152,724 research outputs found

    The role of salt bridges, charge density, and subunit flexibility in determining disassembly routes of protein complexes

    Get PDF
    Mass spectrometry can be used to characterize multiprotein complexes, defining their subunit stoichiometry and composition following solution disruption and collision-induced dissociation (CID). While CID of protein complexes in the gas phase typically results in the dissociation of unfolded subunits, a second atypical route is possible wherein compact subunits or subcomplexes are ejected without unfolding. Because tertiary structure and subunit interactions may be retained, this is the preferred route for structural investigations. How can we influence which pathway is adopted? By studying properties of a series of homomeric and heteromeric protein complexes and varying their overall charge in solution, we found that low subunit flexibility, higher charge densities, fewer salt bridges, and smaller interfaces are likely to be involved in promoting dissociation routes without unfolding. Manipulating the charge on a protein complex therefore enables us to direct dissociation through structurally informative pathways that mimic those followed in solution

    Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a

    Get PDF
    Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function

    Dlgap1 knockout mice exhibit alterations of the postsynaptic density and selective reductions in sociability

    Get PDF
    Abstract The scaffold protein DLGAP1 is localized at the post-synaptic density (PSD) of glutamatergic neurons and is a component of supramolecular protein complexes organized by PSD95. Gain-of-function variants of DLGAP1 have been associated with obsessive-compulsive disorder (OCD), while haploinsufficient variants have been linked to autism spectrum disorder (ASD) and schizophrenia in human genetic studies. We tested male and female Dlgap1 wild type (WT), heterozygous (HT), and knockout (KO) mice in a battery of behavioral tests: open field, dig, splash, prepulse inhibition, forced swim, nest building, social approach, and sucrose preference. We also used biochemical approaches to examine the role of DLGAP1 in the organization of PSD protein complexes. Dlgap1 KO mice were most notable for disruption of protein interactions in the PSD, and deficits in sociability. Other behavioral measures were largely unaffected. Our data suggest that Dlgap1 knockout leads to PSD disruption and reduced sociability, consistent with reports of DLGAP1 haploinsufficient variants in schizophrenia and ASD

    Binding-incompetent adenovirus facilitates molecular conjugate-mediated gene transfer by the receptor-mediated endocytosis pathway

    Get PDF
    Molecular conjugate vectors may be constructed that accomplish high efficiency gene transfer by the receptor-mediated endocytosis pathway. In order to mediate escape from lysosomal degradation, we have incorporated adenoviruses into the functional design of the conjugate. In doing so, however, we have introduced an additional ligand, which can bind to receptors on the cell surface, undermining the potential for cell specific targeting. To overcome this, we have treated the adenovirus with a monoclonal anti-fiber antibody, which renders the virus incapable of binding to its receptor. The result is a multi-functional molecular conjugate vector, which has preserved its binding specificity while at the same time being capable of preventing lysosomal degradation of endosome-internalized conjugate-DNA complexes. This finding indicates that adenoviral binding is not a prerequisite for adenoviral-mediated endosome disruption

    Calpains Mediate Integrin Attachment Complex Maintenance of Adult Muscle in Caenorhabditis elegans

    Get PDF
    Two components of integrin containing attachment complexes, UNC-97/PINCH and UNC-112/MIG-2/Kindlin-2, were recently identified as negative regulators of muscle protein degradation and as having decreased mRNA levels in response to spaceflight. Integrin complexes transmit force between the inside and outside of muscle cells and signal changes in muscle size in response to force and, perhaps, disuse. We therefore investigated the effects of acute decreases in expression of the genes encoding these multi-protein complexes. We find that in fully developed adult Caenorhabditis elegans muscle, RNAi against genes encoding core, and peripheral, members of these complexes induces protein degradation, myofibrillar and mitochondrial dystrophies, and a movement defect. Genetic disruption of Z-line– or M-line–specific complex members is sufficient to induce these defects. We confirmed that defects occur in temperature-sensitive mutants for two of the genes: unc-52, which encodes the extra-cellular ligand Perlecan, and unc-112, which encodes the intracellular component Kindlin-2. These results demonstrate that integrin containing attachment complexes, as a whole, are required for proper maintenance of adult muscle. These defects, and collapse of arrayed attachment complexes into ball like structures, are blocked when DIM-1 levels are reduced. Degradation is also blocked by RNAi or drugs targeting calpains, implying that disruption of integrin containing complexes results in calpain activation. In wild-type animals, either during development or in adults, RNAi against calpain genes results in integrin muscle attachment disruptions and consequent sub-cellular defects. These results demonstrate that calpains are required for proper assembly and maintenance of integrin attachment complexes. Taken together our data provide in vivo evidence that a calpain-based molecular repair mechanism exists for dealing with attachment complex disruption in adult muscle. Since C. elegans lacks satellite cells, this mechanism is intrinsic to the muscles and raises the question if such a mechanism also exists in higher metazoans

    Constitutive association of BRCA1 and c-Abl and its ATM-dependent disruption after irradiation

    Get PDF
    BRCA1 plays an important role in mechanisms of response to double-strand breaks, participating in genome surveillance, DNA repair, and cell cycle checkpoint arrests. Here, we identify a constitutive BRCA1-c-Abl complex and provide evidence for a direct interaction between the PXXP motif in the C terminus of BRCA1 and the SH3 domain of c-Abl. Following exposure to ionizing radiation (IR), the BRCA1-c-Abl complex is disrupted in an ATM-dependent manner, which correlates temporally with ATM-dependent phosphorylation of BRCA1 and ATM-dependent enhancement of the tyrosine kinase activity of c-Abl. The BRCA1-c-Abl interaction is affected by radiation-induced modification to both BRCA1 and c-Abl. We show that the C terminus of BRCA1 is phosphorylated by c-Abl in vitro. In vivo, BRCA1 is phosphorylated at tyrosine residues in an ATM-dependent, radiation-dependent manner. Tyrosine phosphorylation of BRCA1, however, is not required for the disruption of the BRCA1-c-Abl complex. BRCA1-mutated cells exhibit constitutively high c-Abl kinase activity that is not further increased on exposure to IR. We suggest a model in which BRCA1 acts in concert with ATM to regulate c-Abl tyrosine kinase activity

    UV-induced fragmentation of Cajal bodies

    Get PDF
    The morphology and composition of subnuclear organelles, such as Cajal bodies (CBs), nucleoli, and other nuclear bodies, is dynamic and can change in response to a variety of cell stimuli, including stress. We show that UV-C irradiation disrupts CBs and alters the distribution of a specific subset of CB components. The effect of UV-C on CBs differs from previously reported effects of transcription inhibitors. We demonstrate that the mechanism underlying the response of CBs to UV-C is mediated, at least in part, by PA28γ (proteasome activator subunit γ). The presence of PA28γ in coilin-containing complexes is increased by UV-C. Overexpression of PA28γ, in the absence of UV-C treatment, provokes a similar redistribution of the same subset of CB components that respond to UV-C. RNA interference–mediated knockdown of PA28γ attenuates the nuclear disruption caused by UV-C. These data demonstrate that CBs are specific nuclear targets of cellular stress-response pathways and identify PA28γ as a novel regulator of CB integrity

    Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand

    Get PDF
    We have constructed an artificial ligand for the hepatocyte-specific asialoglycoprotein receptor for the purpose of generating a synthetic delivery system for DNA. This ligand has a tetra-antennary structure, containing four terminal galactose residues on a branched carrier peptide. The carbohydrate residues of this glycopeptide were introduced by reductive coupling of lactose to the alpha- and epsilon-amino groups of the two N-terminal lysines on the carrier peptide. The C-terminus of the peptide, containing a cysteine separated from the branched N-terminus by a 10 amino acid spacer sequence, was used for conjugation to 3-(2-pyridyldithio)propionate-modified polylysine via disulfide bond formation. Complexes containing plasmid DNA bound to these galactose-polylysine conjugates have been used for asialoglycoprotein receptor-mediated transfer of a luciferase gene into human (HepG2) and murine (BNL CL.2) hepatocyte cell lines. Gene transfer was strongly promoted when amphipathic peptides with pH-controlled membrane-disruption activity, derived from the N-terminal sequence of influenza virus hemagglutinin HA-2, were also present in these DNA complexes. Thus, we have essentially borrowed the small functional domains of two large proteins, asialoglycoprotein and hemagglutinin, and assembled them into a supramolecular complex to generate an efficient gene-transfer system
    corecore