully adopted for separating static activities from dynamic activities [27]. In 

terms of dealing with more complex activities, support vector machine and artificial neural network classification 

methods have been concerned due to their advantages such as robustness in prediction and computational efficiency. 

However, they face the problem of over-fitting. Heuristic methods use a combination of both, which can generally 

achieve better performance than any single technique. In addition, recent results in addressing multi-class classification 

problems have indicated that the adoption of ensembles of classifier models leads to increased classification 

performance over using only single classifier models [28]. However, much of the previous work on ensembles of 

classifier models considered only the same type of classifier models [29] [30]. The single classifier has its own strengths 

as well as weaknesses when dealing with the different classes during the learning process. Moreover, the voting of 

various algorithms can decrease the bias among the classes occurring in the usage of a single learning algorithm, 

therefore resulting in a relatively generalized classification [31]. In our experimental study, we focus on a 
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heterogeneous ensemble of classifiers, which consists of classifiers of different types. Our goal is to determine if the 

heterogeneous ensemble can be used to improve the classification performance by combining various classifiers though 

the analysis of their classification performance on different activity classes. We have created a dataset with 

measurements related to different atomic activities (of three types, including transitional activities) and have compared 

the performance of using isolated classifiers with several topologies of ensemble classifiers in order to validate our 

approach. 

III.   DATA ACQUISITION 

We summarize in this section the experiment design and data collection process that we have used to obtain the 

dataset of the three activity types in smart home. Ten healthy adults were instructed to realize twelve activities (see 

column “Activities” in Table 1) and the data got from an accelerometer placed on their left wrist were collected. These 

collected data are annotated for the subsequent classification tasks. 

Table 1. The taxonomy and description of monitored activities. 

Type Activities Description 
 
Stationary 
Activities 

Standing Standing still for 5 minutes 
Sleeping Sleeping on the sofa for 5 minutes, small movements, such as changing the lying posture,  

are allowed 

Watching TV Watching TV while sitting on the sofa in whatever posture the participant feels comfortable for 5 minutes, 
changing sitting posture is allowed 

 
Dynamic 
Activities 

Walking Walking on treadmill with a set speed for 5 minutes 
Running Running on the treadmill for 5 minutes 
Sweeping Sweeping with the vacuum cleaner in the home area for 5 minutes 

 
 
Transitional 
Activities 

Stand-to-sit Standing still for 15s and then sitting on the sofa, repeat for 15 times 
Sit-to-stand Sitting on the sofa for 10s and then standing up, repeat for 15 times 
Stand-to-walk Performing the “stand-to-walk-to-stand”, standing still for 15s then start to walk, keep walking for 15s, 

then standing still for 15s, repeat for 15 times Walk-to-stand 
Sit-to-lie Sitting on the sofa for 15s and then lying down, repeat for 15 times 
Lie-to-sit Lying on the sofa for 15s and then sitting on the sofa, repeat for 15 times 

 
We aim for the recognition of atomic activities that are necessary to take care of oneself and commonly occur in real 

daily life. The static activities, such as standing and sleeping, and dynamic activities, such as walking and running, are 

not limited in duration. Transitional activities, such as stand-to-sit and sit-to-stand, commonly occur within a limited 

duration, and are characterized by start and end times which usually vary slightly from one person to another [32]. 

Based on this, static and dynamic activities can be executed continuously, and transitional activities can be executed 

repeatedly to get separate samples. The twelve activities selected to be recognized are: standing, sleeping, watching 

TV, walking, running, sweeping, stand-to-sit, sit-to-stand, stand-to-walk, walk-to-stand, lie-to-sit and sit-to-lie. Table 



 9 

1 shows the classification of these twelve activities into three types and their description. The experiment protocol, 

data collection and data annotation are described in detail in [7]. 

IV. METHODS 

The acquired acceleration signals from the wrist accelerometer were analysed using MATLAB programs 

(MathWorks, Natick, MA) The classification task was implemented using Weka [33]. Figure 3 shows the conceptual 

scheme of the proposed framework to select the most suitable machine learning techniques. 

 

Figure 3. Conceptual scheme of the proposed framework to compare machine learning techniques. 

The raw signal data were preprocessed to remove the unwanted noise and separate the body acceleration from gravity 

acceleration. Then the continuous signals were segmented into windows, each window in the dataset was extracted as 

an input of 77 features by the feature extraction process. Based on this, the feature selection method was used to select 

the optimal feature subset by choosing relevant features and removing redundant ones. The resampling technique was 

applied to rebalance the class distribution in the dataset. After this, we applied a heterogeneous ensemble classification 

model built by using a majority voting combination function to combine the base classifiers. The computational 

procedure that we have followed in our experimental setup is illustrated in Figure 4. 

4.1. Signal preprocessing 

In general, the collected raw data contain signal noise that may be caused by external vibration or loose coupling. 

Thus we used a third-order low-pass Butterworth filter with cut-off frequency at 20 Hz [34] to eliminate the high 

frequency noise, and a third-order median filter to remove abnormal noise spikes. Moreover, the collected acceleration 

data were decomposed into the body acceleration (BA) component caused by the body movement, which can be used 

to distinguish dynamic from static activities, and the gravity acceleration (GA) component caused by the gravity, which 

can be used to estimate the posture orientation. We used a third-order high-pass Butterworth filter with cut-off 

frequency at 0.3 Hz to separate the BA and GA components from the filtered signal. 
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Require:  
X: Raw acceleration dataset  
Y: Raw activity label array  
f1(): Low-pass Butterworth filter with 20Hz cut-off frequency 
f2(): Median filter 
f3(): High-pass Butterworth filter with 0.3Hz cut-off frequency 
buffer(): Segmentation function  
α(): Feature extraction function 
β(): Windows discarding function 
µ(): Feature selection function 
resampling(): SMOTE with a 1200% boosting oversampling  
procedure SignalPreprocessing(X) 
fliteredX = f2(f1(X)); // remove the noise  
BX = f3(filteredX); // get the body acceleration  
GX = X – BX; //get gravity acceleration 
return BX, GX 
end procedure 
procedure ObtainFeature(BX, GX, Y) 
(SBX, SGX, SY) = buffer(BX, GX, Y); // segment signal into 256 samples 
frames with 50% overlapping 
A = α(BX,GX); //extract time and frequency domain features  
B = mean (Y);  
(A’, B’) = β(A,B); // discard the windows that contain multiple activities 
(Asub, Bsub) = µ(A’, B’); // select feature subset 
return (Asub, Bsub) 
end procedure 
procedure Classification (Asub, Bsub) 
(x, y) = resampling(Asub, Bsub); //get balanced features samples 
Split (x, y) into training set Ttraning and testing set Ttesting ; //use 10-fold cross 
validation 
for n = 1 to 10 do 
/*Traning*/ 
   for all (xi, yi) ∈ Ttraning  do 
        Build heterogeneous ensemble model C; 
  end 
/*Testing*/ 
   for all (xj, yj) ∈ Ttesting  do 
        Apply (xj, yj) on ensemble model C;   
  end 
end 
return classification accuracy 
end procedure 

Figure 4. Pseudo code of the computational procedure followed in the experimental setup. 

4.2. Segmentation and Feature extraction 

After the filtering phase, the dataset, which consists of the BA component, the GA component and the activity labels, 

was divided into windows containing 256 samples each with a 50% overlap between two consecutive windows. 

Therefore, each classification task made about the activity was performed for the duration of 2.5-second windows. 

Then the time-domain features and frequency-domain features were obtained by calculating on the values of X-, Y-, 

and Z-axis of both the BA and the GA components. In addition, the signal magnitude vector (SMV) was used to extract 

features since it can provide the degree of body movement intensity [35]. The formula is shown in equation (1), where 

tx , ty , tz  refer to the acceleration values of X-, Y-, and Z-axis, respectively, at the sampling time t . 

                                                                      SMV = �𝑥𝑥𝑡𝑡
2 + 𝑦𝑦𝑡𝑡

2 + 𝑧𝑧𝑡𝑡
2                                                                      (1) 



 11 

Besides the commonly used time-domain features, such as root mean squared, mean, standard deviation and median 

absolute deviation [36], the signal magnitude area (SMA), which computed the energy expenditure to distinguish a rest 

state from a dynamic activity [37], and the tilt angle, which  provided information on the participant’s orientation, were 

also included in this work. The frequency-domain features contained spectral entropy, spectral energy, kurtosis, 

skewness, largest frequency component and signal weighted average. The list of 77 features used in our study as well 

as their formulations is summarized in Table 2. There are situations where more than one activity label fell into the 

same segmented window. When dealing with multiple activities within a window, this window was discarded. As a 

result, the remaining dataset contained 15,178 windows consisting of the extracted features and unique activity labels. 

Table 2. Features extracted from time and frequency domain. 

Features domain Features Formulation Data values 
 
 
 
 
 
Time- domain 
features 

Mean ∑ =

n

i ix
n 1

1   
 
 
BA-X, BA-Y, BA-Z, GA-
X, GA-Y, GA-Z, 
BASMV,GASMV 

Root mean squared (RMS) 
∑ =

n

i ix
n 1

21  

Standard deviation (STD) ∑ =
−

n

i i xx
n 1

2)(1
 

Median absolute deviation (MAD) ))(( jji xmedianxmedian −  

Range )(min)(max xx ji −  

Signal magnitude area (SMA) ∑ ∑= =

m

j

n

i ix
m 1 1

1  BA, GA, BASMV, 
GASMV 

Correlation coefficient  
yxyx σσ/),cov(  BA-XY, BA-YZ, BA-XZ, 

GA-XY, GA-YZ, GA-XZ, 
Tilt angle (TA) π/180)/(tan 221 ∗+− zyx  BA-X, BA-Y, BA-Z 

 
 
 
 
 
Frequency-domain 
features 

Spectral energy ∑ =

n

i ix
n 1

21   
 
 
 
 
BA-X, BA-Y, BA-Z, 
BASMV 

Spectral entropy ∑ ∑= =
=

n

i

n

j jiiii ssccc
1 1

/)),log((  

Skewness 







 − 3)(
σ

xxE  

Kurtosis 224 ])[(/])[( xxExxE −−  
Largest frequency component  )(maxarg ii x  

Frequency signal weighted average ∑ ∑= =

n

i

n

j ji xix
1 1

/)(  

 

4.3. Feature selection  

Feature selection aims to identify a subset of the most discriminative features that can increase the classification 

performance, as well as remove the redundant features that contribute no additional information to the classifier. 

Previous research mainly used two main categories of feature selection methods: filter methods and wrapper methods 

[38]. In this experimental study, three filter feature selection methods were considered: Information Gain (InfoGain), 

correlation-based feature selection (CFS) with Genetic search (GS) algorithm and RelifF. These three filter methods 

were selected since the filter methods for feature selection depend on general data characteristics rather than 
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predetermined classifiers [39]. Since the ensemble classifier approach that we aimed to assess is based on 

heterogeneous classifiers, wrapper methods were not suitable in our case. 

4.4. Class distribution rebalance 

Having an imbalanced number of activity instances may lead to inconsistencies in the activity recognition model. 

Previous researches have demonstrated that randomly over-sampling techniques would lead to over-fitting problems 

and under-sampling techniques would result in the loss of useful information [40]. In this study, we utilized SMOTE 

boosting method to improve the representation of classes with less number of instances, which generates synthetic 

instances along the segments adding any of the k minority class to their nearest neighbours. With an oversampling rate 

of 1200% boosting to increase the samples of the minority classes, 15,517 new samples were synthesized to balance 

minority and majority classes. 

4.5. Classification methods 

For our experimental work, we considered and assessed several classification techniques in two steps. The first step 

was to generate a diverse and accurate set of base classifiers by comparing the performance of various single classifiers. 

In this study, we considered six commonly used classifiers, namely: random forest (RF), k-nearest neighbours (KNN), 

decision tree (J48), artificial neural network (MLP), Naïve Bayes (NB) and support vector machine (SVM) [41]. These 

six classifiers belong to different classifier types, which have different internal representations and may be biased in 

different ways. The different outputs of the base classifiers represented the extent to which they disagree about the 

probability distribution for the test data. This diversity would lead to the disagreement with each other over the data 

instances covering a range of the feature space. 

The second step was to combine the models into a heterogeneous set of base classifiers using combination functions. 

The combination functions intend to make the best use of the information obtained from the base classifiers for the 

purpose of making class labels predictions as accurately as possible. There are two general categories of combination 

functions: fusion and selection. Since the output of the selection function typically depends on the characteristics of 

the instance whose class is being predicted, it is not suitable in this study. Thus we chose the majority voting function 

[42], which is a fusion function, to combine the outputs of the base classifiers. In majority voting, the outputs from 

base classifiers are used as votes on the predicted class, and the prediction voted the most is outputted as the final 

predicted class of the ensemble classifier. The majority voting function is defined as shown in equation (2). 
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                                                                       C(x) = argmax ∑ 1𝐶𝐶𝑖𝑖(𝑥𝑥)=𝑦𝑦                                                                     (2) 

As a result, 4 base classifiers (2 RF, 1 KNN and 1 J48) were selected to generate the ensemble. The predictions of 

these four classifiers, which were the results of 3 algorithms applied on 12 balanced class distribution dataset, were 

finally voted to get the final classification result. 

V. RESULTS AND DISCUSSION 

In this section, we present the results we have obtained in our experimental setup by applying different feature 

selection methods, a resampling method and various learning algorithms on the dataset. The main performance 

indicators, such as accuracy, sensitivity and specificity, are based on the true positive (TP), true negative (TN), false 

positive (FP) and false negative (FN) figures obtained by executing the corresponding algorithms in Weka. This section 

shows with a specific example how the followed methodology is valid to select a set of suitable machine learning 

technologies and detect a set of atomic activities, based on the measurements gathered by the smart object. 

5.1. Performance assessment of feature selection methods 

In order to determine the optimal feature subset which contains the most relevant features, we compared the 

effectiveness of the 10-fold cross validation performance of three feature selection methods (Table 3). The performance 

obtained when using all features was used as baseline for comparison. The decision tree (J48) was used here as learning 

algorithm for classification. We used three measures to validate the performance of the three feature selection methods: 

accuracy (defined as (TP+TN)/(TP+TN+FP+FN)), sensitivity (defined as TP/(TP+FN)), and specificity (defined as 

TN/(TN+FP)). 

Table 3. Comparison of the performance on five feature subsets by three feature selection methods. 

Feature subset No. of features Accuracy Sensitivity Specificity 

All features 77 88.98% 0.890 0.990 
FS1: InfoGain 75 89.21% 0.892 0.990 

FS2: ReliefF 40 89.32% 0.893 0.990 
FS3: CFS+GS 36 89.34% 0.893 0.990 

 

In FS1 and FS2, the features were ranked according to InfoGain and ReliefF, respectively. The top 75 ranked features 

by InfoGain yielded an accuracy of 89.21% and a sensitivity of 0.892. The top 40 ranked features by ReliefF produced 

an accuracy of 89.32% and a sensitivity of 0.893. The CFS and GS algorithm (FS3) directly selected a feature subset 

containing 36 features and provided the highest accuracy of 89.34% and the highest sensitivity of 0.893 among the 
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three feature subsets. Compared to the performance of using all features, the classifiers with less features, in contrast, 

produced higher accuracy and sensitivity. This is probably due to the fact that some features are irrelevant and 

redundant, and their high correlation with other features would affect the classification performance. As a result, the 

CFS and GS algorithm was chosen as the feature selection method to reduce the feature vector dimensions as well as 

to improve the classifier performance. The 36 features picked by the CFS and GS algorithm are given in Table 4. These 

selected features were used as input to various learning algorithms in further data analysis phases. 

Table 4. The features selected by CFS and GS algorithm. 

Feature domain Selected features 
 
Time-domain 

Mean-BA-X, STD-BA-X, MAD-BA-X, MAD-BA-X, SMA-BA, TA-BA-X, TA-BA-Y, TA-BA-Y, Mean-GA-X, 
Mean-GA-Y, Mean-GA-Z, RMS-GA-X, RMS-GA-Y, RMS-GA-Z, MAD-GA-Z, Range-GA-Y, Range-GA-Z, 
SMA-GA, Mean-BASMV, RMS- BASMV, SMA-BASMV, RMS-GASMV, STD-GASMV, MAD-GASMV, 
Range-GASMV, SMA-GASMV 

 
Frequency-domain 

Spectral Entropy-BA-Z, Skewness-BA-X, Skewness-BA-Y, Kurtosis-BA-Y, Largest frequency component-BA-X, 
Frequency signal weighted average-BA-Y, Frequency signal weighted average-BA-Y, Spectral Entropy-BASMV, 
Skewness-BASMV, Kurtosis-BASMV 

 

5.2. Validation of base classifiers performance   

In order to choose the most efficient base classifiers (that will be also used for the construction of an ensemble of 

classifiers later), we investigated and compared various classification algorithms, namely: RF, KNN, J48, MLP, NB 

and SVM. The preliminary activity classification performance of six different algorithms on the balanced dataset with 

selected features is summarized in Table 5. The data were processed using average 10-fold cross validation during the 

training and testing phases. 

For the performance validation methods, besides the accuracy, sensitivity and specificity, we also introduced the 

following measures: mean absolute error (MAE), relative absolute error (RAE), F-measure and receiver operating 

characteristic (ROC) area.  The mean absolute error (MAE) is a quantity used to measure how close the predictions are 

to the eventual outcomes. The definition of MAE is given by equation (3). 

                                                                  MAE = 1
𝑛𝑛

∑ |𝑦𝑦 − 𝑦𝑦′|𝑖𝑖=1,𝑛𝑛                                                                         (3)   

The relative absolute error (RAE) represents the error as a percentage of the true value and measures how far the 

predictions are from the eventual outcomes. The definition of RAE is given by equation (4). 

                                                          RAE = ∑ |𝑦𝑦 − 𝑦𝑦′|𝑖𝑖=1,𝑛𝑛 ∑ |𝑦𝑦′� − 𝑦𝑦′|𝑖𝑖=1,𝑛𝑛⁄                                                        (4) 
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Where y  is the actual value, 'y is the predicted value and n  is the number of samples. The ideal case corresponds 

to both MAE and RAE being 0. F-measure is defined as 2*Sensitivity*(1-Specificity) / (1-Specificty+Sensitivity). The 

receiver operating characteristic (ROC) curve is a graphic plot of the true positive rate against false positive rate at 

various threshold settings. Therefore the area under the ROC curve can be used to illustrate the performance of a 

classifier. 

Table 5. Comparison of the performance of different learning algorithms. 

Algorithms Accuracy MAE RAE Sensitivity Specificity F-measure ROC Area 
Random forest (RF) 96.09% 0.025 16.01% 0.961 0.997 0.961 0.999 
K-nearest neighbours (KNN) 95.64% 0.007 4.80% 0.956 0.996 0.956 0.976 
Decision tree (J48) 89.34% 0.019 12.41% 0.893 0.990 0.893 0.953 
Artificial neural network (MLP) 85.97% 0.028 18.09% 0.860 0.987 0.859 0.976 
Naïve Bayes (NB) 63.21% 0.063 41.27% 0.632 0.967 0.616 0.933 
Support vector machine (SVM) 31.86% 0.114 74.33% 0.681 0.938 0.319 0.628 

 

Among the six classifiers, RF, KNN and J48 showed their superior performance in evaluation metrics. Specifically, 

RF contributed the highest accuracy of 96.09%. It also achieved the best performance in terms of sensitivity, specificity, 

F-measure and ROC area measures of 0.961, 0.997, 0.961 and 0.999, respectively. This is because RF combines 

multiple decision trees with various rules, which can better handle the multi-class data characteristics. Thus, we used 

RF as the baseline classifier here. Compared to RF, the KNN yielded lower MAE and RAE measurements of 0.007 

and 4.80%, respectively. This means that KNN produced closer predictions to the eventual outcomes. The J48 classifier 

also contributed lower MAE (0.019) and RAE (12.41%) values than RF, whereas KNN and J48 performed better in 

the classification of specific activity classes. Compared to the performance of RF, the classification results from MLP, 

NB and SVM were not very good. The accuracy obtained by MLP was 85.97% and SVM only contributed 31.86% 

accuracy. Therefore, we considered RF, KNN and J48 as the possible ensemble members. 

To determine the best classification performance for each activity, we analysed the confusion matrices of the twelve 

activities produced by RF, KNN and J48 (see Table 6). We found that these three classifiers made quite different 

misclassifications. The matrices revealed that the RF model often misclassified walking class (A4) to sweeping (79 

instances), stand-to-walk (95 instances), walk-to-stand (24 instances) and sit-to-lie (22 instances). Standing class (A1) 

was frequently confused with walk-to-stand (50 instances). Sweeping class (A6) was sometimes misclassified to walk 

(25 instances). Likely these activities shared similar movements. J48, for its part, contributed less misclassified 

instances of standing (A1), watching TV (A3) and walking (A4) activities compared to RF. KNN also contributed less  
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Table 6. The confusion matrices of the twelve activities obtained by the three selected learning algorithms. 

Random Forest (RF) 

 ST SL WT WA RU SW ST-SI SI-ST ST-WA WA-ST LI-SI SI-LI 
A1 2290 0 3  0 0 16  0 6 9  50 2  3 
A2 5  2348 0 0 0 6 7  2 1 1 4 5  
A3 0 0 2302 2 0 3 8  3 4 10 11 28 
A4 0 1 0 2071 1 79 9 17 95 24 8 22 
A5 0 0 0 4 2270 7  0 0 2 0 0 0 
A6 2 0 0 25 2  2233 11 17 17 18  10 6 
A7 0 0 0 1 0 1 2279 31 4 9 2 0 
A8 0 0 1 0 0 1 18 2350 1 6 0 2 
A9 1 0 0 24 0 14 7 2 2331 27 8 4 
A10 4 0 2 7 0 6  3 17 46 2289 3 2 
A11 0 3 0 0 0 0 5 3 0 2 2338 15 
A12 0 1 0 0 0 0 1 2 0 0 26 2375 
k-Nearest Neighbours (KNN) 

 ST SL WT WA RU SW ST-SI SI-ST ST-WA WA-ST LI-SI SI-LI 

A1 2264 2 6 9 0 10 0 6 23 56 3 0 

A2 1 2353 10 1 0 2 5 0 0 0 1 6 

A3 1 3 2330 6 0 0 6 3 1 2 8 11 

A4 2 0 3 2151 0 39 9 11 71 25 6 10 

A5 0 0 0 4 2276 3 0 0 0 0 0 0 

A6 3 0 0 60 1 2179 15 17 40 15 7 4 

A7 0 0 0 3 0 8 2240 61 3 7 2 3 

A8 1 1 0 0 0 2 46 2316 1 8 4 0 

A9 11 0 1 40 1 19 7 10 2225 99 5 0 

A10 100 4 3 13 0 4 4 13 115 2120 1 2 

A11 0 6 0 0 0 0 8 1 1 6 2310 34 

A12 0 3 5 0 0 0 3 3 0 0 37 2354 

Decision Tree (J48) 

 ST SL WT WA RU SW ST-SI SI-ST ST-WA WA-ST LI-SI SI-LI 

A1 2281 0 2 4 0 20 4 9 8 47 1 3 

A2 1 2332 6 0 0 5 6 1 2 10 4 12 

A3 1 6 2279 6 0 8 13 7 1 20 13 17 

A4 5 2 6 1962 5 75 8 20 172 47 15 10 

A5 0 0 0 4 2266 8 1 0 4 0 0 0 

A6 16 4 4 79 6 2056 28 37 55 35 11 10 

A7 1 11 12 11 0 20 2022 161 18 26 21 24 

A8 4 3 5 21 0 22 148 2061 35 42 19 19 

A9 7 1 3 144 2 63 23 30 1995 129 9 12 

A10 40 17 20 51 1 33 35 51 145 1959 19 8 

A11 1 7 17 16 0 10 27 15 10 15 2034 214 

A12 5 13 17 16 2 7 26 22 5 8 199 2085 
A1 = ST = Standing, A2 = SL = Sleeping, A3 = WT = Watching TV, A4 = WA = Walking, A5 = RU= Running, A6 = SW= Sweeping, A7 = ST-SI= 

Stand-to-sit, A8 = SI-ST= Sit-to-stand, A9 = ST-WA= Stand-to-walk, A10 = WA-ST= Walk-to-stand, A11 = LI-SI=Lie-to-sit, A12 = SI-LI= Sit-to-lie. 
 

misclassified instances than RF of several activities. For example, RF misclassified 79 instances of walking to 

sweeping, whereas KNN only misclassified 39 instances of walking to sweeping. The results illustrated that no single 

classifier performs best in all evaluation measures (even if they may be the best in a subset of the evaluation measures). 
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Thus combing these three single classifiers may contribute to a better classification performance in our experiment. 

Based on this result, we selected RF, KNN and J48 as ensemble members due to their excellent performance in 

evaluation measures. These three classifiers had their own strengths on classifying different activities, they also 

provided different disagreements with each other, and this disagreement was cleared by majority voting to obtain a 

final prediction. As a result, we defined an ensemble model with 4 heterogeneous classifiers (2 RF, 1KNN and 1J48). 

5.3. Comparison of performance of our ensemble with imbalanced and all features datasets  

We evaluated the classification performance of the ensemble constructed with 2 RF, 1 KNN and 1 J48 classifiers by 

applying it on the balanced feature subset. Table 7 presents the results, which showed high sensitivity and specificity 

(sensitivity ranged from 0.893 to 0.995, specificity from 0.993 to 1.000) on each activity class, which indicates that the 

ensemble model performed good both in positive and negative identifications. The ensemble model performed 

extremely well in identifying running with the highest F-measure of 0.997. Activities such as sleeping, watching TV, 

lie-to-sit and sit-to-lie were also identified very well. Compared to the single classifiers, the ensemble model provided 

97.00% accuracy, higher than the 96.09% accuracy obtained by RF alone, which was the highest accuracy among the 

various single classifiers. These results indicate that the ensemble model is a high-performance method to achieve 

relatively higher accuracy than the single classifiers. 

Table 7. The performance of heterogeneous ensemble model with selected features. 

 ST SL WT WA RU SW ST-SI SI-ST ST-WA WA-ST LI-SI SI-LI 
Sensitivity 0.965 0.987 0.972 0.893 0.995 0.956 0.979 0.988 0.964 0.962 0.989 0.989 
Specificity 1.000 1.000 1.000 0.998 1.000 0.995 0.998 0.996 0.993 0.995 0.997 0.997 
F-measure 0.980 0.992 0.984 0.930 0.997 0.950 0.976 0.975 0.946 0.952 0.981 0.977 

ST = Standing, SL = Sleeping, WT = Watching TV, WA= Walking, RU= Running, SW= Sweeping, ST-SI= Stand-to-sit, SI-ST= Sit-to-stand, ST-WA= 
Stand-to-walk, WA-ST= Walk-to-stand, LI-SI=Lie-to-sit, SI-LI= Sit-to-lie. 

 

To evaluate the performance of the constructed ensemble classifier, we derived and compared three different 

ensemble models: EM1, EM2 and EM3. EM1 was derived on the raw data without applying the resampling technique, 

all features extracted from the raw data were used as the input. EM2 used all features trained on the balanced data after 

performing the resampling techniques. Thus the difference between EM1 and EM2 was the class distribution in dataset. 

EM3 was derived on the balanced data using the 36 selected features obtained by CFS and GS algorithm. The difference 

between EM2 and EM3 was the number of used features for building the ensemble models. 
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Table 8 presents the performance of EM1, EM2 and EM3 in terms of accuracy, sensitivity, specificity, F-measure 

and ROC area. Comparing the performance of EM1 and EM2, the accuracy of EM2 was increased from 95.14% to 

96.01%. The sensitivity of EM2 was increased to 0.960, which was higher than that of EM1 (0.951). Even though the 

accuracy of EM1 was still relatively high, many instances of transitional activities were misclassified, this can be 

shown by the sensitivity of EM1 for each activity (see Figure 5). This is perhaps due to the learning algorithms 

assuming that positive and negative classes are balanced in datasets, thus they usually maximize the overall accuracy 

by a bias towards the majority class. To address the poor performance on minority classes, we applied the SMOTE 

with an oversampling rate of 1200% boosting to balance the dataset.  

Table 8. The performance of different ensemble models generated by 10-fold cross validation. 

Dataset Accuracy Sensitivity Specificity F-measure ROC Area 

EM1: Imbalanced data with all features 95.14% 0.951 0.993 0.946 0.972 

EM2: Balanced data with all features 96.01% 0.960 0.996 0.960 0.978 

EM3:Balanced data with 36 selected features 97.00% 0.970 0.997 0.970 0.984 

 

Figure 5 depicts the sensitivity of EM1, EM2 and EM3 on each class. It shows that after rebalancing the dataset, the 

sensitivity of EM2 and EM3 on transitional activity classes was significantly increased and balanced with the static 

and dynamic activity classes. By applying the feature selection method to obtain a feature subset that contains only 

discriminative and relevant features, compared to EM2, the performance of EM3 was improved from 96.01% to 97.00% 

in terms of accuracy, from 0.960 to 0.970 in terms of sensitivity, from 0.996 to 0.997 in terms of specificity, from 0.960 

to 0.970 in terms of F-measure and from 0.978 to 0.984 in terms of ROC area.  

 

Figure 5.  Comparison of sensitivity of the twelve activities between EM1, EM2 and EM3. 
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The results showed that not only combining the heterogeneous base classifiers by majority voting, but also 

rebalancing class distribution by resampling technique as well as selecting informative and relevant features by feature 

selection method, have the ability to improve the performance of activity recognition.  

5.4. Performance of our ensemble applied to publicly available datasets 

Previous results relate to our 10-hour dataset obtained as described in section III above. In this section, we show the 

results of our ensemble of heterogeneous classifiers applied to three public datasets, namely: PAMAP2 [43], SBHAR 

[44] and UoA [14]. Whereas SBHAR and UoA contain samples of transitional activities, PAMAP2 does not. Table 9 

shows the accuracy obtained per activity by the ensemble classifier applied to each of these three datasets.  

Table 9. Comparison of accuracy of activity recognition of our proposal when applied to different published datasets. 

Dataset ST SL WT WA RU SW ST-SI SI-ST ST-WA WA-ST LI-SI SI-LI 
PAMAP2 [47] 0.989 0.961 NA 0.940 0.987 NA NA NA NA NA NA NA 
SBHAR [48] 0.976 0.951 NA 0.924 NA NA 0.970 0.949 NA NA 0.928 0.926 
UoA [14] 0.938 NA NA 0.940 NA NA 0.876 0.852 NA NA 0.920 0.912 
Collected dataset 0.965 0.987 0.972 0.893 0.995 0.956 0.979 0.988 0.964 0.962 0.989 0.989 

ST = Standing, SL = Sleeping, WT = Watching TV, WA= Walking, RU= Running, SW= Sweeping, ST-SI= Stand-to-sit, SI-ST= Sit-to-stand, ST-WA= 
Stand-to-walk, WA-ST= Walk-to-stand, LI-SI=Lie-to-sit, SI-LI= Sit-to-lie. 
 

The classification performance of static and dynamic activities on the three public datasets all contributed higher 

than 90% in terms of recognition accuracy. On some occasions, the accuracy is even higher for the other three datasets 

than for the one collected by us. Moreover, the recognition accuracy of transitional activities of our ensemble was kept 

similarly high when applied to other datasets different and independent from ours (slightly lower, but always higher 

than 85% and most of the times above 90%). With these results we show that the high performance of our selected 

ensemble of heterogeneous classifiers is not completely dependent on the specific dataset that contains the activities’ 

samples. This, together with the facts that our participants were not instructed on how to perform the activities and that 

the public datasets referenced in this section have been provided by three different research teams who are totally 

independent from ours, makes us confident that our proposed method to select the classifiers, filters and oversampling 

is useful to accurately detect the considered three types of activities with a reasonable independence on how different 

people may perform them. 
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VI. DISCUSSION AND CONCLUSION 

In this paper we have described the steps followed for the design of the decision-making subsystem associated to a 

simple and non-intrusive device to measure and classify atomic activities at home. We consider an architecture in 

which the detection of these atomic activities are provided by the IoT infrastructure present in home. From these atomic 

activities, Ambient Intelligence (AmI) techniques can infer, taking into account the contextual information also 

gathered by sensors, more complex (or composite) activities that can be related to the inhabitants’ behaviour. 

The set of possible atomic activities is not fully defined and can evolve with the technology and habits of the 

population. In addition, the technology to detect the activities can be very heterogeneous and it is even possible to have 

several IoT technologies obtaining data to detect the same set of activities. We have proposed the use of a smart object 

consisting on a 3D accelerometer embedded in a wrist-worn device. We have provided with the specification of a 

complete procedure for the gathering, mining and cleaning of the raw data, rebalancing of the different classes’ number 

of samples and comparison of diverse classification procedures, to end with the selection and assessment of an 

ensemble of heterogeneous classifiers. 

Our experiments showed good classification accuracy among twelve atomic activities that cannot be overlapped in 

time because of their mutually exclusive nature. These results were attained by the oversampling of minority classes 

together with the selected ensemble of three different classifiers whose results are combined using a majority voting 

function. One important contribution is related to the demonstration of the complete procedure that allows to compare 

different possible machine learning methods to classify the measurements coming from a simple and easily accepted 

wrist-worn IoT smart object. Depending on the population sector and the specificities of the activities that are most 

important to be detected, this same procedure is applicable to select the most suitable classification technique. 

On the other hand, by reviewing the existing literature we have observed that most of the proposed activity detection 

solutions are not well adjusted for the different types of ambulatory activities. In fact, the so-called transitional activities 

present a lower detection rate than the rest, due to characteristics such as their short duration and difficulty to be 

predicted. This lower detection rate causes a higher imprecision when it comes to infer a person’s behaviour, which in 

turn may lead to wrong decisions being made afterwards. 

In this work we have proved the feasibility of detecting a set of twelve activities belonging to three types, including 

short-timed transitional activities, by using a single non-intrusive data acquisition device together with a data 
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processing mechanism consisting on cleaning and balancing the sample set and using ensemble supervised-learning 

classifiers. The empirical results show how, even though the detection precision we have obtained is moderately lower 

for some static and dynamic activities, it is higher for transitional activities up to values comparable to the other types 

of activities. We have got similarly good results with our selected data processing and classification method applied to 

three publicly available data sets different from ours. Thus, we conclude that our proposed solution is able to attain 

high success rates and, equally importantly, shows a balanced performance throughout the three activity types 

investigated. 

With respect to the specific device type used to measure the data, i.e. the 3D wrist-worn accelerometer, we consider 

it as an object that is easily accepted among the majority of the population. In fact, many people already use watch-

like devices and bracelets on a regular basis, and they have proven very usable. Besides, the fact that it is personally 

assigned to each person makes it easier to identify each individual and thus to support multi-user data. It is worthy to 

note that the wrist-worn sensor has limitations to monitor some lower limb-related activities, such as cycling, thus the 

collaboration with sensors placed on other parts of the body, such as chest and ankle, is planned to be included in the 

future work. On the downside of this election, we are aware that, since all our experiments have included only one 

sensor modality on the non-intrusive device, any additional contextual information (such as heart rate and location) 

has been left out. The addition of context information to the output of the ensemble classifiers is something worth 

investigating to assess the possible benefits on both the detection precision and the tolerance to classification errors, 

and gives also interesting additional input to the AmI subsystem to detect complex activities and behaviours. Another 

important issue to be tackled is the assessment of the precision that we would obtain under actual real life conditions. 

In fact, all presented experiments contained activities that were adequately timed so that the classifiers did not face 

windows containing mixed activities samples. Our hypothesis on this is that it is unlikely that the number of non-

homogeneous windows (i.e. windows containing samples from different activities) in a real-life deployment would be 

significant with respect to the number of homogeneous windows. This would facilitate to filter out non-homogeneous 

windows and thus minimize their distortional effects. 

REFERENCES 

1. Lloret, J.; Canovas, A.; Sendra, S.; Parra, L. A smart communication architecture for ambient assisted living. IEEE 

Communication Magzine. 2015(53): 26–33. 



 22 

2. Roy, P.C.; Abidi, S.R.; Abidi, S.S.R. Possibilistic activity recognition with uncertain observations to support 

medication adherence in an assisted ambient living setting. Knowledge Based System. 2017(133):156–173. 

3. Singh, A.; Bianchi-Berthouze, N.; Williams, A.C.C. Supporting everyday function in chronic pain using wearable 

technology. In Proceedings of the Conference on Human Factors in Computing Systems, Denver, USA, 6–11 May 

2017:  3903–3915. 

4. Ghayvat, H.; Mukhopadhyay, S.; Shenjie, B.; Chouhan, A.; Chen, W. Smart home based ambient assisted living: 

Recognition of anomaly in the activity of daily living for an elderly living alone. In Proceedings of the IEEE 

International Instrumentation and Measurement Technology Conference, Houston, TX, USA, May 2018: 14–17. 

5. Meditskos, G.; Plans, P.M.; Stavropoulos, T.G.; Multi-modal activity recognition from egocentric vision, semantic 

enrichment and lifelogging applications for the care of dementia. Journal of Visual Communication and Image 

Representation. 2018(51): 169-190. 

6. Ni, Q.; García Hernando, A.B.; de la Cruz, I.P. The elderly’s independent living in smart homes: A 

characterization of activities and sensing infrastructure survey to facilitate services development. Sensors, 

2015(15): 11312–11362. 

7. Ni, Q.; Cleland I.; Nugent C.D.; García Hernando, A.B.; de la Cruz, I.P. Dataset obtained for detecting static, 

dynamic and transitional activities of daily life by using a single wrist-worn accelerometer. Data in Brief. 

Submitted. 

8. Chernbumroong, S.; Cang, S.; Atkins, A.; Yu, H. Elderly activities recognition and classification for applications 

in assisted living. Expert Systems with Applications, 2013(40): 1662-1674. 

9. Wang, Z.; Wu, D.; Chen, J.; Ghoneim, A.; Hossain, M.A. A triaxial accelerometer-based human activity 

recognition via eemd-based features and game-theory-based feature selection. IEEE Sensors Journal, 2016(16): 

3198-3207. 

10. Gao, L.; Bourke, A.K.; Nelson, J. Evaluation of accelerometer based multi-sensor versus single-sensor activity 

recognition systems. Medical engineering & physics, 2014(36): 779-785. 

11. Cleland, I.; Kikhia, B.; Nugent, C.; Boytsov, A.; Hallberg, J.; Synnes, K.; McClean, S.; Finlay, D. Optimal 

placement of accelerometers for the detection of everyday activities. Sensors, 2013(13): 9183-9200. 



 23 

12. Mehrang S, Pietilä J, Korhonen I. An Activity Recognition Framework Deploying the Random Forest Classifier 

and A Single Optical Heart Rate Monitoring and Triaxial Accelerometer Wrist-Band. Sensors, 2018, 18(2): 613. 

13. Qi J, Yang P, Hanneghan M, et al. A Hybrid Hierarchical Framework for Gym Physical Activity Recognition and 

Measurement Using Wearable Sensors. IEEE Internet of Things Journal, 2018. DOI 10.1109/JIOT.2018.2846359. 

14. Reyes-Ortiz, J.-L.; Oneto, L.; Samà, A.; Parra, X.; Anguita, D. Transition-aware human activity recognition using 

smartphones. Neurocomputing 2016(171): 754-767. 

15. Noor, M.H.M.; Salcic, Z.; Kevin, I.; Wang, K. Adaptive sliding window segmentation for physical activity 

recognition using a single tri-axial accelerometer. Pervasive and Mobile Computing, 2017(38): 41-59. 

16. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling 

technique. Journal of artificial intelligence research, 2002(16): 321-357. 

17. Zhang, S.; McClean, S.I.; Nugent, C.D.; Donnelly, M.P.; Galway, L.; Scotney, B.W.; Cleland, I. A predictive 

model for assistive technology adoption for people with dementia. IEEE Journal of Biomedical and Health 

Informatics, 2014(18): 375-383. 

18. Khoshgoftaar, T.M.; Seiffert, C.; Hulse, J.V.; Napolitano, A.; Folleco, A. Learning with limited minority class 

data. Sixth International Conference on Machine Learning and Applications, Cincinnati, USA, 13-15 Dec, 2007: 

348-353. 

19. Chen, L.; Hoey, J.; Nugent, C.D.; Cook, D.J.; Yu, Z. Sensor-based activity recognition. IEEE Transactions on 

Systems, Man, and Cybernetics, Part C: Applications and Reviews. 2012(42): 790-808. 

20. Liu L, Wang S, Su G, et al. Towards complex activity recognition using a Bayesian network-based probabilistic 

generative framework. Pattern Recognition. 2017(68): 295-309. 

21. Safi, K.; Mohammed, S.; Attal, F.; Khalil, M.; Amirat, Y. Recognition of different daily living activities using 

hidden markov model regression. Third Middle East Conference on Biomedical Engineering, Beirut, Lebanon, 6-

7 Oct, 2016: 16-19. 

22. Hemminki, S.; Nurmi, P.; Tarkoma, S. In Accelerometer-based transportation mode detection on smartphones, 

Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems, ACM, 2013: 13. 

23. Ren, X.; Ding, W.; Crouter, S.E.; Mu, Y.; Xie, R. Activity recognition and intensity estimation in youth from 

accelerometer data aided by machine learning. Applied Intelligence, 2016(45): 512-529. 



 24 

24. Thomaz E, Essa I, Abowd G D. A practical approach for recognizing eating moments with wrist-mounted inertial 

sensing. ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM, 2015:1029-1040. 

25. Mazumder, O.; Kundu, A.S.; Lenka, P.K.; Bhaumik, S. Ambulatory activity classification with dendogram-based 

support vector machine: Application in lower-limb active exoskeleton. Gait & Posture, 2016(50): 53-59. 

26. Ronao, C.A.; Cho, S.-B. Human activity recognition with smartphone sensors using deep learning neural 

networks. Expert Systems with Applications, 2016(59): 235-244. 

27. Chernbumroong, S.; Atkins, A.S.; Yu, H. In Activity classification using a single wrist-worn accelerometer, 

Software, Knowledge Information, Industrial Management and Applications (SKIMA), 2011 5th International 

Conference on, 2011; IEEE: 1-6. 

28. Daghistani, T.; Alshammari, R. Improving accelerometer-based activity recognition by using ensemble of 

classifiers. International Jouornal of  Advanced Computer Science and Applications. 2016(7): 128-133. 

29. Dietterich, T.G. Ensemble methods in machine learning. International workshop on multiple classifier systems, 

Springer, Berlin, Heidelberg, 2000: 1-15. 

30. Jurek, A.; Nugent, C.; Bi, Y.; Wu, S. Clustering-based ensemble learning for activity recognition in smart homes. 

Sensors. 2014(14): 12285-12304. 

31. Krawczyk B. Active and adaptive ensemble learning for online activity recognition from data streams. 

Knowledge-Based Systems. 2017(138): 69-78. 

32. Reyes-Ortiz, J.-L.; Oneto, L.; Ghio, A.; Samá, A.; Anguita, D.; Parra, X. Human activity recognition on 

smartphones with awareness of basic activities and postural transitions. International Conference on Artificial 

Neural Networks. Springer, Cham, 2014: 177-184. 

33. Garner, S.R. In Weka: The waikato environment for knowledge analysis, Proceedings of the New Zealand 

computer science research students conference, 1995: 57-64. 

34. Karantonis, D.M.; Narayanan, M.R.; Mathie, M.; Lovell, N.H.; Celler, B.G. Implementation of a real-time human 

movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Transactions on Information 

Technology in Biomedicine. 2006(10): 156-167. 

35. Cheng, W.-C.; Jhan, D.-M. Triaxial accelerometer-based fall detection method using a self-constructing cascade-

adaboost-svm classifier. IEEE Journal of Biomedical and Health Informatics. 2013(17): 411-419. 



 25 

36. Figo, D.; Diniz, P.C.; Ferreira, D.R.; Cardoso, J.M. Preprocessing techniques for context recognition from 

accelerometer data. Personal and Ubiquitous Computing. 2010(14): 645-662. 

37. Mathie, M.; Celler, B.G.; Lovell, N.H.; Coster, A. Classification of basic daily movements using a triaxial 

accelerometer. Medical and Biological Engineering and Computing. 2004(42): 679-687. 

38. Zhang, M.; Sawchuk, A.A. In A feature selection-based framework for human activity recognition using wearable 

multimodal sensors, Proceedings of the 6th International Conference on Body Area Networks. ICST (Institute for 

Computer Sciences, Social-Informatics and Telecommunications Engineering), 2011: 92-98. 

39. Liu, H.; Yu, L. Toward integrating feature selection algorithms for classification and clustering. IEEE 

Transactions on Knowledge and Data Engineering. 2005(17): 491-502. 

40. Chawla, N.V. Data mining for imbalanced datasets: An overview. In Data mining and knowledge discovery 

handbook, Springer, 2005: 853-867. 

41. Wu, X.; Kumar, V.; Quinlan, J.R.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Philip, 

S.Y. Top 10 algorithms in data mining. Knowledge and Information Systems. 2008(14): 1-37. 

42. Bagui, S.C. Combining pattern classifiers: Methods and algorithms. Technometrics. 2005(47): 517-518. 

43. O. Banos, M. Damas, H. Pomares, I. Rojas, M.A. Tóth, O. Amft, A benchmark dataset to evaluate sensor 

displacement in activity recognition. ACM Conference on Ubiquitous Computing, 2012: 1026-1035. 

44. D. Anguita, A. Ghio, L. Oneto, X. Parra, J.-L. Reyes-Ortiz, A public domain dataset for human activity recognition 

using smartphones, European Symposium on Artificial Neural Networks, Computational Intelligence and 

Machine Learning, 2013. 

 

 

 


	Design and assessment of the data analysis process for a wrist-worn smart object to detect atomic activities in the smart home

