3,868 research outputs found

    Discrimination power of long-term heart rate variability measures for Chronic Heart Failure detection

    Get PDF
    The aim of this study was to investigate the discrimination power of standard long-term Heart Rate Variability (HRV) measures for the diagnosis of Chronic Heart Failure (CHF). We performed a retrospective analysis on 4 public Holter databases, analyzing the data of 72 normal subjects and 44 patients suffering from CHF. To assess the discrimination power of HRV measures, we adopted an exhaustive search of all possible combinations of HRV measures and we developed classifiers based on Classification and Regression Tree (CART) method, which is a non-parametric statistical technique. We found that the best combination of features is: Total spectral power of all NN intervals up to 0.4 Hz (TOTPWR), square Root of the Mean of the Sum of the Squares of Differences between adjacent NN intervals (RMSSD) and Standard Deviation of the Averages of NN intervals in all 5-minute segments of a 24-hour recording (SDANN). The classifiers based on this combination achieved a specificity rate and a sensitivity rate of 100.00% and 89.74% respectively. Our results are comparable with other similar studies, but the method we used is particularly valuable because it provides an easy to understand description of classification procedures, in terms of intelligible “if … then …” rules. Finally, the rules obtained by CART are consistent with previous clinical studies

    A convolutional neural network approach to detect congestive heart failure

    Get PDF
    Congestive Heart Failure (CHF) is a severe pathophysiological condition associated with high prevalence, high mortality rates, and sustained healthcare costs, therefore demanding efficient methods for its detection. Despite recent research has provided methods focused on advanced signal processing and machine learning, the potential of applying Convolutional Neural Network (CNN) approaches to the automatic detection of CHF has been largely overlooked thus far. This study addresses this important gap by presenting a CNN model that accurately identifies CHF on the basis of one raw electrocardiogram (ECG) heartbeat only, also juxtaposing existing methods typically grounded on Heart Rate Variability. We trained and tested the model on publicly available ECG datasets, comprising a total of 490,505 heartbeats, to achieve 100% CHF detection accuracy. Importantly, the model also identifies those heartbeat sequences and ECG’s morphological characteristics which are class-discriminative and thus prominent for CHF detection. Overall, our contribution substantially advances the current methodology for detecting CHF and caters to clinical practitioners’ needs by providing an accurate and fully transparent tool to support decisions concerning CHF detection

    A multi-layer monitoring system for clinical management of Congestive Heart Failure

    Get PDF
    BACKGROUND: Congestive Heart Failure (CHF) is a serious cardiac condition that brings high risks of urgent hospitalization and death. Remote monitoring systems are well-suited to managing patients suffering from CHF, and can reduce deaths and re-hospitalizations, as shown by the literature, including multiple systematic reviews. METHODS: The monitoring system proposed in this paper aims at helping CHF stakeholders make appropriate decisions in managing the disease and preventing cardiac events, such as decompensation, which can lead to hospitalization or death. Monitoring activities are stratified into three layers: scheduled visits to a hospital following up on a cardiac event, home monitoring visits by nurses, and patient's self-monitoring performed at home using specialized equipment. Appropriate hardware, desktop and mobile software applications were developed to enable a patient's monitoring by all stakeholders. For the first two layers, we designed and implemented a Decision Support System (DSS) using machine learning (Random Forest algorithm) to predict the number of decompensations per year and to assess the heart failure severity based on a variety of clinical data. For the third layer, custom-designed sensors (the Blue Scale system) for electrocardiogram (EKG), pulse transit times, bio-impedance and weight allowed frequent collection of CHF-related data in the comfort of the patient's home. We also performed a short-term Heart Rate Variability (HRV) analysis on electrocardiograms self-acquired by 15 healthy volunteers and compared the obtained parameters with those of 15 CHF patients from PhysioNet's PhysioBank archives. RESULTS: We report numerical performances of the DSS, calculated as multiclass accuracy, sensitivity and specificity in a 10-fold cross-validation. The obtained average accuracies are: 71.9% in predicting the number of decompensations and 81.3% in severity assessment. The most serious class in severity assessment is detected with good sensitivity and specificity (0.87 / 0.95), while, in predicting decompensation, high specificity combined with good sensitivity prevents false alarms. The HRV parameters extracted from the self-measured EKG using the Blue Scale system of sensors are comparable with those reported in the literature about healthy people. CONCLUSIONS: The performance of DSSs trained with new patients confirmed the results of previous work, and emphasizes the strong correlation between some CHF markers, such as brain natriuretic peptide (BNP) and ejection fraction (EF), with the outputs of interest. Comparing HRV parameters from healthy volunteers with HRV parameters obtained from PhysioBank archives, we confirm the literature that considers the HRV a promising method for distinguishing healthy from CHF patients

    Complexity Variability Assessment of Nonlinear Time-Varying Cardiovascular Control

    Get PDF
    The application of complex systems theory to physiology and medicine has provided meaningful information about the nonlinear aspects underlying the dynamics of a wide range of biological processes and their disease-related aberrations. However, no studies have investigated whether meaningful information can be extracted by quantifying second-order moments of time-varying cardiovascular complexity. To this extent, we introduce a novel mathematical framework termed complexity variability, in which the variance of instantaneous Lyapunov spectra estimated over time serves as a reference quantifier. We apply the proposed methodology to four exemplary studies involving disorders which stem from cardiology, neurology and psychiatry: Congestive Heart Failure (CHF), Major Depression Disorder (MDD), Parkinson?s Disease (PD), and Post-Traumatic Stress Disorder (PTSD) patients with insomnia under a yoga training regime. We show that complexity assessments derived from simple time-averaging are not able to discern pathology-related changes in autonomic control, and we demonstrate that between-group differences in measures of complexity variability are consistent across pathologies. Pathological states such as CHF, MDD, and PD are associated with an increased complexity variability when compared to healthy controls, whereas wellbeing derived from yoga in PTSD is associated with lower time-variance of complexity

    Discrimination of cardiac health and disease by assessment of heart rate variability: wavelet vs. fast Fourier transformation

    Get PDF
    The autonomic nervous system (ANS) modulation of the heart is of clinical importance because of its relevance to risk of life threatening arrhythmic events. Decomposition of heart rate variability (HRV) has been used to quantify ANS control of the heart. The traditional method for frequency analysis has involved the use of fast Fourier transformation (FFT). However, heart rate data typically violate assumptions of the FFT. Therefore, the assessment of HRV may benefit from other, potentially more suitable, mathematical approaches. For example, the discrete wavelet transformation (DWT) appears to have promise with respect to its ability to discriminate between healthy and diseased populations. Therefore, the purpose of this thesis was to examine the extent to which the FFT can discriminate between a control group and heart failure patients (CHF) in comparison to DWT. Seven CHF (mean +/- standard deviation, age: 51.9 +/- 17.6 yrs) and eight age-matched controls (49.5 +/- 17.9 yrs) were evaluated. HRV was evaluated during 5 minutes of supine spontaneous breathing (SB) and supine paced breathing (PB) (0.2Hz). The ECG data were sampled at 200 Hz, converted to heart rate tachograms, and subjected to frequency analysis via FFT and DWT. The FFT approach did not reveal group differences in HRV, while the DWT revealed group differences in LF/HF during SB (p\u3c0.05) and PB (p=0.053). With respect to breathing condition, only the FFT revealed that PB resulted in a decrease in low- to high-frequency ratios (p\u3c0.05), and an increase in standard deviation of normal R-R intervals. These results support further consideration of both methods of analysis, as they each appear to provide unique information about HRV

    Assessment of respiratory flow cycle morphology in patients with chronic heart failure

    Get PDF
    Breathing pattern as periodic breathing (PB) in chronic heart failure (CHF) is associated with poor prognosis and high mortality risk. This work investigates the significance of a number of time domain parameters for characterizing respiratory flow cycle morphology in patients with CHF. Thus, our primary goal is to detect PB pattern and identify patients at higher risk. In addition, differences in respiratory flow cycle morphology between CHF patients (with and without PB) and healthy subjects are studied. Differences between these parameters are assessed by investigating the following three classification issues: CHF patients with PB versus with non-periodic breathing (nPB), CHF patients (both PB and nPB) versus healthy subjects, and nPB patients versus healthy subjects. Twenty-six CHF patients (8/18 with PB/nPB) and 35 healthy subjects are studied. The results show that the maximal expiratory flow interval is shorter and with lower dispersion in CHF patients than in healthy subjects. The flow slopes are much steeper in CHF patients, especially for PB. Both inspiration and expiration durations are reduced in CHF patients, mostly for PB. Using the classification and regression tree technique, the most discriminant parameters are selected. For signals shorter than 1 min, the time domain parameters produce better results than the spectral parameters, with accuracies for each classification of 82/78, 89/85, and 91/89 %, respectively. It is concluded that morphologic analysis in the time domain is useful, especially when short signals are analyzed.Peer ReviewedPostprint (author's final draft

    Heart rate variability characterization using entropy measures

    Get PDF
    Tese de mestrado. Engenharia Biomédica. Faculdade de Engenharia. Universidade do Porto. 200

    Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: a review.

    Get PDF
    Computer systems for Electrocardiogram (ECG) analysis support the clinician in tedious tasks (e.g., Holter ECG monitored in Intensive Care Units) or in prompt detection of dangerous events (e.g., ventricular fibrillation). Together with clinical applications (arrhythmia detection and heart rate variability analysis), ECG is currently being investigated in biometrics (human identification), an emerging area receiving increasing attention. Methodologies for clinical applications can have both differences and similarities with respect to biometrics. This paper reviews methods of ECG processing from a pattern recognition perspective. In particular, we focus on features commonly used for heartbeat classification. Considering the vast literature in the field and the limited space of this review, we dedicated a detailed discussion only to a few classifiers (Artificial Neural Networks and Support Vector Machines) because of their popularity; however, other techniques such as Hidden Markov Models and Kalman Filtering will be also mentioned
    corecore