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Abstract

The aim of this study was to investigate the

discrimination power of standard long-term Heart Rate

Variability (HRV) measures for the diagnosis of

Chronic Heart Failure (CHF).

We performed a retrospective analysis on 4 public

Holter databases, analyzing the data of 72 normal

subjects and 44 patients suffering from CHF. To assess

the discrimination power of HRV measures, we

adopted an exhaustive search of all possible

combinations of HRV measures and we developed

classifiers based on Classification and Regression Tree

(CART) method, which is a non-parametric statistical

technique.

We found that the best combination of features is:

Total spectral power of all NN intervals up to 0.4 Hz

(TOTPWR), square Root of the Mean of the Sum of

the Squares of Differences between adjacent NN

intervals (RMSSD) and Standard Deviation of the

Averages of NN intervals in all 5-minute segments of a

24-hour recording (SDANN). The classifiers based on

this combination achieved a specificity rate and a

sensitivity rate of 100.00% and 89.74% respectively.

Our results are comparable with other similar studies,

but the method we used is particularly valuable

because it provides an easy to understand description

of classification procedures, in terms of intelligible “if

… then …” rules. Finally, the rules obtained by CART

are consistent with previous clinical studies.

Keywords

Heart Rate Variability (HRV), Chronic Heart Failure

(CHF), Classification and regression tree (CART)

1. Introduction

Heart Rate Variability (HRV) is the variation over time

of the period between consecutive heartbeats (RR

intervals)[30] and is a non-invasive measure commonly

used to assess the influence of the autonomic nervous

system (ANS) on the heart[23]. HRV has been widely

studied in patients suffering from Chronic Heart

Failure (CHF)[1-3, 5, 10-11, 13, 17, 19, 27, 32].

CHF is a patho-physiological condition in which an

abnormal cardiac function is responsible for the failure

of the heart to pump blood as required by the body.

CHF has been shown to be degenerative and age

related[15].

The majority of studies in the literature used HRV

measures for the prognosis of the disease, in particular

as a predictor of the risk of mortality [2, 10-11, 17, 19,

32, 36]. A small number of studies[3, 13] focused on

using HRV measures for CHF diagnosis. For instance,

Asyali [3] studied the discrimination power of long-

term HRV measures (time-domain and FFT-based

frequency domain) in order to distinguish normal

subject from CHF patients. Using linear discriminant

analysis and a Bayesian Classifier he obtained

sensitivity and specificity rates of 81.82% and 98.08%

respectively. Isler et al. [13] investigated the

discrimination power of short-term HRV measures,

including wavelet entropy. In this study, they achieved

the best performance using Genetic Algorithms and k-

Nearest Neighbour Classifier, resulting in a sensitivity

rate of 100.00% and a specificity rate of 94.74%.

Although this study reached interesting results, the

classifier proposed by Isler [13] relied on complex

features and rules which are difficult for clinicians to

interpret. In both these studies[3, 13] the classifiers

were developed using a subset of the dataset adopted in

the current study.
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As regards clinical practice, international guidelines on

diagnosis and management of heart failure[15] showed

evidence that conventional 12-lead electrocardiogram

(ECG) should not form the primary basis for

determining the specific cardiac abnormality

responsible for the development of CHF, because of

low sensitivity and specificity.

The method we used to investigate the power of

standard long-term HRV measures in distinguishing

CHF patients from normal subjects is Classification

and Regression Tree (CART). CART, developed by

Breiman et al. [6], is widely used in several

applications of pattern recognition especially for image

processing and for medical diagnosis[8]. The CART

algorithm iteratively splits the data set, according to a

criterion that maximizes the separation of the data,

producing a tree-like decision structure[6].

CART was applied to HRV measures for other

investigations, such as for the diagnosis of Obstructive

Sleep Apnea Syndrome[31], and for the analysis of the

relationship between HRV and the menstrual cycle in

healthy young women [34]. We have adopted CART in

previous studies, to investigate discrimination power of

short-term HRV features[28-29] in distinguishing CHF

patients from normal subjects and in assessing CHF

severity. To the best of the authors’ knowledge, CART

has not yet been applied to long-term HRV analysis for

CHF diagnosis. We chose the CART method, as it

provides a model of human understandable “if … then”

rules which can be easy to read and to interpret. This is

crucial in medical applications[7], in which the

physician is personally responsible of the diagnosis.

In this paper we used CART in order to:

1) define the “optimal” classifier, based on an

understandable set of rules for CHF detection;

2) find the “optimal” combination of standard

long-term HRV measures for CHF detection.

Among the classifiers achieving a good performance,

we chose as “optimal” the one which demonstrated

simultaneously the lowest estimated misclassification

probability and the lowest degree of overfitting.

We performed a retrospective analysis of four Holter

monitor public databases, and used only open source

and validated HRV toolkit software in order to allow

other scientists to reproduce our results. We adopted

the exhaustive search method to evaluate all the

possible combinations of HRV measures and in order

to develop and test a classifier for each combination of

measures.

2 Methods

2.1 Data

We analyzed 116 nominal 24-hour records, from 72

normal subjects and 44 suffering from CHF. The

overall dataset consisted of 54 men, 43 women and 19

unknown-gender subjects, aged 20 to 79 (55±14 years).

The normal subjects were 35 men and 37 women, aged

20 to 76 (55±16 years). The CHF subjects were 19

men, 6 women and 19 unknown-gender subjects, aged

22 to 79 (56±11 years).

The data for normal subjects were retrieved from the

Normal Sinus Rhythm RR Interval Database [9] and

from the MIT-BIH Normal Sinus Rhythm Database

[9]. The former includes RR intervals extracted from

24-hour ECG recordings from 30 men and 24 women,

aged 29 to 76 (61±12 years). The latter includes long-

term ECG recordings from 5 men and 13 women, aged

20 to 50 (61±8 years). The data for the CHF group

were retrieved from the Congestive Heart Failure RR

Interval Database[9] and from the BIDMC Congestive

Heart Failure Database [9]. The former includes RR

intervals extracted from 24-hour ECG-Holter

recordings of 8 men, 2 women, and 19 unknown-

gender subjects, aged 34 to 79 (55±11 years). The latter

database includes long-term ECG recordings from 11

men and 4 women, aged 22 to 71 (56±11 years), with

severe congestive heart failure.

All the records are provided with beat annotations

obtained by automated analysis with manual review

and correction, with the exception of beat annotations

from the BIDMC Congestive Heart Failure Database

which were not manually corrected. All the original

ECG records were digitized at 128 samples per second,

with the exception of the records from the BIDMC

Congestive Heart Failure Database, which were

sampled at 250 samples per second.

2.2 Long-term HRV measures

We performed standard long-term HRV analysis on

nominal 24-hour recordings according to International

Guidelines[23].

The series of normal to normal (NN) beat intervals

were obtained from the beat annotation files of the

selected four databases and the NN/RR ratio was

computed as the fraction of total RR intervals classified

as normal-to-normal (NN) intervals. This ratio has

been used as a measure of data reliability, excluding

records with a ratio less than a threshold. Thresholds of

80% [9] and 90%[3] were proposed. We chose a

threshold of 85%, as it was a satisfactory trade-off

between numbers of included subjects and quality of

NN signals. Using this technique, 6 records were

excluded (5 CHF and 1 normal) and the final dataset

consisted of 110 subjects: 71 healthy people and 39

CHF patients.

All the computed basic time- and frequency-domain

HRV measures were widely used in the literature [23,

30]. A number of standard statistical time-domain

HRV measures are calculated: AVerage of all NN

intervals (AVNN), Standard Deviation of all NN

intervals (SDNN), Standard Deviation of the Averages

of NN intervals in all 5-minute segments of a 24-hour

recording (SDANN), mean of the Standard Deviations

of NN intervals in all 5-minute segments of a 24-hour

recording (SDNN IDX), square Root of the Mean of

the Sum of the Squares of Differences between

adjacent NN intervals (RMSSD), percentage of

differences between adjacent NN intervals that are

longer than 50 ms (pNN50). Moreover, percentage of
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differences between adjacent NN intervals that are

longer than 12 ms (pNN12) was computed because

Mietus [25] showed that among pNNx measures

pNN12 can provide the maximum separation between

normal subjects and CHF patients.

The frequency-domain HRV measures rely on the

estimation of power spectral density (PSD). Several

methods were proposed in literature in order to

estimate PSD of RR intervals [12, 23, 26, 30]. In this

study, we estimated PSD both by Welch’s averaged

modified periodogram[35] and by Lomb-Scamble

periodogram [22]. For the Welch’s periodgram, the NN

interval was first interpolated with cubic spline

interpolation at 4 Hz. The interpolated series was

divided into overlapping segments of length 4000

points and each segment was Hanning windowed. The

overlap was chosen to be 1200 points[3]. After PSD

estimation, six standard frequency-domain HRV

measures were calculated: total spectral power of all

NN intervals up to 0.4 Hz (TOTPWR), between 0 and

0.003 Hz (ULF), between 0.003 and 0.04 Hz (VLF),

between 0.04 and 0.15 Hz (LF), between 0.15 and 0.4

Hz (HF), ratio of low to high frequency power

(LF/HF). Further in the paper, we will refer Welch-

based measures and the Lomb-Scamble-based ones by

using the subscript W and LS, respectively. For

instance, TOTPWRW refers to the estimination of

TOTPWR computed by using Welch periodgram,

while TOTPWRLS refers to the one obtained by Lomb-

Scamble periodgram.

2.3 Feature selection

CART resembles a stepwise feature selection, as at

each splitting it tries to obtain the most relevant

information from the part of the space it is working on.

However, one feature may not be included in the final

tree because its effect was masked by other variables.

In order to deal with masking and find the best subset

of features, we adopted the so-called exhaustive search

method[14], investigating the predictive value of all the

possible combinations of k out of N features (with k

from 1 to N). Since the number of features N is 13, we

investigated 2
13
=8092 subsets of features, training and

testing the same number of classification trees, as

further discussed. In order to facilitate comparisons of

our results with previous studies, we performed the

feature selection twice: once using frequency-domain

features measured by Welch periodogram; once using

frequency-domain features measured by Lomb-

Scamble periodogram.

2.4 Optimal classification tree for each
combination of features

The CART method consists of two steps: tree growing

and tree pruning [6]. In the former step, the tree grows

by selecting from all the possible splits, those which

generate the “purer” child nodes, where the purest node

is the one containing elements of only one class. The

outcome of this step is referred to as the large-tree

(LT). In the latter step, the LT is pruned according to a

minimal cost-complexity function, which relies on the

number of nodes and the misclassification probability.

The outcome of this step is the best sub-tree (BST)

which achieves the lowest value of the cost-complexity

function.

In the tree growing, among different functions that

have been defined for the measure of the impurity of

each node t [6], we adopted the Gini index criterion[6],

which, for binary classification, can be computed as

follows:

;)()(1)( 22
tjptiptindexGini  (1)

where “t” is the considered node, “i” and “j” are the

two class labels, p(i|t) and p(j|t) are the conditional

probability of observing at node “t” a subject belonging

to the class “i” or “j”, respectively.

In the tree pruning, CART searches among all the sub-

trees, selecting the Best Sub-Tree (BST) as the one that

minimizes a cost-complexity function, R(T), which is

a linear combination of misclassification probability,

R(T), and tree complexity, |T|, defined as its number of

nodes (see eq.2) [6].

  TTRTR   )( (2)

Where  is a non negative parameter. We estimated

R(T) twice: once as mean on several testing

subsamples, using a Cross-Validation (CV) technique;

once on all the sample, using a Re-Substitution (RS)

technique. The former, named further R(T)CV, was used

to stop the tree pruning (equation 2), the later, named

further R(T)RS, was used to estimate the degree of

overfitting (see eq. 3).

We estimated R(T) CV by the 10-fold-cross-validation

(10-CV) procedure [33], which consists of randomly

dividing the dataset into 10 subsamples, with almost

equal size and same class proportion. The first step of

the 10-CV consists of excluding a subsample (testing)

in turn and developing a tree with the remaining 9

subsamples (training). The second step of the 10-CV

consists of using the testing subsample to estimate its

misclassification probability as the ratio between the

number of misclassified cases and the total number of

cases in the testing subsample. From this two step we

have 10 trees, using the same combination of features,

and for each a misclassification probability r(t)i. R(T)CV
is estimated as the average over these ten r(t)i.

Moreover, we computed the standard error for R(T)cv,

named further SER(T)CV. Further details about minimal

cost-complexity pruning can be found in Breiman [6].

Finally, R(T)RS was estimated using all the sample to

train and test the tree.

2.5 Optimal feature combination

For each subset of features, we repeated the steps

described in section 2.4, finding the BST. We

estimated the overfitting of each BST by introducing a

normalized measure of the degree of overfitting OvM,

which compares R(t)CV with R(t)RS [16]:

CVTR

RSCV

SE

TRTR
OvM

)(

)()( 
 (3)

If OvM is higher than 1, we assumed that the tree

overfitted the training data.
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We chose as the best subset of features the one, or the

ones, whose BST achieved a value of OvM lower than

1 and a value R(t)cv not higher than 10%.

Finally, for the selected classifiers we computed a

metric of performance measures in order to compare

our system with others, using the formulae reported in

Table 1.

Table 1 Binary Classification Performance Measures

Measure Abbreviation Formula

Accuracy Acc
FNFPTNTP

TNTP




Precision Pre
FPTP

TP


Sensitivity Sen

FNTP

TP


Specificity Spe

TNFP

TN


Area Under

the Curve
AUC ;

2

1














FPTN

TN

FNTP

TP
AUC

TP: the number of CHF patients detected

TN: number of normal subject detected

FP: number of normal subject incorrectly labelled as CHF

FN: number of CHF patients incorrectly labelled as normal.

2.6 Implementation details

The HRV extraction and analysis was performed using

PhysioNet's HRV Toolkit[9]. We chose this toolkit as it

is an open source and a rigorously validated package.

In particular, the implementation of the LS

periodogram adopted in this paper is the lomb.c

program available from Physionet[20].

The feature selection and classification were performed

by in-house software developed in MATLAB version

R2009b (The MathWorks Inc., Natick,

MA). In particular CART was implemented by

utilizing the methods and construction of the

MATLAB class classregtree.

3 Results

The optimal features are those whose BST achieved

R(t)cv≤10% and OvM<1. these features are reported t in 
Table 2 and their BSTs are shown in Figure 1.

Table 2 Classification Performance Measurements of

the CART classifiers based on single HRV feature with

R(t)cv not higher than 10% and OvM lower than 1

R(t)cv SDR(t)cv R(t)res features selected

by CART

7.27% 2.41% 6.36% SDNN

8.18% 2.52% 6.36% SDANN

9.09% 2.62% 8.18% TOTPWRW

Fig. 1 The final model tree for the following HRV

features: a) SDNN, b) SDANN, c) TOTPWRW

Table 3 reports the optimal combinations of features

and Figure 2 shows their BSTs.

In Fig. 1 and Fig. 2 the paths from the first node to

each terminal one are a graphical representation of a set

of “if … then” rules. For instance, the path to the

terminal node 2 in the Fig. 2a can be read as: “if

TOTPWRLS is higher than 8271.86 ms
2
and RMSDD is
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higher than 15.62 ms, then the subject is classified as

normal”.

Table 3 Classification Performance Measurements of

the CART classifiers based on combination of HRV

features with R(t)cv not higher than 10% and OvM

lower than 1

R(t)cv SDR(t)cv R(t)res features selected

by CART

5.46% 2.10% 3.64%
TOTPWRLS,

RMSSD, SDANN

10.00% 2.64% 9.09% VLFLS, pNN12

In the models shown in Fig. 1, if the selected feature

(SDNN; SDANN; TOTPWRW) was lower than a

threshold (93.892 ms; 76.869 ms; 6,313.239 ms
2
,

respectively), the subject was classified as a CHF

patient, otherwise as a normal subject.

In the model shown in Fig. 2a, the initial variable

selected by CART (at node 1 split) was TOTPWRLS .

The subjects whose TOTPWRLS is lower than 8271.86

ms
2
were correctly classified as CHF patient. CART

selected RMSSD for the second node split. In this node

split, the subjects whose RMSSD were higher than

15.62 ms were classified as normal. This splitting

determined the four false negatives of the classifier. A

final classification split is based on SDANN, that is, if

it is lower than 106.71 ms, the subject is classified as

CHF patient, otherwise as a normal subject.

In the model shown in Fig. 2b, the initial variable

selected by CART (at node 1 split) was VLFLS. The

subjects whose VLFLS is lower than 558.048 ms
2
were

correctly classified as CHF patient. CART selected

pNN12 for the second node split. In this node split, the

subjects whose pNN12 were lower than 36.466 were

classified as CHF patients, the others as normal

subject. This splitting determined the nine false

negatives and the one false positive of the classifier.

Table 4 shows the performance measures of the BSTs

and of two classifiers proposed by other authors [3,

13].

Among those combinations of features, TOTPWRLS,

RMSSD and SDANN achieved the best performance

in terms of the estimated probability of misclassifying

any future cases. Its BST achieved specificity and

sensitivity rates of 100% and 89.74%.

4 Discussion

In this study, we investigate the discrimination power

of standard long-term Heart Rate Variability (HRV)

measures for the diagnosis of Chronic Heart Failure.

We analyzed single features and all their possible

combinations.

It was indicated that the combinations of standard long-

term HRV measures TOTPWRLS, RMSSD, and

SDANN enable distinguishing normal subjects from

CHF patients with specificity and sensitivity rates of

100% and 89.74% respectively.

Fig. 2 The final model tree for the following

combinations of HRV features:

a) TOTPWRLS, RMSSD, SDANN;

b) VLFLS and pNN12

The combination of pNN12 and VLF confirms the

discrimination power of pNN12 proved by Mietus [25],

but the performance of its BST is lower as shown in

Table 3.
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Table 4 Classification Performance Measurements of the classifiers proposed in the current study and those proposed in

previously published papers.

Classifier based on single feature
TP

#

FN

#

TN

#

FP

#

ACC

%

PRE

%

SEN

%

SPE

%

AUC

%

SDNN 34 5 69 2 93.64 94.44 87.18 97.18 92.18

SDANN 32 7 71 0 93.64 100.0 82.05 100.0 91.03

TOTPWRW 26 9 71 0 91.51 100.0 74.29 100.0 87.14

Asyali [3] (based on SDNN) 18 4 51 1 93.24 94.74 81.82 98.08 89.95

Classifier based on combination of features
TP

#

FN

#

TN

#

FP

#

ACC

%

PRE

%

SEN

%

SPE

%

AUC

%

TOTPWRLS, RMSSD, SDANN 35 4 71 0 96.36 100.0 89.74 100.0 94.87

VLFLS, pNN12 26 9 70 1 90.57 96.30 74.29 98.59 86.44

Isler [13] * 29 0 51 3 96.39 90.63 100.0 94.44 97.22

*based on short-term HRV measures

The sets of rules of the proposed models are clinically

consistent, even if CART did not use any medical a

priori knowledge. In fact, the main clinical result of

this research is that terminal node classifying as CHF

patients are on the left, therefore revealing lower values

of the splitting features for CHF patients. This is

coherent with the results showed by Bigger [5],

Musialik-Lydka [27] and Arbolishvili [1], who stated

that standard long-term HRV measures were

significantly depressed in CHF patients, compared with

normal subjects. It should be emphasized that the

findings of Bigger [5] and Arbolishvilli [1] were

obtained adopting different methods for power spectral

density estimation, while Musialik-Lydka [27]

considered only time-domain HRV measures.

With regard to the performance of the classifiers in this

study, they can be compared with a few previously

published studies [3, 13], which developed a classifier

in order to distinguish CHF patients from normal

subject, as reported in Table 4. In both these studies the

classifiers were developed using a smaller dataset than

in the current study, as they used only the MIT-BIH

Normal Sinus Rhythm Database [9] and the Congestive

Heart Failure RR Interval Database [9].

The performance measures of our classifiers are higher

than those of Asyali’s classifier [3], which used HRV

long term measures. Asyali [3] identified SDNN and

SDANN as the HRV measures with the highest class

separation power and the results in the current study

confirm this identification. Moreover, our study

showed that TOTPWRW is the third measure for

separation power (see Table 2). This is not in line with

Asyali findings [3], which showed that the TOTPWRW

discrimination power is the second-last. This could be

because Asyali used Fisher’s Linear Discriminant

Analysis (LDA) without proving normal distribution of

HRV features. In fact, LDA is strongly affected by

non-normality of data[18] and for that reason is

expected to provide less accurate information about no-

normal measures, such as TOTPWR[4].

The performance measures of our classifier are lower

than those of Isler’s classifier[13], which used HRV

short-term measures. The best combination of features

selected by Isler consists of 8 features including sex,

FFT-based measures, LS periodogram measures and

wavelet entropy measures with a sensitivity rate of

100.00% and a specificity rate of 94.74%[13]. The

higher sensitivity rate may be because of the

discrimination power of wavelet entropy measures,

which have not been considered in this study because

they are not standard HRV measures, presumably too

complex to understand for most clinicians. Moreover,

Isler’s classifiers[13] were based on at least 8 features.

As regards the chosen method, this improved

intelligibility in comparison to Isler’s one [13] and

minimized the risk of overfitting in comparison to

Asyali’s one[3]. In fact, Isler[13] adopted k-nearest-

neighbor (KNN) classifiers, which lack the property of

the interpretability of induced knowledge [21]. While,

Asyali [3] developed a Bayesian Classifier and the

classification is based on the following rule: “a subject

with an SDNN value higher (lower) than tan threshold

topt is classified as normal (abnormal)”. This rule is the

same of the BST in fig. 2a, with a slightly different

threshold: 93.89 for CART classifier, 91.82 for Bayes

classifier. However, Asyaly computed the threshold on

the whole dataset and provided no information about

probability of misclassification, as he did not use cross-

validation approach nor independent test set.

Our study had the following limitations: a small and

unbalanced dataset, the differences in the sampling

frequency of ECG recordings and the different

extraction procedures of NN intervals. As concerns the

sampling frequency of ECG, it should be remembered

that the finite sampling frequency introduce an error in

the RR interval measurement as shown by Merri [24].

However, a sampling rate of 128 Hz, which is the

lowest sampling rate of the records used in this paper,

has been found to be accurate enough to locate the R-

peaks and hence compute HRV[23]. In future research

we are planning to develop a similar study on a larger
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dataset of ECG recordings digitalized at the same

sampling frequency and annotated with a stated

procedure.

We concluded that the long-term HRV measures

enable CHF patients to be distinguished from normal

subjects confirming results of previous studies. In

particular, the combination TOTPWRLS, RMSSD,

SDANN allows detecting CHF patients with a

precision and a specificity of 100.00%, an accuracy of

96.36%, a sensitivity of 89.74% and an estimated

misclassification probabilityof 5.46%.

Our results are consistent with the consensus that

depressed HRV values are good indicators of CHF.

Furthermore, we estimated numerical threshold values

for a set of a few standard HRV measures, arranged in

a decision tree, which is fully human intelligible.
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