304 research outputs found

    Steered mixture-of-experts for light field images and video : representation and coding

    Get PDF
    Research in light field (LF) processing has heavily increased over the last decade. This is largely driven by the desire to achieve the same level of immersion and navigational freedom for camera-captured scenes as it is currently available for CGI content. Standardization organizations such as MPEG and JPEG continue to follow conventional coding paradigms in which viewpoints are discretely represented on 2-D regular grids. These grids are then further decorrelated through hybrid DPCM/transform techniques. However, these 2-D regular grids are less suited for high-dimensional data, such as LFs. We propose a novel coding framework for higher-dimensional image modalities, called Steered Mixture-of-Experts (SMoE). Coherent areas in the higher-dimensional space are represented by single higher-dimensional entities, called kernels. These kernels hold spatially localized information about light rays at any angle arriving at a certain region. The global model consists thus of a set of kernels which define a continuous approximation of the underlying plenoptic function. We introduce the theory of SMoE and illustrate its application for 2-D images, 4-D LF images, and 5-D LF video. We also propose an efficient coding strategy to convert the model parameters into a bitstream. Even without provisions for high-frequency information, the proposed method performs comparable to the state of the art for low-to-mid range bitrates with respect to subjective visual quality of 4-D LF images. In case of 5-D LF video, we observe superior decorrelation and coding performance with coding gains of a factor of 4x in bitrate for the same quality. At least equally important is the fact that our method inherently has desired functionality for LF rendering which is lacking in other state-of-the-art techniques: (1) full zero-delay random access, (2) light-weight pixel-parallel view reconstruction, and (3) intrinsic view interpolation and super-resolution

    End-to-end security for video distribution

    Get PDF

    Disparity compensation using geometric transforms

    Get PDF
    This dissertation describes the research and development of some techniques to enhance the disparity compensation in 3D video compression algorithms. Disparity compensation is usually performed using a block matching technique between views, disregarding the various levels of disparity present for objects at different depths in the scene. An alternative coding scheme is proposed, taking advantage of the cameras setup information and the object’s depth in the scene, to compensate more complex spatial distortions, being able to improve disparity compensation even with convergent cameras. In order to perform a more accurate disparity compensation, the reference picture list is enriched with additional geometrically transformed images, for the most relevant object’s levels of depth in the scene, resulting from projections of one view to another. This scheme can be implemented in any state-of-the-art video codec, as H.264/AVC or HEVC, in order to improve the disparity matching accuracy between views. Experimental results, using MV-HEVC extension, show the efficiency of the proposed method for coding stereo video, presenting bitrate savings up to 2.87%, for convergent camera sequences, and 1.52% for parallel camera sequences. Also a method to choose the geometrically transformed inter view reference pictures was developed, in order to reduce unnecessary overhead for unused reference pictures. By selecting and adding to the reference picture list, only the most useful pictures, all results improved, presenting bitrate savings up to 3.06% for convergent camera sequences, and 2% for parallel camera sequences

    Mixed-Resolution HEVC based multiview video codec for low bitrate transmission

    Get PDF

    Efficient HEVC-based video adaptation using transcoding

    Get PDF
    In a video transmission system, it is important to take into account the great diversity of the network/end-user constraints. On the one hand, video content is typically streamed over a network that is characterized by different bandwidth capacities. In many cases, the bandwidth is insufficient to transfer the video at its original quality. On the other hand, a single video is often played by multiple devices like PCs, laptops, and cell phones. Obviously, a single video would not satisfy their different constraints. These diversities of the network and devices capacity lead to the need for video adaptation techniques, e.g., a reduction of the bit rate or spatial resolution. Video transcoding, which modifies a property of the video without the change of the coding format, has been well-known as an efficient adaptation solution. However, this approach comes along with a high computational complexity, resulting in huge energy consumption in the network and possibly network latency. This presentation provides several optimization strategies for the transcoding process of HEVC (the latest High Efficiency Video Coding standard) video streams. First, the computational complexity of a bit rate transcoder (transrater) is reduced. We proposed several techniques to speed-up the encoder of a transrater, notably a machine-learning-based approach and a novel coding-mode evaluation strategy have been proposed. Moreover, the motion estimation process of the encoder has been optimized with the use of decision theory and the proposed fast search patterns. Second, the issues and challenges of a spatial transcoder have been solved by using machine-learning algorithms. Thanks to their great performance, the proposed techniques are expected to significantly help HEVC gain popularity in a wide range of modern multimedia applications

    HEVC based Multi-View Video Codec using Frame Interleaving technique

    Get PDF
    this paper presents a HEVC based multi-view video codec. The frames of the multi-view videos are interleaved to generate a monoscopic video sequence. The interleaving is conducted in a way to increase the exploitation of the temporal and inter-views correlations. The MV-HEVC standard codec is configured to work as a single layered codec, which functions as a monoscipic HEVC codec with AVC capabilities, and used to encode interleaved multi-view video frames. The performance of the codec is compared with the anchor standard MV-HEVC codec by coding the three standard multi-view video sequences: “Balloon”, “Kendo” and “Newspaper1”. Experimental results show the proposed codec out performs the anchor standard MV-HEVC codec in term of bitrate and PSNR

    High Performance Multiview Video Coding

    Get PDF
    Following the standardization of the latest video coding standard High Efficiency Video Coding in 2013, in 2014, multiview extension of HEVC (MV-HEVC) was published and brought significantly better compression performance of around 50% for multiview and 3D videos compared to multiple independent single-view HEVC coding. However, the extremely high computational complexity of MV-HEVC demands significant optimization of the encoder. To tackle this problem, this work investigates the possibilities of using modern parallel computing platforms and tools such as single-instruction-multiple-data (SIMD) instructions, multi-core CPU, massively parallel GPU, and computer cluster to significantly enhance the MVC encoder performance. The aforementioned computing tools have very different computing characteristics and misuse of the tools may result in poor performance improvement and sometimes even reduction. To achieve the best possible encoding performance from modern computing tools, different levels of parallelism inside a typical MVC encoder are identified and analyzed. Novel optimization techniques at various levels of abstraction are proposed, non-aggregation massively parallel motion estimation (ME) and disparity estimation (DE) in prediction unit (PU), fractional and bi-directional ME/DE acceleration through SIMD, quantization parameter (QP)-based early termination for coding tree unit (CTU), optimized resource-scheduled wave-front parallel processing for CTU, and workload balanced, cluster-based multiple-view parallel are proposed. The result shows proposed parallel optimization techniques, with insignificant loss to coding efficiency, significantly improves the execution time performance. This , in turn, proves modern parallel computing platforms, with appropriate platform-specific algorithm design, are valuable tools for improving the performance of computationally intensive applications

    HEVC-based 3D holoscopic video coding using self-similarity compensated prediction

    Get PDF
    Holoscopic imaging, also known as integral, light field, and plenoptic imaging, is an appealing technology for glassless 3D video systems, which has recently emerged as a prospective candidate for future image and video applications, such as 3D television. However, to successfully introduce 3D holoscopic video applications into the market, adequate coding tools that can efficiently handle 3D holoscopic video are necessary. In this context, this paper discusses the requirements and challenges for 3D holoscopic video coding, and presents an efficient 3D holoscopic coding scheme based on High Efficiency Video Coding (HEVC). The proposed 3D holoscopic codec makes use of the self-similarity (SS) compensated prediction concept to efficiently explore the inherent correlation of the 3D holoscopic content in Intra- and Inter-coded frames, as well as a novel vector prediction scheme to take advantage of the peculiar characteristics of the SS prediction data. Extensive experiments were conducted, and have shown that the proposed solution is able to outperform HEVC as well as other coding solutions proposed in the literature. Moreover, a consistently better performance is also observed for a set of different quality metrics proposed in the literature for 3D holoscopic content, as well as for the visual quality of views synthesized from decompressed 3D holoscopic content.info:eu-repo/semantics/submittedVersio
    • …
    corecore