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Abstract

Following the standardization of the latest video coding standard High Efficiency

Video Coding in 2013, in 2014, multiview extension of HEVC (MV-HEVC) was pub-

lished and brought significantly better compression performance of around 50% for

multiview and 3D videos compared to multiple independent single-view HEVC cod-

ing. However, the extremely high computational complexity of MV-HEVC demands

significant optimization of the encoder. To tackle this problem, this work investi-

gates the possibilities of using modern parallel computing platforms and tools such

as single-instruction-multiple-data (SIMD) instructions, multi-core CPU, massively

parallel GPU, and computer cluster to significantly enhance the MVC encoder per-

formance. The aforementioned computing tools have very different computing char-

acteristics and misuse of the tools may result in poor performance improvement and

sometimes even reduction. To achieve the best possible encoding performance from

modern computing tools, different levels of parallelism inside a typical MVC encoder

are identified and analyzed. Novel optimization techniques at various levels of ab-

straction are proposed, non-aggregation massively parallel motion estimation (ME)

and disparity estimation (DE) in prediction unit (PU), fractional and bi-directional

ME/DE acceleration through SIMD, quantization parameter (QP)-based early ter-

mination for coding tree unit (CTU), optimized resource-scheduled wave-front paral-

lel processing for CTU, and workload balanced, cluster-based multiple-view parallel

are proposed. The result shows proposed parallel optimization techniques, with in-

significant loss to coding efficiency, significantly improves the execution time perfor-

mance. This , in turn, proves modern parallel computing platforms, with appropriate

platform-specific algorithm design, are valuable tools for improving the performance

of computationally intensive applications.
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Chapter 1

Introduction

Standardized in 2014, the latest international video coding standard, High Efficiency

Video Coding (HEVC/H.265 [1], [2]) takes over the place of previous standard, Ad-

vanced Video Coding (AVC/H.264 [3]) as the most efficient video coding standard.

The design goal of HEVC/H.265 is to provide 50% better compression performance

than its predecessor AVC/H.264 to satisfy ever growing demand for ultra high def-

inition videos such as 4k and 8K resolution. Limited by the viewing angle of single

camera capturing system, to further enhance the viewing experience, a multiview sys-

tem where multiple cameras are deployed to capture the same scene in a synchronized

fashion draws high interests [4] in the recent years. Common application of multi-

view coding includes free view TV, immersive teleconference, and virtual reality. The

computational complexity and coding efficiency for video encoders are closely related

and achieving better compression performance requires significantly more computa-

tions. By taking multiple views into encoding consideration, the complexity increases

exponentially.
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Figure 1.1: Video structure: video, group of picture, slice, and standard-
specific basic coding units.

The challenge is thus in encoder optimization to trade minimal amount of compu-

tational cost for the most coding efficiency. This is specially critical for real-time

application where delivering time has to meet strict deadlines. Conventional method-

ologies attempt to identify and skip non-effective computations with minimal cost to

coding efficiency. The emerging parallel computing tools and platforms, such as mul-

timedia instructions, multi-core central processing unit (CPU) and massively parallel

architecture (MPA) offer new opportunities and guidances for video encoder optimiza-

tion, where the calculations are accelerated by carrying out computations in parallel,

leading to significant time reduction. However, designing efficient architecture-specific

algorithms require careful analysis of modern video encoder architectures and identi-

fication of parallelizable procedures in the encoding process.
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YUV420 YUV444

Figure 1.2: YUV420 and YUV444 commonly used for storing raw video
data.

1.1 Video Coding

1.1.1 Video Structure

A video sequence is produced by camera that continuously projecting the real world

3-D scene onto a 2-D imaging sensor and saving the resulting pixel values digitally

for post-processing [5]. Many color space are devised for displaying and storing raw

video sequences using multi-channel scheme such as Luminance plus two chrominance

(YUV) and Red-Green-Blue (RGB). Any color can be produced by varying the mag-

nitude of the channels. The most frequently used color space scheme for storing raw

video data is YUV420. This representation takes the advantage of the less sensibility

to the color variation in the human visual system and subsamples the two chromi-

nance components, reducing the raw video sequence size by half. YUV444, on the

other hand, keeps full captured color information in Y, U and V channels. Fig. 1.2
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illustrates the structure of YUV420 and YUV444 color space. In this figure, black

circles, blue circles, and green circles refer to Y, U, and V channel data, respec-

tively. The YUV444 and YUV420 are the only supported source video formats in

both AVC/H.264 [3] and HEVC/H.265 standard [6].

1.1.1.1 Group of Picture

Knowing a video source consists of frames, it is possible to group the frames period-

ically to form so called group of pictures (GOP). A GOP is considered independent

from other GOPs and can be encoded and decoded without knowing the existences

of other GOPs. As a result, only frames within a GOP may dependent on each other

and the type of dependence is further specified.

1.1.1.2 Slice

A frame can be further divided into multiple slices. Each slice consists of a rectangular

region of pixels extending full frame width. Error-resiliency is improved with frame

slicing where the corruption of a slice do not lead to the corruption of the entire

frame.

1.1.1.3 Coding Units

A slice consists of integer number of square blocks of pixels, forming the basic coding

unit for encoding and decoding. The basic coding unit sizes are 16×16 (referred

to as Macroblock) for AVC/H.264 and 64×64 (referred to as Coding Tree Unit) for

4
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Figure 1.3: Intra-frame prediction uses neighboring pixels from top and
left to make prediction.

HEVC/H.265. The compression of a video frame is the result of compressing all basic

coding units within the frame. Video coding takes the advantage of intra-frame and

inter-frame redundancies within basic coding units to significantly reduce its size.

1.1.2 Intra-frame Prediction

1.1.2.1 Intra-frame Redundancy

For natural scene, there exists many homogenous regions with little to no color vari-

ation such as a white wall in the background. It is thus possible to use few pixels

to predict the values for majority of the other pixels within the homogenous region.

Coding and storing only the pixels for prediction and prediction differences (errors)

achieves the goal of compression. The use of intra-frame prediction for encoding is

called, intra-frame coding [2] [3].
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1.1.2.2 Prediction Modes

To obtain good compression with intra-frame prediction requires reducing the number

of prediction pixels and increasing prediction accuracy (resulting in smaller prediction

error).

Given coding units are rectangular, it is natural to use border pixels as the source for

prediction. In both AVC/H.264 and HEVC/H.265 standard, pixels immediately to

the left and top of the current basic unit are used for intra-prediction. An important

reason for selecting these pixels is that they all belong to previously encoded basic

unit and do not change for the remaining encoding process. Without knowing the

pattern of the homogenous region, it is necessary to make trial predictions using

various angles (modes) for prediction. The mode associated with the best match, in

terms of smallest prediction error, is chosen and coded together with the prediction

error. 16 prediction angles (or modes) are specified for AVC/H.264 [3] and 33 for

HEVC/H.265 [6]. Encoder has the freedom to try all or a fraction of the modes.

Fig. 1.3 shows four intra-prediction modes. The horizontal and vertical green boxes

refer to the column pixels immediately to the left and top of the candidate basic

unit. The main difference between the modes is the angle that defines the pattern

of prediction blocks. Flexibility in intra-mode evaluations and various other mode

evaluations within the encoder reflects an important design aspect in the modern

video standard[2], [3]. The flexility makes room for both simple encoder designs

(possibly with lower compression) that evaluate less modes and sophisticated encoder

designs (possibly with higher compression) that evaluate more modes.

6
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Figure 1.4: Motion estimation for a block of pixels.

1.1.3 Inter-frame Prediction

The speed of frame capturing is referred to as frame rate and commonly measured in

unit of frame per second (FPS). Human visual system can’t detect the subtle change

between frames once the frame rate exceeds about 30 FPS. Between the transition of

two consecutive frames, a significant amount of visual content undergoes little to no

change due to the relatively slow motion of natural objects. For more static applica-

tions such as video conferencing and news reporting, the change between consecutive

frames is close to none. The similarity between frames (and by extension, coding

units within frame) is the second type of redundancy in the video and is referred to

as inter-frame redundancy. Due to the motion of objects in the scene, it is possible to

form a prediction for a coding unit in another frame represented by a displacement in

the 2-D image space (motion vector) [2], [3]. By coding and storing only the motion

vector, reference frame ID, and prediction error achives the goal of compression. The

use of inter-frame prediction for encoding is called, inter-frame coding.
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1.1.3.1 Inter-frame Redundancy

Similar to mode evaluation in intra-frame prediction, the compression in the inter-

frame coding is achieved through a trial-and-error process called, motion estimation,

where the coding unit is compared against blocks of the same size at various locations

in a predefined search region in other frame(s). Fig. 1.4 illustrates the concept of the

search process. The red box and green box refer to the coding unit and its best match

in the search region, respectively. The white area in Frame n is the search region.

Encoder attempts to find the most accurate match for the candidate block inside this

region. Larger search window size and more reference frames increase the chance of

finding better match (hence better compression) at the cost of higher computation.

Usually, a coding unit may contain motion content in various directions. In this

case, using a single motion vector for the entire block may lead to high prediction

error and thus leads to inferior compression performance. It is, thus, natural to

sub-divide a coding unit into smaller blocks and assign motion vector to each of

the sub-divided blocks to achieve finer prediction. The sub-divided blocks are called

sub-partitions in AVC/H.264 [3] and coding units in HEVC/H.265 [2]. Note that sub-

divided blocks from coding units can be further recursively divided to achieve even

finer prediction. Each sub-divided coding unit undergoes an independent motion

estimation, adding another layer of complexity to the motion estimation process for

HEVC/H.265 standard.

1.1.3.2 Integer-pixel Motion Estimation

The motion estimation where the displacement is an integer number of pixels is called

integer-pixel motion estimation. This process contributes to the majority of the

motion estimation time due to the large number of search locations.
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1.1.3.3 Sub-pixel Motion Estimation

Once the integer-pixel motion vector is found through integer-pixel motion estima-

tion, the resulting best match block is interpolated at the sub-pixel locations and

motion is further estimated at sub-pixel level. Sub-pixel motion estimation achieves

better compression by compensating for the loss of motion accuracy as a result of

discrete sampling of the camera sensor. Half, quarter, and one-eighth sub-sampling

are included in the modern video coding standards [2] [3].

1.1.3.4 Motion Vector

The size of the search window and the level of sub-sample determines the number of

bits required for a motion vector. With a square search region size of R, the number of

bits for integer motion vector is 2×log(R) and the value 2 is for horizontal and vertical

component of the motion vector. Each sub-sampling adds one additional bit and three

level of sub-sampling requires 3 bits. In total each motion vector requires 2×log(R) +

3 bits. Due to the motion coherency in the neighboring pixels representing the same

moving object, there can be similarities in the motion vectors from neighboring blocks.

To reduce the size for storing motion vector, a virtual motion vector is synthesized

from previously encoded neighboring blocks to the left and top. Only the motion

vector difference (MVD) between the synthesized motion vector and the evaluated

motion vector is stored.
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Figure 1.5: A 2-GOP IBP prediction structure consists of an intra-
prediction frame (I-frame), a predictive frame (P-frame) and a bi-predictive
frame (B-frame). The display order is 0-1-2-3-4-5 and the encoding order is
0-2-1-3-5-4.

1.1.3.5 Motion Residual

The difference between the prediction block and the best match block, referred to as

motion residual, is further processed and encoded.

1.1.3.6 Prediction Structures

The frame referencing within a GOP is implemented through prediction structure

where the dependency among frames within GOPs is established. The prediction

structure determines the number and the type of referencing before encoding process

starts. Usually a more sophisticated prediction structure where multiple reference

frames are assigned leads to better compression performance. A I-frame uses purely

intra-prediction coding while a predictive frame (P-frame) can use both intra- and

inter-prediction coding. A predictive frame uses more than one reference frame for

inter-prediction is called, bi-predictive frame (B-frame). Fig. 1.5 shows a simple IBP

prediction structure demonstrating the usage of all three prediction frame types. Note

that the source of arrow is a reference frame for the destination frame. As can be seen,

frame encoding order (0-2-1-3-5-4) does not match with display order (0-1-2-3-4-5)

due to the prediction dependency. This requires frame buffering at the encoder and
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appropriate frame reorder at decoder.

1.1.4 Frequency Domain Coding

Prediction error from both intra-frame prediction and inter-frame prediction are fur-

ther transformed into frequency domain signals. This process packs the large amount

of low frequency signals in the prediction error into few coefficients and helps sub-

sequent entropy coder to achieve better compression. A modified integer discrete

cosine transform and discrete sine transform are adopted in the AVC/H.264 and

HEVC/H.265 standards.

1.1.5 Quantization

The frequency domain coefficients are (optional) quantized to reduce size. Note that

quantization in frequency domain has less negative effect on the visual quality than

quantization in spatial domain. This is due to the fact prediction error has very low

energy high frequency components. Quantization is an effective tool in managing

tradeoff between bitrate and quality. Both AVC/H.264 and HEVC/H.265 standards

define 52 distinct quantization levels to allow fine control over the tradeoff.

1.1.6 Entropy Coding

The transformed and quantized prediction error is further entropy coded. AVC/H.264

offers variable length coding and arithmetic coding. The practice of AVC/H.264 shows

variable length coding in most scenarios are less effective than arithmetic coding. For

11



this reason, variable length coding is excluded from HEVC/H.265 standard. The

entropy encoded bits along with prediction modes, motion vector, reference frame ID

and other assisting parameters are stored in the final output bitstream.

1.1.7 Decoding

The decoder reverses the encoding process by performing entropy decoding, inverse

quantization, inverse transform, inverse prediction to reconstruct each basic coding

unit and frames. If quantization is applied, the reconstructed video is data-wise not

exactly the same as the video data before encoding, resulting in the so called lossy

compression.

1.1.8 Standard Specifics

The evolution from AVC/H.264 to HEVC/H.265 brings up to 50% better compres-

sion performance. The main contributing factor to the improvement is the increased

basic coding unit size, from 16×16 in AVC/H.264 to 64×64 in HEVC/H.265. As

video resolution increase, larger basic coding unit while achieving same performance

as in AVC/H.264 with coding unit subdivision is capable of capturing larger coher-

ent redundancies using less bits. In addition, HEVC/H.265 separates the concepts

of unit for coding, unit for motion estimation and unit for transformation, offering

significantly more coding freedom which are necessary to achieve higher compression

efficiency.
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1.1.9 Complexity Analysis

At the low level, the motion estimation process contributes significantly to the over-

all computation. For coding unit of size N×N, a match in a single location has

O(N2) complexity. Using a search region of size R, the total calculation amounts

to O(N2×R2). Adding F number of reference frame further increases complexity to

O(F×N2×R2). At the high level, the rich choice of intra-frame and inter-frame pre-

diction modes and recursive coding unit subdivisions potentially made HEVC/H.265

significantly more complex than AVC/H.264.

1.2 Multiview Coding

Multiview coding (MVC) shares a majority of coding tools and techniques used in sin-

gle view coding such as coding unit division, frequency domain coding, quantization

and entropy coding [4]. To successfully gain additional compression performance in

MVC requires a careful design of inter-view prediction structure (while the prediction

structure within a view between frames still applies). A simple four-view captur-

ing system along with a uni-directional (from top to bottom) inter-view prediction

structure is shown in Fig. 1.6.

1.2.0.1 Inter-view Redundancy

Frames captured by multiple cameras simultaneously from different perspective are

highly correlated. The similarity between frames in different views is referred to as
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Figure 1.6: Multiview system and uni-directional inter-view prediction
(IPP).

inter-view redundancy and can be exploited to further increase compression perfor-

mance when multiview is available.

1.2.1 Inter-view Prediction

Similar to inter-frame prediction used in single view coding, the same type of pre-

diction using reference frame from another view is called inter-view prediction. Fig.

1.6 indicates both inter-frame prediction and inter-view prediction. The prediction

14



process is referred to as disparity estimation and the displacement obtained from

inter-prediction is referred to as disparity vector.

1.2.1.1 Disparity Estimation

In multiview coding with disparity estimation, the reference frames (the source of the

dashed arrow in Fig. 1.6) are provided by neighboring view(s) captured at the same

time instance. It is possible to include frame(s) from neighboring view at different

time instance to the reference frame list. The benefit of doing so usually do not worth

the increased amount of computation and is usually not considered.

1.2.1.2 Prediction Structures

Fully exploiting the inter-view redundancy requires the understandings of the camera

array formation and appropriate prediction structure selection. For linear deployed

camera array, one-direction linear inter-view prediction structure performs better.

Detailed analysis of a wide variety of inter-view prediction structure on the coding

performance are given in Chapter 4.

1.2.2 Standard Specifics

Specification for multiview coding in the two generation of standards are similar. The

reference view ID is signaled in the bitstream and the first view must conform to its

single view coding standard.
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1.2.3 Complexity Analysis

The complexity increase in MVC mainly come from the disparity estimation process

where the number of reference frame increased for all frames in all views (except non-

dependent views such as the first view). Incorporating neighboring view frames in the

reference frame list increases the complexity of motion/disparity estimation in each

dependent view linearly (O((K+ F)×N2×R2) where K and F are the number of inter-

view and temporal referencing views, respectively). Evaluation at such complexity

is impractical even for non real-time applications and fast and accurate motion/dis-

parity estimation algorithm is necessary for any practical encoder design. In this

work, a significant amount of effort is put into designing better parallel motion/dis-

parity estimation algorithms to reduce encoding time for MVC while maintaining

good compression performance.

1.3 Multi-level Parallelism

In the recent years, the advancement in the semiconductor industry led to the ad-

vent of high performance multi-core central processing unit (CPU) and massive cores

graphical processing unit (GPU). While the type of suited problem for the two archi-

tectures are different, they both process tasks in parallel and reduce execution time

over the sequential version (that runs on single core). Achieving better execution

performance using parallel computing tools requires the identification of possible par-

allelisms and appropriate design of parallel algorithms to accommodate a particular

architecture. In this section, four levels of parallelism in a modern video encoder are

identified.
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Figure 1.7: Parallelism in SAD calculation and minimal SAD finding.

1.3.1 Pixel Level Parallelism in ME/DE

In the search for best match in the pre-defined search window, the similarity between

coding unit and reference block is measured with sum of absolute difference (SAD).

The SAD calculations and the process of finding the best match in terms of lowest

SAD exhibits significant amount of pixel level parallelism and are illustrated in Fig.

1.7.

1.3.1.1 Sum of absolute difference

To compute the sum of absolute difference for one search location, the first step is to

find the pixel-wise absolute difference (AD). The AD calculation for individual pixel

is completely independent and can be carried out in full parallelism. The subsequent

summation of the AD into a SAD has a diminishing parallelism characteristic. The

SAD calculation for individual search location is completely independent and can be

fully parallelized. Note that the degree of the parallelism in this case equals to the

area of the search window (O(R2) where R is the search window size) and is typical
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Figure 1.8: Probability Model Passing for normal coding, coding with
WPP and coding with tiling.

very high (For typical R = ±64, area is 16384).

1.3.1.2 Minimal Cost Reduction

Once all the SADs for all locations within the search window are found, finding the

best match in terms of lowest SAD becomes a tree reduction problem and thus has a

diminishing parallelism.

1.3.2 Coding Tree Unit Parallelism

While parallel encoding of macroblocks is unsupported by the AVC/H.264 standard,

HEVC/H.265 introduced two parallel processing tools,wavefront parallel processing

(WPP) and tiling processing, for its coding tree units (CTU). Both parallel tools

require slight modification to the entropy coding processing where the probability

model is passed in a order different from the conventional raster-scan order. The

passing direction for various parallel processing tools are shown in Fig. 1.8. Each

block in a grid represents a coding unit and the arrow indicates the direction of

probability model passing for the coding units.
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1.3.2.1 Wavefront Processing

Wavefront parallel processing (WPP) is a parallel coding tool focused on improving

the capabilities for parallel processing with minimal cost in the coding efficiency

[6]. Independent encoding and decoding of CTUs is possible if the processing from

one CTU row to the next offsets by two consecutive CTUs, creating a wave front

processing pattern. The probability models are passed diagonally from one row to

the next and has the same global coverage as normal raster-scan order passing, thus

preserving the coding efficiency.

1.3.2.2 Tiling Processing

In tiling approach, a frame is flexibly subdivided into rectangular region of CTUs

and coding dependency between CTUs are restricted. Unlike the loose dependency

between CTUs in different rows in WPP, tiled regions do not require communication

between processors for CTU-level entropy coding and thus can be encoded completely

independently. However, as the number of tiles increase (size of each tile reduces),

the coding efficiency deteriorates due to severe breaking of dependencies in entropy

coding. For this reason, WPP is usually superior and used extensively in designing

high performance H.265/HEVC codecs [5].

1.3.3 Frame Level Parallelism

The three aforementioned frame prediction types (I, P and B) implies that the number

of simultaneous encodable frames heavily depends on the prediction structure. Four
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inter-frame prediction structures with diminishing degree of parallelism (from top to

bottom) are shown in Figure 1.9.

1.3.3.1 Frame Independencies

Frame dependency exists only when an encoder uses P-frame and B-frame for coding.

As the number of P and B frames with in a GOP increases, the amount of depen-

dencies increase and frame level parallelism decrease. In the scenario for max frame

parallelism, all frames are encoded in I-frame type. However, such prediction struc-

ture results in high coding inefficiency compared to using partially P and B frames

for coding. A tradeoff between coding efficiency and degree of frame level parallelism

is a crucial design factor for frame level parallelization.
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1.3.3.2 Group of Picture Independencies

A possible solution to frame level parallel processing inherited in the coding structure

is the GOP parallel processing. As defined by the standards, GOPs are mutually

independent and frames forming the GOPs are inherently independent and can be

processed in parallel. The difficulty in single view coding to prepare multiple GOPs

can be easily solved in multiview coding, providing a huge potential for speeding up

if GOP parallelism can be harnessed correctly.

1.3.4 View Level Parallelism

A view becomes dependent on another view if frames within the dependent view use

inter-view prediction. The type of inter-view prediction for all views are specified

through inter-view prediction structure and is user-defined (not standard-defined).

An in-depth analysis on four commonly used inter-view prediction structures are

made in Chapter 3. With flexible inter-view prediction where a view may depend

on multiple neighboring views, multiview coding is able to achieve significant better

overall coding efficiency. Generally, as the dependency between views increase, the

coding efficiency improves and view level parallelism reduces. In the maximum view

parallelism scenario, all views are independently encoded without any use of inter-

view prediction and no extra compression performance is gained.
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1.3.4.1 View Independencies

The type of inter-view dependency is not defined by the standard and can be flexibly

specified by the encoding application, bringing a wide range of possible inter-view

prediction structure. A common inter-view prediction structure called IPP (see dash

arrows in Fig. 1.6), where each view makes reference only to the previous view when

encoding, reported the highest coding gain [7]. Due to the one-directional chained

dependency, the amount of frame parallelism between views are very small. Another

popular inter-view structure, IBP eases the inter-view dependency with slight loss of

coding efficiency.

1.4 Related work

1.4.1 Fast ME/DE

To accelerate the block matching in ME/DE many sub-optimal (CPU-based)

techniques have been proposed for AVC/H.264 that are generally applicable to

HEVC/H.265. An iterative Hexagon search was proposed in [8] to enhance the RD

performance of the earlier diamond search [9]. More sophisticated search algorithms

use multiple simple search patterns and local correlations to further improve RD

performance. The technique in [10] proposes unsymmetrical-cross multi-hexagon-

grid search (UMHexagonS). The work in [11] gains further improvement through

enhanced predictive zonal search (EPZS). There are exploratory implementations of

ME/DE algorithms on MPA platform of graphical processing units (GPU) [12], [13],

[14], [15], [16], [17]. All these implementations except [15] are purposed for single
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view video, and have not even been integrated into a complex platform of JMVC,

and therefore, not compared with TZsearch, (which is the gold standard for MVC).

These algorithms, while demonstrate the potential of MPA, do not exhibit impressive

performance comparing to the CPU-based full search. The best performance speed

up with respect to sequential full search reported in these references range from 9 to

17.

The main reason for the low performance of these algorithms is that they fail to fully

exploit the massive-parallelism afforded by the programming environment of MPA of

GPU by performing many parallelizable tasks sequentially [12], [17]. Works in [12]

and [13] lack due consideration to the algorithmic scalability within the capabilities

of the underlying hardware, resulting in unnecessary resource saturation and scaling

limitations. Some of these algorithms also gain speedup at the expense of significant

compromise in bit-rate and PSNR quality. That is because these algorithms fail to

properly handle inter-partition MV/DV dependencies in MVC [12], [13], [16] (see

Section 2.3). The best implementation of MVC, to date, in terms of speed, bit-rate,

and PSNR quality, is the JMVC reference software with TZsearch mode for ME/DE.

Therefore, all performance evaluations of proposed algorithm in this paper is made

with respect to JMVC reference software.

1.4.2 Fast Mode Decision

A rich choice of hierarchical partitioning modes within the CTU is the main reason for

higher coding efficiency as well as the high computational complexity in HEVC. To

improve the execution time of HEVC requires additional optimization steps beyond

the efficient processing of ME, through early termination of partitioning within CTU.

The scheme in [18] stops further partitioning of CU into smaller CUs if the skip mode
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has been selected. An early termination scheme where the partitioning mode with

largest PU size is first checked, was proposed in [19]. If in this mode PU produces a

coded-block-flag equal to zero, the processing of all PUs within this CU is skipped.

The work in [20] improves upon this termination scheme by halting the processing

of all other PUs if both the MV difference and coded-block-flag are turned out to be

equal to zero. Further, the latest related work on HEVC coding in [21] proposed a ME

technique that skips the processing of all CU of size 8× 8. For the remaining larger

CUs all 17 possible symmetric partitioning modes are evaluated. Three modes with

lowest costs collectively determine the early termination decision for the processing

of CTU subtrees.

Above algorithms are estimated to yield a speedup factor of about 1.6 to 3 with

varying loss in the RD performance. There are also fast mode decisions proposed for

intra-prediction [22]. However, intra-prediction consumes very little time in compar-

ison with ME/DE processing. These efforts reveal the potential of reducing encoding

time by appropriate skipping of some of CUs and PUs. However, the increasing

number of views in MV-HEVC brings significantly more inter-prediction for each

PU within a CTU, potentially slowing down the processing of PUs for the existing

algorithms.

1.4.3 Multiview Coding Scheduling

To maximum computational resource usage and reduce unnecessary stalls involved

in multiview coding due to inter-view and temporal dependencies, works in [23] and

[24] present scheduling algorithms for parallel MVC encoding at the frame level on a

multi-processor system for a given prediction structure. In these works a prediction

structure is used to build a directed acyclic graph where frames across the temporal
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and inter-view domains form the vertices of the graphs and the coding dependencies

form the edges. Starting with I-frames vertices in view 0 as pair of roots, the encoding

scheduler inspects all the neighboring vertices and assigns them to one of the available

CPU cores. Then, for each of those neighbor vertices in turn, it inspects their neighbor

vertices which are not yet coded, and so on. The process continues until all the GOPs

across all the views are encoded. This requires a complex scheduler that traverses

the graph to discover and schedule the frames that are ready to be dispatched for

the execution on one of the many identical CPU cores. Further, in this scheme the

workload, in terms of the number of frames ready to be scheduled, at each coding

stage varies greatly across the stages. This results in under-utilization of CPU cores

or inadequate number of cores for efficient parallelism depending on the coding stage.

To alleviate this problem by creating enough workload to keep all the CPU cores

busy, the work in [23] proposes the processing of multiple GOPs across all the views

in parallel, further complicating the scheduler. The scheduler task becomes even

more cumbersome considering the fact that at each stage of encoding frame vertices

take widely different execution times depending on the number of their immediate

descendants in the graph and the nature of edge dependencies (temporal or inter-

view).

In contrast, this work presents a simple scheduling scheme where the number of frames

to be encoded does not change across the coding steps. As will be described in the

Section 3, this is achieved through a simple encoding step time shift. The simplicity

of the proposed parallel scheduling scheme results in the more complex prediction

structure of IPP to have a more efficient parallel implementation compared with IBP.
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1.5 Scope of this work

The goal of this work is to investigate and develop highly efficient algorithms and opti-

mization techniques for the previous generation video encoder (based on H.264/AVC)

and current generation video encoder (based on H.265/HEVC) by exploiting a variety

of parallelisms within the encoders.

1.5.1 Highly Parallel ME/DE Algorithms

1.5.1.1 Massively Parallel Integer-pixel ME/DE Design for AVC/H.264

To solve extremely high computation due to the ME/DE, a full block search based

massively parallel motion estimation algorithm is proposed. In this work, each com-

puting thread handles the search for one location and collectively a search area number

of threads processes the entire search range. In each thread, the cost for all sizes of

coding units are progressively aggregated, reducing computation by a factor of seven

compared to sequential aggregation. To solve the problem of losing neighbor motion

vector information as the result of progressive aggregation, the motion vector for the

largest block is used for all cost calculations. The results show, with insignificant loss

in coding efficiency, the proposed algorithm outperforms the full search and TZsearch

estimations on a sequential processor, by a factor of 300 and 4, respectively. An

improved version with adaptively adjustable search range achieved another two times

speedup with insignificant coding efficiency loss.
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1.5.1.2 Massively Parallel Integer-pixel ME/DE Design for HEVC/H.265

When moving to HEVC/H.265 standard, significantly more complex coding unit

structure fully saturates the computing hardware, leading to reduced performance.

To overcome this problem, a predicate algorithm for skipping search on static cod-

ing units is proposed. Furthermore, inter-pixel similarity within the prediction is

exploited to reduce the workload on all computings thread. The combination of the

two algorithms yields significant speedup with no loss to the coding performance.

1.5.1.3 Accelerating bi-directional and sub-pixel ME/DE with Multime-

dia Instructions

Massively parallel processing on MPA is ideal for integer ME/DE due to the existence

of a large search region, with each core responsible for up to thousands of SAD

computations. However, for sub-pixel and bi-directional ME/DE, the number of

search points for a PU is a tiny fraction of its integer ME counterpart, and thus

not suitable for processing on MPA. Sub-pixel and bi-directional ME/DE are also

not suitable candidates for multi-threading on multicores as the small processing

workload does not justify the significant execution overhead. On the other hand,

streaming SIMD extensions (SIMD) instructions set offered by all modern CPUs that

allow packed data to execute in a parallel fashion provide a promising alternative

for sub-pixel and bi-directional ME/DE proceeding. SIMD optimized sub-pixel and

bi-directional ME/DE are proposed to further improve ME/DE procedure.
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1.5.1.4 Multi-threaded Wavefront Parallel Processing Design

A novel implementation of multi-core parallel processing of CTU is proposed and

implemented. Independent CTUs on the wavefront are grouped into batches and

processed in parallel (in any order). In comparison to traditional multi-core paral-

lelizing strategy, this method improves the computing resources usage at the early

phase of WPP and provides a speed of three for multiview coding.

1.5.2 GOP Level Parallelization

To overcome the huge computational cost associated with ME/DE in the multiview

coding, computer cluster with heterogeneous computing components to provide con-

currency and multi-level parallelism at coarse grain is adopted. A multiple-view-

parallel, multiple-interleaved group of pictures (multiple-IGOP) scheduling scheme is

proposed for MVC. When evaluated over eight views, with no loss in rate distortion

(RD) performance, the proposed scheme outperforms view-sequential coding by a

factor of up to 12.4 and 12.3, respectively, for two popular prediction structures, IBP

and IPP.

1.5.3 Quantization Parameter Based Fast Mode Decision

Further improvement of HEVC/H.265 relies on optimization at the global scope where

multiple procedures such as intra-prediction, inter-prediction, DCT, quantization are

selectively skipped. A majority of high level optimization focuses on using motion

information to early determine prediction modes, avoiding the necessity to evaluate
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all modes. By carefully examining the effect of quantization parameter on the coding

time performance, a novel quantization parameter based fast mode decision is pro-

posed. This algorithm sets constrain on the depth of coding unit modes based on

the quantization parameter and achieved up to 6 times speedup. To avoid coding

efficiency loss for video with highly complex content, special type of coding unit are

defined and mode decision for those coding units are allowed to evaluate further. The

main advantage of this fast mode decision algorithm is its ability to adapt to the

quantization parameter and video content.

1.6 Overview of Chapters

This dissertation consists of four chapters. Chapter 2 presents the design of two novel

parallel motion estimation and disparity estimation algorithms to significantly reduce

encoding time. Both algorithms are applicable to AVC/H.264 multiview extension

and HEVC/H.265 multiview extension. Chapter 3 discusses the use of GOP level par-

allelism in conjunction with an efficient scheduling scheme to achieve efficient parallel

encoding on computer cluster. Chapter 4 discusses high level optimization techniques

to reduce the evaluation for multiple functional units and proposes ME/DE algorithms

tailored for HEVC/H.265. Chapter 5 concludes this dissertation by summarizing the

key points for this work.
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Chapter 2

Massively Parallel Motion and

Disparity Estimation Algorithms1

Multiview video coding (MVC) has recently received considerable attention. It is

proposed as an extension of H.264/AVC standard for multiple video source compres-

sion. To resolve the extremely high computational complexity of MVC (and in fact

other advanced video coding techniques), requires development of suitable parallel

algorithms that are amenable to implementation on low cost massively parallel archi-

tecture (MPA); platforms that have found a common place due to recent advances

in the parallel computer architecture. The high complexity of MVC is due to its

prediction structure, where motion estimation (ME) between the frames, and dis-

parity estimation (DE) between the views, contribute to more than 99% of overall

complexity of the coder. This chapter presents the development and implementa-

tion of a scalable massively parallel fast search algorithm to, significantly, reduce the

computational cost of ME/DE over the current best available full block matching,

1The material contained in this chapter was previously published in “IEEE Transactions on Circuits
and Systems for Video Technology” ©2016 IEEE. See Appendix A.1 for copies of the copyright
permission from IEEE.
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and sub-optimal fast search algorithms. The proposed massively parallel fast search

algorithm (DZfast), when evaluated over eight views, outperforms the existing full

search and fast search MVC algorithms by a factor up to 245.8 and 8.4, respectively.

This speedup comes at no or minute loss in rate-distortion (RD) performance.

2.1 Introduction

Multiview video coding (MVC) is defined in Annex H of the state-of-the-art video

coding standard H.264/AVC [3]. Common application of MVC are 3D movies/TV,

free view TV, and immersive teleconferencing [25], [26]. In these applications, multiple

cameras are deployed to capture dynamic scenes simultaneously. MVC in addition to

taking the advantage of inter-frame temporal similarity in motion estimation (ME), as

in conventional video coding techniques, exploits inter-view similarity to achieve about

twice the higher coding efficiency compared with coding each view independently

(simulcast). Inter-view similarities are used in disparity estimation (DE) in between

the neighboring view video sequences. The most common technique for ME/DE is

block matching [25]. This technique computes motion vector (MV) and disparity

vector (DV) between two best matched blocks of pixels in two frames (temporal or

inter-view). Block matching, even in single view video coding, is a time-consuming

process amounting to about 80% to 90% of the total encoding time.

Table 2.1
Execution Time profiling of JMVC: Contribution of full search block

matching in ME and DE for video sequence“Ballroom”

View ID 0 1 2

Search Range ±32 ±64 ±128 ±32 ±64 ±128 ±32 ±64 ±128
DE + ME % Time 97.25 98.73 99.76 99.25 99.48 99.84 97.74 99.38 99.80

When combining ME and DE over multiple views, block matching takes even longer,

consuming almost the entire computation time. Table 2.1 shows the profiling of MVC

test-bench, the joint multiview video coding (JMVC) software suite [27] for three
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views and for three search ranges, taking up to 99.80% of the computation time. To

accelerate ME/DE in the block matching, many sub-optimal techniques have been

proposed in literature [8], [9]. These algorithms trade video quality and bit-rate

for faster computation time. JMVC implements four sub-optimal search algorithms.

They are full search, log search, spiral search and TZsearch. Among the sub-optimal

algorithms for MVC, TZsearch provides the fastest implementation with the lowest

degradation in terms of peak signal to noise ratio (PSNR) and bit-rate. Because of its

superiority, TZsearch is also adopted for the next generation video coding standard

(H.265) test software, high efficiency video coding (HEVC) test model (HM) [2],[28].

While a highly efficient algorithm, such as TZsearch, is sufficient for model testing, it

does not provide a solution for real-time implementation of complex coding techniques

needed for MVC.

To ease the coding complexity, application specific integrated circuit (ASIC) solutions

are proposed for MVC [29], [30]. However, such hardware designs require significant

simplification of coding process. The work in [29], as an example, presents the design

of a MVC on an ASIC platform. To achieve a high processing rate, the design

has made several major simplifications to the MVC coding when compared with

the MVC reference software, JMVC, resulting in significant degradation in bit-rate

and PSNR, defeating the purpose of achieving high coding efficiency in MVC. The

adoption of simple prediction structure in the temporal domain, and small search

region for the fast ME/DE algorithm [31], [32], [33] results in about 2.5 to 3 dB

degradation in PSNR over the full range of bit-rates. In addition, the architecture in

[29], to implement an efficient pipeline for processing video sequences from multiple

views, uses the original image pixels instead of reconstructed pixels for prediction,

resulting in a further degradation in video quality by up to 0.77 dB in PSNR.

Similarly, ASIC based ME/DE design in [30] achieves its speedup at the expense of

performing the TZsearch based block matching in the search region for ME/DE for
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only a small fraction of reference frames (15%). For the other 85% of reference frames,

TZsearch over the full search region is replaced by a block matching using a maximum

of 15 predictors from the neighborhood in spatial (within the current frame), temporal

(same video sequence) and inter-view (neighboring video sequences) domains. This

simplification leads to an 11% increase in bit-rate and 0.11 dB in PSNR loss [30].

In general, ASIC implementations achieve their high frame rates due to their highly

optimized architecture, at the expense of reduced flexibility, programmability and

scalability.

The availability of cost-effective MPA computing platforms [34], [35], provides an op-

portunity for the development of MVC parallel algorithms that are fast, and nearly-

optimum, without sacrificing video quality or bit-rate. Characteristics of MPA plat-

forms are the availability of a large number of computing cores that are generally

organized as single instruction multiple data (SIMD), or single program multiple

data (SPMD) computing paradigm. MPA embeds several blocks of fast shared mem-

ory allowing efficient coordination of multiple streams of the same program by the

computing cores. In addition, MPA gains unprecedented performance through high

bandwidth memory (Gigabytes per second (GB/s)).

There are exploratory implementations of block matching algorithms on the MPA

platform of graphical processing units (GPU) [17], [13], [15]. All these implemen-

tations, except [15], are proposed for single view video, and have not even been

integrated into the complex platform of JMVC, and therefore, not compared with

TZsearch, (which is the gold standard for MVC). Even reference [15], the only pa-

per on the GPU implementation of MVC, does not report the prediction model (see

next section). Further, this paper reports the comparison with the outdated EPZS

[11] which is no longer a search option in the JMVC software suite [27]. These al-

gorithms, while demonstrating the potential of MPA, do not even exhibit impressive

performance compared to the CPU-based full search. The best performance speedup
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with respect to sequential full search reported in these references range from 9 to 17.

As will be shown in this chapter, to gain an advantage over TZsearch an improvement

in speedup over the sequential full search by at least one order of magnitude over the

existing reported implementations is needed.

The main reason for the poor performance of algorithms in [17], [13], [15] is that

they lack due consideration to the algorithmic scalability within the capabilities of

the underlying hardware, and the inefficient use of memory bandwidth, resulting in

unnecessary resource saturation and scaling limitations. These works achieve large

scale parallelism by processing huge number of macroblocks simultaneously, thereby,

saturating the resources of an MPA. However, they fail to process each macroblock

in an efficient manner, by performing many parallelizable tasks sequentially. Further,

these algorithms gain speedup at the expense of bit-rate and PSNR. This is due to

the fact that, due to the hardware limitation of MPA, the parallel processing of a

large number of macroblocks comes at the expense of significant reduction of the

size of the search region (e.g. 20.48 fold reduction [15]). Further, parallel processing

of macroblocks, as employed in [17], [13], [15], results in poor handling of spatial

MV/DV dependencies in MVC, as required by H.264/AVC. (See Sec. 2.3). From

our investigation the best implementation of MVC, to-date, in terms of speed, bit-

rate, and PSNR quality, is the JMVC reference software with TZsearch mode for

ME/DE, on a single-thread, single-core CPU. Therefore, all performance evaluations

of proposed algorithms are made with respect to JMVC reference software as an

anchor.

In this chapter, first, the methodology for the parallel full search (GPUfull) is explored

and the limitation of the näıve parallel full search schemes, so far explored in the lit-

erature, is highlighted. Next, a highly efficient parallel fast search algorithm (DZfast)

for ME/DE is proposed. This algorithm fully exploits the massive-parallelism of MPA,

and employs a dynamic programming technique for data reuse to achieve significant
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improvement with respect to the existing sequential full search and best performing

sub-optimum search algorithm (TZsearch) for MVC to reduce encoding time. This

reduction in the execution time comes with no, or insignificant, degradation in pic-

ture quality or bit-rate. Further, the scalability of the proposed algorithm to multiple

MPA computing units when they are available, is demonstrated.

In this work it will be shown that parallel processing, even on an MPA with hundreds

of cores, is not just a näıve parallel implementation of an algorithm such as parallel

full search. The development of efficient fast parallel algorithms, similar to their

sequential counterparts, requires a careful analysis of the multimedia algorithm, with

a good understanding of the resource features and limitations of the underlying MPA.

This chapter is organized as follows. Section 2.2 presents a brief description of MVC

prediction structures. Section 2.3 discusses the opportunities for massive parallelism

in the full search algorithm. It also presents the implementation and performance

results of the massively parallel full search. Further, it highlights the limitations of

näıve parallel full parallel search implementation. Section 2.4 presents the proposal

for the massively parallel fast search algorithm. Section 2.5 covers the performance

analysis for the proposed algorithm, and compares the results with alternative algo-

rithms. Section 2.6 discusses the applicability of the proposed technique to HEVC.
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Figure 2.1: Multiview prediction structures: (a) Simulcast: independently
coded without inter-view prediction, (b) Inter-view prediction for key frames
only with PIP structure, (c) Inter-view prediction for all key and non-key
frames with IBP structure, (d) Inter-view prediction for all key and non-key
frames with IPP structure.

2.2 Multiview Prediction Structures

2.2.1 Temporal and Inter-view Prediction Structures

Fig. 3.2 presents several prediction schemes for MVC. Focusing specifically on Fig.

3.2 (a), in the temporal domain (T0 to T8), a group of picture (GOP) is fenced by

two consecutive intra-coded picture frames (I frames), known as key frames (T0 and
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T8). Frames between key frames are non-key frames (T1 to T7). For any single

view, the coding concept of hierarchical-B frames was introduced in [33], where all

non-key frames are B picture frames, and are typically predicted by using the two

nearest picture frames of the next higher level in temporal domain as references. This

temporal prediction structure implies that the coding of a picture frame has to be

preceded by the coding of its reference frames, and therefore, makes references to the

reconstructed versions of the reference picture frames, instead of the original reference

picture frames.

Having multiple cameras capturing the same scene simultaneously, predictions can

be formed between the video sequences (inter-view domain) in addition to temporal

domain within a single video sequence. However, as the number of views increases,

the prediction structure becomes highly diverse. The straightforward solution is to

encode each view independently using the state-of-the-art codec H.264/AVC, as GOP,

as shown in the simulcast prediction structure of Fig. 3.2 (a). However, this method

fails to exploit the inter-view dependencies and results in significantly higher bit-rate

[25], [26].

In addition to GOP formation and hierarchical-B frames for temporal prediction in a

single view, it is possible to also include inter-view prediction in the coding process.

Depending on whether inter-view prediction is applied to non-key frames (T1 to T7

in Fig. 3.2), two types of strategies are proposed in [33]. Fig. 3.2 (b) with no inter-

view prediction for the non-key frames, has a PIP (P frame,..., P frame, I frame, ..., P

frame) prediction structure. Fig. 3.2 (c), and (d), on the other hand, where inter-view

prediction is applied to non-key frames, respectively, have IBP (I frame, ..., [B frame,

P frame], ..., [B frame, P frame], P frame) and IPP (I frame, P frame, P frame, ...,

P frame) structures. A significant increase in the rate-distortion (RD) performance

can be obtained with inter-view prediction [33], with IPP being the best performing

structure. From the encoding implementation point of view, IPP structure suffers
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from the dependency chain among the views. IBP and PIP structures ease the inter-

view dependency with a slight trade off in RD performance (a degradation of 0.25

and 0.5 dB, respectively, for the same bit-rate). IBP prediction structure is adopted

in JMVC [27].

2.2.2 Multiview Video Coding (MVC)

In the block matching technique involving temporal ME or inter-view DE, a mac-

roblock of size 16 × 16 is divided into seven different partition sizes; 4 × 4, 4 × 8,

8 × 4, 8 × 8, 16 × 8, 8 × 16, and 16 × 16, resulting in 41 different partitions. For

each partition, ME, and/or DE, is performed in the temporal ME and/or inter-view

DE domain, respectively, to find the best match in the search region using a RD cost

function.

Consider a partition, p, of size Bp in a macroblock. For this partition, let MV denote

the MV/DV for a location in the search region, S, in one of the reference frames in

the multiview prediction structure. Let Xp and Cp(MV ), respectively, denote the

pixel matrices for partition p, and the one identified by MV in the search region of

the reference frame. The parameter MV Pp is used to represent the MV/DV predictor

associated with this partition. In H.264/AVC, MV Pp [3], [5] is calculated from the

median of MV/DV of the available three neighboring partitions to the left (MVA),

top (MVB), top-right (MVC) and possibly top-left (MVD), if one of the other three

MV/DVs is not available. The RD Lagrangian cost function is evaluated as,

Jp(MV |λ) = SAD(Xp,Cp(MV )) + λRate(MVDp) (2.1)
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where,

SAD(Xp,Cp(MV )) =
∑
i∈Bp

|Xi
p −Ci

p|

and MV/DV difference (MVDp) is expressed as,

MVDp = MV −MV Pp

The minimal cost for partition p is found by,

(Jmin,p,MVmin,p) = arg min
MV ∈S

Jp(MV |λ) (2.2)

A RD Lagrangian cost function formulation similar to (2.1) [36] uses this set of

41 (Jmin,p,MVmin,p) pairs in the mode decision process, as specified in the H.264

standard. The MVDp and the pixel residuals corresponding to selected partitions

are coded, and transmitted in the bit-stream.

2.3 Implementation of Multiview Video Coding on

Massively Parallel Architectures

2.3.1 Exploiting Parallelism in Multiview Video Coding

There are ample opportunities for parallelism in MVC at several levels. These range

from frame parallel processing in temporal and inter-view domains, to parallel process-

ing of macroblocks in a frame, to parallelism within a macroblock at the pixel-level.
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Due to the prediction structure of MVC and the coding dependencies, the scope for

parallel processing at the macroblock and frame levels is limited, and best imple-

mented through familiar thread-level parallelism using the multi-core structures with

dynamic thread-scheduling reported in literature (e.g. [37], [38], [23]). Parallelism

at the higher levels is ill-suited for mapping to MPA computing platforms. Threads

on MPA platforms, unlike on multi-core systems, are lightweight, with very little

creation overhead. MPA platforms also need thousands of threads for full efficiency.

Pixel-level data parallelism within a macroblock, on the other hand, is well-suited

for massive parallelism on an MPA platform. This chapter focuses on the pixel-level

parallelism within a macroblock on an MPA platform.

2.3.2 Exploiting Parallelism in Full Block Search

Evaluation of (2.1) in the full search scheme is slow in terms of the search speed,

as every location in the search region has to be visited once. The algorithm has

a complexity of O(SR2), requiring large computation time, even for a small search

range (SR), as shown in Table 2.1. JMVC employs TZsearch [27], a sub-optimum but

efficient fast search algorithm, that reduces the overall computational complexity, by

a large factor of up to 70, while maintaining good RD performance.

Fast search algorithms available to-date (including TZsearch) have been designed to

reduce the number of computations. Their early termination conditions and step-

by-step search patterns are naturally sequential and leave little room for massive

parallelization. Therefore, these fast search algorithms are not well-suited for map-

ping to MPA. On the other hand, full search algorithm has the advantage of being

amenable to mapping to fine-grain parallelism of MPA, and can be accelerated with

high efficiency. Hence, to be a candidate for implementation on an MPA platform, a
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Figure 2.2: Sum of absolute difference (SAD) reduction.

suitable algorithm should not exclusively aim to reduce the number of computations,

but rather increase opportunities for fine-grain parallelism.

This section presents the proposed massively parallel and highly efficient full search

scheme for MVC. The scheme is characterized as follows:

i) From (2.1), it can be inferred that for a given MV , the sum of absolute differences

(SAD) for larger partitions are, progressively, aggregated by the summation of

SAD values of smaller partitions. Therefore, a dynamic programming technique

[39] as shown in Fig. 2.2 can be employed to perform this progressive aggregation.

The minimal partition size, defined by the standard, is 4×4. This indicates that

as the SADs for 16 4× 4 partitions are progressively computed, SADs for other

partitions can be computed simply through the aggregation of SADs for these

smallest partitions. The absolute difference for each pixel is highly parallelizable

and can be easily implemented on an MPA. This is in contrast with the work in

[15] where SADs for 41 partitions are computed separately, thereby, increasing

the work load significantly.
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ii) The calculation in (2.1) can be carried out independently for different values of

MV in the search region. For MV s from the same neighborhood, Cp(MV ) values

share a large number of reference pixels. Thus, as will be seen later, they can be

loaded into the high-speed shared memory of MPA for use by many computing

cores.

iii) To compute (2.1), for each partition p, MVDp must first be calculated from

MV Pp. As was said before, in H.264/AVC standard, MV Pp is derived from

the median of three spatial neighboring partitions that are already encoded.

This creates a dependency between macroblocks and the partitions within a

macroblock, that does not yield to parallelism. Parallel processing of macroblocks

requires setting the MV Pp to zero, resulting in significant degradations in PSNR

and/or bit-rate [5]. This is a major drawback of work in [17], [13], and [15], where

macroblocks are processed in parallel. To break this dependency, the MVDp for

the 16 × 16 partition (which always exists) is applied on all partitions within

the same macroblock. The simulations show that this a good approximation,

with negligible loss of PSNR or bit-rate. This simple approximation, as will be

demonstrated later, allows for massive parallelization of (2.1).

2.3.3 Implementation of Full Search on the MPA Platform

2.3.3.1 GPU parallel programming paradigm

The huge opportunities for parallelism available in MVC, can be exploited for im-

plementation on any MPA computing platform that supports fine-grain parallelism.

This work uses the NVIDIA GPU parallel computing tool CUDA 2. In CUDA, parallel

2Compute Unified Device Architecture (CUDA™) [40]
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Figure 2.3: Lagrangian cost function kernel for SR = ±128.
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Figure 2.4: Minimizer kernel for SR = ±128.
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programs are encapsulated in kernel functions that model single instruction multiple

threads (SIMT) computing paradigm. All copies of parallel program, threads, execute

the same set of instructions, however, on different data. Threads are further grouped

into thread-blocks. Thread-blocks are in turn arranged in a grid [40]. Thread-blocks

are executed on the GPU’s streaming multiprocessors with each having 32 computing

cores, and executing 32 threads, (a thread warp), simultaneously.

2.3.3.2 GPU-based full search

With this GPU architecture, the process of parallel GPU-based full search (GPUfull)

is carried out in four phases using two CUDA kernels [41].

Phase i: Transfer of the macroblock and its reference frames into GPU global mem-

ory.

Phase ii: Launch of the RD Lagrangian cost function kernel to compute all

Jp(MV |λ) in the search region for 41 partitions according to (2.1) as de-

picted in Fig. 2.3.

Phase iii: Launch of the minimizer kernel to find the (Jmin,p, MVmin,p) pairs for all

41 partitions, according to (2.2) as shown in Fig. 2.4.

Phase iv: Transfer of the data structure {Jmin,p,MVmin,p|p = 0...40} back to CPU.

Subsequent to these four phases on the GPU, all necessary computation for the RD

Lagrangian cost functions, to select the best mode, are evaluated on the CPU.

Two separate kernels help to achieve the best performance through appropriate al-

location of resources, by specifying the best arrangement of threads in thread-blocks

and thread-blocks in the grid for each kernel. Details of these two GPU kernels for full
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search are discussed in [41]. In the RD Lagrangian cost kernel, search region is divided

into cascade of overlapping “strips” with each strip having a width of search region

and the height of macroblocks (Fig. 2.3). Consecutive strips are offset by one pixel in

the vertical direction. A strip consists of all necessary pixels to perform ME/DE for

one row of MVs in the search region for 41 partitions. The cost function computation

for a single strip is assigned to one CUDA thread-block. Each thread in a thread-block

computes all the RD Lagrangian cost functions in (2.1) for 41 partitions for one value

of MV. The number of thread-blocks and thread in a thread-block, are exactly twice

the absolute value of SR. Upon the completion of this kernel, all Jp(MV |λ) in the

search region for 41 partitions are computed. For a SR = ±n this kernel generates

41× (2n)2 cost values (= 2, 686, 976 for n = ±128 in the experimentation conducted).

The second kernel finds the (Jmin,p, MVmin,p) pairs for all 41 partitions according

to (2.2). Unlike the minimum finder function built in the CUDA library 3, and the

implementations in [17], and [13] that operate on a single vector, the minimum finder

in this kernel operates on multiple vectors in parallel. (one vector for each of 41

partition). This parallel processing on multiple vectors results in large performance

improvement of this kernel [41]. The completion of this kernel produces 41 pairs of

(Jmin,p , MVmin,p), one for each partition.

The reason for significant improvement of GPUfull over implementations in [17], [13],

[15] is that two kernels in GPUfull are designed with one aim in mind; to maximize

parallelization of various computations required for the ME/DE for a single mac-

roblock. With the efficient use of GPU resources, the proposed algorithm is able to

increase the search region from 32×32 in [13], 64×64 in [17], and 128×25 in [15], to

256× 256, and at the same time achieve one order of magnitude better performance.

Note that implementations in [17], [13] and [15], all the macroblocks in a frame are

scheduled to the GPU in parallel. Concurrent launch of thousands of macroblocks

3 Isamin() function in CUDA basic linear algebra subprogram (BLAS) library [42]
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Figure 2.5: Dual GPU ME/DE solution.

Table 2.2
Encoder Setting and Experimental Conditions

Software JMVC8.5 (executed on a single-thread, single-core),
Prediction structure: IBP,

GOPSize: 8, NumberReferenceFrames: 1,
FrameRate: 25, FramesTobeEncoded: 33,

SymbolMode: CABAC, BiPredIter: 2, IterSearchRange: 1,
TZsearch: Raster search step size (Lstep): 3,

Algorithms: Star Search, Raster Search and Star Refinement,
QP parameter ∈ {24, 28, 32, 37},

Test video Sequence (480p)∈ {Ballroom, Exit, Vassar, Race1},
ME/DE search range [-128,127]/[-128,+127](horizontal/vertical)

Hardware Dual NVIDIA Fermi™ C2075 SLI with 5 GB GDDR5,
Intelr Xeonr 6-core CPU x5650 @ 2.67GHz with 50 GB DDR3

saturates the GPU resources and yields no performance advantage. GPUfull, on the

other hand, processes one macroblock at a time. However, GPUfull, with efficient

implementation of its two kernels, where the number of threads per thread-blocks and

thread-blocks in the grid are no more than 256, outperforms the other schemes that

focus on parallel processing of huge number of macroblocks, by a minimum factor of

10.
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2.3.4 Multi-GPU Implementation

The discussion for the full search, so far, has been with respect to a single reference

frame. As seen from Fig. 3.2, in MVC all B-frames have multiple reference frames.

So it is possible to perform the ME/DE of a macroblock across multiple reference

frames simultaneously using multiple GPUs. With respect to the current frame,

reference frames in the forward and backward directions (both in the temporal and

the inter-view sense), are listed in list0 and list1, respectively. In the experimentation

two GPUs have been employed to process frames from two lists in parallel (Fig.

2.5). The exchange of data between the CPU and GPUs are performed in parallel

using the CUDA asynchronous memory transfers. ME/DE in two lists are carried

out simultaneously following the GPUfull search described earlier. This results in

a speedup of about two in the ME/DE estimation part of the MVC. As seen from

Fig. 3.2 (c), for view 1, the number of reference frames is four. More efficient MVC

schemes require even more reference frames. Therefore, with the availability of more

GPUs, the performance of ME/DE can be scaled up proportionally by processing

several reference frames in parallel.

The use of multi-GPU processing is not limited to block matching in ME/DE in a

single macroblock with respect to two reference frames in list0 and list1. It can also

be applied to block matching in ME/DE for multiple macroblocks in the same frame

in parallel, provided coding dependencies are resolved. One approach to overcome

the coding dependencies among the macroblocks in a frame is the concept of diagonal

wavefront processing, proposed in [43]. This approach may even require out-of-order

processing of macroblocks from different slices, when such slices contain few rows

of macroblocks, as required for improved error-resiliency [3]. In our experience, the

wavefront processing is likely to result in extra scheduling overhead in the non-GPU

part of the MVC process.
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2.3.5 Performance Analysis for GPU-based Full Search

Table 2.2 presents the experimental conditions: parameters for MVC software coding

tools and CPU/GPU hardware platforms. The BiPredIter and iterSearchRange pa-

rameters in Table 2.2 relate to the iterative bi-prediction process. JMVC uses a highly

efficient iterative scheme for bi-prediction. Based on the (Jmin,p,MVmin,p) pairs found

in each direction, subsequent bi-directional search using a very small SR is carried

out, iteratively, back and forth between two reference frames from the two lists, list0

and list1. This improves the coding efficiency by ensuring that the best linear combi-

nation of two predictions are used [36]. Parameters iterSearchRange and BiPredIter,

respectively, specify the value of SR and number of iterations for bi-prediction. To

save the execution time, the number of frames to be encoded (FramesTobeEncoded)

is chosen such that it exactly contains four GOPs, but can be set to any value. Four

video sequences are carefully chosen, with Ballroom [44] and Race1 [45] describing

highly dynamic scenes that contain complex features, Vassar [44] a more static scene,

and Exit [44] in between. In this chapter the full results for only Ballroom and Vas-

sar, and comparative results for all four video sequences are shown. The metric for

evaluating encoding performance proposed in [1] is adopted for the comparison of

various techniques. Encoding is performed for eight views but can be expanded to

more.

Table 2.3 shows the performance results for the proposed GPUfull, CPU-based full

search, and the state-of-the-art CPU-based TZsearch fast search algorithm. Data is

presented for two video sequences, four quantization parameters (QPs), and eight

views. It should be noted that there are negligible differences in PSNR and bit-rate

values between GPUfull, TZsearch and the CPU-based full search for all views and

QPs. On the other hand, there are large differences in the execution times between

the three schemes. It should also be noted that the variations in the execution times
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for CPU-based and GPUfull across two video sequences are relatively small. This is

as expected, since these two algorithms search every location in the search region.

On the other hand, the corresponding variations in search times for TZsearch are

wide. This is due to the non-deterministic nature of TZsearch algorithm where the

search time depends on the complexity of the video sequence and the QP value used.

The reason for non-deterministic execution time of TZsearch becomes apparent in the

next section.

One single most important observation about Table 2.3 is that the speedup for views

with bi-directional inter-view prediction, (views 1, 3, and 5 in Fig. 3.2) is up to 3.5

times higher than the speedup for the other views. This suggests that with more

complex prediction structures, with larger number of reference frames, GPUfull will

perform even better than TZsearch.

Tables 2.4 and 2.5 summarize the data in Table 2.3 by averaging over eight views.

They also include the summary of the results for two other video sequences, Exit and

Race1. As seen from Table 2.4, for all video sequences, GPUfull on a single GPU

performs about 87 to 90 times better than the CPU-based full search for the QPs

values ranging from 24 to 37. It should be noted that for both schemes, being full

search, as expected, the speedup remains relatively constant across all QP values and

video sequences tried. From Table 2.5 it can be observed that the speedup of the

GPUfull over the TZsearch covers a wide range of 1.3 to 3.9 over the same range

of QPs values and video sequences. This is due to the sensitivity of the TZsearch

execution time to QP and video content. It should also be noted that speedup factors

for the video sequence with the least dynamic scene, Vassar, are the lowest among

the four video sequences. This is due to the fact that non-deterministic TZsearch

terminates fast for video sequences that are more static. Also note that for all cases

considered, 2-GPU implementation improves the performance by an additional factor

of 1.6.
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Figure 2.6: Rate-distortion performance for multiple views for CPU-based
full search (CPUfull), TZsearch and GPUfull.

Table 2.4
Comparison of GPUfull to CPU-based Full Search Averaged Over Eight

Views

Ballroom Race1 Exit Vassar

QP 24 28 32 37 24 28 32 37 24 28 32 37 24 28 32 37
DPSNR (dB) -0.0216 -0.037 -0.0263 -0.0113

DBR (%) +0.5356 +0.53 +0.8681 +0.5256
Speedup (1-GPU) 88 88 88 89 89 89 89 90 88 88 89 89 88 88 88 89
Speedup (2-GPU) 139 139 139 141 138 138 139 141 140 140 141 147 139 140 141 142

Table 2.5
Comparison of GPUfull to TZsearch Averaged Over Eight Views

Ballroom Race1 Exit Vassar

QP 24 28 32 37 24 28 32 37 24 28 32 37 24 28 32 37
DPSNR (dB) +0.0057 0 -0.0104 +0.0085

DBR (%) -0.1589 0 +0.2542 -0.3325
Speedup (1-GPU) 3.7 3.0 2.8 2.5 3.9 3.6 3.4 3.0 3.0 2.7 2.5 2.0 2.3 1.9 1.6 1.3
Speedup (2-GPU) 5.8 4.7 4.4 3.9 6.0 5.6 5.3 4.7 4.8 4.3 4.0 3.3 3.6 3.1 2.6 2.1

RD performance plots for Ballroom and Vassar video sequences, for three search

algorithms, and for eight views are shown in Fig. 2.6. The CPU-based full search

is used as a reference, as it searches every location in the search region, and uses

the MV/DV predictor at partitions smaller than 16 × 16 and, therefore, stands for
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the highest RD performance achievable. As seen from the figure, for all views, the

plots for all three algorithms completely overlap each other. When compared with

CPU-based full search, on average, for the Ballroom video sequence, the GPUfull

loses only 0.02 dB in PSNR with an increase in bit-rate of 0.5%. The degradations

for the Race1, Vassar, and Exit video sequences are similar. Minor degradation in RD

performance results from the breaking of the dependencies in MV Pp values, where

all smaller partitions inherit the MV P for 16 × 16 partition. A no less important

characteristic of plots in Fig. 2.6 is that the views with more reference frames (view

1 and 3, and 5 in Fig. 3.2) generally have better RD performance.

The implementation of GPUfull exposes the potential of MPA for ME/DE in MVC.

This implementation relies on some innovative techniques such as dynamic program-

ming and parallel multi-vector reduction, and combines them with efficient use of

GPU resources. The biggest advantage of GPUfull is its fixed execution time, in-

dependent of the type of video sequences, an important design factor in real-time

systems with a hard deadline. However, GPUfull is essentially a straightforward

mapping of the full search algorithm into a parallel architecture. Nevertheless, GPU-

full is used as the basis for the development and evaluation of an innovative parallel

fast search ME/DE algorithm in the next section.

It should also be noted that while over eight views, GPUfull has a better overall

performance than TZsearch, it does not perform faster for every view. For example,

consider the execution times for the Vassar video sequence in Table 2.3, a more static

scene where TZsearch converges fast. For certain individual views and higher QP

values, the execution time of TZsearch is marginally better than GPUfull search.

The reason for this is that MPAs, while having hundreds of computing cores, their

resources (cores, shared memory, registers, cache, memory bandwidth), are limited.

Due to resource limitations, the number of resident (active) thread-blocks on the fly,

at any given time, on a GPU multiprocessors is only a fraction of total number of
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Figure 2.7: Star search pattern

thread-blocks processed by the scheduler. Therefore, when there is a large number

of thread-blocks they are scheduled on the multiprocessor cores in a batch-sequential

(warp-sequential) manner. As macroblocks are assigned to thread-blocks for execution

on the GPU, by the same token, there is little gain in flooding the GPU resources

through the processing of multiple macroblocks in parallel.
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2.4 Massively Parallel Fast Search using Motion

Vector Predictors

From the foregoing discussion, it should be noted that to improve the execution time

performance of GPUfull requires reducing the number of thread-blocks significantly.

This, in turn, requires developing a parallel algorithm that abandons GPUfull for a

faster search that has little effect on PSNR or bit-rate.

The work in [15] reduces the number of search points through a sub-optimum search

scheme. However, the search is rather arbitrarily skewed against the motion in the

vertical direction by searching points in only 13 rows in a non-square search region of

128 × 25. Further, the number of points searched is fixed, independent of the video

sequence. However, as the results in Table 2.5 for TZsearch shows, the search time

(and, therefore, the number of search points) for a sub-optimum scheme strongly

depends on the video content. Failing to account for the video content yields a

degraded bit-rate and PSNR for complex video sequences with dynamic scenes. This

is specially noticeable for inter-view references, where number of searches for TZsearch

are significantly higher. From Table 2.5, the execution times for views 1, 3, and 5

are about six times larger than the other views for TZsearch, whereas for CPU-based

and GPUfull they are only twice larger.

The efforts presented here in the development of the parallel fast search is inspired

by approach in sequential fast algorithms, such as TZsearch, to reduce the number

of search points. To this end an analysis of TZsearch is provided first.
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2.4.1 Analysis of TZsearch

TZsearch scheme is a highly accurate and efficient ME/DE algorithm, and due to

its outstanding performance, has been implemented in JMVC [27] and HM [28].

TZsearch is also a highly configurable search scheme that offers the freedom to fine

tune the algorithm. To simplify the analysis of TZsearch, the general configuration

which is also the default setting for JMVC is considered. The TZsearch process can

be described as a star search with conditional raster search. Four of the steps involved

in TZsearch are described below.

i) Test near motion vectors : This step moves the search center in the search region

to the most probable location from among the candidate vectors: MV (0,0) (no

displacement), MVA, MVB, MVC , and MV Pp (see Sec. 2.2). Among these five

candidates, the best MV (called neighbor predictor (NP)), in terms of lowest

cost from (2.1), is chosen as the search center. This simple technique incurs little

computation cost, as it involves the evaluation of the cost function in (2.1) for

only five MVs. It is an effective technique, as candidate MVs are drawn from

the neighboring partitions that usually have high correlation with the MV of the

current partition under consideration.

ii) Star search: Typically fast search algorithms use diamond as the search pattern

(square and hexagon are also used). Only the points on the vertices, middle of the

edges, and the center of the diamond (search center) are included in the search.

This search is repeated in an iterative fashion by moving the center of the search

pattern to the point with minimum cost according to (2.1). The process stops

when the center of the diamond has the lowest cost. The common drawback of

the diamond algorithm is that it often settles in a local minimum. The star tries

to avoid this problem by using several concentric diamonds with different step
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sizes (Fig. 2.7). In the star search, the step sizes grow exponentially in powers

of two (i.e. {1, 2, 4, ..., SR}). As seen from Fig. 2.7 the number of points that

are searched in the star algorithm is 8log2SR − 4, which is significantly lower

than the full search. Also note that most search points are clustered around the

center of the star. For a static scene (e.g. Vassar) the TZsearch typically ends

with the star search step. This is a significant factor in the lower execution time

of TZsearch compared with GPUfull in Table 2.3.

iii) Raster refinement search: Star search is a rather coarse global search. There-

fore, the minimum search point, if located away from the center, has a highly

diminished probability of being close to the global minimum. Therefore, in the

event that the location of the minimum point is at a distance above a threshold

value, the star search is considered unsuccessful. Instead a finer grain raster

refinement search is performed. Similar to full search, raster refinement covers

the whole search region, but only searches every Lstep horizontally and vertically.

Hence, the computational complexity of raster refinement is only 1/(Lstep)
2 of

the full search. The raster refinement minimum point is denoted as global pre-

dictor (GP), as opposed to NP mentioned in the first step. Raster refinement

incurs additional execution time, resulting in a non-deterministic encoding time

for TZsearch.

iv) Star refinement : Since raster search skips many points, an iterative star refine-

ment search is performed to enhance the result. Star refinement starts with a

center that is the minimum search point found by the raster refinement step.

Next, like diamond search, the center of star search pattern moves to the next

best point. The process terminates when the best search point is evaluated at the

center of the star. This is another factor contributing to the non-deterministic

encoding time of TZsearch.
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2.4.2 Decision Zone-based Fast Parallel Search

From the foregoing discussion it can be concluded that for a static scene, the global

minimum is likely to be located in the vicinity of the origin of the search region.

As a scene becomes more dynamic, the location of the global minimum becomes

significantly less certain, and has a diminished probability of being found by the

star search that allocates more search points around the origin of the search region.

Therefore, for a dynamic scene what is needed is an algorithm that allocates search

points uniformly within the search region.

2.4.2.1 Star versus raster search

Consider a search region with dimension ±SR. As SR increases, it is easy to see that

the number of search points covered by raster search increases much faster compared

with the number of points for the star search. The break-even value of SR for a

given value of Lstep can be found by solving for SR in 8log2SR − 4 = (2SR/Lstep)
2.

For Lstep = 3 (the default value for TZsearch in JMVC), 4 < SR < 8 is obtained.

Therefore, it is obvious that even for moderate value of Lstep = 3, the size of the

search region where star search becomes less effective than the raster search, is rather

small. So, for a dynamic scene, a raster based algorithm is needed to cover more

search points, albeit, generally at a higher computational cost.
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2.4.2.2 Cost maps

Since for every search point in the search region there is a cost, a cost map can be

developed. Fig. 2.8 presents the cost maps for four different macroblocks for the

Ballroom video sequence, for a partition size of 16× 16. These maps identify several

cost regions. It should be noted that dark blue regions with the lowest cost cover

large areas in the search region. This suggests that the motion variations in all four

macroblocks are relatively complex. The mapping for typical macroblock from a static

scene has its dark blue regions coalesced around the origin. It should also be noted

that the global minimum (marked by green arrow) resides in one of the lowest cost

regions that are shaded dark blue (called region of interest (ROI)). The red arrow, on

the other hand, identifies the raster search minimum for Lstep = 8. The probability

of the raster search finding the global minimum in the dark blue area diminishes with

((1/Lstep)2).

2.4.2.3 Fast decision zone-based search

It is evident that to find the global minimum, first, the ROI from all the regions with

the lowest cost using a coarse search needs to be identified. Once the ROI is identified

a refinement is performed to search for the global minimum. From the discussion on

the analysis of TZsearch, recall that NP was used as the center of star search and

GP (obtained through raster search) was used for the center of the star refinement

search. In the coarse part of the algorithm the use of NP and GP are combined to

find the best MV/DV that has a high probability of being located within the ROI.

As it will be shown later for great majority of macroblocks, GP and NP have identical

costs according to (2.1), albeit different MV/DV values. NP is chosen as default, as
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it correlates better with the neighbor macroblocks. However, for significant number

of cases GP provides a MV/DV with the lowest cost. Maps in Fig. 2.8 are four

examples of such cases.

For the refinement search this work uses the concept of decision zone. Fig. 2.9

illustrates the partitioning of the search region into multiple non-overlapping decision

zones. ZoneSize defines the dimensions of the inner zone, as well as increments to

the outer boundary of the next zone. The zone is selected to include the location

of MV/DV obtained through the coarse search (NP or GP). Corresponding to each

decision zone, SR is set for the refinement full search as shown in Fig. 2.9. With

the aim of fully encompassing ROI within the search region, the value of SR is

chosen sufficiently larger than the dimension of the decision zone selected. This

provides a high probability of finding the global minimum within the ROI. Fig. 2.9

also illustrates the inclusion of MV/DV and ROI in the decision zone and in its

corresponding search region, respectively.

On an MPA computing platform, the raster search routine to find GP requires only

a minor modification of GPUfull discussed in the previous section. Further, GPUfull

is used as the refinement search algorithm with appropriate selection of parameters

ZoneSize and SR. The phases involved in the proposed decision zone-based search

(DZfast) algorithm are,

Phase i Raster search - GP : perform GPU-accelerated raster search with a step

size of Lstep to find GP.

Phase ii NP/GP selection: select the best MV/DV out of GP and five neighbor

motion vectors (MV(0,0), MVA, MVB, MVC , and MV Pp).

Phase iii Decision phase: select the decision zone that encompasses the best

MV/DV. Set the corresponding SR for the refinement search.
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Figure 2.9: Decision zone layout for DZfast.

Phase iv Refinement : perform the refinement search using GPUfull.

The computational complexity of raster search for finding GP ((2∗SR/Lstep)
2) reduces

as inverse square of Lstep. However, the performance of DZfast in terms of bit-rate

and PSNR is insensitive to Lstep for range of values between two to eight, for the

range of video sequences tried. Lstep = 8 is used for the experimentation.
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It should also be noted that performance of GPUfull, in terms of bit-rate and PSNR,

is insensitive to the exact choice of SR. Therefore, to suit the architecture of the

GPU and the memory block alignment, SR ∈ {±32,±64,±96,±128} is chosen. By

the same token, the performance of the algorithm is affected very little by the exact

choice of ZoneSize. Therefore, the value of ZoneSize = 1
2

min(SR) is conveniently

chosen.

To reduce the execution time, partition size of 16×16 for Phases i to iii of the DZfast

algorithm is chosen. As will be shown later it has little impact on the coding quality

or the bit-rate. However, the refinement Phase iv proceeds as GPUfull search in

parallel for 41 partitions.

The execution time for DZfast can be modeled as,

Ttotal = P32T32 + P64T64 + P96T96 + P128T128 + TGP,NP (2.3)

where TSR is the GPU execution time of the refinement search for SR ∈

{±32,±64,±96,±128} and TGP,NP the execution time of the combined GP and NP

coarse search. These values are the characteristic of the MPA platform. PSR rep-

resents the probability of selection of a search region with a given SR value. PSR

depends on the statistics of the video sequence under consideration. Due to resource

limitation, there is a upper limit on the rate of parallel processing (represented as

number of locations searched per second) that can be sustained on an MPA. On the

GPU test platform used in this work, for small values of SR < 96 the parallel pro-

cessing rate remains well below that limit, and therefore, the execution time of T32

and T64 remain relatively low and close to each other. For SR = ±96 the processing

rate begins to saturate. For SR = ±128 the processing rate is fully saturates, and

any additional workload has to be serviced in a batch-sequential manner. Fig. 2.10

63



illustrates the effect of the limitation of GPU resources on the saturation of process-

ing rate with increase in SR for the first three views. Saturation of processing rate

results in a sharp increase in the execution time of T128 as shown in Fig. 2.11. Also,

note that the execution time follows the view complexity in the prediction structure

of Fig. 3.2 (c), with view 1 having twice the number of reference frames for view 0,

requiring twice the execution time. The red line in the figure marks the baseline time

which is the total execution time excluding the refinement search part of DZfast. It is

easy to see that any advantage of DZfast over GPUfull (that uses SR = 128) comes

from the relative magnitude of PSR values.

2.4.2.4 Discussion on DZfast

Note that in DZfast the origin is used as the center of the search rather the best

MV/DV found in the coarse search, as it is typical in the fast search algorithms such

as TZsearch. To explain this choice, the following discussion is in order.

Intuitively, centering the refinement search around the MV/DV obtained from the

coarse search should result in a smaller SR. However, this is of little concern on the

MPA computing platform of GPU, as long as the SR remains below the level that

saturates the resources. Therefore, moving the center to the origin does not increase

the execution time significantly for the range of SR values used in DZfast. In addition,

GPU memory is organized for high bandwidth memory transfer. However, it requires

memory access to be aligned at certain block sizes. Centering the search around the

origin with the chosen SR values will ensure efficient memory alignment.

Further, as was said before, the coarse search is restricted to the partition size of

16×16, and use the result for the other smaller partitions. Smaller partitions, however,

can have values of GP, NP and global minima that are significantly different from that
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Figure 2.10: Processing rate for the refinement search part of DZfast, for
various search ranges for the first three views.

of 16×16. In Fig. 2.8 white arrows show the location of the global minima for 16×8,

16×16 and 4×4 partitions. As seen, setting the search center at the MV/DV for GP

for 16×16 is likely to fail to cover these points. This is a definite drawback of solution

in [29] where the small search region with SR = ±16 is centered around MV/DV from

NP. So centering the search around the MV/DV obtained from the combined GP/NP

coarse search does not guarantee to find the ROI for every partition. Centering the

search around the origin and setting the region for the refinement search sufficiently

large, as it is done in DZfast, will have a high likelihood of enclosing the ROI for any

partition size.

2.5 Performance Analysis of DZfast

For the experimental set up the DZfast parameters are configured as Lstep = 8 (a

good compromise between search time and accuracy), ZoneSize = ±16, and SR ∈
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Table 2.6
Percentage Distribution for Global Predictor (GP), Neighbor Predictor

(NP), and Decision Zones for DZfast

Percentage Distribution

Ballroom Vassar

View NP NP=GP GP Zone Zone Zone Zone NP NP=GP GP Zone Zone Zone Zone
#1 #2 #3 #4 #1 #2 #3 #4

0 12.92 78.43 8.66 81.44 5.16 2.38 11.01 1.32 97.75 0.94 98.85 0.58 0.20 0.37
1 50.56 39.48 9.96 54.37 12.14 7.82 25.67 38.51 57.30 4.19 70.64 9.57 5.47 14.33
2 16.88 70.28 12.84 74.06 6.28 3.30 16.36 5.85 89.62 4.53 90.93 1.99 0.99 6.09
3 47.11 40.84 12.06 60.44 12.96 9.51 17.09 36.21 58.95 4.84 74.46 10.31 4.64 10.59
4 17.32 68.50 14.18 73.07 7.23 4.23 15.48 5.92 89.82 4.26 91.03 1.92 1.10 5.95
5 49.36 38.81 11.84 57.97 14.28 8.85 18.90 43.44 53.48 3.08 66.33 11.87 6.61 15.20
6 18.81 67.86 13.33 73.12 7.66 4.09 15.14 2.77 93.74 3.49 90.75 2.02 1.25 5.99
7 18.02 68.40 13.58 74.28 9.58 4.98 11.17 6.36 90.02 3.62 91.73 2.23 1.74 4.31

{±32,±64,±96,±128}. The rest of the parameters are listed in Table 2.2.

Table 2.6 presents the statistical distribution of MV/DV at the end of coarse search,

between GP and NP, where a great majority of the cases are contributed from the

NP pool. The majority of NP cases, however, belong to the GP=NP category, where

the cost of NP and GP from (2.1) are the same, albeit having different MV/DV.

These cases default to NP as it has better correlation with neighbor macroblocks.

For Vassar video sequence, over 95% of MV/DVs come from NP or NP=GP. For

Ballroom this value reduces to 86%, a direct result of complex nature of this video

sequence. Table 2.6 also presents the distribution of the best MV/DV from the

coarse search, among four decision zones. For all views both in Vassar and Ballroom,

a majority of partitions fall in first decision zone. However, for the Ballroom video

sequence, there is a significant leakage from the decision zone #1 to the other decision

zones, with most going to zone #4 with SR = ±128. This results in 20% to 25%

increase in the execution time for the Ballroom over the Vassar as shown in Table

2.7, and expected from (2.3). This is inline with the results for TZsearch in Table

2.3.

It is also noted that in Table 2.6, views 1, 3, and 5 exhibit a drastic redistribution
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Table 2.7
Encoding Results for the DZfast

View Ballroom Vassar

QP 24 28 32 37 24 28 32 37
PSNR 39.8477 38.0545 36.2573 34.109 39.3229 37.9389 36.6639 35.1534

0 Bit-Rate 1554.4 961.9 599.9 344.2 1136.3 569.8 305.3 160.1
Time

2-GPU|1-GPU 61|71 58|70 59|59 58|58 51|58 50|56 50|56 49|56

QP 24 28 32 37 24 28 32 37
PSNR 39.6578 38.0512 36.2872 34.0225 39.2193 37.9045 36.5657 34.8382

1 Bit-Rate 1159.2 622.2 346.9 180.8 992.8 413.2 182.9 74.1
Time

2-GPU|1-GPU 123|154 121|153 120|151 117|147 110|134 106|129 101|122 95|115

QP 24 28 32 37 24 28 32 37
PSNR 39.9881 38.3115 36.4902 34.1987 39.6418 38.3274 36.9692 35.2061

2 Bit-Rate 1335.3 766.1 442.9 235.8 967.7 426.8 202.4 86.5
Time

2-GPU|1-GPU 68|79 67|78 67|77 66|75 58|64 57|63 57|63 57|63

QP 24 28 32 37 24 28 32 37
PSNR 39.763 37.966 36.082 33.881 39.630 38.326 37.024 35.313

3 Bit-Rate 1130.9 597.6 323.806 170.770 874.3 361.3 162.1 65.6
Time

2-GPU|1-GPU 116|147 114|145 113|143 109|138 107|129 103|125 98|118 92|112

QP 24 28 32 37 24 28 32 37
PSNR 39.624 37.792 35.884 33.539 39.551 38.122 36.651 34.818

4 Bit-Rate 1494.3 854.3 499.5 268.5 1030.2 474.8 226.7 99.4
Time

2-GPU|1-GPU) 68|79 67|77 66|77 65|75 58|64 57|63 56|63 57|63

QP 24 28 32 37 24 28 32 37
PSNR 40.268 38.462 36.579 34.243 40.484 39.195 37.829 35.884

5 Bit-Rate 1089.4 592.8 345.6 200.5 744.6 345.3 173.0 79.3
Time

2-GPU|1-GPU 116|148 115|146 113|145 112|141 111|136 109|134 106|129 102|124

QP 24 28 32 37 24 28 32 37
PSNR 39.307 37.765 36.026 33.726 38.945 37.671 36.432 34.714

6 Bit-Rate 1549.0 861.0 503.8 275.6 1210.1 527.3 255.0 113.8
Time

2-GPU|1-GPU 68|79 67|77 66|76 65|75 59|65 57|64 57|63 57|63

QP 24 28 32 37 24 28 32 37
PSNR 39.484 37.595 35.550 33.051 39.541 38.133 36.728 34.835

7 Bit-Rate 1638.7 935.5 543.8 285.5 1078.4 532.1 266.8 111.6
Time

2-GPU|1-GPU 65|75 64|74 64|73 63|72 57|64 56|63 55|62 55|61

from zone #1 to other zones, with a large percentage going to zone #4. This stems

from the prediction structure in Fig. 3.2 (c), where these views use more inter-view

reference frames. Multiple views capture the same scene from different disparate

viewpoints and, therefore, the resulting DV is larger than the MV in the temporal
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Table 2.8
Comparison of DZfast to CPU-based Full Search Averaged Over Eight

Views

Ballroom Race1 Exit Vassar

QP 24 28 32 37 24 28 32 37 24 28 32 37 24 28 32 37
DPSNR (dB) -0.0346 -0.049 -0.0314 -0.0110

DBR (%) +0.942 +1.14 +0.9219 +0.3925
Speedup (1-GPU) 167 168 172 178 105 106 109 115 164 167 170 174 199 204 205 211
Speedup (2-GPU) 203 205 206 212 145 146 147 151 199 202 206 210 226 232 236 246

Table 2.9
Comparison of DZfast to TZsearch Averaged Over Eight Views

Ballroom Race1 Exit Vassar

QP 24 28 32 37 24 28 32 37 24 28 32 37 24 28 32 37
DPSNR (dB) -0.0093 -0.0322 -0.0142 +0.0103

DBR (%) +0.2556 +0.87 +0.3461 -0.4581
Speedup (1-GPU) 6.9 5.7 5.4 4.9 4.5 4.3 4.2 3.9 5.6 5.2 4.9 3.9 5.2 4.5 3.9 3.1
Speedup (2-GPU) 8.4 7.0 6.5 5.9 6.3 6.0 5.6 5.1 6.8 6.3 5.9 4.7 5.9 5.1 4.3 3.7

Table 2.10
Comparison of DZfast to GPUfull Averaged Over Eight Views

Ballroom Race1 Exit Vassar

QP 24 28 32 37 24 28 32 37 24 28 32 37 24 28 32 37
DPSNR (dB) -0.014 -0.0276 +0.0011 +0.0031

DBR (%) +0.3762 +0.73 +0.1038 -0.1008
Speedup (1-GPU) 1.5 1.5 1.5 1.5 1.1 1.1 1.1 1.1 1.4 1.4 1.5 1.4 1.6 1.7 1.7 1.7
Speedup (2-GPU) 1.9 1.9 2.0 2.0 1.2 1.2 1.2 1.3 1.9 1.9 1.9 1.9 2.3 2.3 2.4 2.4

domain.

Fig. 2.12 presents the RD performance of DZfast along with TZsearch and CPU-based

full search (CPUfull). Three algorithms virtually have the identical performance.

Tables 2.8, 2.9, and 2.10 present the comparison of the performance of DZfast with

respect to PSNR, bit-rate, and execution time speedup averaged over eight views,

with CPU-based full search, TZsearch and GPUfull, respectively.

Notable from Table 2.8, in comparison with CPU-based full search, DZfast loses no

more than 0.05 dB in PSNR and 1.14% increase in bit-rate, averaged over eight views.

It should also be noted that DZfast performs better for the video sequences with more
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static content like Vassar. This is inline with the results in Table 2.5 in relation to

GPUfull and TZsearch.

As seen from Table 2.9, in comparison to TZsearch, DZfast gains a speedup of 3.1 to

6.9 over the single GPU and 3.7 to 8.4 over dual GPU, over the range of QPs and

the set of four video sequences tried. The execution times for TZsearch and DZfast

follow similar trends with respect to the complexity in the video content. Therefore,

their speedups remain relatively independent of video sequence. Therefore, unlike

Tables 2.4, 2.5 and 2.8, where there is a clear correlation between the content of

the video sequence and its corresponding speedup values, Table 2.9 conveys no such

correlation. This can be easily verified by comparing the results for Race1 with Exit

and Ballroom.

Table 2.10 indicates DZfast maintains the same RD performance as GPUfull in Section

2.3 with speedup factor of 1.1 to 1.7 with single GPU and 1.2 to 2.4 with dual GPU.

It should be noted that highly dynamic video sequence, Race1, with high values of

P96 and P128, results in less improvement of DZfast over GPUfull than the other

video sequences. This is inline with the results in Table 2.8 in relation to DZfast and

CPU-based full search.

As a last point on DZfast, it should be highlighted that the scalability features of

GPUfull across the multi-GPU platform (Section 2.3.4) is also directly applicable to

DZfast.
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2.6 Application to High Efficiency Video Coding

(HEVC)

As stated earlier, the state-of-the-art video coding standard, H.264/AVC, includes

MVC as one of its extensions. This section provides a brief discussion of the appli-

cability of MPA techniques, as the technology moves to its successor, HEVC [46].

HEVC inherits a majority of its coding features from H.264, with some modifications

to improve the coding efficiency. The changes that are relevant to ME/DE are in-

clusion of additional partition types and larger sizes [46]. HEVC supports up to 12

variable block sizes ranging from 4×8/8×4 to 64×64. Therefore, the ME/DE pro-

cess in GPUfull and DZfast are directly applicable to MVC extension of HEVC. The

exploratory work in [47] proposes the use of GPU along side of CPU for HEVC. To

adapt DZfast to HEVC, nevertheless, requires minor modifications to improve its per-

formance. The number and size of decision zones must increase to handle additional

partition types and larger sizes in HEVC. Also, MV/DV predictor may require a re-

design to better handle the increase in number of partition types. Notwithstanding

those minor modifications, the search algorithms in DZfast are completely reusable

and require no changes.

2.7 Conclusion

This chapter introduced two efficient parallel algorithms for ME and DE, suitable for

implementation on the MPA of GPU. Two algorithms exhibit negligible difference in

PSNR and bit-rate in comparison to the state-of-the-art TZsearch, gaining an overall

speedup by a factor of up to 7 for the range of video sequences tried. The advantage
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of the proposed DZfast algorithm is the adaptivity to individual macroblocks in a

video sequence. The search range is dynamically adjusted depending on the amount

of motion variation in the macroblock. The proposed parallelization demonstrated a

way to break the dependency in partition MV Pp values, with an insignificant amount

of loss in the RD performance. Algorithms proposed in this chapter are easily scalable

to multiple GPUs. The modification of the algorithms for HEVC is straightforward.
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Chapter 3

High Level Parallelization

exploiting GOP Level Parallelism 1

This chapter presents the use of a computer cluster with heterogeneous comput-

ing components to provide concurrency and multi-level parallelism at coarse grain

and massive fine-grain for multiview video coding (MVC) applications. MVC in-

volves coding of multiple video sequences that are taken from the same scene but

different perspective. In addition to motion estimation (ME) used in conventional

video coding for single view video for exploiting inter-frame temporal similarities,

MVC adopts disparity estimation (DE) to further increase compression. To overcome

the huge computational cost associated with ME and by extension with DE, atten-

tion has been mainly focused on developing fast ME/DE algorithms. Although fast

ME/DE algorithms bring substantial speedup, to achieve realtime MVC encoding, it

requires further acceleration of the coding process at higher levels. Towards this end,

this chapter discusses a multiple-view-parallel, multiple-interleaved group of pictures

1The material contained in this chapter was previously published in “IEEE Transactions on Parallel
and Distributed Systems” ©2016 IEEE. See Appendix A.2 for copies of the copyright permission
from IEEE.
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(multiple-IGOP) scheduling scheme for MVC. When evaluated over eight views, with

no loss in rate distortion (RD) performance, the proposed scheme outperforms view-

sequential coding by a factor of up to 12.4 and 12.3, respectively, for two popular

prediction structures, IBP and IPP.

3.1 Introduction

High level trends in media mining systems such as applied analytics for intelligent

video surveillance (IVS) systems depends on several underlying enabling computa-

tional techniques and technologies such as video mining, computational intelligence,

computer vision, physical simulation, all of which involve extraction of meaningful

and actionable knowledge from large amounts of streaming multimedia and sensory

data such as multiview video [48, 49]. These applications are highly complex, require

a huge amount of computing power, and demand realtime or even super-realtime pro-

cessing capability. Our recent work on multiview video processing [41, 50] at frame

resolution of 576p (720 × 576), showed that the requirement is Giga-operations per

second to deliver realtime performance. Serial processing speed on today’s typical

state-of-the-art general purpose processors is about two frames per second per view,

about 480 times slower than realtime (30 frames per second per view) for an 8-view

multiview video processing. Therefore, it is highly desirable to accelerate these time

consuming media mining workloads on a multitude of heterogeneous platforms to

achieve realtime streaming performance. In the particular domain of multiview video

IVS computational hardware requires significant sensing and processing capabilities.

Additionally, the hardware from multiple views need to exchange data for efficient

multiview compression and video analytics.

However, one characteristic of media mining algorithms such as multiview systems

74



that helps us in this regard is their significant amount of data parallelism, at mul-

titude of levels of granularity, which can be leveraged to enable realtime stream

processing and parallel computation on heterogenous high performance computing

platforms, equipped with general purpose processors and specialized hardware ac-

celerators. The primary source of improved computational performance for data

analytics will come from parallel processing of streaming data on a potentially bewil-

dering and constantly evolving hierarchy of commodity parallel computing resources.

For instance, typical computing resources currently include multicore central process-

ing units (CPUs) operating in a multiple-instructions multiple-data (MIMD) model,

together with a massively-parallel architecture (MPA) of many-core graphical process-

ing units (GPU) with significant fast shared memory which operate most efficiently in

a single-instruction multiple-data (SIMD) or single-program multiple-data (SPMD)

mode with a given vector length [51, 52, 53]. These resources in instances are aug-

mented with specialized processors / accelerators / coprocessors that are application-

specific, e.g., image processing, video coding, compression/decompression, pattern-

matching, cryptographic, extensible markup language (XML) accelerators, and/or

host Ethernet accelerator (HEA) packet processors [54, 55, 56, 57, 58, 59, 60, 61].

The number of CPU cores and the shared-memory hierarchy between these cores (each

of which has access to a CPU vectorized floating-point coprocessor in addition to the

GPU resources) is currently undergoing revolutionary changes [59]. The number of

GPU cores is increasing very rapidly which is motivating increased flexibility in the

hierarchical GPU programming model; this is best exemplified by the NVIDIA Com-

pute Unified Device Architecture (CUDA) and Open Computing Language (OpenCL)

standards [62] which now allows hierarchical grids of blocks (1, 2, and 3-dimensional)

of GPU kernels to be initiated and controlled from the GPU [63, 64, 65]. As a result,

current standard desktop computers have at least seven readily accessible hierarchi-

cal programming levels—first level on the CPU and the second to seventh levels on

the GPU—on two device classes—say a 4-core CPU and a 480-core GPU—connected
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through a complex memory hierarchy. Integrated multicore CPU/GPU devices, such

as the Intel Xeon processors with Intel Xeon Phi coprocessors and the AMD Fusion

family of application processing units (APUs), further complicate data processing for

technical computing problems.

In this chapter a case study is presented for the use of a heterogeneous computing

platform, consisting of cluster of CPUs and GPUs, for multiview applications in which

there is a requirement to process huge amounts of multimedia data, such as media

mining applications.

Multiview video coding (MVC) involves the coding of a scene that is simultaneously

captured by multiple cameras. Among the applications of MVC, 3D video is most

well-known. MVC has been incorporated into the latest high efficiency video coding

(HEVC) standard commonly known as H.265/HEVC [46, 66]. Similar to its prede-

cessor advanced video coding (AVC) H.264/AVC standard [3], HEVC standard has

adopted an MVC coding technique that is the extension of single view video coding

but with added syntax to support inter-view prediction. The H.264/AVC MVC ex-

tension is chosen as the test platform, to investigate some common MVC prediction

structures and their suitability for parallel processing.

A typical advanced video encoder has four major functional elements; intra-

prediction, inter-prediction, transformation and entropy coding. Among the four

functional elements, inter-prediction incurs the highest computational cost but yields

the most coding performance gain. Inter-prediction involves the process of forming a

prediction block from previously coded picture(s). A motion vector is calculated from

the displacement between the current block and the predicted block. Only the motion

vector and the difference (residual) between current block and the predicted block,

are coded and transferred into the bitstream. The process of searching for the best

motion vector is called motion estimation (ME), and the use of spatial displacement
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motion vectors to form a prediction is known as motion compensation (MC). When

extending this concept to multiview video coding, the method of exploiting disparity

between the views from neighboring cameras to form a prediction is called disparity

compensation (DC). Similarly, the process of estimating disparity vector between the

views from neighboring cameras is called disparity estimation (DE). The DE uses the

same block matching technique used for ME [25].

Existing works for reducing encoding time are mainly focused on reducing the com-

plexity of ME/DE by employing sub-optimal block matching algorithms such as dia-

mond search [9], hexagon search [8], and UMHexagonS [10]. A substantial speedup,

with minimal rate distortion (RD) performance loss, is achieved by exploiting low

level parallelism in the block matching process. Hardware accelerated block match-

ing algorithms are proposed in [29] and [67]. There are also several recent works on

the use of MPA of GPUs to accelerate the ME/DE [50] (and references thereof), [41],

[47], [15].

Low level parallelism, however, limits the parallel processing to the pixels in a coding

unit (CU) (or macroblock)2, and therefore, does not scale well with the computational

resources of multicore central processing units (CPUs) that do not feature MPA.

Even computational resources (computing cores, shared memory, registers, cache,

and memory bandwidth) of MPA such as GPU saturate when the search range for

the block matching process reaches a point [50]. Therefore, further increase in the

speedup in the MVC requires exploitation of coarse-grain parallelism at the higher

levels of hierarchy.

High level parallelism includes CU, slice, and frame level parallelism. Parallel pro-

cessing of CUs within the same frame using the MPAs is possible, provided coding

2Coding unit (CU) is the terminology used in H.265/HEVC standard which is similar to macroblock
in H.264/AVC
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dependencies are resolved. One approach to overcome the coding dependencies among

the CUs in a frame is the concept of diagonal wavefront processing, proposed in [43]

a concept that was adopted in HEVC [66]. To have enough concurrent CUs avail-

able for coding, this approach may even require out-of-order processing of CUs from

different slices, when such slices contain few rows of CUs, as required for improved

error-resiliency. In our experience [50], within the limitation of the state-of-the-art

MPAs, with just hundreds of cores, there may be little to be gained by CU level

parallelism.

This chapter focuses on frame level parallelism using group of pictures (GOP). This is

the most suitable level of parallelism for a multicore and cluster computing platform.

The strategy for frame level parallelism presented in this chapter, as will be demon-

strated, can be easily extended to slice level parallelism, with little modification, by

breaking the frames in a GOP into multiple slices.

A computing cluster with its underlying heterogeneous computational units (CPU(s)

and GPU(s)), provides an ideal opportunity to accelerate data processing units in

presence of both low-level massively parallel, and sequential workloads, when multi-

tude of tasks as various levels of hierarchy can be executed concurrently [68, 69, 70, 71].

This chapter is organized as follows. Section 3.2 presents a brief description of MVC

prediction structures. Section 3.3 discusses the opportunities for exploiting frame level

parallelism using view-parallel scheduling scheme. Section 3.4 presents a scheme for

multiple-view-parallel, multiple-interleaved GOP (multiple-IGOP) scheduling. Sec-

tion 3.5 presents the latency and memory considerations for the multiple-IGOP

scheme. Section 3.6 discusses the platform specific issues. Section 3.7 presents our im-

plementation and performance results of the view-parallel and multiple-IGOP encod-

ing schemes. This section also covers an in-depth analysis for the proposed schemes.

Section 3.8 provides a brief description of slice and CU level parallelism. Section 4.7
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Figure 3.1: Hierachical B-frames temporal prediction structure

concludes the chapter.

3.2 MVC Prediction Structure

In an advanced video encoder, two prediction types are commonly used, intra-

prediction and inter-prediction. Intra-prediction involves forming the prediction

block using reconstructed samples from the current frame. The method of form-

ing intra-predicted blocks is standardized in the state-of-the-art video standards.

Inter-prediction involves forming prediction block using reconstructed samples from

previously coded picture(s). It is also known as temporal prediction. Unlike intra-

prediction, temporal prediction structure is left unspecified in the standards. This

leaves room for a wide range of choices between coding performance and compu-

tational complexity. Similarly, modern video coding standards do not specify an

inter-view prediction structure. The choice of prediction structure for MVC plays an

important role in coding performance and complexity of the GOP level parallelism.

3.2.1 Temporal Prediction Structure

In the temporal domain the common prediction structure is IBBP (I-frame, [B-frame,

B-frame, P-frame], ... [B-frame, B-frame, P-frame]) [72]. However, this is not the

most efficient prediction structure. To improve the coding efficiency a hierarchical
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B-frames prediction structure was introduced in [7]. A typical hierarchical B-frames

structure with three levels of hierarchy is shown in Fig. 3.1. The first frame in this

figure (I-frame) is intra-coded and it is known as a key frame. The key frame and all

frames before the occurrence of the next key frame, (a total of eight frames), form a

GOP. Frames between two key frames are called nonkey frames. In hierarchical B-

frames prediction structure, all nonkey frames are B-frames (bi-directional), and are

predicted using only the pictures of the same or higher temporal level of hierarchy

as reference. Using the comparison metric in [1] hierarchical B-frames prediction

structure achieves video quality that is better than the IBBP by 0.5 to 1 dB in

peak-signal-to-noise-ratio (PSNR). Alternatively, it results in a saving of 15% to 22%

in bitrate. The improvement in coding performance comes at the cost of increased

coding complexity, as a picture’s reference frame(s) must be coded, prior to the coding

of the picture itself.

3.2.2 Inter-view Prediction Structure

Extension to multiview system results in a diverse range of prediction structures. Fig.

3.2 shows four commonly used prediction structures, ranging from the simplest (Fig.

3.2 (a)) to the most coding efficient (Fig. 3.2 (d)). In the figure views are indicated

as V0-V7 and frames within the views are identified as T0-T11. The straightforward

solution is to encode each view independently by forming GOPs, as shown in the

simulcast prediction structure of Fig. 3.2 (a). However, this method fails to exploit

inter-view dependencies and results in significantly higher bitrate [25] [26].

To improve the coding efficiency for the multiview system, the hierarchical B-frames

prediction structure using GOP for temporal domain can be combined with an inter-

view prediction structure. Depending on whether inter-view prediction is applied to
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Figure 3.2: Multiview predication structure: (a) simulcast: independently
coded without inter-view prediction, (b) inter-view prediction for key frames
only with PIP structure, (c) inter-view prediction for all nonkey frames with
IBP structure, (d) inter-view prediction for all nonkey frames with IPP struc-
ture

nonkey pictures, two types of structures are proposed in [7]. Fig. 3.2 (b) with no

inter-view prediction for nonkey pictures, has a PIP (P-frame,...,P-frame, I-frame, ...,

P-frame) prediction structure. In Fig. 3.2 (c) and (d), on the other hand, where inter-

view prediction is applied to nonkey pictures, will have, respectively, IBP (I-frame,

..., [B-frame, P-frame], ..., [B-frame, P-frame], P-frame) and IPP (I-frame, P-frame,

P-frame, ..., P-frame) structures. A significant increase in the rate-distortion (RD)

performance can be obtained with the inter-view prediction [7], with IPP being the

best performing structure (0.25 and 0.5 dB, respectively, with respect to IBP and PIP,

for the same bitrate). From an implementation point of view. It should be noted that
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IPP, IBP and PIP structures have different inter-view dependencies that need to be

accounted for efficient GOP level parallelization. From Fig. 3.2 it should be clear

that IPP is the most complex coding structure as it has more inter-view references

than the other prediction structures.

Works in [23] and [24] present scheduling algorithms for parallel MVC encoding at

the frame level on a multi-processor system for a given prediction structure. In these

works a prediction structure is used to build a directed acyclic graph where frames

across the temporal and inter-view domains form the vertices of the graphs and the

coding dependencies form the edges. Starting with I-frames vertices in view 0 as pair

of roots, the encoding scheduler inspects all the neighboring vertices and assigns them

to one of the available CPU cores. Then, for each of those neighbor vertices in turn,

it inspects their neighbor vertices which are not yet coded, and so on. The process

continues until all the GOPs across all the views are encoded. This requires a complex

scheduler that traverses the graph to discover and schedule the frames that are ready

to be dispatched for the execution on one of the many identical CPU cores. Further,

in this scheme the workload, in terms of the number of frames ready to be scheduled,

at each coding stage varies greatly across the stages. This results in under-utilization

of CPU cores or inadequate number of cores for efficient parallelism depending on

the coding stage. To alleviate this problem by creating enough workload to keep

all the CPU cores busy, the work in [23] proposes the processing of multiple GOPs

across all the views in parallel, further complicating the scheduler. The scheduler task

becomes even more cumbersome considering the fact that at each stage of encoding

frame vertices take widely different execution times depending on the number of their

immediate descendants in the graph and the nature of edge dependencies (temporal

or inter-view).

In contrast, this work develops a simple scheduling scheme where the number of

frames to be encoded does not change across the coding steps. As will be described
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in the next section this is achieved through a simple encoding step time shift. The

simplicity of our parallel scheduling scheme results in the more complex prediction

structure of IPP to have a more efficient parallel implementation compared with IBP.

This is in spite of the fact that execution time for sequential processing of frames

for the IPP prediction structure on a single processor, having four more inter-view

references is more than that of IBP. To afford a scalable implementation, computing

cluster is employed where computing nodes can be added as required. Further, our

simple scheduling scheme allows for efficient use of heterogeneous computing platform

where each cluster node consists of several CPU cores and specialized GPUs.

3.3 View-parallel Model of MVC

For the purpose of studying GOP parallelism, two most efficient prediction structures,

IBP and IPP are selected. The basis for comparison is given to the simulcast scheme

of Fig. 3.2 (a) that yields itself to the highest level of GOP parallelism, as it has no

inter-view prediction structure.

The straightforward high level parallel implementation of multiview video coding for

inter-view IBP prediction structure with eight views is shown in Fig. 3.3. In this

implementation pictures from each view are processed by a separate compute node.

The assignment of views to compute nodes are shown through their identification

(ID) numbers. Each vertical slice corresponds to a coding time step. In each time

step, one full video frame is coded by each of the compute nodes. The stretch of time

steps (T0 to T11) for encoding eight GOPs for eight views are indicated by light blue

cells in Fig. 3.3. Yellow cells refer to the previous and next GOPs. In each compute

node, coding sequence follows the hierarchical B-frames prediction structure (T8/0,
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Figure 3.3: View-parallel processing for IBP prediction structure (a)
scheduling across compute nodes, (b) workload analysis across compute
nodes

T4, T2, T1, T3, T6, T5 and T7). Dark blue, light gray and dark gray color coded com-

pute nodes correspond to views that are, respectively, coded independently, through

one-directional inter-view referencing, and bi-directional inter-view referencing. Red
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Figure 3.4: Workload analysis across compute nodes for view-parallel pro-
cessing for (a) IPP prediction structure and (b) simulcast prediction struc-
ture

and green arrows in Fig. 3.3 (a) correspond to bi-directional and one-directional ref-

erencing to the neighboring views, respectively, for IBP in Fig. 3.2 (c)3. Inter-view

dependencies are handled by an appropriate alignment of the view-frames in coding

time steps across the compute nodes. This can be achieved through a simple schedul-

ing scheme of Fig. 3.3 (a) where compute nodes keep in lock-step with each other

3Note that the green arrow has one source and one destination compute node. The red arrow, on
the other hand, has two sources and one destination compute node. For example, the sources for
red arrow for compute node 4 at coding time step T3 are compute nodes 1 and 3 at time steps T1

and T2, respectively.

85



Frame Encoding
Dependency 
Resolution (DR)

Synchronization
T

Synchronization

ME / DE Other

Figure 3.5: Frame processing epoch

by an appropriate hand-shake message passing for the purpose of sending/receiving

reference frame(s) to/from each other.

The parallel scheduling model in Fig. 3.3 (a) results in the workload distribution for

the compute nodes in various time steps as shown in Fig. 3.3 (b). The workloads

for the compute nodes in each time step are indicated by a pair of numbers RT (RV )

that correspond to the number of required references to the neighboring frames in the

temporal (inter-view) domain in that coding time step. Each reference corresponds

to an ME/DE process. The ME/DE process in MVC consumes the majority of

the overall coding time (up to 99%) [41]. Therefore, the execution time for each

coding time step is proportional to the weighted sum of numbers in RT (RV ) pair.

It is noted in each coding time step the workload distribution across the compute

nodes are not uniform and tends to be higher for the dark gray coded nodes. For

example, for coding time steps T5 to T7 where the workloads for all the compute

nodes reach their maximum, the workloads for the dark blue, light gray and dark

gray color coded compute nodes correspond to two, two and four reference frames,

respectively. This uneven workload distribution results in slow down of dark blue,

light gray compute nodes to keep in lock-step with the dark gray compute nodes. The

workload distribution becomes even more uneven during the other coding time steps.

For example the corresponding workload pairs of references in coding time step T0

are zero, two, and four for the same sequences of color coded compute nodes.

86



To better analyze the parallel scheduling scheme of Fig. 3.3 (b) each coding time

is modeled as a two-part frame coding and dependency resolution (DR) epoch as

shown in Fig. 3.5. Coding part involves the coding of CUs in the frame. The

DR part accounts for the exchange of reference frames required by the inter-view

prediction structures for the next coding time step. At the start of each coding time

step, compute nodes are synchronized with each other. Dependencies in the temporal

domain, within a single view, do not need resolutions across the compute nodes. As

will be seen later in our implementation platform, the DR part constitutes a tiny

fraction of the overall coding time (< 0.1%).

It is also noted that the time associated with the frame encoding in Fig. 3.5 consists

of two parts; the part associated with the ME/DE processing for the frame references

and the other part associated with the rest of coding functional elements (transfor-

mation and entropy coding, etc). For a given ME/DE search algorithm, the ME/DE

processing time depends on the number and type of references (prediction structure).

The other part of coding is much smaller and weakly depends on the number of

references.

The scheduling schemes in Fig. 3.4 show the similar workload distributions in terms

of number and type of reference frames for IPP and simulcast prediction structures.

It is clear that simulcast, having no inter-view dependency, has an uniform workload

distribution across all views (requiring only one compute node color coding), which

reaches a maximum of two references. The workload for IPP as can be seen is more

evenly distributed, where two compute node color codings suffice. This is for the fact

that IPP as can be seen in Fig. 3.2 (d) has no bi-directional references in inter-view

domain.

To compare the compute performance of various inter-view prediction structures using

the view-parallel scheme, in terms of balance in the workload distribution among
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Table 3.1
Average α Values of TZsearch and DZfast for Different Video Sequences

Video Sequence Ballroom Vassar Exit

αDZfast 1.1 1.1 1.1
αTZsearch 2.5 4.5 3.5

compute nodes, for each time step, the quantity balance index (BI) is introduced as

a measure of deviation from a balanced workload distribution among the compute

nodes in the view-parallel scheme. The BI for a given time step is expressed as,

BI = (CT− CTavg)/CTavg (3.1)

where CT and CTavg, respectively, correspond to actual and average compute times,

expressed in units of number of references per frame for view-parallel scheduling for

inter-view prediction schemes. Further, CT is represented as,

CT = RT + αRV (3.2)

where α is a multiplicative factor that accounts for the relative complexity of the DE

compared with ME. The value of α depends on the algorithm used for ME/DE pro-

cessing (full search vs sub-optimum fast search) and the nature of the video sequence.

For the search algorithm employed and the range of video sequences [44] tried in this

work (Section 3.6), the value of α, as obtained from running the encoder, varies from

1 to 4.5 as shown in Table 3.1. In this analysis it is assumed that the execution times

for given values of RT and RV are fixed across the views and encoding time steps.

This assumption while not quite valid for a single view, is sufficiently accurate across

several views.

Starting with scheduling scheme for the simulcast structure in Fig. 3.4 (b), it is noted
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Table 3.2
Load Balance Analysis for View-parallel IBP Prediction Structure

T0 T1 T2 T3 T4 T5 T6 T7

CT 4 4 4 4 4 4 4 4
CTavg 2.50 2.63 2.38 2.38 2.38 2.75 2.75 2.75

BI 0.60 0.52 0.68 0.68 0.68 0.45 0.45 0.45

GOP Average CT(GOP): 4, CTavg(GOP): 2.56, BI: 0.57

that for an eight-step cycle T0 to T7, for all views, there is one step with no references

and seven steps with two references. Hence, Simulcast for all time steps has BI = 0,

a perfect workload balance. For IPP for scheduling in Fig. 3.4 (b), assuming α = 1,

for all timing steps CT and CTavg are, respectively, 3 and 2.63 in units of references,

yielding BI = 0.14.

For IBP in Fig. 3.3 CT = 4 for all timing steps. On the other hand, values for CTavg

and BI vary across the timing steps as shown in Table 3.2. Since the range of values for

CTavg and BI pair across the eight time steps are close to each other, it is convenient

to average them across the GOP, i.e. CTavg(GOP) = 2.56 and BI(GOP) = 0.56. It

can also be written as CT(GOP) = CT = 4. Irrespective of the value of CTavg, to

keep the compute nodes in lock-step with each other, the actual workload for each

timing step is determined by the value of CT = 4 in units of references for α = 1.

In conclusion view-parallel implementation of IPP is more balanced than IBP. This

should come as no surprise as IBP involves a mixture of one and bi-directional inter-

view referencing whereas IPP has only one-directional inter-view referencing.
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View Node t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 

0Odd_GOP 
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0Even_GOP 
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5Even_GOP 
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IBP Prediction Structure Interleaving two GOPs 

0 

1 

2 

3 

4 

5 

6 

7 

2 (0) 

  2 (2) 

2 (0) 

2 (2) 

  2 (0) 

 2 (2) 

2 (0) 

2 (2) 

2 (0) 

2 (2) 

2 (0) 

2 (2) 

2 (0) 

 2 (2) 

2 (0) 

2 (2) 

2 (0) 

2 (2) 

2 (0) 

2 (0) 

  2 (2) 

  2 (0) 

0 (2) 

0 (1) 

2 (0) 

  2 (2)  0 (2) 

  2 (0)0 (1) 

0 (1) 

2 (0) 

  2 (2) 

2 (0) 

2 (2) 

  2 (0) 

 2 (2) 

2 (0) 

2 (2) 

2 (0) 

2 (2) 

2 (0) 

2 (2) 

2 (0) 

 2 (2) 

2 (0) 

2 (2) 

2 (0) 

2 (2) 

2 (0) 

2 (0) 

  2 (2) 

  2 (0) 

0 (2) 

0 (1) 

2 (0) 

2 (0) 

  0 (2) 

0 (1) 

2 (0) 

0 (1) 

2 (0)    0 

0 (1) 2 (0) 2 (0) 2 (0) 2 (0) 2 (0) 2 (0) 2 (0) 

0 (2) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 
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0 (2) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 

0 (1) 2 (0) 2 (0) 2 (0) 2 (0) 2 (0) 2 (0) 2 (0) 
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0 (2) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 

1 (0) 2 (0) 2 (0) 2 (0) 2 (0) 2 (0) 2 (0) 2 (0) 

Figure 3.6: Two-view-parallel, two-GOPs interleaved (2-IGOP) parallel
processing for IBP prediction structure

90



3.4 Multiple-view-Parallel, Multiple-inter leaved-

GOP Model

To balance the workload among the compute nodes, in this section, a multiple-view-

parallel strategy that exploits GOP parallelism is proposed. It is observed in the

temporal domain using hierarchical B-frames prediction structure eight pictures in

the GOP are encoded at a time. Since GOPs are coded independent of each other, it

is, therefore, possible to interleave the processing of several GOPs with no sacrifice to

the bitrate or video quality. Further, in this scheme, to balance the workloads across

the compute nodes, multiple-views are assigned to each node.

A two-view-parallel, two-GOPs interleaved (2-IGOP) strategy for IBP prediction

structure is given in Fig. 3.6 where views are paired together according to the inter-

view prediction structure to balance the workloads across the compute nodes. In this

scheduling scheme even GOPs are assigned to compute nodes 0 to 3 and odd GOPs

are assigned to compute nodes 4 to 7. At the coding time steps T5 to T7, where all

compute nodes reach their maximum workload, it can be seen that compute nodes 0

and 4 have a workload of four reference frames, and the rest of the compute nodes have

six reference frames. This workload distribution of four to six is more balanced than

two to four for IBP view-parallel structure in Fig. 3.3. The CTI and CTavg(GOP) for

this multiple-view-parallel scheme are 3 and 2.56 in units of reference frames, with

α = 1. The corresponding BI value is reduced from 0.56 to 0.17 which is similar to

the value obtained for IPP scheduling of Fig. 3.4.

Extending this concept to four-view-parallel, four-interleaved GOPs (4-IGOP), the

CTI and CTavg(GOP) change to 2.88 and 2.56, with α = 1. The corresponding

BI value drops further to 0.12 indicating a substantially improved balance in the
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workload, compared to view-parallel scheduling. With 8-view-parallel, 8-interleaved

GOPs (8-IGOP), the corresponding values for CTI and CTavg(GOP) converge to a

single value of 2.56, resulting in BI = 0. The is a perfect balance in the workload, as

far as the number of references is concerned.

It can be seen that the change in the BI value in going from a 4-IGOP to an 8-

IGOP scheme is very little. Considering the various computations required by the

other coding elements beyond ME/DE and the resource limitations of the underlying

implementation platform, as will be demonstrated in the next section, going from a

4-IGOP to an 8-IGOP scheme does not produce significant change in performance.

Table 3.3 provides a summary of the load balance analysis for various multiple-view-

parallel GOP-interleaved strategies for IBP, IPP and simulcast, for α = 1. While

IBP structure has a wide range of BI values, the corresponding range for the IPP

structure is very limited. It starts from a low value of BI = 0.14 for the view-parallel

scheme and does not change at all in going to 2-IGOP scheme. Migration to a higher

multiple-view-parallel produces similar results as IBP (with a slight edge over IBP).

The simple view-parallel and multiple-IGOP models developed for the parallel pro-

cessing of MVC has the advantage of being independent of the implementation plat-

form. This allows to deal with the parallelism and balance in the workload using a

higher level algorithmic abstraction in the suitable unit of the number of references

in temporal and inter-view domains, for the various prediction structures in Fig. 3.2,

using a general concept of compute nodes. This abstraction has the advantage of

demonstrating how the choice of MVC algorithm and high level parallel processing

concepts influence the coding performance. It also helps to highlight the limits of

parallel processing from a platform independent, algorithmic and architectural ab-

straction.
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Table 3.3
Load Balance Analysis for Various View-parallel GOP-interleaved

Strategies for IBP, IPP and simulcast

IBP IPP Simulcast

CTI CTavg BI CTI CTavg BI CTI CTavg BI

View-parallel 4 2.56 0.56 3 2.63 0.14 1.75 1.75 0
2-IGOP 3 2.56 0.17 3 2.63 0.14 1.75 1.75 0
4-IGOP 2.88 2.56 0.12 2.88 2.63 0.10 1.75 1.75 0
8-IGOP 2.56 2.56 0 2.63 2.63 0 1.75 1.75 0

Quad-Core  
Compute 
Nodes 

Front 
End 

Dual 
GPUs 

InfiniBand 
Facbric 

Figure 3.7: Eight compute node implementation platform

3.5 Latency and Memory Considerations

For a single view video stream the maximum latency in HEVC [66] is defined as the

maximum number of frames before any frame in output order but follows in decoding

order. For example in Fig. 3.1 in the 8-frame GOP consisting of frames T1 to T8,

the frame T8 is the last frame in the output but the first frame that needs to be

decoded. This results in a latency of seven frames. This latency syntax is signaled

in the coded bitstream. Extending this definition to multiview coding, it is a fact
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that the views can only be decoded in a particular order according to the prediction

structure. However, there is no requirement as to the order that they appear in the

output. A syntax is adopted to take advantage of this fact, where the views are

placed in the output in the same order that they are decoded. In this syntax for all

view-sequential, view-parallel and multiple-IGOP schemes presented in this chapter,

the maximum frame latency is no more than that of the single view stream.

However, adopting a definition of the latency akin to work in [24], the latency L

is defined as the sum of the time to capture required number of GOPs across the

multiple views, Lcap, and the time for the number of time steps required to encode

frames in those GOPs, Lepo. L is expressed as,

L = Lcap + Lepo (3.3)

with

Lcap = IF/R

and

Lepo = ISTepoI

where I defines the interleaving factor (1, 2, 4, and 8 for view-parallel, 2-IGOP, 4-

IGOP, and 8-IGOP, respectively), F the number of frames per GOP, R the frame

rate (number of frames per second), TepoI the average epoch time per view for the

multiple-IGOP scheme, and S the number of the time steps required to process all

the frames in all the views in one GOP. From Fig. 3.3 and Fig. 3.4 for an 8-view

system the value of S corresponds to 12, 15, and 8 for the IBP, IPP, and simulcast

prediction schemes. For the view-sequential scheme, values of I = 1 and S = 64 (for

an 8-view system with 8-frame GOP) are applicable.
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The multiple-IGOP schemes rely on the fact that there is enough video buffer to

hold the captured frames before the coding. Memory requirement can be expressed

as IFV PB, where I and F where define before, V the number of views, and P the

number of pixels in a frame, and B the average number of bytes per pixel. For the

8-IGOP scheme, having eight views with an 8-frame GOP, a video frame of 640×480

in YUV420 format, and average 12 bits per pixel, the total size of the memory buffer

required is 225 Megabytes.

3.6 Implementation Platform Specific Analysis

3.6.1 Platform Level Specific Issues

So far, it is assumed that the ME and DE processing have the same level of com-

plexity (α = 1). This is certainly true of the full search algorithm for ME/DE, or

almost true for a parallel fast algorithm of [50]. This section dives into the details

of the implementation platform and demonstrate how platform dependent parallel

processing features influence the execution performance of MVC. Here, the aim is

to use the platform specific parallel features to reduce the epoch time in Fig. 3.5.

Joint multiview video coding (JMVC) reference software suite [27] is adopted for ex-

perimentation. JMVC comes with added syntax to support inter-view prediction for

AVC [3].

Fig. 3.7 depicts our implementation platform consisting of a compute cluster of eight

nodes, with each node consisting of a 4-core CPU and two GPUs. Table 4.3 provides

the details of the implementation platform. In our implementation platform the

ME/DE processing part of frame encoding is performed using two different techniques.
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The first technique uses the resources of GPUs by employing our parallel fast search

algorithm, DZfast, in [50]. In this technique α ≈ 1 for the video sequences tried in

this work. The second technique uses sequential TZsearch4 [27], with α > 1, on the

CPU cores and is typically five times slower than DZfast [50].

3.6.2 Platform Level Issues for Parallel DZfast

In [50] the massively parallel architecture of GPU was utilized to develop a fast

search algorithm (DZfast) for the ME/DE part of the coding in Fig. 3.5. Further,

for a range of video sequences, DZfast achieves a value of α ≈ 1. The other part

(combined contribution from the other coding functional elements) is executed on

one of the CPU cores. With two GPUs per compute node there is the potential for

executing two ME/DEs for CUs for two references in parallel. Further, with four

cores it is possible to execute the other part of the coding of the CUs for up to four

views in parallel.

However, heterogeneous nature of the computing platform complicates the analysis of

the overall encoding time. This analysis requires a closer look at the overhead of in-

teractions between the CPU cores and the GPU accelerators, the distribution of tasks

between the computing resources, and the bottlenecks when there are contentions for

use of same resources. The analysis as will be shown here requires observation of the

coding process at fine granularity of CUs.

It is noted that, employing a single CPU core and a single GPU, with parallel DZfast

on the GPU, the frame encoding time in Fig. 3.5 varies within a wide range from 0.2

4TZsearch is employed by JMVC [27], is a sub-optimum, but efficient fast search algorithm that
reduces the overall computational complexity greatly, by a factor of up to 70 over the full search,
while maintaining good RD performance.
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to 5 seconds (s) with an average of 2.4 s5. The reason for this is the fact that ME/DE

processing time for a frame varies largely depending on the number of references

ranging from zero (for an I-frame) to 3.6 s (for four reference frames) on a single GPU.

The average ME/DE processing time for a frame is 1.7 s. It should be also noted

that the time associated with the rest of coding functional elements (transformation

and entropy coding, etc) weakly varies with the number of reference frames ranging

from 0.5 s to 0.9 s with an average of 0.7 s per frame.

With dual-GPU and quad-core CPU on a compute node, the ME/DE processing can

be effectively overlapped for two or more reference frames, and the other coding part

from multiple-views (up to four views) to reduce the epoch time in Fig. 3.5. Using

our implementation platform it is easy to see that for view-parallel schemes in Figs.

3.3 and 3.4, all B-frames pair of ME/DE processing can be executed on two GPUs

in parallel. For example for view 1 in Fig. 3.3 four references ”2(2)” form two pairs

of form ”1(1)” with frames in each pair allocated evenly to two GPUs. This results

in a significant reduction in the ME/DE time per frame with an average of 1.3 s.

Note that the reduction going from one GPU to two GPUs is less than half. The

reason for this is that first not all the references are even in number. Second there

is an additional overhead involved in going from one to two GPUs. However, the

other part of the frame encoding time for a single view can only run on a single CPU

core and remains unchanged. Thus the overall encoding time reduces to 1.9 s. It is

also easy to see that with two GPUs the execution times for actual workload of three

references per coding time step for IPP and four references for IBP are closer to each

other than the ratio of 3/4 indicated in Table 3.3. As will be seen in the next section

this ratio is about 0.85.

For 2-IGOP scheme in Fig. 3.6 for IBP, execution of frame for encoding both views

5Note that these timing values are only indicative and can vary depending on the platform, and
from one video scene to the other.
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are carried out on the same node but overlap, as they run on two separate CPU cores.

CPU cores, however, dispatch the ME/DE processing part of the frame coding to the

same pair of GPUs. With up to six references per frame encoding time step, there is

an obvious contention for the resources of dual-GPU. Therefore, ME/DE processing

for pairs of references are executed on the dual-GPUs in a pair-sequential manner.

3.6.2.1 Coding unit level analysis

To analyze the situation further it is a fact that the actual coding process, on both

CPU core and GPU, takes place with granularity of CU. Acknowledging that ME/DE

process is carried out on GPU, a timeline model is constructed for the processing of

multiple CUs on the parallel platform of Fig. 3.7 as shown in Fig. 3.8. In Scenario #1

ME/DE processing on one or two GPU(s) is followed by the processing of remainder

of coding tasks on a CPU core. The view-parallel scheduling schemes in Figs. 3.3

and 3.4 with one view per node are typical of where Scenario #1 is applicable. This

scenario presents the strict sequential processing nature of CUs on a CPU core, and

GPUs are used to reduce the ME/DE processing time. Note that in this case i = j

in Scenario #1 in Fig. 3.8.

In Scenario #2 in Fig. 3.8, the execution of ME/DE for two or more CUs overlap

each other. This scenario is typical of multiple-IGOP scheduling (e.g. Fig. 3.6).

This overlap is due to fact that the CU workload for GPU(s) comes from different

views. For the GPU architecture in Fig. 3.7, with specification in Table 4.3, ME/DE

processing can be scheduled concurrently on the same GPU but are only processed

sequentially. It should also be noted that Scenario #1 is also applicable to multiple-

view-parallel, multiple-IGOP scheduling depending on the number of reference frames

at any given time. Also from Fig. 3.8 in Scenario #2 the non ME/DE part of coding

for views executed on one CPU core can run concurrently with processing of non
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Scheduling Scenarios 
Scenario #1  

Time 

Scenario #2  

GPU View j CPU View j 

GPU View i CPU View j CPU View i GPU View j 

Time CPU View j GPU View j 

GPU View i CPU View i CPU View i GPU View i 

Figure 3.8: GPU Scheduling scenarios
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Figure 3.9: Average GPU (ME/DE) and CPU (other) compute time per
CU per CPU core for various parallel coding strategies with IBP prediction
structure

ME/DE parts from the other views on the remaining CPU cores. It can also run

concurrently with the ME/DE processing from the other views on the GPUs.

As the number of views in the multiple-view-parallel, multiple-IGOP scheduling in-

creases from two to four, the contention for GPU resource becomes even more severe,

further elongating the overlap in the ME/DE processing execution periods for GPUs.

The other parts of coding for four views run on four separate CPU cores concur-

rently. In going from a 4-IGOP to an 8-IGOP scheme, in addition to elongation in
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Figure 3.10: Average GPU (ME/DE) and CPU(other) compute time per
CU per CPU core for various parallel coding strategies with IPP prediction
structure

Table 3.4
Experimental Condition

Hardware: Michigan Tech Immersive Visual Studio (IVS) Computing Clus-
ter (eight nodes) with one front end, eight compute nodes,
each equipped 4 CPU cores (Intelr i7r 4-core CPU i7-3820 @
3.60GHz with 32 GB DDR3 Memory, and two NVIDIA™ (GTX
680 SLI with 4 GB GDDR5), supported by an eight TB RAID60
storage for computation and visualization. It also features a 40
Gb/s InfiniBand network that serves its computing needs and an
gigabit ethernet backend network serves the administrative needs
of this cluster.

Operating System: Rocks 5.4.2 (Maverick) ++ CentOS 5.5
Software: H.264/AVC MVC extension, test and validation suite JMVC8.5

GOPSize: 8, NumberReferenceFrames: 1, QP: 37 FrameR-
ate: 25, FramesTobeEncoded: 1025, SymbolMode: CABAC,
BiPredIter: 2, IterSearchRange: 1 ME/DE Algorithm: DZ-
fast [41],[50], TZsearch [27] Test Sequence ∈ {Ballroom (480p),
Exit (480p), Vassar (480p)} in YUV420 format, ME/DE search
range [-128,127]/[-128,+127](horizontal/vertical) Intelr MPI li-
brary, Intelr C&C++ Compiler

the ME/DE processing time, the processing of the other parts for two views are sched-

uled on a single CPU core and have to be executed sequentially. The experimental

results in support of this observation are provided in the next section.
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From the foregoing discussion the average epoch time per view TepoI for the multiple-

IGOP is modeled as,

TepoI =

TG
βG
× CTI × I

G
+ TE ×

⌈
I

C

⌉
I

(3.4)

where TG and TE, respectively, are the ME/DE processing time on single GPU (using

DZfast) for a single reference frame, and rest of coding functional elements time on

a single CPU core (Fig. 3.5). The parameter βG is the ratio of speedup in going

from single GPU to multi-GPU. The parameters G and C, respectively, represent the

number of GPU and CPU cores on a compute node.

3.6.3 Platform Level Issues for Sequential TZsearch

Using TZsearch for ME/DE, the entire frame encoding process in Fig. 3.5 is carried

out only on the CPU cores. The analysis of coding scenario for TZsearch becomes

easy considering our homogeneous nature of the computing grid where all nodes

are identical. This creates an homogeneous computing environment with total of

32 identical cores, allowing for up to 32 CPU-based independent frame encodings

simultaneously. In this scheme it is possible to take the advantage of the availability

of more cores to increase the level of GOP interleaving and achieves further reduction

in the encoding time.

In view-parallel encoding, ME/DEs for each frame across multiple views are assigned

to one of the compute nodes and processed by one of the CPU cores in that node.

The limiting factor to performance is the node coding the view with the maximum

weighted sum of temporal and inter-view reference frames at each timing step. For

2-IGOP, workload for each compute node is partitioned into two CPU cores with each
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core processing one frame from one view. This should result in overall reduction in

the processing time by a factor of two with respect to view-parallel scheme. It should

be noted that as views are executed concurrently on different cores, the workload

distribution per core remains unchanged from the view-parallel scheme. Therefore,

the limiting factor to performance is still the view with the maximum number of

weighted sum of references. Going from 2-IGOP to 4-IGOP, the encoding time should

further reduce by a factor of two, as all four CPU cores are utilized for processing

four views. With maximum of four cores in each node, in going from a 4-IGOP to

an 8-IGOP scheme, any change in the speedup can only come from the change in the

workload distribution according to (3.2) from one view per core to two views per core

in an interleaved fashion.

From the foregoing discussion the average epoch time per view TepoI for the multiple-

IGOP for TZsearch is modeled as,

TepoI =

(TC × CTI + TE)×
⌈
I

C

⌉
I

(3.5)

where TC and TE, respectively, are the ME/DE processing time for a single reference

frame, and rest of coding functional elements time, on a single CPU core using the

TZsearch search algorithm.
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3.7 Implementation and Results

3.7.1 Experimental Setup

The proposed strategies are integrated into JMVC and deployed on Michigan Tech’s

Immersive Visual Studio (IVS) computing cluster. The overall experimental setup

and conditions are given in Table 4.3. Message passing interface (MPI) is adopted as

the framework for dependency resolution and transferring reference frames between

nodes. According to our measurements each transfer between the nodes that involves

the transfer of 640× 480 frame size, using the 40 Gb/s bandwidth of the Infiniband

fabric, takes about 304 µs. This constitutes an insignificant time compared with the

cost of the ME/DE processing for a single reference frame.

Three well-known 8-view video sequences (”Ballroom”, ”Vassar”, and ”Exit” [44]), in

YUV 4:2:0 format, have been selected. To obtain accurate results, each view in each

video sequence is concatenated five times to form 128 GOPs, consisting 1025 frames.

With 128 GOPs, it is possible to perform 2-IGOP scheduling with two 64-GOP sets

from two views assigned to two CPU cores, on a single compute node. For 4/8-IGOP

scheduling the assignment sets are 32/16 GOPs from four/eight views assigned to

four CPU cores on one compute node. Three prediction structures, IBP, IPP and

simulcast are examined.
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Figure 3.11: Encoding Times for Various Coding Scheduling Strategies for
1025 Frames ( 128 GOPs) (seconds) Using DZfast

Table 3.5
Speedup Comparison for DZfast (with Respect to its View-sequential

Coding)

view-parallel multiple-IGOPs

IBP IPP Simulcast IGOPs IBP IPP Simulcast

2 8.7 8.9 8.6
Ballroom 5.2 6.7 7.7 4 11.3 11.6 14.0

8 11.5 11.7 13.3

2 8.0 8.3 8.2
Exit 4.8 6.5 7.8 4 10.9 10.0 13.7

8 11.4 11.2 14.1
2 8.4 8.4 8.7

Vassar 4.9 6.8 7.6 4 12.2 11.3 14.8
8 12.4 12.3 14.5

3.7.2 Results and Observations for Parallel DZfast

The impact of various workload distribution in the computation time for coding of

a CU, for IBP and IPP prediction structures are shown in Fig. 3.9 and Fig. 3.10,

respectively. The trends for both prediction structures are identical where the increase

in GPU processing time grows exponentially (with powers of two) from view-parallel

to 8-IGOP. It should be noted that CPU time for processing the other parts of coding

remains constant up to 4-IGOP. Going to 8-IGOP almost doubles the CPU time due

to the CPU resource limitation of four cores. In order to handle eight views on a
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compute node, pairs of views are sequentially scheduled to a single CPU core.

The experimental results are presented in Fig. 3.11 and Table 3.5. The results

approximately track the model in (3.4) with TG = 1.7s, βG = 1.6, TE = 0.7s, and

CTI from Table 3.3. First, note that the workload distribution for IBP and IPP

structures, as was noted in Table 3.3, play a primary role. It is also noted that

IBP and IPP prediction structures in view-sequential coding show similar encoding

time because they have similar number of reference frames per GOP (164 and 168

for IBP and IPP, respectively). However, since ME/DE processing is performed on

the two available GPUs in parallel, four and three references, for views 1, 3, and 5,

respectively, for IBP and IPP take same amount of time. For all other views IBP has

only two references versus three for IPP. This results in reduction in the encoding

time for IBP with respect to IPP beyond the ratio of 164/168 = 0.98 as evidenced

in Fig. 3.11. The simulcast execution time is expected to be much lower. The speed

advantage for encoding time of simulcast comes at the cost of degradation in RD

performance [7].

From Fig. 3.11 for view-parallel scheduling the ratio of execution time of IPP over

IBP is about 0.85, which is more than 0.75 expected from Table 3.3. This is because

computations of ME/DE are executed concurrently on two GPUs in pairs. Therefore,

processing time for three references for IPP is only slightly less than four references

for IBP. For multiple-view-parallel, multiple-IGOP scheduling the execution times for

IBP and IPP are very similar. This is in keeping with actual workload in Table 3.3.

Next the attention is focused on execution times across the scheduling structures.

Compared with view-sequential coding, view-parallel achieves significant, five, six and

seven fold speedups for IBP, IPP and simulcast prediction structures, respectively.

The relative speedup differences from view-sequential to view-parallel coding for the
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Figure 3.12: Encoding Times for Various Coding scheduling Strategies for
1025 Frames (128 GOPs) (seconds) Using TZsearch

three prediction structures follow the workload distribution in Table 3.3. In view-

parallel coding, simulcast achieves a speedup of 7.8 approaching theoretical value

of eight. In going from the view-parallel to the 2-IGOP scheduling, reductions in

execution time by a factor of about 1.67 and 1.33 are achieved, respectively, for IBP

and IPP. For the IBP the speedup is partly due to reduction in the workload per core

from four to three, and partly due to execution concurrency between one CPU core

for one view and the CPU core and/or the GPU(s) from other views (Scenario #2 in

Fig. 3.8). IPP exhibits a lower speed up as there is no change in the workload and

all the gain comes from CPU core concurrency.

Further, going from a 2-IGOP to a 4-IGOP scheme, results in similar gains factor

for IBP and IPP of about 1.33. Since the reduction in the workload is little (Table

3.3), this improvement primarily comes from CPU core concurrency where up to four

views can be coded simultaneously on four CPU cores. However, further interleaving

to 8-IGOP yields small gain. That is because the only gain is from small improvement

in balancing the workload distribution. There is no additional gain from CPU core

concurrency, as two views have to be scheduled to one CPU core, and their executions

need to be scheduled sequentially, as evidenced in Fig. 3.9 and Fig. 3.10.
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Table 3.6
Speedup Comparison for TZsearch (with Respect to its View-sequential

Coding)

view-parallel multiple-IGOPs

IBP IPP Simulcast IGOPs IBP IPP Simulcast

2 7.9 11.3 15.6
Ballroom 3.9 5.6 7.6 4 15.9 22.7 31.2

8 15.9 26.5 28.3

2 7.5 11.2 13.8
Exit 3.7 5.6 6.9 4 14.9 22.5 27.4

8 15.6 26.6 29.5

2 7.1 11.8 15.1
Vassar 3.5 5.7 7.5 4 14.2 23.6 30.2

8 15.3 26.7 29.2

3.7.3 Results and Observations for Sequential TZsearch

The experimental results for TZsearch are presented in Fig. 3.12 and Table 3.6. For

view-sequential coding in Fig. 3.12, the ratios of the encoding times of IBP over IPP

for three video sequences are between 0.93 and 0.96. These ratios track well with the

ratios of weighted sum of temporal and inter-view reference frames in a GOP for IBP

and IPP, with α set according to Table 3.1, for video sequences Ballroom, Exit and

Vassar.

For view-parallel and 2-IGOP/4-IGOP/8-IGOP encoding in 3.12, the results track

the model in (3.5) accurately with TC = 5.4s, TE = 0.7s, and CTI from (3.2).

Given that CPU cores are the only computation units at work, the overall encoding is

limited by the core with the biggest weighted sum of temporal and inter-view reference

frames in any given time step. For the range of α values for the three video sequences,

the ratios of execution times of IPP over IBP are between 0.93 to 0.96, which are
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Table 3.7
Speedup of DZfast over TZsearch

view-sequential view-parallel multiple-IGOPs

IBP IPP Simulcast IBP IPP Simulcast IGOPs IBP IPP Simulcast

2 4.3 2.9 1.1
Ballroom3.9 3.7 2.1 5.1 4.5 2.1 4 2.8 1.9 0.9

8 2.9 1.7 1.0

2 3.6 2.3 1.0
Exit 3.3 3.1 1.6 4.4 3.7 1.9 4 2.5 1.4 0.8

8 2.5 1.4 0.8

2 2.9 1.7 0.6
Vassar 2.4 2.4 1.1 3.4 2.8 1.1 4 2.1 1.2 0.6

8 2.0 1.2 0.6

significantly more than 0.75 expected from Table 3.3 where α = 1 was assumed.

The relative speedup differences for the three predictions structures follow the work-

load distribution obtained from (3.2) with appropriate values of α. As expected,

going from view-parallel to 2-IGOP and 4-IGOP schemes improves the performance

by a factor of two and four respectively. This results is different from that of DZfast

where there was contention for the resources of GPU from multiple views executing

on multiple cores, and where the speedups were about 1.67 and 1.33 for IBP and IPP.

For DZfast, going from a 4-IGOP to an 8-IGOP scheme resulted in little improvement

in performance. However, in the case of TZsearch, due to reduction in the work load

distribution on the CPU cores, according to (3.2), it is expected a modest improve-

ment in the performance. However, due to larger values of α > 3.5 the improvement

is very little for IBP, and only a factor no more than 1.17 better for IBP.
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3.7.4 Comparative Discussion on TZsearch and DZfast

Table 3.7 presents the comparative evaluation of DZfast and TZsearch for three pre-

diction structures. As seen for the sequential coding the DZfast is a clear winner by

up to factor of 4.3 for IPP. However, as the multiple-view-parallelism increases the

DZfast becomes less effective in comparison to TZsearch. For example the speedup of

DZfast over TZsearch is no more than 1.7 for the 8-IGOP scheme. The reason for this

behavior is the contention for the resources of GPU from the concurrent processing

of eight views. Increasing the number of GPUs will reduce pressure on the resources

of GPUs and improve the performance of DZfast.

The use of parallel search algorithms such as suboptimum DZfast or optimum GPUfull

[50] allows us to set α = 1 in (3.1) and (3.2). This has the advantage of allowing the

use of a general concept of compute nodes to deal with the parallelism and balance in

the workload using a higher level algorithmic abstraction in the suitable unit of the

number of references in temporal and inter-view domains, for the various prediction

structures in Fig. 3.2.

3.8 Slice-Level and Coding Unit Parallelism

View-parallel and multiple-IGOPs processing schemes for IBP and IPP can be easily

extended to lower slice-level parallelism. It can be accommodated by multiple partial

reference frame transfers. This is possible as CUs are coded in raster-scan order.

This, however, comes at the cost of additional transfer and book keeping overheads.

It is easy to see that slice-level parallelism does not change the relative workload

distribution presented in Table 3.3.
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It is also worthwhile to briefly discuss the influence of implementation platform on

slice level parallelism. From the discussion so far it is clear that the limit to parallel

processing on a node is four cores where CPU-concurrency loses its effectiveness.

It is observed that as a frame is divided into slices and processed in parallel on

a node, the computing resources saturate quickly, and beyond four slices, coding

schedule become sequential on a node. Therefore, it is easy to conclude that with

four (or multiple thereof) slices, the only factor contributing to the performance

is, platform independent, prediction structure workload distribution from Table 3.3.

This concludes that provided the number of slices are sufficiently large, it is possible

to analyze the performance of MVC on computing cluster purely from its prediction

structure and workload distribution across the compute nodes.

The provision of wavefront processing of coding units (CU) in HEVC presents an

opportunity for parallelization at a finer level of granularity. This, however, requires

resources to process multiple coding units in parallel. Similar to the discussion on

slice level parallelism, a 4-core CPU limits parallel processing of CUs to four. From

the discussion in Section 3.6 it should be noted that to implement the coding of CUs

using a fast fine grain massively parallel technique requires allocation of multiple

MPAs resources to a compute node to accelerate the wavefront processing.

3.9 Conclusion

By exploiting group of pictures (GOP) parallelism in the multiview coding, in

this chapter, the contribution is a multiple-view-parallel, multiple-interleaved GOP

(multiple-IGOP) scheduling scheme that will produce a balanced workload. In addi-

tion, the resources of multicore CPUs and multi-GPUs are leveraged to extract the

maximum performance from a computer cluster. A substantial decrease of overall
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encoding time by a factor of 12 is observed with no cost to the bitrate or video qual-

ity when compared with the implementation on a single node. The improvement

factor of 12 is more than the number of nodes (eight). Furthermore, this strategy

decouples the optimizations at the lower levels from those at higher levels, allowing

the deployment of any search algorithm for the ME/DE processing.
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Chapter 4

Multi Level MVC Encoder

Optimization1

Standardized in 2014, multiview extension of high efficiency video coding (MV-

HEVC) offers significantly better compression performance of around 50% for mul-

tiview and 3D videos compared to multiple independent single-view HEVC coding.

However, the extreme high computational complexity of MV-HEVC, demands signif-

icant optimization of the encoder. Novel optimization techniques at various levels of

abstraction. Non-aggregation massively parallel motion estimation (ME) and dispar-

ity estimation (DE) in prediction unit (PU), fractional DE and bi-directional ME/DE,

quantization parameter (QP)-based early termination of coding tree unit (CTU), and

optimized resource-scheduled wave-front parallel processing for CTU, are proposed in

this chapter. When evaluated over three views for all MV-HEVC available test se-

quences, proposed optimization outperforms the anchor encoder by average factor of

5.4 at the cost of 4.4% bitrate (DBR) increase, or equivalent a PSNR degradation of

1The material contained in this chapter was previously published in “2016 IEEE Data Compression
Conference” ©2016 IEEE. See Appendix A.3 for copies of the copyright permission from IEEE.
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0.12 dB.

4.1 Introduction

High efficiency video coding (HEVC)/H.265 [6] is the latest state-of-the-art video cod-

ing standard, providing up to 50% better compression over its predecessor advance

video coding (AVC)/H.264 [3] to satisfy ever growing demands for higher resolution

in videos such as 4K and 8K [25]. The multiview extension to HEVC (MV-HEVC)

was defined in the Annex G of HEVC/H.265 [6] [73] [5] in 2014. Common applications

of multiview coding (MVC) are free view TV, 3D movies/TV, and immersive tele-

conferencing [25] [26]. In these applications, multiple cameras commonly arranged

in linear, grid or arc formation are deployed to capture the same scene simultane-

ously. In addition to exploiting temporal similarity using motion estimation (ME)

and motion compensation, MVC exploits inter-view similarity using disparity esti-

mation (DE) and disparity compensation, achieving notably higher coding efficiency

compared with coding of multiple views as separate video streams. The ME algo-

rithms designed for temporal prediction can, with little or no modifications, be applied

to DE for inter-view prediction.

The profiling of AVC/H.264 MVC in our previous work [50] showed that 99% of

execution time is spent on integer ME/DE and its sole optimization is enough to

gain significant speedup. However, as the profiling result for MV-HEVC/H.265 in

Table 4.1 shows, the execution time is spread across many functional modules where

integer ME/DE contribution to the overall coding execution time is only 47%. Frac-

tional ME/DE and bi-directional ME/DE also make a significant 15% contribution

to the execution time. A significant 38% of execution time is contribution from the

other functional modules such as intra-prediction, discrete cosine transform (DCT)
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Table 4.1
Execution Time Profiling of MV-HEVC/H.265 (HTM) 16.2 at QP=32 for

multiview video sequence Shark

Integer ME Fractional ME Bi-directional ME Other

47% 5% 10% 38%

and context-adaptive binary arithmetic coding (CABAC) . Therefore, sole optimiza-

tion of integer ME/DE in MV-HEVC/H.265 while still needed, is obviously not

enough. This chapter proposes several low level techniques that reduce execution

time of integer, fractional and bi-directional ME/DE. Further, several high level op-

timization techniques that affect all or a significant number of functional modules in

MV-HEVC/H.265 is considered. For example by selective evaluation of coding units

execution of all required functional modules are skipped. Another available tool is,

of course, concurrent coding of functional modules.

There have been efforts to improve the execution performance of HEVC single view

coding [21] [74] (and references thereof). However, these efforts only deal with single

view HEVC, and thus do not take the characteristics of inter-view correlation into

account, and are, therefore, inadequate for MV-HEVC. This chapter presents three

major contributions that reduce the computational complexity of MV-HEVC. While

MV-HEVC has been the focus of complexity reduction in this chapter, the contri-

butions in this chapter provide significant benefit to the single view HEVC as well.

In this chapter, a methodology for designing a novel massively parallel architecture

(MPA) based ME/DE algorithm from a completely new perspective is explored. A

single instruction multiple data (SIMD) approach is proposed for sub-pixel and bi-

directional ME/DE. Next, quantization parameter (QP)-based early termination of

coding tree unit (CTU) is proposed, where the coding units (CU) below a certain

depth are not processed, depending on values of their QP. This strategy exploits the

exponential decrease in motion residuals with increase in QP to skip ME in prediction

units (PU) within the CUs at a certain CTU depth. Finally, on the implementation
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platform, a resource-optimized multi-threaded execution scheduling for the wave front

processing (WPP) for the implementation on a multicore processor is proposed.

This chapter is organized as follows. Section 4.2 briefly presents the relevant concepts

in HEVC and MV-HEVC. Section 4.3 presents a survey of related works in improving

the runtime performance of HEVC video coding. Section 4.4 presents our efforts on

scalable massive parallelism and the opportunity that it provides for fast ME/DE

algorithm from a new perspective. Section 4.5 presents our proposal for QP-based

early termination of CTU. Section 4.6 discusses the proposal for an optimized WPP

scheduling and implementation. Section 4.7 concludes the chapter.

4.2 High efficiency Video Coding (HEVC) and its

Multiview Video Coding (MVC)

HEVC inherits its block based hybrid coding model from AVC. Among the innovative

features of HEVC [6], increased flexibility of block partitioning for prediction and

transform coding have contributed to more than half of the average bitrate savings.

In HEVC the CTU size ranges from 16× 16 to 64× 64, the CU size from the size of

CTU down to 8 × 8, and the PU size from the size of the CU down to 4 × 8/8 × 4.

For the transform unit (TU) (required for DCT) the size extends further from CU

all the way down to 4 × 4 [73] [5]. However, HEVC gains exceptional compression

efficiency at the cost of higher computational complexity. Fig. 4.1 shows all possible

PU and CU partitioning modes for the CTU of size 64× 64 in HEVC. There are four

possible CU modes (8× 8, 16× 16, 32× 32 and 64× 64), amounting to a total of 85

distinct CUs (64 + 16 + 4 + 1 = 85). There are 24 PU modes, amounting to a total

of 593 distinct PUs (320 + 208 + 52 + 13 = 593).

116



64×64

32×64

32×64

64×32

64×32 64×16

64×48
64×16

64×48

16×64

48×64

16×64

48×64
32×32

16×32

16×32

32×16

32×16 32×24

32×8
32×24

32×8

24×32

8×32

24×32

8×32
16×16

8x8

CU
64×64

CU
32×32

CU
16×16

CU
8×8 8x4

8x4 8x4
8x4

8×16
8×16

16×8
16×8

16×4
16×12 16×4

16×12

4×16
12×16

4×16
12×16

Figure 4.1: Enumeration of all CU and PU modes in a CTU

The incorporation of MV-HEVC in HEVC is achieved through a high-level syntax

extension, which is shared with other multi-layer extensions (scalable extension (S-

HEVC) and 3D-HEVC). MV-HEVC is designed to allow reuse of existing HEVC

encoders and decoders with no major modifications [73]. The design principle of

MV-HEVC follows that of the multiview extension of AVC. The higher compression

efficiency is achieved by exploiting redundancy between views of the same scene (inter-

view similarities) as shown in Fig. 4.2 (a).

Fig. 4.2 (b) presents a prediction structure for an MV-HEVC system. All pictures

associated with the same capture time instance are stored in an access unit (AU)

and have the same picture order count (POC). In MV-HEVC a picture with all its

color-components is referred to as layer. The first view or base layer within a AU
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(ME/DV), (b) P-I-B inter-view prediction structure

must conform to HEVC single-layer coding specifications. The layers from other

views, within the same AU, following the base layer are referred to as enhancement

layers or nonbase layers, and must conform to specifications for multiview extension.

Each layer follows a temporal hierarchical B-frames prediction structure [7] where

eight frames are grouped as a group of pictures (GOP). Each GOP is fenced by two

consecutive intra-coded frames (I-frames).
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As seen from Fig. 4.2 (b), in addition to having a temporal hierarchical B-frames

prediction structure that uses the frames within the same view for referencing, MV-

HEVC requires an inter-view prediction structure (not defined by the standard). The

addition of inter-view frames of the same time instance in the reference picture list

(RPL) for the prediction in the enhancement layers results in a significant bitrate

saving for these layers [73] [50] [75]. Inclusion of inter-view prediction structure is

enabled through the flexible reference picture management capabilities of HEVC. The

complex reference hierarchy in the prediction structure presented in Fig. 4.2 (b), is

formed to fully exploit various temporal and inter-view redundancies. This prediction

structure is built through deeper temporal layering, increasing number of reference

frames in the temporal and inter-view domains, and larger decoded picture buffer, all

leading to higher computational complexity and more storage space.

4.3 Related Work

4.3.1 ME/DE Algorithm

The ME/DE is usually carried out through an iterative block matching process where

a vector is computed between two blocks of pixels, in the current and reference frames.

The best match in the rate-distortion (RD) sense is selected and signaled in the

bitstream. Block matching even in the single view video coding is a time-consuming

process, and as said, amounts to up to 50% of the total encoding time.

To accelerate the block matching in ME/DE many sub-optimal techniques have been

proposed for AVC that are generally applicable to HEVC. An iterative Hexagon

search was proposed in [8] to enhance the RD performance of the earlier diamond
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search [9]. More sophisticated search algorithms use multiple simple search patterns

and local correlations to further improve RD performance. The technique in [10]

proposes unsymmetrical-cross multi-hexagon-grid search (UMHexagonS). The work

in [11] gains further improvement through enhanced predictive zonal search (EPZS).

In high efficiency model (HM) [28] and its multiview extension (HTM) [4], reference

software suites, the method of TZsearch, a variation of diamond search, is adopted.

Compared with AVC, the computational complexity of ME in HEVC has increased

considerably due to higher hierarchical complexity associated with the CTU. Much

higher complexity also results from the very high video resolutions that are targeted

by HEVC, (and by extension MV-HEVC). The complexities associated with MV-

HEVC demand new ME/DE techniques beyond TZsearch.

The availability of massively of MPA computing platforms [34] [35], has provided

an excellent opportunity to accelerate application with high data-level parallelism

such as ME/DE. In our previous works, a range of high performing ME/DE schemes

for multiview extension of AVC are proposed to significantly improved execution

time, with negligible impact on the RD performance [50] [41]. The recent GPU-base

algorithm for HEVC in [21] employs two different techniques for ME processing of the

larger and smaller PUs. A parallel GPU/CPU based ME processing was proposed in

[74] for HEVC.

All aforementioned ME/DE algorithms share a common characteristic, the calculation

of sum of absolute differences (SAD) for all PUs are carried through an aggregation

of SADs from the smaller PUs to compute the SADs for the larger PUs (see [50]

for details). This approach while avoids redundant calculations of SADs has three

drawbacks. First, the aggregation process imposes a strict hierarchical dependency on

the processing of PUs. This removes the opportunity to skip ME/DE process for a PU

with content that has little or no motion. Second, parallel SAD aggregation is unable

to use motion vectors (MV) or disparity vectors (DV) from the neighboring PUs, (as
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specified in the standard), during the calculation of cost function, resulting in some

loss in RD performance [50]. Third, as will be seen in Section 4.6 the implementation

of aggregation of PUs in WPP (introduced for the first time in HEVC), on a typical

multicore CPU/GPU heterogenous platform [76] significantly hampers the coding

time performance.

4.3.2 Fast Mode Decision

A rich choice of hierarchical partitioning modes within the CTU is the main reason for

higher coding efficiency as well as the high computational complexity in HEVC. To

improve the execution time of HEVC requires additional optimization steps beyond

the efficient processing of ME, through early termination of partitioning within CTU.

The scheme in [18] stops further partitioning of CU into smaller CUs if the skip mode

has been selected. An early termination scheme where the partitioning mode with

largest PU size is first checked, was proposed in [19]. If in this mode PU produces a

coded-block-flag equal to zero, the processing of all PUs within this CU is skipped.

The work in [20] improves upon this termination scheme by halting the processing

of all other PUs if both the MV difference and coded-block-flag are turned out to be

equal to zero. Further, the latest related work on HEVC coding in [21] proposed a ME

technique that skips the processing of all CU of size 8× 8. For the remaining larger

CUs all 17 possible symmetric partitioning modes are evaluated. Three modes with

lowest costs collectively determine the early termination decision for the processing

of CTU subtrees.

Above algorithms are estimated to yield a speedup factor of about 1.6 to 3 with

varying loss in the RD performance. There are also fast mode decisions proposed for
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intra-prediction [22]. However, intra-prediction consumes very little time in compar-

ison with ME/DE processing.

These efforts reveal the potential of reducing encoding time by appropriate skipping of

some of CUs and PUs. However, the increasing number of views in MV-HEVC brings

significantly more inter-prediction for each PU within a CTU, potentially slowing

down the processing of PUs for the existing algorithms.

4.4 Fast Massively Parallel Motion/Disparity Es-

timation (ME/DE)

4.4.1 Architecture and Programming Model

An MPA features a large number of processing cores (on the order of 1000) which are

organized in a hierarchical fashion, in an array of multi-processors (MP), with each

MP housing a number of processing cores (typical 32 to 48 cores). The MP cores

operate in SIMD mode or more appropriately single program multiple data (SPMD).

When an MP becomes available, one of the thread schedulers dispatches a stream of

identical instructions for an entire set of program threads to the cores in that MP

[77]. In addition, MPA gains unprecedented performance through high bandwidth

memory access in the order of Giga bytes per second (GB/s). The memory hierarchy

of MPA features a large number of registers, MP local memory, L1 and L2 caches,

and dynamic random access memory (DRAM), listed in the order of the fastest to

the slowest in terms of access latency. In ME/DE processing the fast storage such as

registers and L1 cache can be leveraged to aggregate SADs [50].
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Memory access latency variation on the MPA is large, and therefore, plays a significant

role in the parallel algorithm design. Arithmetic operations incur a latency of about 20

cycles on average, if the operands are available in the registers [77]. The corresponding

latency when the operands are on the DRAM is about 400 to 800 cycles. A good

measure of computational efficiency of a parallel algorithm on an MPA is the compute-

to-memory-ratio (CMR) which is represented as the number of arithmetic operations

per a DRAM access. In order to increase CMR of an algorithm requires maximum

data reuse once it is loaded from the DRAM to the local memory attached to an

MP. Each partial accumulation of absolute difference operation for ME/DE consists

of two read memory accesses (reference block pixel and prediction block pixel) and

three arithmetic operations (subtraction, absolute value and addition). To improve

the CMR of SAD in ME/DE on the MPA the number of memory accesses needs to be

reduced. It should be noted that due to large cache size the CMR is not a significant

issue for the CPU-based algorithms.

The MPA platform used is NVIDIA GPU with compute unified device architecture

(CUDA) programming model as shown in Fig. 4.3. All copies of the parallel pro-

gram (Threads) execute the same set of instructions, however, on different data.

Threads are further grouped into thread-blocks. Thread-blocks are in turn placed on

a grid. Thread-blocks are executed on the GPU’s streaming multi-processors SMP,

with a minimum of 32 threads per SMP (a thread warp) executing simultaneously.

Occupancy is used as a measure for parallel execution concurrency on the GPU ar-

chitecture and is represented as the number of threads simultaneously residing on a

SMP. It mainly depends on total number of threads and thread-blocks, and allocation

of resources for each thread and thread-block. Higher occupancy generally leads to

significantly better performance and is considered a crucial design factor.
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Figure 4.3: Threads, blocks, and grid configuration

4.4.2 Aggregation Parallel ME/DE

The SAD evaluation in the ME/DE can be divided into two categories. The full

block matching (FBM) can use the method of aggregating SAD evaluation (ASAD)

as shown in Fig. 4.1, where all pixel-wise absolute differences for all locations are

evaluated and progressively aggregated to form the SADs for all PUs within a CU

and CTU, avoiding any redundant computation for SADs.

The development of parallel ME/DE algorithms have generally followed the ASAD

approach due to its ease of implementation on the massively parallel architecture

(MPA) [50] [41] [21] [74]. In this case PUs of the smallest size can be computed in

parallel and aggregated in a hierarchical fashion. This, however, comes at the cost of

reduction in the RD performance. This is because in the parallel PU processing the

MV/DV information from the neighboring PUs to minimize the ME cost function

are not available a-priori. The cost in RD performance was of minor concern in AVC

with a much smaller macroblock size of 16 × 16 [50]. However, in HEVC with the

CTU of 64× 64 this cost cannot be ignored.

In addition, despite of seemingly large number of cores, a massively parallel ASAD
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based FBM can easily saturate the resource of an MPA [50]. To reduce the likeli-

hood of saturation of resources on the GPU, in [50] a fast massively parallel ME/DE

search algorithm to significantly reduce the complexity of ASAD using an adaptive

search region is proposed. However, in HEVC the aggregation hierarchy (Fig. 4.1) is

much deeper than the AVC (8 versus 4). This corresponds to parallel ME/DE cost

evaluations for 593 PUs compared to only 41 in AVC. This indicates that employing

ASAD method would always saturates the resources of the GPU, even if our previous

method in [50] is applied. Therefore, it is desirable to explore a good method that

provides flexibility to simplify the ME/DE cost evaluations for certain PUs whose

contents have remained static.

4.4.3 Non-aggregation Fast Massively Parallel ME/DE

The objective is to seek a fast massively parallel solution through the method of

Independent SAD evaluation (ISAD) for the search algorithms, where each PU within

a CU follows a separate search in the search region without reliance on the aggregation

of SAD from the smaller PUs within the same CU and CTU. The technique of ISAD

can significantly reduce the number of ME/DE cost evaluations from its maximum of

593 by simplifying the ME/DE process for the PUs that have little motion content.

Further, the method of ISAD can totally avoid the ME/DE cost evaluations for 168

PUs that correspond to HEVC asymmetric partition modes (see Fig. 4.1), which

are rarely invoked. Further, ISAD allows use of the MV/DV information from the

neighboring PUs to minimize the ME cost function, because the PUs within a CU are

coded in the right order as specified in the standard [6]. To avoid the drawbacks of

ASAD based approaches, for the first time, this work proposes a parallel fast ISAD

algorithm (Predicate Algorithm) that is based on exploitation of inter-pixel similarity

in a frame.
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4.4.3.1 Predicate Algorithm for Motion/Disparity Estimation

With hierarchical nature of CTU in HEVC, where a large number of PUs of various

sizes exists, it is possible to take the advantage of the algorithmic flexibility of ISAD

to substantially reduce the complexity of ME/DE for PUs with little or no motion. To

achieve this, a preprocessing predicate is inserted before initiating a high accuracy,

high computational complexity ME/DE using the FBM technique. The expensive

FBM is avoided if the predicate produces a MV/DV that is within an user specified

range (iRaster). The computational overhead of predicate algorithm is significantly

lower than the subsequent high accuracy FBM, resulting in much saving in the average

search time. The proposed ISAD-based predicate algorithm for complexity reduction

in the ME/DE of PUs is much more flexible and content-adaptive, offering trade-off

between accuracy and computational complexity. Algorithm 1 presents the details of

the proposed scheme.

The predicate scheme, by taking the advantage of the correlation between the four

neighboring PUs, computes the cost associated with points obtained from their

MVs/DVs in addition to the cost for the point for the zero displacement MV/DV.

This is followed by the check of another 20 search points through a concentric di-

amond search around the center of the search area at steps of one, two, and four.

Among all these 25 search points the one with the lowest cost has its MV/DV com-

pared with the iRaster threshold. If the MV/DV associated with this point is larger

than iRaster threshold a FBM is initiated. Limiting the steps size for the diamond

search to four makes is found to yield a good trade-off between RD and execution

time performance. Table 4.2 shows the RD performance with iRaster set to 1, 2 and

3, for four MV-HEVC sequences for a QP value of 32. The experiments are carried

out at a commonly used mid-range QP value of 32. The RD performance of TZSearch

is also presented for the purpose of comparison. As can be seen, significant skip rate
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Algorithm 1: Predicate Based Algorithm for Motion/Disparity Estimation

Input: Search region, S; Prediction Block, C; Skip threshold value, iRaster;
Search width and height, (SRWidth, SRHeight); Neighbors and zero
MVs/DVs, (MVA,MVB,MVC ,MV (0, 0))

Output: Motion Cost, Cost; Motion/Disparity vector, MV
1 Initialization: Cost =∞; MV = (0, 0)
2 (Start Predicate)
3 for tmpMV ∈ (MVA,MVB,MVC ,MV (0, 0)) do
4 tmpCost =getCost(tmpMV, S, C);
5 if tmpCost < Cost then
6 Cost = tmpCost; MV = tmpMV ;
7 end

8 end
9 iDist = {1, 2, 4};

10 (lCost, lMV ) = DiamondSearch(iDist,MV, S, C);
11 (End Predicate)
12 if (lMV.X > iRaster)||(lMV.Y > iRaster) then
13 CostArray = gpuScaleFastKernel(SRWidth, SRHeight, S, C);
14 (Cost,MV ) = MinimalCost(CostArray);

15 else
16 (Skip full block search for this prediction block)
17 end

with minimal to no RD performance loss is achieved at iRaster = 1. For all test

sequences, going from iRaster = 1 to iRaster = 2 and iRaster = 3 further increases

skip rate, with little sign of significant loss in RD performance. iRaster = 3 is used

all simulation. This indicates that the predicate algorithm is effective in skipping

unnecessary work in ME/DE.

The fraction of PUs that do not undergo ME/DE using the FBM in the predicate

scheme varies with the content in MV-HEVC multiview video. The average skip rates

are 92%, 88%, 97%, and 93% for Balloons, Kendo, PoznanHall2, and PoznanStreet,

respectively. For a more dynamic MV-HEVC video sequence such as Kendo the PU

skip rate is lower.
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Table 4.2
Rate-distortion (RD) performance at three iRaster values for MV-HEVC

test sequence at QP=32

Video Sequence iRaster PSNR BR (Kbps) Skip Rate

1 41.13 882 90%
Balloons 2 41.13 883 92%

3 41.13 881 92%

TZSearch 41.13 879

1 41.90 1092 85%
Kendo 2 41.90 1094 88%

3 41.90 1096 88%

TZSearch 41.89 1090

1 42.43 790 95%
PoznanHall2 2 42.43 794 97%

3 42.43 793 97%

TZSearch 42.43 791

1 38.78 2526 90%
PoznanStreet 2 38.78 2534 93%

3 38.78 2535 93%

TZSearch 38.78 2519

4.4.3.2 Inter-pixel Similarities and ScaleFast Search

Optimization guidelines for the MPA provided earlier in this section suggest that a

good parallel ME/DE algorithm must focus on reducing the computation cost while

maintaining a regular memory access pattern to fetch the pixel values. The fast

CPU-based simple fast search algorithms such as diamond search [9], or more com-

plex search algorithms such as UMHexagon [11] unfortunately cannot be efficiently

parallelized on the MPA platform due to irregular prediction chain and memory access

patterns.

To maintain a regular memory access pattern and reduce the number of computations

on the MPA, an improved ME/DE scheme that is based on the use of inter-pixel

similarity is introduced. In addition to the spatial and temporal similarity across the
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PUs, there is a high correlation between a picture and its lower resolution versions.

The number of memory accesses and computations can be reduced by a factor four, if

allowing only the participation of every alternative pixel in both directions in a PU in

the evaluation of SAD. Note that in this scheme the search region, and therefore, the

number of points searched have not changed. However, for each point searched, the

number of absolute difference computations has scaled down. Our experimentation

over several video sequences has shown that the MVs/DVs for the best search points

for the original PU and its scaled down version are very similar. It is possible to

continue along this path by requiring the participation of every four and eight pixels

in each direction in the computation of SAD. Fig. 4.4 presents the effect of down-

scaling of a PU by factors of two, four and eight on the visual content of the picture.

The red box in Fig. 4.4 identifies the block with best match in the reference search

region. As can be seen the similarity between the MVs/DVs in the original PU

and its factor of four and eight scaled down versions are still maintained, due to

inter-pixel similarity. The ME at different resolution is also reported in [78]. Three

downsampling methods, left-top, discrete wavelet transform, and averaging filter are

presented in [78]. The downsampling in [78] was used to enhance the ME accuracy,

whereas in this work the technic is employed to improve execution performance. The

low pass filtering is skipped for the sake of maximizing execution performance. Our

results shows that use of this technique has little to no effect on RD performance.

The scaling factor trades computation time for the RD performance and can be

specified as an user option. It should be noted if a scaling factor of eight is specified,

a PU with a side equal to four is scaled by a factor of four in that side. For example a

PU of 8×4 is scaled by a factor of eight and four. The consequence of this nonuniform

scaling across the PUs when the scaling factor is eight or higher requires normalization

of SADs to account for this non-uniformity during the evaluation of the cost function.

Another implication of nonuniform scaling, as will be seen in the next section, is that

it loses its effectiveness in reducing the number of computation in SAD for the PUs at
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Figure 4.4: Motion/Disparity (ME/DE through the exploitation of inter-
pixel similarity

the bottom of CTU hierarchy that have one of their sides equal to four (for a scaling

factor of eight).

4.4.4 Architecture Optimization

Next discussion is focused on the GPU architecture optimization for a highly parallel

ISAD-based algorithm on the MPA.

Device configuration: To tune the performance of FBM in the proposed predicate

algorithm, the GPU device is configured to match the search window size. Each

thread within a thread-block is dedicated to the computation of SAD for a PU in one
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search location. All threads in a thread-block process a row of search locations in the

search window. thread-blocks collectively process all the rows of the search window.

For example, for a search window of ±64, there are 128 threads within a thread-block

and 128 thread-blocks within the grid. This configuration has three advantages: 1)

regardless of the size of the PU, a total of 1282 threads is enough to fully occupy

any modern MPAs; 2) it scales well with the search window size without affecting

occupancy (described earlier) ; 3) it ensures reduction in the workload for a thread

with the proposed pixel down-scaling ME/DE.

With the chosen configuration an occupancy of 4 thread-blocks per SM is achieved,

where typically the performance of the GPU saturates. The CMR, for a PU of size

N ×M , and scaling factor of SF for the ScaleFast, a search window width of SR, is

obtained as,

Computation =
3×N ×M × SR

SF2

Memory Access =
M × SR

f 2

CMR =
Computation

Memory Access
= 3N

The factor of 3 refers to the number of operations (subtract, taking absolute value

and add) involved in the calculation of single SAD. Each thread calculates the SAD

for PU at one search location amounting to 3×N×M. A thread-block collectively

calculates a total of SR number of locations. A single SAD calculation requires the

reading of a pixel in the search window and a pixel in the PU. However, pixels in a

PU are shared among all threads and thus are loaded onto the fast shared memory all

at once. The number of memory accesses comes from reading the reference pixels in

the search window amounting to M×SR. Note that the CMR solely depends on the
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width of the PU (scaling factor cancels each other). This indicates CMR is unchanged

for PU as scaling factor increases (to reduce computation). The typical values of N

are 64, 32, 16 and 8.

Cost reduction: The evaluation of SADs is followed by the Lagrangian RD cost op-

timization to select the MV/DV with the minimum cost. This optimization can

be performed completely on the GPU immediately following the computation of all

SADs. However, the device configuration for the SAD evaluations are not best for

the computations for the cost optimization. Alternatively, all Lagrangian RD cost

optimization can be performed on the CPU after the transfer of required data from

the GPU to the CPU memory. In our implementation the best approach to perform a

partial cost optimization on the GPU and carry the rest on the CPU. In this approach

all row-wise cost reduction are performed on the GPU maintaining the same device

configuration. The row-wise reduction is carried out by 128 threads in the thread-

block, via the binary-tree reduction in only seven steps. All partial cost values are

next transferred to CPU for column-wise cost reduction. In this way the amount of

data movement between the GPU device and the CPU memory is reduced by a factor

of 128, resulting in significant reduction in the transfer time. This also eliminate the

high latency associated with the relaunch of the new kernel on the GPU when this

latency is significantly higher than the execution time of the kernel.

Motion cost and vector byte packing : SAD cost varies with QP. However, from our

observation, from a large number of trials, it requires no more than 20 significant

bits. Hence, the allocation of 24 bits is more than sufficient to cover a wide range of

QPs. Even if the actual cost requires more bits, saturation of SAD cost to 24 bits

does not degrade the RD performance as a MV/DV with such a high cost (224 − 1)

is most unlikely to be the best choice in the final cost optimization step. On the

other hand, the storage for the MV/DV is limited by the search window size. For the

implementation employed the row-wise partial reduction on the GPU device requires
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only maintaining the record of the MVs/DVs along the row. With eight bits of storage

a search window as large as ±128 can be accommodated. To reduce the memory

transfer between the GPU device and the CPU, a 32-bit packed data structure is

employed where the most-significant three bytes are allocated for the SAD cost, and

least significant byte for the MV/DV. On the CPU the packed data structure are

unpacked to do the final column-wise cost reduction.

Other optimization measures : 1) the memory transfer is further reduced by passing

all parameters to the GPU device kernel function through registers; 2) all RPLs are

allocated only once before start of the encoding and de-allocated only at the very end

of the encoding; 3) local shared memory has declared to be accessed through name

aliases to serve a dual purpose, storing the PU pixels and later on SAD values.

4.4.5 SIMD-Parallel Sub-pixel and Bi-direction ME

The work in [74] achieves fast sub-pixel motion estimation by skipping search locations

that incurs RD performance loss. In this work SIMD acceleration is introduced to

evaluate all search locations and mitigate the loss of RD performance.

Massively parallel processing on MPA is ideal for integer ME/DE due to the existence

of a large search region, with each core responsible for up to thousands of SAD

computations. However, for sub-pixel and bi-directional ME/DE, the number of

search points for a PU is a tiny fraction its integer ME counterpart, and thus not

suitable for processing on MPA. Sub-pixel and bi-directional ME/DE are also not

suitable candidates for multi-threading on multicores as the small processing workload

does not justify the significant execution overhead. On the other hand, streaming

SIMD extensions (SSE) [79] instructions set offered by all modern CPUs that allow
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Figure 4.5: Single-instruction-multiple-data (SIMD) SAD calculation im-
plementation.

packed data to execute in a parallel fashion provide a promising alternative for sub-

pixel and bi-directional ME/DE proceeding. First, unlike the data transfers in MPA,

the overhead of transferring data from cache/memory to SIMD register is minimal.

Second, decent amount of parallelism needed for the task at hand can be achieved on

the modern processors that support wider register (up to 512-bit). With a register

width of W = 128 and pixel bit depth of B = 16 the sub-pixel processing can be

improved by up to a factor of W/B = 8.

This work, therefore, takes the advantage of SSE instruction set to efficiently re-

duce the number of instructions required for sub-pixel and bi-directional ME/DE. As

shown in Fig. 4.5, to perform partial SAD on a batch of 16 pixels (16-bit pixels)
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Figure 4.6: Execution time, PSNR and birate performance measures for
four 3-view MV-HEVC multiview test video sequences for a QP value of 32

Table 4.3
Experimental Condition

Hardware: Intelr Xeonr CPU x5650r 12 cores (2 sockets, 6 cores/socket)
with no-hyper-threading, and SSE4 SIMD instruction set with
128-bit, @2.67GHz and NVIDIA Fermi ™ C2075 SLI with 5 GB
GDDR5,

Operating System: Red Hat Enterprise Linux 7.2 (Maipo)

Software: HEVC test and validation software suite (HM) 16.3 [28] and
its MVC extension suite (HTM) 16.2 [4], GOPSize: 8, Tempo-
ral prediction structure: hierarchical B-frames, Inter-view pre-
diction structure: IPP, BiPredIter: 2, IterSearchRange: 4, Fas-
tEncoderDecision: 0, FastDecisonMerge: 0, Anchor ME/DE
Algorithm: TZsearch [4] [28], ME/DE search range [-64,64]/[-
64,+64](horizontal/ vertical)

Test Sequence:
HEVC Video Sequence ∈ {PeopleOnStreet (2560×1920, Cactus
(1920×1080), RaceHorses (832×480), BlowingBubbles (415×240)
[80]}

Multiview Video Sequence ∈ {1920×1088×25: PoznanStreet,
Dancer, GTFly, Shark; 1024×768×30: Balloons, PoznanHall2,
Newspaper, Kendo [81]}

only four types of SSE SIMD instructions are needed with a total of 12 operations

(four Load, two Absolute, two Difference, and four Horizontal Add (HADD) as shown

in Fig. 4.5 with their corresponding intrinsic SSE2 instruction). For PUs of 64×64,
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64×32, 32×64, 32×32, 32×16, 16×32, 16×16, 16×8, 8×16, 8×8, 8×4, and 4×8,

the number of SSE2 SIMD 16 pixel batch processing required to compute the global

SAD value for one search location are, 256, 128, 128, 64, 32, 32, 16, 8, 8, 4, 2, 4,

respectively. It should be noted that Intelr SSE instruction set offers a dedicated

SIMD instruction ( mm SAD epu8) for 8-bit SAD calculations. However, this instruc-

tion is not suitable for 16-bit pixel representation. The chosen sequence of instructions

work across a range of the pixel bit-depth from 8 to 12 bits as required by HEVC

standard. First, PU and its reference block pixels are loaded onto 128-bit vector

registers 2 via LOAD instruction. Eight 16-bit pixel-wise absolute value of differences

are evaluated in parallel using subtraction and absolute (AD in Fig. 4.5) instructions

and stored in a 128-bit vector register. Another eight absolute value of differences

are computed in the same manner. The resulting two 128-bit vector registers con-

taining 16 absolute differences are reduced to a single partial SAD value through a

sequence of four horizontal add (HADD [79]) instructions. The HADD instruction

performs binary reduction by adding eight pairs of neighboring absolute differences

in 16-bit sub-registers and placing the results in lower four 16-bit sub-registers. The

first execution of this instruction reduces two 128-bit vector registers in this fashion

simultaneously, where results from the second register are stored in the higher four

16-bit sub-registers. The subsequent three invocations of this instruction reduces all

the 16 absolute differences into a single partial SAD in the lowest 16-bit sub-register

of SAD register, highlighted red in Fig. 4.5. This partial SAD is subsequently aggre-

gated to the global SAD. On average, enabling SIMD acceleration yields an additional

20% execution time reduction with no cost to RD performance.

2 The CPU on the platform used in the experiment (Table 4.3) supports up to Intelr SSE4 SIMD
instruction set with maximum register width of 128-bit.
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4.4.6 Results

For the experimental setup, the parameters in Table 4.3 are used. Four 3-view MV-

HEVC multiview video sequences [81] are tried. The QP = 32 is selected for proving

the effectiveness of ScaleFast. Fig. 4.6 for MV-HEVC multiview shows the execution

time, peak signal to noise ratio (PSNR) and bitrate performance results of optimized

predicate algorithm by integrating the scaled SAD computation into predicate al-

gorithm. The figure also present the fraction of PUs that do not undergo integer

ME/DE using the FBM in the predicate scheme.

A speedup factor of two in the integer ME with no loss in RD performance is observed

for MV-HEVC test video sequences for a scaling factor of two. A scaling factor of

four shows an average speedup factor of 2.2 for the integer ME with less than 0.02

dB loss in PSNR or alternatively, a negligible, 0.1% increase in bitrate. The highest

skip rate of 97% is observed in PoznanHall2 sequence with no obvious impact on the

RD performance.

Regardless the type of video sequence, the speedup factor saturates beyond the scaling

factor of four for the reason of non-uniformity in the scaling factor at the bottom of

the CTU hierarchy as mentioned before.

Table 4.4 presents a comparative summary of the RD performance and speedup of

the proposed SacleFast algorithm, when augmented with SIMD processing for the

fractional and bi-directional ME/DE, with respect to the anchor TZsearch for eight

multiview test sequences using Bjontegaard metric [1] over QP values of 22, 28, 32,

and 37. An average speedup of 2.5 in ME/DE is observed with a minimal effect on

PSNR and bitrate.
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Figure 4.7: Percentage of non-splitting CU at Depth0, Depth1, Depth2 for
four 3-view MV-HEVC test video sequences, Balloons, Kendo, PoznanHall2,
and PoznanStreet for anchor encoding.

4.5 Quantization Parameter (QP)-Based Early

Termination of Coding Tree Unit (CTU)

4.5.1 Quantization

The PU residuals are transformed into the frequency domain by an integer transform

operation that approximates the familiar 2D DCT. The QP determines the step size

for associating the transformed coefficients with a finite set of steps. A large value

of QP represents big steps that crudely approximate the transform coefficients in the

spatial domain using a smaller number of bits, at the cost of higher distortion. A

small value of QP approximates the block’s spatial frequency spectrum more accu-

rately at the cost of more bits. A rate control algorithm can dynamically adjust the

encoder’s QP as the most effective mean to achieve a target bitrate. In the quanti-

zation process, transformed coefficients are first divided by a quantization step size

(Qstep) and then rounded. The exponential relation between the step size for the

transformed coefficients Qstep and the QP (with value ranging from 0 to 51) for the

video sequences with an 8-bit color depth is given as,
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Table 4.4
Comparison of SIMD Augmented ScaleFast RD and Execution Time with
the Anchor TZsearch Using Bjontegaard Metric [1] over QP values of 22,

28, 32, and 37

Video Sequence DPSNR DBR Speedup
ME Total

Balloons -0.01 0.5% 2.1 1.4
PoznanHall2 -0.01 0.4% 1.8 1.3
Newspaper -0.02 0.5% 2.6 1.4

Kendo -0.01 0.4% 2.3 1.5
PoznanStreet -0.01 0.6% 1.8 1.3

Dancer -0.02 0.7% 1.9 1.3
GTFly -0.02 1.0% 2.1 1.4
Shark -0.03 0.9% 2.3 1.4

Average -0.016 0.63% 2.11 1.4

Table 4.5
Coarse-Grain QP-based Early Termination Depth Selection

QP Sub-range Allowed Depth Disallowed Depth

[0, 12] 0, 1, 2, 3 None
[13, 26] 0, 1, 2 3
[27, 40] 0, 1 2, 3
[41, 51] 0 1, 2, 3

Qstep(QP) = 2
(
QP− 4

6
)

(4.1)

An unit increment in QP increases the quantization step size by approximately 12%.

For an average QP of around 25, the reduction in the bitrate is approximately 80%.

it should be, however, noted that the source of bitrate reduction is the transformed

residual and not the MV/DV. Further, with QP greater than 25, the transformed

residuals associated with the finer PU partitions (such as 16× 16 and 8× 8), have a

higher likelihood of being zero compared with PUs of larger size (such as 64× 64 and

32× 32). Therefore, MVs/DVs associated with small PUs are more likely to be less

useful.
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4.5.2 Coarse-grain Early Termination of Coding Tree Unit

(CTU)

In the anchor HM encoder, all CU and associated PU modes (see Table 4.1) are

tried to determine the best modes in terms of lowest RD cost. This exhaustive

search comes at the expense of high computational complexity. It is observed in the

coding experiments that the best selected CU mode is highly correlated with the

selected QP value. Fig. 4.7 shows the percentage of non-splitting CU after mode

decision at three different depths for four commonly used QP values and four 3-

view MV-HEVC multiview test sequences. As can be seen, at Depth0 where CU

size is 64 × 64, percentage of non-splitting CUs steadily increases with QP for all

video sequences, approaching 90% at QP37. This indicates that as QP increases,

the computation spent in trying all modes are mostly in vain because an increasing

number of CUs remain non-split at Depth0. Similarly, for the CUs that are split at

Depth0 majority do not undergo split at Depth1, albeit a less predictable behavior.

The same observation can be made about Depth2. It should be noted that CU64×64

is at the root of coding tree and further splitting results in the evaluation of four

32×32 CUs, 16 16×16 CUs, and 64 8×8 CUs. Therefore, if split at a CU of 64×64

is skipped all subsequent evaluations are avoided. Therefore, in the mode decision

process, correctly avoiding the evaluation of CU at different depths according to the

QP value can bring significant time reduction.

To take the advantage of the observation in Fig. 4.7 a suitably mapping for all

52 QP values into four depths is needed. The entire QP range is dvided into four

even sub-ranges with every 13 QP values mapped to the same termination depth as

shown in Table 4.5. The mapping in Table 4.5 is universally applied to all video

sequences. The RD performance of the proposed QP-based early termination scheme
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is compared with the anchor encoder and presented in the first column of Table 4.6

(labeled Baseline). Comparison is made using Bjontegaard metric [1] over QP values

of 22, 28, 32, and 37. The scheme works well for video sequences PoznanHall2 and

Balloons, where the contents are more static. However, the RD performance of the

scheme is not sufficiently good for Kendo and PoznanStreet video sequences where the

video contents are more dynamic. The bitrate in these cases increases by 11%. The

discussion in the sequel presents a refinement scheme to improve the RD performance

of video sequences.

4.5.3 Selective Coding Unit (CU) Split

The main reason for the RD performance loss in the simple QP-based early termi-

nation is the small number of available depths that cover the whole range of QP

values. The coarse mapping in Table 4.5 cuts the CU tree too abruptly reducing the

possibility of further CU splits to achieve a better RD performance at higher depths.

To enhance the RD performance the use of three special types of CUs is introduced

for which further split should be allowed.

Inter2N × 2N CU : A 2N × 2N mode refers to the largest PU within a CU (see

Fig. 4.3). When the coding selection of a 2N × 2N PU is inter-prediction and the

motion content is such that a 2N × 2N mode selection is unable to capture all the

motion information, a further split should be allowed. This split is likely to result in

a better RD performance. In Table 4.6, the second column (labeled Inter2N × 2N)

shows the RD performance with respect to the Baseline when Inter2N × 2N) CUs

is allowed to split further. Compared with the anchor and Baseline, on average, this

refinement technique has a bitrate increase of 3.5% with respect to the anchor, which

is significant reduction from 6.2% for the Baseline case. The most dramatic effect
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is in the most dynamic video Kendo video sequence where the reduction in DBR

with respect to the Baseline case is 4.7%. With respect to the Baseline the average

(DPSNR) is improved by 0.08 dB. For Kendo the improvement is 0.16 dB.

Intra-predicted CU : An intra-predicted CU does not rely on motion information.

Therefore, it is more likely that split in such CUs will further improve RD perfor-

mance. In general, intra-prediction contributes far less to the execution time than

inter-prediction and allowing intra-predicted CUs to split only increases the execution

time slightly. The third Column (labeled Inter2N × 2N + IntraMode) in Table 4.6

shows the aggregated effect of further split of Inter2N×2N and intra-predicted CUs.

The ∆PSNR and ∆DPR values show the incremental improvement that results from

the further splits of intra-predict CUs. On average, the DBR and PSNR improve by

0.8% and 0.02dB, respectively. The most significant improvement is, again, for video

sequence Kendo where the DBR is reduced by 1.1% to 5.2%.

Atypical MV/DV CU : From experimentation with a range of video sequences, it is

observed that some CUs with Inter2N×2N as the best mode have very large MV/DV

values. As RD evaluation in the ME/DE is a function of both MV/DV value and

residual SAD, in a CU with dynamic content the cost of SAD dominates over the

cost of MV/DV. In such a case, further split of the CU aides the RD evaluation

to find better matching block with smaller overall residual SAD and MV/DV cost

in the next depth level. As CU size reduces MVs/DVs become more accurate, and

the magnitude of residual SAD decreases; so the likelihood of atypical MV/DV also

reduces. To accommodate CU at all depth level, an atypical MV/DV distance is

associated with every depth as a measurement of the likelihood of occurrence of

atypical MV. This distance is selected to exponentially grow from Depth0 to Depth2

as shown in Fig. 4.8. The method of selection of atypical distances is inline with

exponentially decreasing magnitude of SAD with the quad-splits of CUs.
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Atypical Distance 
for CU16x16

Atypical Distance 
for CU32x32

Atypical Distance 
for CU64x64

Figure 4.8: Atypical distances for three CU blocks

When a CU selects Inter2N × 2N as the best mode, but the value of its MV/DV is

larger than atypical distance defined for its depth, further split is allowed. The RD

performance using this technique is shown in the last column of Table 4.6 (labeled

Inter2N×2N+IntraMode+Atypical MV/DV ). As expected, this technique works

well for dynamic video sequences such as Kendo, the DBR is reduced further by 0.8%

and DPSNR is increased by 0.02 dB. On average, this technique improves the DBR

performance by 0.3%.

In Table 4.7, the PSNR and bitrate performance of the QP-based early termination

with selective CU split refinement (QPTerm) is compared against the anchor encoder

at four QP values (22, 27, 32, 37). The data in the table show that QPTerm is an

effective scheme in reducing the encoding execution time while maintaining a good

RD performance across a range of QP values. At QP value of 37, the execution time
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Figure 4.9: Percentage of non-splitting CU at Depth0, Depth1, Depth2 for
3-view MV-HEVC test video sequences, Balloons, Kendo, PoznanHall2, and
PoznanStreet for QP-based early termination.

Table 4.8
Rate-distortion (RD) and Execution Time Comparison with Anchor Using

Bjontegaard metric [1] over QP values of 22, 28, 32, and 37, for eight
MV-HEVC Multiview (3-view) Video Sequences

Video SequenceDPSNR DBR Speedup
min (QP=22)max (QP=37) avg

Balloons -0.06 1.8% 1.8 6.0 3.5
PoznanHall2 -0.01 1.2% 1.7 4.3 2.7
Newspaper -0.03 1.0% 1.9 6.9 3.9

Kendo -0.15 4.6% 1.8 5.0 3.2
PoznanStreet -0.05 2.1% 1.6 6.5 3.5

Dancer -0.08 2.6% 1.5 4.6 2.7
GTFly -0.06 2.4% 1.6 4.9 2.9
Shark -0.18 4.6% 1.4 2.6 4.3

Average -0.08 2.5% 1.7 5.3 3.1

is reduced by factor 3 to 4 with insignificant change to the RD performance. Fig. 4.9

shows the percentages of non-splitting CUs after application of QPTerm scheme. For

Depth0, the non-splitting percentages at all four QP values are slightly higher than

those of anchor encoder in Fig. 4.7, specially for Kendo video sequence. This increase

in the non-split rate explains the reason for slightly inferior RD performance for the

proposed scheme. Trends for Depth1, are similar but with slightly higher percentage.

For Depth2 the non-split percentages are generally even higher.

Table 4.8 shows a summary of comparative result of the combined predicate and

early termination scheme (QPTerm) with the anchor encoder using the Bjontegaard

[1] metric for eight MV-HEVC multiview (3-view) test sequences. A speedup factor

of 1.7 to 5.3 is achieved with an average of 3.1 (or 68% time reduction) over the range
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Figure 4.10: Wave-front parallel processing

of QPs. For majority of the video sequences the increase in the bitrate (DBR) is less

than 3%, or the degradation in PSNR (DPSNR) is less than 0.08 dB. One notable

exception is Kendo video sequence featuring a highly dynamic scene with an uneven

background illumination, causing the proposed algorithm to be less effective.
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4.6 High Level Parallel Processing

HEVC video coding level (VCL) based tools provide support for picture, tile and

wavefront parallel processing (WPP) as part of the standard [6] [5].

The picture level parallel processing [5] for MV-HEVC, and the way to overcome the

serious problem of workload imbalance when processing frames in parallel in a MVC

system was extensively studies in our previous work [76]. If designed correctly parallel

processing of frames can hugely speed up the performance with no impact on the RD

performance.

In addition to the speedup, the parallel processing of independent tiles in a frame

where tiles are transported in different packets are also suitable in a lossy transmission

environment [5]. However, the RD performance loss increases with the number of

tiles, due to the breaking of dependencies along tile boundaries. The loss in the RD

performance is specially significant in the MV-HEVC environment due to significantly

larger number of dependencies. Therefore, tile parallel processing is not considered

in this work.

The WPP is performed at the CTU level where multiple non-neighboring CTUs with

no coding dependencies, (except for the CABAC context variables at the end of each

CTU row [5]), can be processed in parallel as shown in Fig. 4.10. CTUs in Fig.

4.10 are identified by their raster-scan order (left-to-right and top-to-bottom). In the

figure the CTUs with same color coding belong to the same wavefront and can be

processed in parallel, rolling from the top-left to bottom-right corner. Due to 2-step

delay in the processing of CTUs in a row with respect to its previous row, for a given

number of parallel processors (12 cores in our experimentation), it will take certain

number of ramp up coding steps (24 steps for 12 cores) before all the processors are
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fully utilized. The parallelization inefficiencies in ramp up at top-left corner and the

ramp down at bottom-right increase with the number of processors, and more so for

the lower resolution video sequences.

The loss in the RD performance that would result from the conventional CABAC

initialization at the starting point of each CTU row is, to some extent, mitigated by

propagating the content of the partially adapted CABAC context variables from the

encoded second CTU of the preceding CTU row to the first CTU of the current CTU

row ( as shown from CTU 1 to CTU N in Fig.4.10) and a reset at the end of each

row [82]. However, our results show that the impact of CABAC dependencies on the

coding efficiency in MV-HEVC is more severe than in the case of HEVC.

One common method, for WPP is the allocation of one processor for each CTU row

[21] [82]. An alternate implementation of WPP is provided where the impact of

parallelization inefficiencies due to ramp up and ramp down can be reduced. In the

proposed implementation all the CTUs for the WPP are placed in the set of lists

in advance. Each list corresponds to one step in coding wavefront as seen in Fig.

4.10 ({0}, {1}, {2, N}, {3, N+1}, {4, N+2, 2N}, ..., N-1, 2N-3, 3N-5, ...}, ..., {NM-

1}). The CTUs within one list can be processed in any order by any processor, as

soon one processor becomes available. However, to maintain the coding dependency

requirement for the WPP in HEVC, the CTUs from one list can be processed only if

there are no more CTUs left to be processed from the previous list. The advantage

of this scheme is that CTUs with the identical raster-scan order from multiple views

from the enhancement layers that have no coding dependencies, (View1 and View2 in

Fig. 4.2), can be placed in the same list and processed in parallel. This will increase

processor utilization of WPP.

It should be noted that in our implementation 12 processor cores all use the same set of

two GPUs for Scalefast search for ME/DE. In our previous work [76] showed that this
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Table 4.9
Rate-distortion and Execution Time Comparison of Wavefront Parallel

Processing with Anchor Using Bjontegaard Metric [1] for eight MV-HEVC
Multiview (3-view) Video Sequences

Video SequenceDPSNR DBR Speedup
mixmax avg

Balloons -0.12 4.3% 3.0 8.8 5.1
PoznanHall2 -0.06 4.8% 3.7 10.0 5.6
Newspaper -0.09 2.8% 2.7 9.2 5.2

Kendo -0.22 7.1% 2.9 9.4 5.3
PoznanStreet -0.07 3.4% 3.2 11.3 6.1

Dancer -0.10 3.4% 2.6 9.6 5.3
GTFly -0.08 3.6% 2.9 10.0 5.5
Shark -0.22 5.5% 3.1 11.4 5.8

Average -0.12 4.4% 3.0 9.7 5.4

limits the performance of the multicore parallel processing where massively parallel

ME/DE search algorithm on the GPU constitute majority of the coding workload.

However, both predicate and early termination schemes significantly reduce the need

for Scalefast search on the GPU pair.

4.6.1 Results

Table 4.9 presents the comparative results of rate-distortion and execution time

speedup of WWP with respect to the anchor encoder using the Bjontegaard met-

ric [1]. As can be seen, the speedup gain of the encoder with WPP is 3.0 to 9.7, with

an average of 5.4, when compared with the anchor encoder. This speedup comes at

the average cost of 0.04 dB degradation in PSNR or 1.9% increase in the bitrate (due

to partially adapted CABAC context variable) compared to the case with no WPP

in Table 4.7. The Execution time performance of higher resolution videos is slightly

better due to longer parallel wavefronts.
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4.7 Conclusion

This chapter introduced several optimization techniques at different levels of cod-

ing abstraction for MV-HEVC. In the parallelization of ME, the use of inter-pixel

similarity for integer ME/DE and SIMD for sub-pixel and bi-directional ME/DE is

demonstrated, with an insignificant amount of loss in the RD performance. In the

proposed early termination scheme the QP is used to dynamically control the parti-

tioning depth in the encoding of a CTU. The advantage of the proposed optimization

algorithm is its adaptability to the QP parameter and characteristics of the video

content. The chapter also proposed a WPP implementation that utilizes the comput-

ing resource in an efficient way and is, therefore, less sensitive to ramp up and ramp

down in the wavefront. The algorithm performance show less than 3.1% average bi-

trate increase compared with the anchor encoder with maximum speedup gain of 5.3

without WPP for the set of eight MV-HEVC multiview video sequences tried. The

corresponding values with WWP are 5% for bitrate increase and 9.7 for the speedup.
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Chapter 5

Conclusion and Future Work

This dissertation presents highly efficient algorithms for video encoding on parallel

computing platforms. To reduce encoding time while maintaining comparable quality,

the problem is tackled in a novel parallel-computing perspective. Three levels of

parallelism are investigated and corresponding parallel algorithms are proposed.

1. At the low parallel level (data-parallel), massively parallel algorithms for pixel

level processing (motion estimation and disparity estimation) are implemented

on massively parallel architecture. This brings over 100 times speed when com-

pared against sequentialized full search ME/DE and over 8 times speedup when

compared against the state-of-the-art sequentialized fast search ME/DE, with

nearly same rate-distortion performance.

In addition, SIMD instruction is adopted for small region ME/DE where the

massively parallel shows lack of efficiency. Depending on the processor archi-

tecture, the speedup as a result of using SIMD instruction varies and is greater

than 4.
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2. At the higher level (task level), multi-core processors are employed to simulta-

neously process multiple coding units in a wave-front fashion to reduce impact

on coding performance. Due to the use of massively parallel algorithm at the

lower level, the improvement at this level ties to the number of MPA hardwares

and the observed speedup is 4.

3. For multi-view coding where a large number of video sequences is available, a

single computing node can be easily saturated with the parallel algorithms pro-

posed for lower and higher levels. To enable acceleration across multiples views,

a cluster implementation by exploiting the GOP-level parallelism is proposed

and aims for load-balancing and maximizing resource usage. When evaluated on

two popular prediction structures IBP and IPP, the speedup for 8-view encoding

are 8 and 12, respectively.

5.1 Future Work

For the near future, parallel processors with higher number of cores (rather than

higher frequency) are likely to remain as the dominant computing hardware. For this

reason, parallel algorithms are still the first choice when it comes to improve com-

putational performance. Three possible future research directions regarding parallel

encoder optimization are given as follow.

1. The data level parallelism presented in this work is in the ME/DE process.

There are other encoder modules possessing data level parallelism such as dis-

crete cosine transform and entropy coding. In these procedures, the amount of

parallelism is unlikely to be high enough for efficient massively parallelization.

However, with proper SIMD instruction implementation, obtaining a speed up
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in order of 10s is still promising and worth investigation.

2. All current parallel algorithms are designed separately for multi-core CPUs and

massively parallel GPUs. However, there is no software or hardware limitation

to merge the two computing hardwares to process a single task. In a simplest

example, CPUs can be allocated to compute motion estimation in a quarter

of the search region while GPU processes the remaining three quarter area.

The impact on coding performance of simultaneous execution on heterogeneous

devices is undetermined and requires careful analysis. A possible shortcoming is

the large overhead involved in using heterogeneous devices but may be improved

in the future as computer technology advances.

3. Recently there is an upheaval in the field of machine learning. It will be in-

terested to see how machine learning can be adopted for video compression.

Many existing works have proven that the coding modes of different coding

units within a frame are correlated. This fact can be exploited to selectively

skip future mode evaluations (and thus reduce execution time) based on pre-

vious mode decision knowledge. By learning the modes for a particular block

pattern, it might be possible to skip mode evaluation when the same pattern

reoccurs during the encoding of another video sequence. In addition, many

algorithms in machine learning are highly parallel and amenable to massively

parallel architecture.
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K. Asanović, “Exploring the tradeoffs between programmability and efficiency in

data-parallel accelerators,” SIGARCH Comput. Archit. News, vol. 39, pp. 129–

140, June 2011.

[60] A. Rafique, G. Constantinides, and N. Kapre, “Communication optimization of

iterative sparse matrix-vector multiply on GPUs and FPGAs,” IEEE Transac-

tions on Parallel and Distributed Systems, vol. PP, no. 99, pp. 1–1, 2014.

[61] K. Wakabayashi, T. Takenaka, and H. Inoue, “Mapping complex algorithm into

FPGA with high level synthesis reconfigurable chips with high level synthesis

compared with CPU, GPGPU,” in 19th Asia and South Pacific Design Automa-

tion Conference (ASP-DAC), pp. 282–284, Jan 2014.

[62] KHRONSOS Group, “The open standard for parallel programming of heteroge-

neous systems,” 2014.

[63] Y. Yang, P. Xiang, M. Mantor, and H. Zhou, “CPU-assisted GPGPU on fused

CPU-GPU architectures,” in 2012 IEEE 18th International Symposium on High

Performance Computer Architecture (HPCA), pp. 1–12, Feb 2012.

164



[64] C. Wittenbrink, E. Kilgariff, and A. Prabhu, “Fermi GF100 GPU architecture,”

IEEE Micro, vol. 31, pp. 50–59, March 2011.

[65] M. Showerman, J. Enos, C. Steffen, S. Treichler, W. Gropp, and W.-M. Hwu,

“EcoG: A power-efficient GPU cluster architecture for scientific computing,”

Computing in Science Engineering, vol. 13, pp. 83–87, March 2011.

[66] ITU-T and I. JTC, “SERIES H: AUDIOVISUAL AND MULTIMEDIA SYS-

TEMS, Infrastructure of audiovisual services - Coding of moving video, ITU-T

Rec. H.265 and ISO/IEC 23008-2 (HEVC), Version 3, 2015.”

[67] A. Tsai, K. Bharanitharan, J. Wang, and K. Lee, “Effective search point re-

duction algorithm and its VLSI design for HDTV H.264/AVC variable block

size motion estimation,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 22, pp. 981–988, July 2012.

[68] G. Jo, J. Nah, J. Lee, J.Kim, and J. Lee, “Accelerating LINPACK with MPI-

OpenCL on clusters of multi-GPU nodes,” IEEE Transactions on Parallel and

Distributed Systems, vol. 26, pp. 1814–1825, July 2015.

[69] G. Bernabe, J. Cuenca, and D. Gimenez, “Optimizing a 3D-FWT code in a

heterogeneous cluster of multicore CPUs and manycore GPUs,” in Interna-

tional Symposium on Computer Architecture and High Performance Computing

(SBAC-PAD), (Porto de Galinhas, Brazil), pp. 97–104, Oct. 2013.

[70] Y. Zhang and F. Mueller, “Autogeneration and autotuning of 3D stencil codes on

homogeneous and heterogeneous GPU clusters,” IEEE Transactions on Parallel

and Distributed Systems, vol. 24, pp. 417–427, Mar. 2013.

[71] F. Ries, T. De Marco, and R. Guerrieri, “Triangular matrix inversion on het-

erogeneous multicore systems,” IEEE Transactions on Parallel and Distributed

Systems, vol. 23, pp. 177–184, Jan. 2012.

165



[72] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. Sullivan, “Rate-

constrained coder control and comparison of video coding standards,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 13, pp. 688–

703, July 2003.

[73] G. Sullivan, J. Boyce, Y. Chen, J.-R. Ohm, C. Segall, and A. Vetro, “Stan-

dardized extensions of high efficiency video coding (HEVC),” IEEE Journal of

Selected Topics in Signal Processing, vol. 7, pp. 1001–1016, Dec. 2013.

[74] X.Wang, L. Song, M. Chen, and J. Yang, “Paralleling variable block size motion

estimation of HEVC on multi-core CPU plus GPU platform,” in IEEE Interna-

tional Conference on Image Processing (ICIP), (Tain City, Taiwan), pp. 1836–

1839, Sept. 2013.

[75] G. Tech, Y. Chen, K. Muller, J.-R. Ohm, A. Vetro, and Y.-K. Wang, “Overview

of the multiview and 3D extensions of high efficiency video coding,” IEEE Trans-

actions on Circuits and Systems for Video Technology, vol. 26, pp. 35–49, Jan.

2016.

[76] C. Jiang and S. Nooshabadi, “Parallel multiview video coding exploiting group

of pictures level parallelism,” IEEE Transactions on Parallel and Distributed

Systems, Early Access 2015.

[77] NVIDIA, “NVIDIA Compute Unified Device Architecture (CUDA) C Program-

ming Guide 7.5,” Sep. 2015.

[78] B. F. Wu, H. Y. Peng, and T. L. Yu, “Efficient hierarchical motion estimation

algorithm and its vlsi architecture,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 16, pp. 1385–1398, Oct 2008.

[79] I. D. Zone, “Integer Intrinsic Intrinsics for Intelr Streaming SIMD Extensions

2 (Intelr SSE2),” 2014.

166



[80] F. Bossen, “Common HM test conditions and software reference configurations,”

Feb. 2012.

[81] D. Rusanovsky, K. Müller, and A. Vetro, “Common Test Conditions of 3DV

Core Experiments,” Jan. 2013.

[82] C. C. Chi, M. Alvarez-Mesa, B. Juurlink, G. Clare, F. Henry, S. Pateux, and

T. Schierl, “Parallel scalability and efficiency of hevc parallelization approaches,”

Circuits and Systems for Video Technology, IEEE Transactions on, vol. 22,

pp. 1827–1838, Dec 2012.

[83] J. Watts and S. Taylor, “A practical approach to dynamic load balancing,” IEEE

Transactions on Parallel and Distributed Systems, vol. 9, pp. 235–248, Mar 1998.

[84] V. D. Kim and Y. Chen, “Image processing on multicore x86 architectures,”

IEEE Signal Processing Magazine, vol. 27, pp. 97–107, March 2010.

[85] E. H. Jose L. Nunez-Yanez, A. Nabina and G. Vafiadis, “Cogeneration of fast

motion estimation processors and algorithms for advanced video coding,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, pp. 437–

448, March 2012.

[86] T. Mladenov, S. Nooshabadi, and K. Kim, “Implementation and evaluation of

Raptor codes on embedded systems,” IEEE Transactions on Computers, vol. 60,

pp. 1678–1691, Dec. 2011.

[87] R. Rodriguez, J. Martinez, G. Fernandez-Escribano, J. Claver, and J. Sanchez,

“Accelerating h.264 inter prediction in a gpu by using cuda,” in Proceedings of

IEEE International Conference on Consumer Electronics (ICCE), (Las Vegas,

NV), pp. 463–464, Jan. 2010.

167



[88] S. D. X. Tang and C. Cai, “An analysis of TZSearch algorithm in JMVC,” in

Proceedings of 2010 International Conference on Green Circuits and Systems

(ICGCS),, (Shanghai, China), pp. 516–520, June 2010.

[89] H. J. C.D. Hong and S. Parameswaran, “Multi-ASIP based parallel and scal-

able implementation of motion estimation kernel for high definition videos,” in

IEEE Symposium on Embedded Systems for Real-Time Multimedia (ESTIMe-

dia), (Taipei, Taiwan), pp. 56–65, Oct. 2011.

[90] S. Zezza, S. Nooshabadi, and G. Masera, “A feasible VLSI engine for SISO

for joint source channel codes,” in IEEE International Conference on Image

Processing (ICIP-2009), (Cairo, Egypt), Nov. 2009.

[91] D. R. Butenhof, Programming with POSIX Threads. Addison-Wesley, 2000.

[92] NVIDIA, “FERMI Compute Architecture White Paper v1.1,” 2009.

[93] NVIDIA, “NVIDIA Tesla C2075 Companion Processor,” 2011.

168



Appendix A

Letters of Permission

A.1 Permission Letters for Chapter 2

169



2/13/17, 10)50 PMRightslink® by Copyright Clearance Center

Page 1 of 2https://s100.copyright.com/AppDispatchServlet#formTop

Title: A Scalable Massively Parallel
Motion and Disparity Estimation
Scheme for Multiview Video
Coding

Author: Caoyang Jiang
Publication: Circuits and Systems for Video

Technology, IEEE Transactions
on

Publisher: IEEE
Date: Feb. 2016
Copyright © 2016, IEEE

If you're a copyright.com
user, you can login to
RightsLink using your
copyright.com credentials.
Already a RightsLink user or
want to learn more?

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license,
however, you may print out this statement to be used as a permission grant: 

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of
an IEEE copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers)
users must give full credit to the original source (author, paper, publication) followed by the IEEE
copyright line � 2011 IEEE. 
2) In the case of illustrations or tabular material, we require that the copyright line � [Year of original
publication] IEEE appear prominently with each reprinted figure and/or table. 
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also
obtain the senior author�s approval. 

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis: 

1) The following IEEE copyright/ credit notice should be placed prominently in the references: � [year
of original publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE
publication title, and month/year of publication] 
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your
thesis on-line.
3) In placing the thesis on the author's university website, please display the following message in a
prominent place on the website: In reference to IEEE copyrighted material which is used with
permission in this thesis, the IEEE does not endorse any of [university/educational entity's name goes
here]'s products or services. Internal or personal use of this material is permitted. If interested in
reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for
creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain
a License from RightsLink. 

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply
single copies of the dissertation.

���

A.2 Permission Letter for Chapter 3

170



2/13/17, 10)49 PMRightslink® by Copyright Clearance Center

Page 1 of 2https://s100.copyright.com/AppDispatchServlet#formTop

Title: Parallel Multiview Video Coding
Exploiting Group of Pictures
Level Parallelism

Author: Caoyang Jiang
Publication: Parallel and Distributed

Systems, IEEE Transactions on
Publisher: IEEE
Date: 1 Aug. 2016
Copyright © 2016, IEEE

If you're a copyright.com
user, you can login to
RightsLink using your
copyright.com credentials.
Already a RightsLink user or
want to learn more?

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license,
however, you may print out this statement to be used as a permission grant: 

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of
an IEEE copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers)
users must give full credit to the original source (author, paper, publication) followed by the IEEE
copyright line � 2011 IEEE. 
2) In the case of illustrations or tabular material, we require that the copyright line � [Year of original
publication] IEEE appear prominently with each reprinted figure and/or table. 
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also
obtain the senior author�s approval. 

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis: 

1) The following IEEE copyright/ credit notice should be placed prominently in the references: � [year
of original publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE
publication title, and month/year of publication] 
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your
thesis on-line.
3) In placing the thesis on the author's university website, please display the following message in a
prominent place on the website: In reference to IEEE copyrighted material which is used with
permission in this thesis, the IEEE does not endorse any of [university/educational entity's name goes
here]'s products or services. Internal or personal use of this material is permitted. If interested in
reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for
creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain
a License from RightsLink. 

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply
single copies of the dissertation.

���

 Copyright © 2017 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. 
Comments? We would like to hear from you. E-mail us at customercare@copyright.com 

A.3 Permission Letters for Chapter 4

171



2/13/17, 10)46 PMRightslink® by Copyright Clearance Center

Page 1 of 2https://s100.copyright.com/AppDispatchServlet#formTop

Title: Massively Efficient Motion
Estimation by Exploiting Inter-
Pixel Similarities

Conference
Proceedings:

Data Compression Conference
(DCC), 2016

Author: Caoyang Jiang
Publisher: IEEE
Date: March 2016
Copyright © 2016, IEEE

If you're a copyright.com
user, you can login to
RightsLink using your
copyright.com credentials.
Already a RightsLink user or
want to learn more?

Thesis / Dissertation Reuse

The IEEE does not require individuals working on a thesis to obtain a formal reuse license,
however, you may print out this statement to be used as a permission grant: 

Requirements to be followed when using any portion (e.g., figure, graph, table, or textual material) of
an IEEE copyrighted paper in a thesis:

1) In the case of textual material (e.g., using short quotes or referring to the work within these papers)
users must give full credit to the original source (author, paper, publication) followed by the IEEE
copyright line � 2011 IEEE. 
2) In the case of illustrations or tabular material, we require that the copyright line � [Year of original
publication] IEEE appear prominently with each reprinted figure and/or table. 
3) If a substantial portion of the original paper is to be used, and if you are not the senior author, also
obtain the senior author�s approval. 

Requirements to be followed when using an entire IEEE copyrighted paper in a thesis: 

1) The following IEEE copyright/ credit notice should be placed prominently in the references: � [year
of original publication] IEEE. Reprinted, with permission, from [author names, paper title, IEEE
publication title, and month/year of publication] 
2) Only the accepted version of an IEEE copyrighted paper can be used when posting the paper or your
thesis on-line.
3) In placing the thesis on the author's university website, please display the following message in a
prominent place on the website: In reference to IEEE copyrighted material which is used with
permission in this thesis, the IEEE does not endorse any of [university/educational entity's name goes
here]'s products or services. Internal or personal use of this material is permitted. If interested in
reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for
creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain
a License from RightsLink. 

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada may supply
single copies of the dissertation.

���

 Copyright © 2017 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. 
Comments? We would like to hear from you. E-mail us at customercare@copyright.com 

172


	High Performance Multiview Video Coding
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgments
	Abstract
	Introduction
	Video Coding
	Video Structure
	Group of Picture
	Slice
	Coding Units

	Intra-frame Prediction
	Intra-frame Redundancy
	Prediction Modes

	Inter-frame Prediction
	Inter-frame Redundancy
	Integer-pixel Motion Estimation
	Sub-pixel Motion Estimation
	Motion Vector
	Motion Residual
	Prediction Structures

	Frequency Domain Coding
	Quantization
	Entropy Coding
	Decoding
	Standard Specifics
	Complexity Analysis

	Multiview Coding
	Inter-view Redundancy
	Inter-view Prediction
	Disparity Estimation
	Prediction Structures

	Standard Specifics
	Complexity Analysis

	Multi-level Parallelism
	Pixel Level Parallelism in ME/DE
	Sum of absolute difference
	Minimal Cost Reduction

	Coding Tree Unit Parallelism
	Wavefront Processing
	Tiling Processing

	Frame Level Parallelism
	Frame Independencies
	Group of Picture Independencies

	View Level Parallelism
	View Independencies


	Related work
	Fast ME/DE
	Fast Mode Decision
	Multiview Coding Scheduling

	Scope of this work
	Highly Parallel ME/DE Algorithms
	Massively Parallel Integer-pixel ME/DE Design for AVC/H.264
	Massively Parallel Integer-pixel ME/DE Design for HEVC/H.265
	Accelerating bi-directional and sub-pixel ME/DE with Multimedia Instructions
	Multi-threaded Wavefront Parallel Processing Design

	GOP Level Parallelization
	Quantization Parameter Based Fast Mode Decision

	Overview of Chapters

	Massively Parallel Motion and Disparity Estimation Algorithms
	Introduction
	Multiview Prediction Structures
	Temporal and Inter-view Prediction Structures
	Multiview Video Coding (MVC)

	Implementation of Multiview Video Coding on Massively Parallel Architectures
	Exploiting Parallelism in Multiview Video Coding
	Exploiting Parallelism in Full Block Search
	Implementation of Full Search on the MPA Platform
	GPU parallel programming paradigm
	GPU-based full search

	Multi-GPU Implementation
	Performance Analysis for GPU-based Full Search

	Massively Parallel Fast Search using Motion Vector Predictors
	Analysis of TZsearch
	Decision Zone-based Fast Parallel Search
	Star versus raster search
	Cost maps
	Fast decision zone-based search
	Discussion on DZfast


	Performance Analysis of DZfast
	Application to High Efficiency Video Coding (HEVC)
	Conclusion

	High Level Parallelization exploiting GOP Level Parallelism
	Introduction
	MVC Prediction Structure
	Temporal Prediction Structure
	Inter-view Prediction Structure

	View-parallel Model of MVC
	Multiple-view-Parallel, Multiple-inter leaved-GOP Model
	Latency and Memory Considerations
	Implementation Platform Specific Analysis
	Platform Level Specific Issues
	Platform Level Issues for Parallel DZfast
	Coding unit level analysis

	Platform Level Issues for Sequential TZsearch

	Implementation and Results
	Experimental Setup
	Results and Observations for Parallel DZfast
	Results and Observations for Sequential TZsearch
	Comparative Discussion on TZsearch and DZfast

	Slice-Level and Coding Unit Parallelism
	Conclusion

	Multi Level MVC Encoder Optimization
	Introduction
	High efficiency Video Coding (HEVC) and its Multiview Video Coding (MVC)
	Related Work
	ME/DE Algorithm
	Fast Mode Decision

	Fast Massively Parallel Motion/Disparity Estimation (ME/DE)
	Architecture and Programming Model
	Aggregation Parallel ME/DE
	Non-aggregation Fast Massively Parallel ME/DE
	Predicate Algorithm for Motion/Disparity Estimation
	Inter-pixel Similarities and ScaleFast Search

	Architecture Optimization
	SIMD-Parallel Sub-pixel and Bi-direction ME
	Results

	Quantization Parameter (QP)-Based Early Termination of Coding Tree Unit (CTU)
	Quantization
	Coarse-grain Early Termination of Coding Tree Unit (CTU)
	Selective Coding Unit (CU) Split

	High Level Parallel Processing
	Results

	Conclusion

	Conclusion and Future Work
	Future Work

	References
	Letters of Permission
	Permission Letters for Chapter 2
	Permission Letter for Chapter 3
	Permission Letters for Chapter 4


