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Abstract

Heart Rate Variability (HRV), is defined as the variation in the interval between consecutive

heart beats, or the variations between consecutive instantaneous heart rates, that occurs in the

heart as a consequence of a complex internal dynamic balance. Since the state of the autonomic

nervous system, and several related diseases, can be investigated noninvasively by the HRV,

there exist a large number of indices used to characterize the condition of the cardiac system

via the HRV signal.

Entropy based methods, present a good performance as irregularity measures as well as

properties that make themselves suitable for physiological dataset analysis. They have been

widely used for quantifying the HRV, with the hypothesis that decreasing entropy points to

a perturbation of the complex physiological mechanisms or disease. However, higher entropy

values have been reported in the literature for some pathologies than for healthy subjects, and

there is not yet a clear consensus about the physiological meaning of these indices.

The aim of this work is to revise the nature of the HRV signal and the main methods used

in its analysis, with special detail in the signal entropy-based methods, mainly, Approximate

Entropy (ApEn), Sample Entropy (SampEn) and Multiscale Entropy (MSE ). It is also the

purpose of this work to study in details aspects such as the free parameters tuning of the

algorithms, or the comparison between the methods performance.

These entropy methods are first studied in a controlled environment with well known syn-

thetic signals. Then, the methods are tested on real signals from both healthy subjects and

patients suffering from Congestive Heart Failure (CHF), with two main objectives: First, to

quantify the discrimination capabilities of the methods between healthy and pathological sub-

jects, and second, to asses the loss of HRV due to aging.

It is found that the use of a fixed threshold value r (free parameter of the algorithms), instead

of the more widely popularized setting of r as a percentage of the standard deviation of each
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data series, yields better discrimination between healthy and CHF subjects. It is also found that

is possible to quantify the loss of HRV due to aging in healthy subjects which is not possible

with variable threshold value r. Moreover, no correlation is found for CHF subjects between the

age and the variation of the entropy results.

Therefore, it is concluded that the use of a fixed threshold value r in the algorithms, improves

the discrimination capabilities between healthy and CHF subjects and also allows to quantify

the loss of HRV due to aging in healthy subjects.



Resumo

A Variabilidade da Frequência Card́ıaca (VFC), define-se como a variação do tempo entre

batimentos card́ıacos consecutivos, o as variações entre ritmos card́ıacos istantaneos consecutivos

que ocorrem no coração, como cosenquêcia de um complexo equiĺıbrio dinâmico interno. Dado

que o estado do sistema nervoso autómo, e várias doenças relacionadas, podem ser investigadas

de forma não invasiva por meio da VFC, existe um amplo conjunto de ı́ndices utilizados para

avaliar a condição do sistema card́ıaco através do sinal de VFC.

Os métodos baseados na entroṕıa dos sinais, apresentam um bom desempenho como medidas

de irregularidade, assim como um conjunto de propriedades adequadas para o análise de dados

fisiológicos. Estes métodos têm sido ampliamente utilizados para a quantificação da VFC, com

a hipótese de que valores decrescentes de entropia indicam alguma perturbação dos complexos

mecanismos fisiológicos o algum tipo de doença. No entanto, na literatura têm sido relatados

valores maiores de entropia para algumas patologias que para estados saudáveis, e ainda não

existe um consenso claro sobre o significado fisiológico destes ı́ndices.

Neste trabalho apresenta-se uma revisão da natureza do sinal de VFC e dos principais

métodos de análise do mesmo, com ênfase nos métodos baseados na entropia dos sinais, nomeada-

mente, a Entropia Aproximada (ApEn), a Entropia Amostral (SampEn) e a Entropia Multi-

escala (MSE ). É também objectivo deste trabalho estudar em detalhe aspectos como o ajuste dos

parámetros livres dos algoritmos ou a comparação entre o desempenho dos diferentes algoritmos.

Os métodos de entropia são primeiro analisados num entorno controlado com sinais sintéticos

conhecidos. A seguir, os métodos são analisados com sinais reais de sujeitos saudveis e sujeitos

com Insuficiência Card́ıaca Congestiva (ICC) com dois objectivos principais: primeiro quantificar

as capacidades de discriminação dos métodos entre os sujeitos saudáveis e os patológicos, e

segundo, quantificar a perda da VFC devido à idade.

Face aos resultados encontra-se que o uso de um valor limiar r (parámetro livre dos algo-
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ritmos) fixo , em lugar de um limiar dependente do desvio padrão de cada série temporal, que

é a eleção mais ampliamente utilizada na literatura, consegue uma melhor discriminação entre

sujeitos saudáveis e patológicos. Encontra-se também, que é posśıvel quantificar a perda da VFC

devida à idade em sujeitos saudáveis, enquanto que isto não é posśıvel com um limiar r variável.

Além disso, não se encontra correlação entre a idade e a variação dos valores de entropia para

os sujeitos com ICC.

Portanto, conclue-se que o uso de um limiar fixo r nos algoritmos, melhora as capacidades

discriminativas entre sujeitos saudáveis e sujeitos com ICC e permite a quantificação da perda

da VFC devida à idade em sujeitos saudáveis.
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Chapter 1
Introduction

According to World Health Organization (WHO), cardiovascular diseases are the first cause

of death in the world, and it is expected to remain with that level of incidence during the next

years. An estimated 17.5 million people died from cardiovascular disease in 2005, representing

30% of all global deaths. About 80% of these deaths occurred in low and middle-income coun-

tries. If current trends are allowed to continue, by 2015 an estimated 20 million people will die

from cardiovascular disease [Organization 08].

The relationship between the autonomic nervous system and cardiovascular mortality has

been recognized during the last decades, and it has motivated the development of quantitative

markers of autonomic activity. Among them, the Heart Rate Variability (HRV), is defined

as the variation in the interval between consecutive heart beats, that occurs in the heart as

a consequence of a complex internal dynamic balance. Since this signal allows a noninvasive

study of the state of the autonomic nervous system and of several related diseases, HRV has

revealed itself as a powerful tool in the prognosis and diagnosis of a number of cardiovascular

diseases [Malik 96].

Between the large number of indices that have been proposed to asses the HRV, signal

entropy-based methods have been paid wide attention, first, for their good performance as

irregularity measures, and second, because they present several properties that make themselves

appropriate for physiological dataset analysis [Pincus 01]. However, although these methods

have been widely applied in the last years with good results, in most works so far, the free

parameters of the algorithms are set to values previously indicated in the literature, without

studying systematically the impact they can have. The aim of this work is to study the influence

1
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of the free parameters tuning in the assessment of the HRV loss due to aging, and in the

characterization of the HRV of patients affected by Congestive Heart Failure (CHF), having in

view a reliable discrimination between healthy and pathological subjects.

CHF, is a condition in which the heart cannot pump enough blood to the body organs. This

can result from narrowed arteries that supply blood to the heart muscle, past heart attack or

myocardial infarction, high blood pressure, heart valve disease, cardiomyopathies, congenital

heart defects, or infection of the heart valves and/or heart muscle itself [Association 08]. With

these pathologies, the heart can keep working but not as efficiently as it should. It has been

shown that this condition affects to the HRV [Signorini 06, Costa 03a], and therefore, the analysis

of the relationship between HRV and CHF is of clinical value.

The signal processing methods that are considered in this work, namely, the Approximate

Entropy (ApEn), the Sample Entropy (SampEn) and the Multiscale Entropy (MSE ), have

been previously widely applied in several studies and in different fields [Pincus 01, Hornero 08].

One of these fields is the HRV analysis, they have been applied to the fetal heart rate sig-

nal (FHR) for the identification of fetal distress [Magenes 03, Ferrario 06], to the study of the

sudden infant death syndrome(SIDS) [Pincus 01], to the characterization of FHR patterns to

monitory fetus condition [Marques-de Sá 05], to the neonatal sepsis [Lake 02], to the discrimi-

nation between healthy dynamics and pathological dynamics [Costa 05], and to the distinction

of arrhythmias [Schuckers 99].

In this work, the signal entropy methods are studied with two main objectives: First, to

maximice the discrimination between healthy and pathological subjects, and second, to asses

the loss of HRV due to aging, with the aim of building an aging curve of HRV loss for healthy

subjects.

The structure of this work is as follows:

• In Chapter 2, a review of the main methods that have been proposed in the literature for

the HRV analysis as well as an introduction to some basic concepts of the HRV signal are

introduced and summarized.

• In Chapter 3, the entropy-based methods for the HRV signal analysis, namely, ApEn,

SampEn, and MSE, are presented.

• In Chapter 4, first, a set of synthetic signals of different nature and known properties are

presented. Following, several experiments are performed on this set of signals in order to
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test the performance of the entropy methods introduced in Chapter 3. The dependence of

the methods on their free parameters is tested in detail.

• In Chapter 5, the entropy methods are tested on real signals from both, healthy and CHF

subjects, with two main objectives, first: To quantify the discrimination capabilities of the

methods between healthy and pathological subjects, and second, to asses the loss of HRV

due to aging.

• In Chapter 6, conclusions and further studies are presented.
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Chapter 2
Heart Rate Variability

The study of the Heart Rate Variability (HRV) has revealed itself as a powerful tool in

the prognosis and diagnosis of several cardiopathies. The relationship between the autonomic

nervous system and cardiovascular mortality has been recognized in the last decades and has

motivated the development of quantitative markers of autonomic activity, and among them, HRV

is one of the most promising [Malik 96]. This chapter presents a review of the main methods

for HRV analysis, as well as an introduction to some basic concepts on cardiac physiology.

2.1 Introduction

The heart behavior is not constant, but instead, there exists a variation of the time intervals

between consecutive heart beats. The normal heart rhythm is controlled by the cardiac sinoa-

trial (SA) node, which is modulated by innervation from both the sympathetic and the vagal

branches of the autonomic nervous system (ANS). The SA node is the final responsible, trough

its repetitive nervous impulses, for generating heart beats.

Both the sympathetic and parasympathetic responses have antagonist roles, the activity

from the sympathetic system increases the heart rate whereas the vagal activity slows down the

heart rate. In rest conditions there is a balance state between these systems, that is responsible

for the variability in the intervals between consecutive heart beats. At the same time, the ANS

is influenced by many other systems (respiratory system, vasomotor system, central nervous

system, renin-angiotensin system, ...) which also contribute to modulate the heart rate through

it.

5
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HRV is the variation in the intervals between consecutive heart beats, or, the variations

between consecutive instantaneous heart rates. This signal allows noninvasive investigation of

the ANS state and related diseases by the study of such variations. Therefore, the aim of

studying HRV, is to extract the relevant clinical information underlying in it.

HRV has been proposed for risk stratification of lethal arrhythmias after acute myocardial

infarction, as well as for the prognosis of sudden death events [Malik 96]. After a myocardial

infarction, the innervation level of the heart decreases, and part of the nervous control of this

organ can be lost. The HRV reflects this control loss and it makes possible the classification of

cardiac sudden death risk groups [Malik 89]. The degeneration of the ANS due to the aging can

also be inferred by the analysis of the HRV.

2.2 Electrocardiogram and Interval Tachogram

The electrocardiogram (ECG) is a graphic tracing produced by an electrocardiograph, which

records the electrical activity of the heart over time. A typical ECG tracing of a normal cardiac

cycle consists of a P wave, a QRS complex and a T wave. Also a small U wave is sometimes

visible. The baseline voltage of the ECG is known as the isoelectric line. Each wave reflects a

different stage of a heartbeat; their morphology and timing convey information that is used for

diagnosing diseases that are reflected by disturbances of the heart electrical activity (Fig. 2.1).

Atrial depolarization is reflected by the P wave, and ventricular depolarization is reflected by

the QRS complex, whereas the T wave reflects ventricular repolarization. Atrial repolariza-

tion cannot usually be discerned from the ECG, since it coincides with the much larger QRS

complex [Sörnmo 05].

The RR-intervals are defined as the distance between R-waves of consecutive beats1. The

simplest graphical representation of the HRV is the tachogram (Fig 2.2), which represents the

RR-interval durations versus the interval number.

If tn is the occurrence time of the n-th R-wave, the interval tachogram IT (n) is given by:

IT (n) = (tn − tn−1) for n = 1, ..., N. (2.1)

1In some studies the nomenclature NN-intervals is used to denote that the ectopic beats (the ones that do not

have their origin at the SA node) have been removed from the RR signal [Malik 96]. In this work just the sinusal

beats are included in the computations, but the nomenclature RR-intervals is used to refer the signals
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Figure 2.1: The figure represents an ECG tracing diagram with the wave definitions (Taken

from [Sauner 07]).

Figure 2.2: Example of a tachogram from a patient, which represents the RR-interval durations

versus the interval number.
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where N is the number of total intervals.

There exist several methods for RR-series analysis, each of them with different levels of

complexity and with application in different contexts. In the following sections, the most relevant

ones are described.

2.3 Linear Methods

Linear methods comprise time domain methods and spectral methods. Both have been used

for decades, in several studies, to characterize HRV [O. Rompelman 77, Akselrod 81, Bigger 92,

Piskorski 07]

2.3.1 Time Domain Methods

Time domain methods are the simplest ones on computational terms. They may be divided

into statistical methods and geometric methods. Chronologically, they were the first to be

applied to the HRV study, and they still are very used. Although a variety of heart rhythm

representations may be used, the series of RR intervals is normally chosen for the design and

calculation of time domain methods.

Statistical Indices

Statistical indices generally involve the calculation of the standard deviation or the variance

of the RR-series [Malik 96, Mietus 02]. These may be divided into two classes:

1. Those derived from direct measurements of the RR intervals.

2. Those derived from the differences between RR intervals.

These indices may be derived from the analysis of long-term electrocardiographic recordings,

usually 24 hour, or they may be calculated by using smaller segments of the recording period,

usually 5 minutes. The latter approach allows comparison of HRV to be made during varying

activities, e.g. sleep, awake activity, etc.

A subject to be taken into account is whether a particular index reflects long-term or short-

term HRV, in order to know if the conveyed information is primarily related to parasympathetic
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Index Units Description

AVNN ms Mean of NN intervals.

SDNN ms Standard deviation of NN intervals.

SDANN ms Standard deviation of the averages of NN intervals in all 5 min segments of the entire recording.

SDNNindex ms Mean of the standard deviations of NN intervals for all 5 min segments.

RMSSD ms The Square root of the mean of the sum of the squares of differences between adjacent NN intervals.

NN50 Number of pairs of adjacent NN intervals differing by more than 50 ms in the entire recording.

pNN50 % NN50 divided by the total number of NN intervals.

Table 2.1: Statistical indices of HRV

or sympathetic activity [Sörnmo 05]. Indices obtained from the differences between RR inter-

vals mostly convey short-term variability, due to the effect of the difference operation between

consecutive samples.

Table 2.1 summarizes the most usual statistical indices.

Geometric Indices

Data analysis by statistical methods highly depend on the data quality. This quality may

be affected by outliers, artifacts (noise generated by the measurement equipment), or even by

the patient’s cooperation capacity. Geometric methods come up from the search of more robust

indices to face the lack of quality [Malik 96, Malik 89, Brennan 01, Piskorski 07].

Geometric indices derive from the geometric properties of the RR-series. These series can

be represented as geometric patterns and then a simple formula is used to asses the variability

based on the geometric or graphic properties of the resulting pattern. Three general approaches

are used in geometric methods:

1. The HRV is obtained by a basic measurement of the geometric pattern, for example, the

width of the distribution histogram at the specified level.

2. The geometric pattern is interpolated by a mathematically defined shape, for example, it

could be the approximation of the distribution histogram by a triangle, or the approxima-

tion of the differential histogram by an exponential curve and then the HRV is measured

from the parameters of the geometric shape.

3. The geometric shape is classified into several pattern-based categories, which represent

different classes of HRV, for example, the elliptic, linear, and triangular shapes of Lorenz
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Index Units Description

Triangular index ms Total number of all NN intervals divided by the maximum of

the density function (height of the histogram of all NN intervals).

TINN ms Base width of the minimum square difference triangular interpolation

of the highest peak of the histogram of all NN intervals

Lorenz plot dispersion ms Representation of each NN interval duration versus the

duration of the previous interval.

Differential index ms Difference between the widths of the histogram of differences

between adjacent NN intervals measured at selected heights.

Logarithmic index Coefficient ϕ of the negative exponential curve K exp−ϕt

which is the best approximation of the histogram of

absolute differences between adjacent intervals.

Table 2.2: Geometric indices of HRV.

Figure 2.3: Left represents a Lorenz plot with low scatter which means a low variability, while

right shows a Lorenz plot with higher scatter which indicates therefore higher variability.

plot, which is a graphical representation of each RR-interval duration versus the duration

of the previous interval. Figure 2.3 shows an example of the Lorenz plot scatter.

Table 2.2 summarizes the most common geometric indices.

The application of geometric methods needs a reasonable number of RR intervals, preferably

24 hour, to build the geometric pattern, in order to ensure the correct performance of the methods.

2.3.2 Spectral Methods

Power spectral density (PSD) analysis provides the information of how power (variance) is

distributed as a function of frequency.
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Index Units Description

Total power ms2 Total variance of NN intervals over the temporal segment.

VLF ms2 Power in very low frequency range.

LF ms2 Power in low frequency range.

LF norm u.n. LF power in normalised units

LF/(Total power− V LF ) ∗ 100.

HF ms2 Power in High frequency range.

HF norm u.n. HF power in normalised units

HF/(Total power− V LF ) ∗ 100.

LF/HR Ratio LF [ms2]/HF [ms2].

Table 2.3: Frequency domain Methods of HRV.

HRV found in healthy subjects during rest is influenced by respiratory activity as well as by

feedback mechanism of the systems for regulation of temperature and blood pressure. The differ-

ent systems oscillate spontaneously at rest with characteristic frequencies in different intervals.

By quantifying the power of the spectral components, information about pathologies related to

cardiac autonomic function may be pointed out. The spectral domain is divided into different fre-

quency intervals and then the spectral power is measured in each interval in associated with the

physiologic response of the heart to the sympathetic or parasympathetic stimulation [Sörnmo 05,

Bigger 92, Huikuri 99, Madera-Tejeda 02, Persson 97, Piskorski 07, Yan 95, Rojo-Álvarez 03].

Three main spectral components are distinguished in the PSD of the RR-series:

• Very low frequency band (VLF) [< 0.04] Hz.

• Low frequency band (LF) [0.04, 0.15] Hz.

• High frequency band (HF) [0.15, 0.4] Hz.

Frequency-domain measures listed in the Table 2.3 are calculated based on these spectral

bands.

An increase in parasympathetic activity is related to an increase of the high-frequency power,

whereas an increase in sympathetic activity is mainly related to an increase of the low-frequency

power. However, is accepted that this last component has also influences from the parasym-

pathetic brand [Cerutti 95]. The physiological explanation of the VLF component has not yet

been established, and a specific physiological process ascribable to this component could be in-

existent. Thus, VLF assessed from short-term recordings should be avoided when interpreting

the PSD [Malik 96].
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Spectral analysis of HRV signal is traditionally performed on stationary recordings of at

least 256 to 512 consecutive heart beats, corresponding to a time window of a few minutes (2 -

5 min). This choice is made in order to obtain a good trade-off between a sufficient frequency

resolution and the stationarity condition of the signal which is necessary for a reliable spectral

estimation.

Methods for the calculation of PSD may be generally classified as non-parametric and para-

metric. Independently of the method employed, only an estimate of the true PSD of the signal

can be obtained [Malik 96].

Non-parametric Methods

In non-parametric methods, the PSD estimation is obtained from the Fourier Transform

of the Autocorrelation Function (ACF) of the signal. The Discrete Fourier Transform (DFT)

can be quickly and efficiently obtained by the Fast Fourier Transform (FFT) algorithm. The

expression of the PSD as a function of the frequency, can be obtained as:

P (ejw) =
1

N∆t

∣∣X(ejw)
∣∣2 (2.2)

where ∆t is the sampling period, N is the number of samples, and X(ejw) is the DFT of the time

series. This method is known as Welch Periodogram [Cerutti 95]. FFT based methods are widely

used, for the simplicity of the algorithm employed and its high computational speed [Malik 96].

Parametric Methods

Parametric methods assume the time series under analysis to be the output of a linear

system characterized by a rational function. In the parametric methods, the spectrum estimation

procedure consists of two steps. Given the data sequence y(n), with y ≤ n ≤ N − 1, the

parameters of the method are estimated. Then the PSD estimate is computed as a function of

the model parameters [Guler 02].

An important point in this approach is the choice of an adequate model to represent the data

sequence [Moody 06]. The most extended model is represented by the following linear equation

that relates the input signal ω(k) and the output of an AutoRegresive p order process, AR(p):

y(k) = −
p∑
i=1

aiy(k − 1) + ω(k) (2.3)
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where ω(k) is the input white gaussian noise and the ai represent the model parameters. There

exist two more parametric approaches, the AutoRegresive Moving Average model (ARMA) and

the Moving Average model (MA). But since the estimation of the AR parameters results in

linear equations, AR models, are the most widely used ones. Furthermore, an ARMA or MA

process can be approximated by an AR model [Cerutti 95].

The AR PSD is then calculated from the following expression:

P (f) =
σ2∆t

|1 +
∑p

i=1 aiz
−i|2z=e(j2Πfi∆t)

(2.4)

Parametric methods are methodologically and computationally more complex than the non-

parametric ones, as they require a priori choice of the model and its order. But they also have

advantages, since they provide an accurate estimation of PSD even on a small number of sam-

ples, and they present smoother spectral components which can be easily distinguished, what

makes easier the post-processing stage [Cerutti 95, Malik 96].

Figure 2.4 shows an example of the PSD calculation by parametric and non-parametric

methods.

2.4 Non-linear Methods

Until now, we have assumed the signals we are dealing with, as the outputs of linear systems.

However, it has been noticed that in normal conditions, fluctuations in the interval between con-

secutive heart beats may reveal characteristics from complex dynamic systems [Goldberger 91].

Based on this idea, conventional methods for the HRV signal analysis, might not extract

all the information it conveys. This would make necessary to apply nonlinear appropriate

tools [Goldberger 99, Barquero Pérez 05].

2.4.1 Methods from Chaos Theory

A nonlinear system can exhibit a very complex response. When the response of a nonlinear

system has a strong sensitivity to initial conditions and it is difficult to predict, it is considered

to have a chaotic behavior. An hypothesis in study, is that the complex heart rate fluctuations

observed during normal sinus rhythm in healthy subjects are due in part to deterministic chaos

and that a variety of pathologies, such as congestive heart failure syndromes, may involve a
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(a)

(b) (c)

Figure 2.4: PSD calculation. a)Tachogram of 256 consecutive RR values in a normal subject at

supine rest, b)PSD calculation of the tachogram by parametric AR approach, c)PSD calculation

of the tachogram by non-parametric approach (taken from [Malik 96]).
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paradoxical decrease in this type of nonlinear variability. The problem is that the mathematical

algorithms designed for detecting chaos are not reliably applied to nonstationary data sets

obtained from most clinical and physiological studies [Goldberger 99]. The most usual indices

used to characterize these kind of system are:

• The correlation dimension, that measures the complexity of the dynamical systems by

computing the fractal dimension of the system attractor, i.e., is a estimation of the degrees

of freedom of the system [Lombardi 96].

• The Lyapunov exponents, that measures the dependence of the chaotic systems on the

initial conditions [Signiorini 94].

2.4.2 Fractal Methods

The term fractal is a geometric concept, associated to forms that are highly irregular and have

non-integer, dimensions. A fractal is an object composed of subunits that resemble the larger

structure, this property is known as self-similarity. A number of cardiopulmonary structures

have a fractal-like appearance (arterial and venous trees, the His-Purkinje network, etc.), but

the fractality concept is not just applied to geometric forms, but also to complex processes that

have more than a single time scale. Complex fluctuations with statistical properties of fractals

have been described for HRV. Then, apparently health variability could be measured adapting

quantitative tools derived from fractal mathematics [Goldberger 99]. Methods that allow the

characterization of a complex system taking advantage of the fractal structure of the temporal

series, generated by the own system are [Huikuri 00]:

• The 1/f slope, that is, the slope founded in the plot of the spectral power in bilogarithmic

scale.

• The Hurst exponent.

• The scaling exponents from the Detrended Fluctuations Analysis (DFA).

2.4.3 Entropy Methods

Entropy-based methods provide a quantification of the irregularity of a temporal series. The

entropy concept has to do with the uncertainty inherent on a signal, i.e., with the amount of
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information it contains. The motivation to study the amount of irregularity or information in

the HRV signal is based on the following idea: For different health states, signals with different

irregularity levels are obtained, which means that it might be possible the stratification of risk

groups for pathologies that affect to this characteristic. To study in depth the methods based

in this concept and their performance is the purpose of the next chapters.

2.5 Conclusion

The methods presented in this chapter have different advantages and drawbacks. For this

reason, their application depends on the circumstances of the study.

Statistical indices are the simplest ones in computational terms, but they are highly depen-

dent on the data quality. Geometric indices come up to deal with this lack of quality and they

are more robust, but there is a need of a reasonable number of RR intervals in order to ensure

the correct performance of the these methods.

Sometimes, the spectral analysis contributes to understand better the mechanisms of the

ANS and the fluctuations on the cardiac cycle. In order to perform these measures, the PSD

estimation of HRV can be carried out either by parametric or by non-parametric methods. The

first ones are methodologically and computationally more complex, but they achieve an accurate

estimation of PSD even on a small number of samples.

More recently, it has been noticed that, in normal conditions, fluctuations in the interval

between consecutive heart beats may reveal characteristics from complex dynamic systems.

Therefore, non-linear approaches come up trying to extract all the information necessary to

analyze the HRV signal that traditional methods cannot reveal.

The performance of these methods can be studied individually, over a set of signals, but

often, several methods are computed in the same studies in order to compare them and also to

obtain a deeper analysis of the signals.



Chapter 3
Entropy Methods

The presence of non-linear dynamics in physiological signals, makes necessary the application

of adequate methods to this domain. Among the wide variety of proposed indices, methods based

on the signal entropy calculation are an option that have arisen a wide interest during the last

years.

The use of these methods to quantify data irregularity in cardiac signals is motivated by

the meaningful differences founded with respect to the degree of irregularity on these signals

depending on the health states, which reflects important physiological information.

3.1 Historical Development

Entropy is a thermodynamical quantity that describes the amount of disorder in a system.

This concept was generalized to the characterization of information amount conveyed by prob-

abilistic distributions. This topic is studied by the Information Theory, which was developed

since 1940, major contributions belong to Shannon, Renyi and Kolmogorov. Information Theory

has previously proved to be an appropriate approach to temporal series analysis [Kantz 04].

The Renyi entropies, a generalization of the Shannon entropy, are a family of functions

that quantify the uncertainty or randomness in a system. The Renyi entropy of order q of

a single discrete random variable X, with a set of values Θ and probability mass function

p(xi) = Pr {X = xi}, where, xi ∈ Θ, is defined as

Hq(X) =
1

1− q
ln
∑
xi∈Θ

p(xi)q (3.1)

17
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and it is defined for all positive q except for q = 1.

The case where q = 1 can be evaluated by the l’Hôpital rule obtaining the Shannon entropy

H(X) = −
∑
xi∈Θ

p(xi) ln p(xi) (3.2)

For a time series that represent the output of a stochastic process, that is, an indexed

sequence of n random variables, {Xi} = {X1, ..., Xn}, with a set of values θ1, ..., θn, respectively,

the joint entropy is defined as

Hn = H(X1, X2, ..., Xn) = −
∑
x1∈θ1

...
∑
xn∈θn

p(x1, ..., xn) ln p(x1, ..., xn) (3.3)

where p(x1, ..., xn) = Pr {X1 = x1, ..., Xn = xn} is the joint probability for the n variables

X1, ..., Xn.

By using the chain rule in (3.3), the joint entropy, Hn, can be written as a summation of

conditional entropies, H(Xi|Xj) each of which is a non-negative quantity

Hn =
n∑
i=1

H (Xi|Xi−1, ...X1) (3.4)

Therefore, it can be concluded that the joint entropy is an increasing function of n. The rate

at which the joint entropy grows can be written as

h = lim
n→∞

Hn

n
(3.5)

Let us now consider a D-dimensional dynamical system. Suppose that the phase space of

the system is partitioned into hypercubes of volume εD, and that the state of the system is

measured at time intervals δ. If p(k1, k2, ..., kn) denotes the joint probability that the state of

the system is in the hypercube k1 at t = δ, in the k2 at t = 2δ, and in the kn at t = nδ, the

Kolmogorov-Sinai (KS) entropy, HKS , can be defined as

HKS = − lim
δ→0

lim
ε→0

lim
n→∞

1
nδ

∑
k1...kn

p(k1, ..., kn) ln p(k1, ..., kn) = lim
δ→0

lim
ε→0

lim
n→∞

1
nδ
Hn (3.6)

For stationary processes [Cover 91], it can be shown that

lim
n→∞

Hn

n
= lim

n→∞
H(Xn|Xn−1, ...X1) (3.7)
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Then, by applying the chain rule, we obtain

HKS = lim
δ→0

lim
ε→0

lim
n→∞

(Hn+1 −Hn) (3.8)

The state of a system at a certain instant ti is partially determined by its history t1, t2, ..., ti−1.

However, each new state adds an additional amount of new information. The KS-entropy mea-

sures the mean rate of creation of information.

Numerically, only entropies of finite order n can be computed. As n becomes large with

respect to the length of a given time series, entropy Hn is underestimated and decays toward

zero. Therefore, Eq (3.8) is inappropriate to estimate the entropy of finite length time series.

Several formulas have been proposed as an attempt of estimating the KS-entropy with rea-

sonable accuracy. Grassberger and Procaccia [Grassberger 83] suggested the characterization of

chaotic signals by calculating the K2 entropy, which is a lower bound of the KS-entropy.

Let {Xi} = {x1, ..., xi, ..., xN} represent a time series of length N . Consider the m-length

vectors um(i) = {xi, xi+1, ..., xi+m−1}, 1 ≤ i ≤ N −m+ 1. Be nmi (r) the number of vectors that

satisfy d [um(i),um(j)] ≤ r, where d is the euclidean distance. Then

Cmi (r) =
nmi (r)

N −m+ 1
(3.9)

represents the probability that any vector um(j) is close to the vector um(i) within r, that is,

the euclidean distance between the vectors is less or equal to r. The average of the Cmi is given

by

Cm(r) =
1

N −m+ 1

N−m+1∑
i=1

Cmi (r) (3.10)

represents the probability that any two vectors are within r of each other. Then, K2 is defined as

K2 = lim
N→∞

lim
m→∞

lim
r→0
− ln

[
Cm+1(r)− Cm(r)

]
(3.11)

Following the same nomenclature, Eckmann and Ruelle [Eckmann 85] defined the function

φm(r) =
1

N −m+ 1

N−m+1∑
i=1

lnCmi (r) (3.12)

considering the distance between two vectors as the maximum absolute difference between their

components

d [um(i),um(j)] = max {|x(i+ k)− x(j + k)| : 0 ≤ k ≤ m− 1} (3.13)
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Eckmann and Ruelle also suggested the calculation of the the KS-entropy as follows

HER = lim
N→∞

lim
m→∞

lim
r→0

[
φm(r)− φm+1(r)

]
(3.14)

where φm+1 − φm represents the average of the natural logarithm of the conditional probability

that sequences close to each other for m consecutive data points will still be close to each other

for m+ 1 consecutive data points [Costa 05].

Although this equation has been useful in classifying low dimensional chaotic systems, it

cannot be applied to experimental data, since the result is infinity for a process with super-

imposed noise of any magnitude. Also, ER-entropy does not distinguish some processes that

appear to differ in complexity, e.g., ER-entropy for the MIX process (See 4.1.3) is infinity, for

all p 6= 0 [Pincus 91].

For the analysis of short and noisy time series, Pincus formulated a family of statistics known

as Approximate Entropy, that are described in the following section.

3.2 Approximate Entropy

The Approximate Entropy (ApEn) is a statistic inspired on the chaotic systems measures,

that asses the irregularity of a time series. This entropic measure was first proposed by Pin-

cus [Pincus 91], and it exhibits a good performance in the characterization of randomness even

when the data sequences are not very long. ApEn has been tested to differentiate from sys-

tems with different degrees of complexity, and it has also been applied to the HRV character-

ization from both fetus and adults, as well as to other physiological signals in several stud-

ies [Schuckers 99, Pincus 01, Magenes 03, Marques-de Sá 05, Magalhães 06, Ferrario 06].

3.2.1 ApEn Calculation Algorithm

In order to compute the ApEn, the specification of two parameters is previously required :

the embedded dimension m, that is, the length of the vectors to be compared, and a noise filter

threshold r. Given N data points u(1), u(2), ...u(N) of a signal, the parameter ApEn(m,r) is

defined as follows:

1. Vector sequences x(1), ..., x(N−m+1) are obtained, defined by x(i) = [u(i), ..., u(i+m−1)]

for i = 1, ..., N −m+ 1.
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2. The distance between vectors x(i) and x(j), d[x(i),x(j)] is defined as the maximum dif-

ference, in module, between their respective scalar components, this is

d[x(i),x(j)] = max
k=1,...,m

(|u(i+ k − 1)− u(j + k − 1)|) (3.15)

3. Based in this distance, the next correlation measure is defined

Cmi (r) =
(number of j ≤ N −m+ 1 such that d[x(i), x(j)] ≤ r)

(N −m+ 1)
(3.16)

where the numerator counts, for a given vector x(i), the number of times that d[x(i), x(j)] ≤

r for j = 1, ..., N −m+ 1.

4. Next, the average of the natural logarithm of Cmi (r) is computed for all i:

Φm(r) =
1

N −m+ 1

N−m+1∑
i=1

ln Cmi (r) (3.17)

5. Finally, the ApEn is defined as:

ApEn (m, r) =


lim
N→∞

[
Φm(r)− Φm+1(r)

]
for m > 0

lim
N→∞

[
−Φ1(r)

]
for m = 0

(3.18)

But, since in practice N is a finite number, the statistical estimate is computed as:

ApEn(m, r,N) =


Φm(r)− Φm+1(r) for m > 0

−Φ1(r) for m = 0
(3.19)

ApEn quantifies the likelihood that runs of patterns that are close for m observations do not

remain close on next incremental comparisons. Therefore, series with repetitive patterns will

produce a small ApEn values, while less predictable series will produce a larger ApEn values.

Clinically, relatively low values of the HR ApEn could be related to some pathology [Pincus 92,

Marques-de Sá 05].

Parameter Selection

Signal comparison by ApEn must be done with fixed parameters m and r.
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The maximum value that the parameter m can have is given by the definition of a criti-

cal value, mcrit(N) = max(m : 22m ≤ N). The specification of mcrit(N) is motivated by an

application of the methods of Orstein and Weiss [Orstein 90] and is interpreted as a limit of

gradation as a function of sequence length by indicating a maximal order consistent with a

convergent entropy estimate [Pincus 96]. In the application to HRV signal analysis, it is advis-

able to fix m as 1, 2, or 3, the variation obtained in the results with these values is not very

noticeable [Pincus 91, Marques-de Sá 05, Magalhães 06].

Regarding parameter r, Pincus recommends values between the 10% and 25% of the standar

deviation of the data [Pincus 91, Pincus 94, Pincus 01], hence obtaining this way a scale invariant

measurement. However, better results were achieved in other studies by choosing a fixed r

(indepedent from each data series standar deviation) [Marques-de Sá 05, Magalhães 06], since

the fact of setting the parameter r to a percentage of the standard deviation of the data could

render the method sensitive to outliers.

Moreover, to eliminate most of the noise present in the data, r should be larger than the

noise level.

Typically, the value used for the number of samples N, goes from 100 to 5000, however, in

order to obtain reasonable estimates at least 30m samples must be used [Pincus 96].

ApEn Example

In the following example two signals of different nature are studied. These signals are,

a deterministic periodic signal, specifically a sinusoidal signal, and the output of a nonlinear

dynamic system, a signal based in the series xn that follows the rule xo = 0.1 e xn+1 = 1− 2x2
n,

known as Ulam’s map.

Figure 3.1 shows the temporal representation of both signals.

The ApEn values for both signals were computed and the obtained values (Table 3.1) confirm

that the periodic signal is very regular, and therefore it has a very small ApEn value, while the

nonlinear signal has a considerably larger ApEn value. The first column on the table shows the

ApEn obtained directly from each signal. In the second column, for a better comparison of the

ApEn values, a normalization has been done. To carry out the normalization, each value in the

original signals has been mapped into 10 unique entire values, in order to construct an alphabet

of 10 symbols. Then, the ApEn is computed upon the mapped new series and the obtained
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Figure 3.1: Temporal representation of a deterministic periodic signal (top), and a deterministic

nonlinear signal (bottom).

Signal ApEn Norm. ApEn

Deterministic periodic 0.0300 0.0695

Deterministic nonlinear 0.6493 0.3422

Table 3.1: The table presents the ApEn values and also the normalized ApEn values for a

deterministic periodic signal and for a deterministic nonlinear signal.

values are normalized dividing by ln(10) which is asymptotically the maximum value the ApEn

can arise in series consisted of 10 symbols. This way, the maximum value of the ApEn after

normalization is 1.

In this example, the difference between the irregularity of both signals is visually noticeable,

but in other cases it can be not so evident, e.g. , in real signals from healthy and pathological

subjects. Furthermore, since is not efficient to analyze visually all the signals in the studies

and works, the quantification of the signals irregularity in order to compare a large amount of

different registers seems useful.

3.2.2 ApEn Properties

Several properties of the ApEn make this statistic appropriate for physiological data set

analysis [Pincus 01]:

• There is no need of a large amount of samples to obtain reasonable estimates.
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• It is robust to outliers.

• It is nearly unaffected by the noise of magnitude below r.

• Increasing ApEn corresponds to intuitively increasing process complexity.

• Its application is possible for stochastic, deterministic, and mixed processes, because finite

values are obtained for all cases.

From these characteristics, the three first ones make the ApEn appropriate to noisy short

data series analysis. The last characteristic is adequate for the study of biological signals, since

the outputs from biological systems usually have both, deterministic and random components.

In spite of the good properties for the characterization of physiological data exhibited by the

ApEn, it also has some drawbacks:

• ApEn is a biased statistic, due to the comparison of each template vector with itself

to avoid the occurrence of ln(0) in the algorithm. In the definition of Cmi (r), in the

ApEn computation, template vector x(i) itself counts in the Cmi (r) aggregation of vectors

close to x(i). This has the consequence that the conditional probabilities in Eq. (3.19)

are underestimated. This bias makes ApEn dependent of the data length and uniformly

lower than expected. For fixed m and r, the effect of this bias component tends to 0 as

N →∞ [Pincus 94, Richman 00].

• ApEn lacks relative consistency, it is expected that for most processes, if one process,

U , exhibits more regularity than other, V , for one pair of parameters m and r, it is

expected to do so for all other pairs, that is, if ApEn(m1, r1)(U) ≤ ApEn(m1, r1)(V ),

then ApEn(m2, r2)(U) ≤ ApEn(m2, r2)(V ) [Richman 00]. The relative consistency does

not hold for ApEn statistic, as it will be outlined in the next chapter.

3.3 Sample Entropy

Trying to improve the algorithm face the problems exhibited by the ApEn, J.S Richman

and J.R Moorman developed the family of statistics Sample Entropy (SampEn) [Richman 00,

Lake 02], whose main differences relative to ApEn are the followings:

1. It does not perform comparisons of each template vector with itself in its algorithm, that

is, it does not count self-matches.
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2. Just the first N − m template vectors of length m are considered in both stages of the

calculation, where Φm(r) and Φm+1(r) are computed respectively, while ApEn uses N −

m+ 1 length vectors on the first step, to obtain Φm(r) and N −m length vectors on the

second step, to obtain Φm+1(r).

3. It does not use a template approach when estimating conditional probabilities, and hence,

the probability measurement is directly obtained as the natural logarithm of the conditional

probability instead of as the ratio of the logarithmic sums (see Eqs (3.17),(3.22)).

The SampEn is the negative natural logarithm of the conditional probability that two se-

quences similar for m points remain similar for m+1 points, where self-matches are not included

in calculating the probability. Thus, a lower value of SampEn also indicates more self-similarity

in the time series. To be defined, SampEn requires only that two templates similar for m samples

remain similar for m+1 samples.

3.3.1 SampEn Calculation Algorithm

For the SampEn calculation the same parameters defined for the ApEn m and r are required.

The SampEn algorithm is computed in the following steps:

1. Bm
i (r) is defined as (N −m− 1)−1 times the number of template vectors xm(j) similar to

xm(i) (within r) where j = 1...N −m with j 6= i.

2. The average of Bm
i (r) for all i is calculated as

Bm(r) =
1

N −m

N−m∑
i=1

Bm
i (r) (3.20)

3. Similarly Ami (r) is defined as (N−m−1)−1 times the number of template vectors xm+1(j)

similar to xm+1(i) (within r) where j = 1...N −m with j 6= i.

4. The average of Ami (r) for all i is calculated as

Am(r) =
1

N −m

N−m∑
i=1

Ami (r) (3.21)

Bm(r) is then the probability that two sequences will match for m points, whereas Am(r)

is the probability that two sequences will match for m+1 points.
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5. SampEn(m,r) is defined as follows

SampEn(m, r) = lim
N→∞

{− ln [Am(r)/Bm(r)]} (3.22)

6. Which is estimated by the statistic SampEn(m,r,N)

SampEn(m, r,N) = − ln [Am(r)/Bm(r)] (3.23)

7. If the total number of template matches of length m is called B,

B = {[(N −m− 1) (N −m) /2]}Bm(r) (3.24)

and the total number of template matches of length m+1 is called A,

A = {[(N −m− 1) (N −m) /2]}Am(r) (3.25)

8. Replacing A and B in (3.23), we obtain

SampEn(m, r,N) = − ln (A/B) (3.26)

SampEn Example

Figure 3.2 illustrates a situation where SampEn fulfills the relative consistency, but ApEn

does not. For this example two processes with different known irregularity degree are chosen,

MIX(0.1) and MIX(0.9) (See 4.1.3), both plotted in 3.2 (a). Notice that graphically, to maintain

the relative consistency, plots of ApEn as a function of r for different data sets should not

cross one another 3.2 (b). However, given that MIX processes have standard deviation of 1

approximately, it is observed, that ApEn keeps relative consistency over the statistically valid

range of r.

3.3.2 SampEn Properties

In addition to maintain the original features that make ApEn appropriate for the study of

physiological signals,

• SampEn achieves a bias reduction and turns itself less dependent of the data length.
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(a)

(b) (c)

Figure 3.2: a)20 samples of MIX(0.9) and MIX(0.1) processes are represented, the former with

higher degree of irregularity than the last, b) ApEn statistics as a function of r with m=2 and

N=5000, for MIX(0.9) and MIX(0.1), c)SampEn statistics as a function of r with m=2 and

N=5000, for MIX(0.9) and MIX(0.1).
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• It presents relative consistency under circumstances where ApEn does not, although it

cannot be assured that the SampEn presents the mentioned relative consistency for all time

series. In essence, SampEn is an event counting statistic, where the events are instances

of vectors being similar to one another. When the events are sparse, the statistics are

expected to be unstable, which might lead to a lack of relative consistency.

3.4 Multiscale Entropy

Traditional entropy-based algorithms quantify the regularity of a time series. Entropy in-

creases with the degree of irregularity and is maximum for completely random systems. However,

an increase in the entropy may not always be associated with an increase in complexity.

Many pathologies, when associated with a more regular behavior, yield reduced entropy val-

ues in the physiological data, when compared to the healthy states. However, some pathologies,

like atrial fibrillation, are associated with highly erratic fluctuations with statistical properties

resembling uncorrelated noise. Traditional algorithms could yield higher entropies for such noisy

pathological signals when compared to healthy dynamics, even though the latter represent more

physiologically complex states.

This possible inconsistency may be due to the fact that traditional entropy algorithms are

based on single scale analysis, and they could not take into account the complex temporal

fluctuations inherent to healthy physiologic control systems.

The Multiscale entropy (MSE ) suggests the analysis of the physiological time series in its

different temporal scales [Costa 03a, Costa 03b, Costa 05]. The algorithm is inspired on Zhang’s

proposal of taking into account the information conveyed in multiple time scales [Zhang 91],

but while in his work Zhang uses Shannon definition of entropy, which cannot be applied to

physiological data series since it requires a large quantity of noise free data, the MSE uses ApEn

or SampEn as entropy measures.

3.4.1 Calculation Algorithm

Given a discrete time series x1, ..., xi, ..., xN , consecutive coarse-grained time series are ob-

tained,
{
y(τ)

}
, determined by the scale factor τ .

• First, the original time series is divided in non-overlapping windows of length τ . Then,

the average of the samples in each window is obtained. Figure 3.3 represents an example
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Figure 3.3: Coarse-graining procedure for scales 2 and 3 (Taken from [Costa 03b]).

of the construction of the coarse-grained temporal series for two scales.

• Each element of the coarse-grained time series y(τ)
j is calculated according to the equation

y
(τ)
j = 1/τ

jτ∑
i=(j−1)τ+1

xi, 1 ≤ j ≤ N/τ (3.27)

For scale one, time series
{
y1
}

is just the original time series.

The length of each coarse-grained time series is equal to the length the original time series

divided by the scale factor τ .

• Finally, the entropy index is calculated for each coarse-grained time series and plotted as

a function of the scale factor τ .

The MSE method requires an adequate data length to obtain reliable statistics for each scale.

Typically series of 2 × 104 have been used for analysis in 20 scales, in order to have at least

1× 103 samples in the last coarse-grained series [Costa 05].

MSE Example

Figure 3.4 shows an example of the MSE method. MSE analysis of RR time series derived

from 24 hour recordings of healthy young people, healthy elderly subjects and subjects with

Congestive Heart Failure (CHF) is performed. In Figure 3.4 (a), an example of each time series

is shown, and in Figure 3.4 (b) the result of the MSE analysis is presented. For scale one,

which is the only scale considered by single-scale-based methods, the entropy assigned to the
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(a) (b)

Figure 3.4: The figure represents MSE analysis of RR time series derived from 24 hour recordings

of healthy young people, healthy elderly subjects and Congestive Heart Failure subjects (CHF).

(A) Interbeat interval series from: a)healthy young subject, b)healthy elderly subject, c) subject

with CHF. (B) MSE analysis of the series. Symbols represent mean values for each class.

Parameters m=2 and r=(0.2* data standard deviation) are used for the SampEn calculation

time series of healthy young subjects and subjects with CHF are very close, and time series of

elderly subjects have the lowest entropy value. However, for the remaining scales, healthy young

subjects present the highest entropy values. The entropy values for healthy elderly subjects

become a little greater than the CHF subjects for scales from 4 to 7, but not significantly in

this case.

3.5 Conclusion

Entropy-based methods appear as a useful tool in the study of cardiac signals, and its

possible application as a clinic tool for diagnosis or prediction of different cardiac pathologies

is been explored [Schuckers 99, Pincus 01, Lake 02, Magenes 03, Marques-de Sá 05, Costa 05,

Ferrario 06].

ApEn is a statistic that characterizes the degree of irregularity of the temporal series. It

has been widely applied to the HRV signal study in the last years with promising results. This

statistic provides good estimates even with a not too large amount of samples. In principle,

ApEn is robust to outliers but this fact could be hampered by the choice of the parameter r.
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It is not much affected by noise and it can be applied to both, deterministic and stochastic

processes, which makes it adequate for the study of biological signals. However, ApEn has a

bias that makes itself dependent of the data length and it also lacks of relative consistency in

many cases.

SampEn statistic is defined in order to minimize these drawbacks. Its algorithm eliminates

self-matches when computing probabilities. With this, a reduction of the bias is achieved and

therefore the dependence on the data length is reduced as well. SampEn also presents relative

consistency under circumstances where ApEn does not.

While former methods are based on a single scale analysis, the MSE method suggests the

analysis of the physiological time series in its different temporal scales.

These three methods are not uncorrelated, each one is based on the previous one, but they

also have differences that may yield different results when applied. In the following chapter, the

performance of these methods will be tested with well known synthetic signals. The influence

of parameters m and r in this performance will also be studied in detail.
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Chapter 4
Entropy Methods Testing on Synthetic

Signals

In this chapter, first a set of synthetic signals of different nature are presented. Afterwards,

several experiments are performed over this set of signals in order to test the performance of the

entropy methods introduced in the previous chapter. The dependence of ApEn and SampEn

on their free parameters, m and r, and on the data length (N) is tested. Also, the relative

consistency of the algorithms is studied. Finally, a MSE analysis is performed over some of the

synthetic signals.

4.1 Synthetic Signals

In order to asses the behavior of the entropy methods introduced in the previous chapter,

some synthetic signals have been chosen, namely, a deterministic signal (sinusoidal signal),

a chaotic deterministic signal (logistic map), a signal with both deterministic and stochastic

components (MIX process) and a HRV model. Next, a brief description of this set of signals is

given.

4.1.1 Sinusoidal Signal

The algorithms are first tested on a deterministic signal, namely a sinusoidal signal, whose

expression is given by

33
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x = A sin(2πft+ φ0) (4.1)

whereA represents the amplitude, f is the frequency in Hertz, t represents the temporal evolution

and φ0 is the initial phase.

4.1.2 Logistic Map

The entropy methods are also tested on a low dimensional non-linear deterministic system

known as logistic map (also called quadratic map) [Kaplan 95]. The expression of the logistic

map is given by

xn+1 = Rxn(1− xn) (4.2)

According to the election of the R parameter, the following behaviors can be observed:

• Steady state (0 < R < 3); the nonlinear equation can have a solution that approaches a

certain state and remains fixed there.

• Periodic cycles (3 < R < 3.5); the solution to the nonlinear equation can have cycles and

oscillate between different values.

• Chaotic dynamics (3.5 < R < 4); the solution to the non-linear equation may oscillate,

not in a periodic manner, but with chaotic behavior.

For the experiments in this work, R = 3.8 is chosen, which corresponds to the last kind of

behaviors. In this way, a deterministic chaotic signal is obtained.

4.1.3 MIX Processes

MIX processes are a sort of stochastic signals superimposed on deterministic components,

an example of which is as follows:

• First, the value of a certain variable p is fixed to 0 ≤ p ≤ 1.

• Second, the sequence Xn =
√

2 sin(2πn/12) -the deterministic component- is defined ∀n

where n is the length of the resulting signal.
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• Third, Yn is defined as a family of independent identically distributed (i.i.d.) real random

variables, with uniform density on the interval
[
−
√

3,
√

3
]
.

• Next, Zn is defined as a family of i.i.d random variables as follows:

Zn = 1 with probability p.

Zn = 0 with probability 1− p.

• Finally, the MIXn = (1− Zn)Xn + ZnYn process is obtained

where MIXn represents each sample of the resulting MIX process.

MIX(p) is generated first ascertaining, for each n, whether the nth sample will be obtained

from the deterministic sine wave or from the random uniform variable, with likelihood (1 − p)

and p respectively, and then calculating Xn or Yn. Increasing p means therefore greater system

randomness [Pincus 91].

4.1.4 Auto-Regressive Models of HRV Signal

In order to test the entropy methods on a more realistic signal, sequences of cardiac beats

with the typical spectrum of a healthy subject are generated. For this purpose, two Auto-

Regressive (AR) models are used, the first corresponding with a typical PSD distribution in a

rest situation, and the second corresponding with a typical PSD distribution in a head-up tilt.

The head-up tilt test is a clinical test used to evaluate patients who have had syncope.

The patient is strapped to a table, which is then mechanically tilted to an upright position.

During the test, the pulse, blood pressure, electrocardiogram, and blood oxygen saturation can

be monitored. When the patient’s syncope is reproduced during the test, the test is said to

be positive. But the AR models used in this work simulate sequences of cardiac beats of a

healthy subject, and in a normal person, blood pressure will not drop dramatically during the

test, because the body will compensate for this posture with an increase in heart rate and

constriction of the blood vessels in the legs [Fogoros 03].

These PSD distributions in rest situation and in head up tilt are described in [Malik 96] and

are considered typical distributions of the PSD of the HRV (Fig.4.1). In this work, the model

with the coefficients described in [Mateo 00] is used.
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(a) (b)

Figure 4.1: PSD distributions of HRV signals obtained with the AR models in rest (a) and tilt

(b).

4.2 Tests

Following, different experiments with the presented signals are performed. In these experi-

ments, a comparison between ApEn and SampEn algorithms is carried out. The dependence on

their free parameters m and r, and on the data length N is tested. Also, the relative consistency

of both algorithms is compared. Finally, the multiscale approach and the single scale methods

are compared.

4.2.1 Entropy Methods Dependence on the Data Length

To test the dependence of the entropy indices against the data length, m and r parame-

ters are set to the most widely used values in the literature [Pincus 91, Richman 00], m = 2

and r = 0.2 ∗ sd, where sd is the data standard deviation. Then, for different values of the

data length, N = 100, 500, 1000, 2000, 4000, 6000, 8000, 10000, 20000, 40000, 100000, ApEn and

SampEn are computed. Typically the N values used to compute these indices oscillate between

100 and 5000 samples, but, since in the next chapter, real signals obtained from holter recordings

(approximately 100000 samples) will be studied, the synthetic signals in this chapter are also

analyzed up to 100000 samples.

In the following set of experiments, in order to distinguish adequately the different degrees

of irregularity of the chosen signals, normalized values of the entropies will be shown. The

normalization process is the same as that explained in the example 3.2.1.
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Figure 4.2: Sinusoidal Signal. ApEn and SampEn dependence on the data length (N). Entropy

values have been normalized. Parameters m and r are set to 2 and 0.2*sd respectively.

Sinusoidal Signal

First, the sinusoidal signal is used to compute ApEn and SampEn for the different values of

the data length.

Figure 4.2, shows ApEn and SampEn values as a function of data lenght. ApEn is approxi-

mately independent of data length. SampEn is also approximately independent but for N values

higher than 100, this could be due to that 100 samples may be not enough to achieve reasonable

estimates. For N = 100, the SampEn value is slightly higher than the ApEn value, whereas for

the rest values, ApEn is a little higher than SampEn.

Logistic Map

To continue with the study of the data length dependence, ApEn and SampEn are evaluated

on the logistic map in a deterministic chaotic behavior.

Figure 4.3 shows that ApEn is a little lower than SampEn for the lowest N value, while

both statistics have almost identical results for the remaining N values. In general, ApEn and

SampEn show high independence of the data length. Notice that, since the logistic map is more

irregular than the sinusoidal signal, the entropy values are a slightly higher for the logistic map.
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Figure 4.3: Logistic Map. ApEn and SampEn dependence on the data length (N). Entropy values

have been normalized. Parameters m and r are set to 2 and 0.2*sd respectively.

MIX Processes

To carry on the next test, process MIX(0.5) is chosen, therefore, parameter p is set to p = 0.5.

Ten realizations of this process are obtained for each value of N ; then, the mean and the standard

deviation of the results are presented as a function of N (Fig. 4.4).

Entropy values obtained for the MIX process are higher than those obtained for the previous

signals. The reason is that it is an stochastic process, and therefore is expected to have a more

irregular behavior. SampEn results are quite more independent of the data length than the

ApEn ones. However, it presents hight standard deviation for low values of N ; the reason is

that SampEn does not count self matches, and for an irregular process like the MIX(0.5), it needs

a reasonable amount of samples to ensure that the conditional probabilities in its algorithm are

reasonably estimated.

ApEn takes longer to stabilize and shows very low values for small data lengths. It achieves

a reasonable stabilization from N = 4000 samples onwards. For N less than 1000 samples, ApEn

values are lower than SampEn values, while the opposite happens for N > 1000, in fact from

N = 4000 onwards, ApEn values are almost uniformly higher than SampEn values.

Therefore, for this stochastic signal, SampEn is less dependent on the data length than ApEn,
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Figure 4.4: MIX(0.5) process. ApEn and SampEn dependence on the data length (N). Entropy

values have been normalized. Parameters m and r are set to 2 and 0.2*sd respectively.

which agrees with the reported results in [Richman 00], although it presents higher standard

deviation for any data length. The ApEn results are also almost independent of the data length

for high N .

Following, in order to test the algorithms over signals with different degree of irregularity,

4 different values for parameter p are chosen (p=0.1,0.3,0.6,0.9). Ten realizations of each MIX

process are obtained, and then ApEn and SampEn are computed for each process. Once seen

that for high number of samples the results are highly independent on data length and due to the

high computational cost, for this experiment the highest N value is reduced to 40000 samples.

Figure 4.5 shows the mean and the standard deviation of the results for each MIX process

and for each N .

It can be see that both statistics are able to separate these processes with different degree of

irregularity, but it is the SampEn which achieves the best separation between the processes. Also

notice that for very irregular processes and low N values SampEn exhibits higher results than

ApEn, whereas the opposite occurs for more regular processes or for high N values. As already

was seen for the MIX(0.5) process, SampEn is less dependent on the data length, although it

has higher standard deviation for low number of samples.
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(a) (b)

Figure 4.5: MIX processes. ApEn and SampEn dependence on the data length (N). Entropy

values have been normalized. Parameters m and r are set to 2 and 0.2*sd respectively.

AR Models

Following, the two AR models corresponding with a typical PSD distribution in a rest sit-

uation, and in a head-up tilt, are used to generate synthetic HRV signals that simulate this

situations. Ten realizations of each model are obtained and the mean and standard deviation of

ApEn and SampEn are computed as a function of data length.

Figure 4.6 shows that SampEn values have first a decreasing tendency which tends to stabilize

for very high N values. ApEn has the opposite tendency for low number of samples, and also

tends to stabilize for very high N values. Notice that SampEn has higher standard deviation,

mainly for low values of N .

Also notice that for both entropy measures, results in rest situation are higher than in

head-up tilt situation, when the symptoms of a syncope are reproduced in a controlled clinical

environment.

4.2.2 Entropy Methods Dependence on the Threshold value r

In the following experiments, the signal behavior with regard to the parameter r of the

entropy algorithms is tested. For each synthetic signal, ApEn and SampEn are computed for

30 different values of r ∗ sd, with r ∈ [0.1, 2.1]. In these tests, parameter m remains set to 2 and

parameter N is fixed to N = 5000, since for such value both ApEn and SampEn have proved

to reasonably converge in the studied signals.
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Figure 4.6: AR models of HRV. ApEn and SampEn dependence on the data length (N). Entropy

values have been normalized. Parameters m and r are set to 2 and 0.2*sd respectively.

For most processes, the conditional probability that sequences similar, with regard to a

certain ratio r, remain similar, when the sequences increase in one sample, should decrease as

r decreases because the criterion for matching becomes more stringent. Therefore, ApEn and

SampEn are expected to increase as r decreases [Pincus 91, Richman 00].

From now on, in this chapter, normalized entropies are no longer shown, instead, the original

values are presented. The reason is that, when we normalize the entropy values by mapping all

possible values in the original signal to a limited set of values, 10 values in this case, a coarse

grained signal is obtained and a fine study of parameters r and m is no longer possible.

Sinusoidal Signal

For the sinusoidal signal, both ApEn and SampEn, agree with theory for all the studied r

range, i.e. the entropy values decrease as r increases (Fig 4.7).

ApEn exhibits higher values than SampEn until r = 0.2; beyond this value they both

converge toward zero, since the criterion for matching becomes less stringent and almost all the

vectors match for m and for m+ 1 samples.
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Figure 4.7: Sinusoidal Signal. Influence of parameter r in the computed ApEn and SampEn

values. Parameters m and N are set to 2 and 5000 respectively.

Logistic Map

For the logistic map, both ApEn and SampEn agree with theory for all tested values of r,

except ApEn from the first to the second r values. Both statistics show very similar values for

all tested range values. (Fig. 4.8).

In this case, the entropies do not converge toward zero in the tested r range due to two

reasons. First, because the logistic map is a more irregular signal than the sinusoidal signal,

and second, because its standard deviation (≈ 0.2) is lower than the standard deviation of the

sinusoidal signal (≈ 0.7) and we are setting r as a percentage of the standard deviation .

MIX Processes

Ten realizations of the MIX(0.5) process are now obtained for each r value. Next, ApEn

and SampEn are obtained for each r and for each realization. Then, the mean and the standard

deviation of the results are shown in Figure 4.9.

ApEn and SampEn have increasing values until r = 0.1 and r = 0.2 respectively; from this

points onwards they decrease. For r until 0.04, ApEn values are lower than the SampEn values,

the reason being that for low r there is a very small number of template matches and the ApEn
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Figure 4.8: Logistic Map. Influence of parameter r in the computed ApEn and SampEn values.

Parameters m and N are set to 2 and 5000 respectively.

bias is then more marked.

Also notice that for low values of r, the standard deviation of SampEn is higher than the

standard deviation of ApEn. The reason is now the lack of self matches in the SampEn. When

the matching criterion becomes very strict, the number of vectors similar to other ones are not

enough to achieve stable statistics.

AR Models

For AR models, SampEn agrees with theory and decreases when r increases, for all tested r

values, whereas ApEn just fulfills this condition for r > 0.1.

For very low r values ApEn tends to 0. The reason is that when the filter r is very stringent,

there is a very small number of template matches, and the larger deviation of the ApEn bias

occurs in this situation, when a large proportion of templates do not have matches and are

assigned a conditional probability of one, corresponding to perfect order.

As expected, SampEn continues to exhibit higher standard deviation for low r values (Fig 4.10).
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Figure 4.9: MIX(0.5) process. Influence of parameter r in the computed ApEn and SampEn

values. Parameters m and N are set to 2 and 5000 respectively.

Figure 4.10: AR models of HRV. Influence of parameter r in the computed ApEn and SampEn

values. Parameters m and N are set to 2 and 5000 respectively.
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Figure 4.11: Sinusoidal Signal. Influence of parameter m in the computed ApEn and SampEn

values. Parameters r and N are set to 0.2*sd and 5000 respectively.

4.2.3 Entropy Methods Dependence on the Parameter m

In this section the behavior of the algorithms against the variation of the parameter m is

tested. To this purpose, 10 values of m have been chosen, m = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

In this case, ApEn and SampEn are expected to decrease as m increases, because the higher

the length of the vectors to be compared the lower the probability of them to be similar becomes.

Sinusoidal Signal

Figure 4.11 shows that both ApEn and SampEn values decrease as m increases. They both

follow similar patterns but for m = 1 ApEn is higher than SampEn, while the opposite occurs

for remaining m values until m = 6; beyond that they both have almost identical results.

Logistic Map

For the logistic Map (Fig. 4.12), ApEn and SampEn values also decrease as m increases, but

in this case, for m = 1 SampEn is higher than ApEn, whereas ApEn shows higher values than

SampEn for the remaining m values.
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Figure 4.12: Logistic Map. Influence of parameter m in the computed ApEn and SampEn values.

Parameters r and N are set to 0.2*sd and 5000 respectively.

MIX Processes

Following, 10 realizations of MIX(0.5) process are obtained, for each value of parameter m.

ApEn and SampEn are computed for each m value and for each realization. Figure 4.13 shows

the mean and standard deviation of the results.

For low values of m, ApEn statistics are higher than the SampEn ones (until m = 3), then

ApEn decreases rapidly, while SampEn values first decrease slowly and then, they converge to

a fixed value.

It is remarkable that the higher the m value, the higher the standard deviation of SampEn

results becomes. Moreover, SampEn is not defined for m = 10, which means that there are not

even two vectors of 10 samples similar to each other that remain similar for 11 samples, in this

signal. Also, for high values of m ApEn becomes 0. For this reason, in practice low values of m

must be used in order to obtain reasonable statistics.

AR Models

For AR models (Fig 4.14), ApEn exhibits higher values for the rest situations until m = 3,

and then both rest and tilt exhibit very similar values. SampEn exhibits higher values for the
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Figure 4.13: Mix Process. Influence of parameter m in the computed ApEn and SampEn values.

Parameters r and N are set to 0.2*sd and 5000 respectively.

rest situation than for the tilt situation for all m values where is defined, except for m = 3,

where rest and tilt have the same value.

Notice, that the standard deviation of the SampEn increases when m is increased. For both

rest and tilt, SampEn is defined until m = 8, because the probability of not finding similar

vectors when m increases, is higher, and therefore also the probability of SampEn not being

defined.

4.2.4 Relative Consistency

In this section, the relative consistency of ApEn and SampEn statistics with regard to the

variation of their free parameters, r and m, is tested. For this purpose MIX processes with

different degrees of irregularity are obtained. Four values of parameter p are chosen (p =

0.1, 0.3, 0.6, 0.9) for the MIX processes, and then 10 realizations of each process are obtained,

each one with 5000 samples.
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Figure 4.14: AR models of HRV. Influence of parameter m in the computed ApEn and SampEn

values. Parameters r and N are set to 0.2*sd and 5000 respectively.

Parameter m

First, the relative consistency of the statistics with regard to parameter the m is tested for

m = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

Figure 4.15 shows the mean and the standard deviation of ApEn 4.15 (a) and SampEn 4.15 (b),

for each process and each m value.

ApEn only shows relative consistency for m = 1 and m = 2, whereas SampEn shows relative

consistency for all tested values in which it is defined.

Notice that for MIX(0.6), SampEn is defined up to m = 7, and for MIX(0.9), just until

m = 5, also, it has high values of standard deviation from m = 4 onwards for both processes.

The reason is that for very irregular processes is difficult or even impossible to find similar

vectors when the length of the vectors (m) increases.

The m values that achieve higher separation between these four processes are, m = 2 for

ApEn, and m = 3 for SampEn. For the latter, besides the separation between the means, also

the standard deviation is considered.
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(a) (b)

Figure 4.15: Testing the relative consistency of the statistics with MIX processes. Variation of

parameter m in the compute of ApEn (a) and SampEn (b).

Parameter r

Following, the relative consistency of the statistics with regard to parameter r is tested. The

m parameters are set to m = 2 for ApEn and to m = 3 for SampEn, i.e. the values chosen in

the previous test.

Figure 4.16 shows the mean of standard deviation of the results. It can be seen that ApEn

lacks of relative consistency when the whole range of parameter r is observed, but it keeps this

relative consistency over the statistically valid range (r ∈ [0.1 ∗ sd, 0.25 ∗ sd]), which is the one

used in practice [Pincus 94].

SampEn shows relative consistency until r = 0.5, because for high r values, as happens for

ApEn, the four processes converge toward zero. However, it clearly maintains relative consistency

in a larger range than ApEn does, and also with a better separation between the four processes.

Notice, that for both indices, the more irregular the process is, the more abruptly the entropy

value decreases toward zero for high r values. The reason seems to be that for low r values,

the more irregular processes are the ones that still do not have many matched templates, as r

increases the number of matched templates is expected to increase more rapidly than the ones

in more regular processes.

SampEn is not defined for MIX(0.9) process when r values are very low. In this case, we

have a very irregular process and a very restrictive filter. The consequence is that, there are not

even two vectors that differ less than 0.04 for both m = 3 and m = 4, in the whole signal and
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(a) (b)

Figure 4.16: Testing the relative consistency of the statistics with MIX processes. Variation of

parameter r in the compute of ApEn (a) and SampEn (b).

therefore SampEn is not defined for r < 0.04.

The r value that better differentiates between the four signals for both ApEn and SampEn

is r = 0.1

4.2.5 A Single Scale Methods vs Multiscale Approach

For the following experiment, m and r values that better separated the MIX processes in

the previous experiments are used, therefore, ApEn(2,0.1) and SampEn(3,0.1) are computed.

In this experiment a multiscale analysis with 20 scales is performed. The analysis is performed

using the MIX processes (p = 0.1, 0.3, 0.6, 0.9).

Figure 4.17 shows the results of ApEn 4.17 (a) and SampEn 4.17 (b), for each process and

for each scale factor. These results agree with the ones in [Ferrario 06], and as can be seen, the

maximum separation for the processes occurs for the first scale factor, that is, for the original

signal. Therefore, the multiscale approach does not reveal further relevant information about

the MIX processes, related to the separation of processes with different degree of irregularity,

than the single scale methods.

Following, the same analysis is performed on the AR models of HRV. Figure 4.18 shows that

both statistics follow the same patterns, for the original signal, τ = 1, the rest models show

higher entropy values. Then, for τ = 2, rest and tilt situations present the same values. For

a few following scale factors, tilt model shows higher results and finally, again the rest model
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(a) (b)

Figure 4.17: Results of the MSE analysis with 20 scales for MIX processes, with ApEn (a) and

SampEn (b).

presents higher results. Therefore, for the AR models of HRV is also not possible to extract any

further information by the multiscale analysis.

Since with the chosen synthetic signals the usefulness of the multiscale approach cannot be

appreciated, in the next chapter the MSE method will be computed over real signals in order

to test its performance.

4.3 Conclusion

In this chapter properties and performance of the entropy methods introduced in the previous

chapter have been tested on synthetic signals. The conclusions of these tests can be divided in

two parts, on one hand, the conclusions about the behavior of the algorithms itself and on the

other hand the conclusions about the comparison between the two statistics and the selection

of the free parameters.

First, from the behavior of the algorithms several points are worth noticing:

• Due to the fact that ApEn counts self template matches, it has a bias that makes itself de-

pendent on the data length and uniformly lower than expected, as explained in [Pincus 94,

Richman 00]. This characteristics have been corroborated in this work for very irregular

signals and in general for a not very large amount of samples, until N < 5000 approx-

imately. However, more regular signals like, MIX(0.1) or MIX(0.3), show higher ApEn
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(a) (b)

Figure 4.18: Results of the MSE analysis with 20 scales for AR models of HRV, with ApEn (a)

and SampEn (b).

than SampEn for all tested data lengths and also the MIX(0.5), MIX(0.6) and the AR

models of HRV, for high N values. This fact can also be appreciate in [Richman 00] where

ApEn and SampEn are computed over MIX(0.1) and MIX(0.9) processes.

• Regarding the performance of the algorithms against parameter r, SampEn agrees with

theory in more situations than ApEn does. The reason is that for very low r values there

is a very small number of template matches and the bias of the ApEn is more marked in

that situation.

• In tests for parameter m, for hight m values and irregular signals, namely, MIX(0.5)

and AR models, ApEn tends toward zero whereas SampEn does not, because the small

number of template matches makes the ApEn bias more marked. Likewise, due to the

lack of template matches, for high m values SampEn is not defined or has high standard

deviation.

For more regular signals, sinusoidal and logistic map, they both decrease as m increases

as expected.

• SampEn shows relative consistency in more situations than ApEn does.

• The MSE analysis performed over the MIX processes and AR models did not reveal

further relevant information, related to the separation of processes with different degree

of irregularity, than the single scale methods.
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Second, about the comparison between the two statistics and the selection of the free pa-

rameters:

• From the experiments performed in this chapter, can be concluded that although SampEn

is sometimes not defined for extreme values of its free parameters, in the statistical valid

range of these parameters, it achieves a better separation of processes of well known

irregularity than ApEn. Furthermore, SampEn agrees with theory in more situations,

than ApEn does. For this reason and also due to the high computational cost of the tests,

experiments with real data will only be performed with the SampEn statistic.

• The parameters that achieved best separation for the different MIX processes cannot be

taken as the more suitable for real data but, from the performed tests, the statistically

valid range of the parameters has been corroborated. Therefore, in the experiments with

real data, the test ranges will be reduced to m = [1, 2, 3] and r = [0.1, 0.15, 0.2].
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Chapter 5
Entropy Methods Testing on Real Signals

In this chapter, tests are performed on real signals from healthy subjects and from subjects

with Congestive Heart Failure (CHF). The main objectives are two: First, use SampEn statistic

to discriminate between healthy and pathological subjects, and second, asses the loss of HRV

due to aging in healthy subjects by using SampEn.

With these goals, first, the influence of the free parameters tuning in the performance of the

statistic is studied, with the aim of maximizing the separation between healthy and pathological

subjects.

Next, the discrimination capabilities of the statistics to distinguish between young and elderly

groups of healthy subjects are also studied. Finally, the recordings are split into different groups

according to the age of the subjects, and the evolution of the statistic is analyzed.

In the end, a MSE analysis is performed with the real data.

5.1 Datasets

Entropy methods are used to asses the variability of the RR-interval signals derived from

24-hour Holter recordings from healthy subjects and from subjects with CHF. Both sets of

recordings were obtained from the Physionet database [Goldberger 3].

The data of the healthy group were obtained from 24-hour Holter monitor recordings of

72 healthy subjects, 35 men and 37 women aged from 20 to 76 years old. The data of the

CHF group were obtained from 24-hour Holter monitor recordings of 44 subjects, from 22 to 79

years old, including 19 men and 6 women (the gender information was not available for all the

55
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recordings).

Some of the recordings from both groups have time information, which is used in this work

to study the variation of HRV during different periods of the day (18 healthy subjects aged from

20 to 50 years old, and 15 subjects with CHF aged from 22 to 71 years old).

All data sets were filtered to remove artifacts, missed detections and isolated ectopic beats.

Furthermore, RR intervals lower than 200 ms and greater than 2000 ms were removed as

well as those which differed more than 20% from the previous and the subsequent RR in-

tervals [Malik 89].

5.2 Introduction

The study is divided in two main parts, on one hand, the discrimination between healthy

and pathological subjects using SampEn is pursued, and on the other hand, the relation of

SampEn with aging is studied. For both parts, the influence of the free parameters is tested.

For this purpose, a set of possible values for m = 1, 2, 3 is evaluated. Concerning to threshold

value r, SampEn is computed according to two methods:

1. Method 1: parameter r set to a certain percentage of the standard deviation (sd) of

each data series, which is the method conventionally used in the literature [Pincus 94,

Richman 00, Costa 03b, Signorini 98] (using r = 0.1, 0.15, 0.2 ∗ sd).

2. Method 2: parameter r set to a percentage of the mean standard deviation of whole

recordings (from healthy and CHF subjects), which means a fixed r for all the recordings

(using r = 10, 15, 20).

This last method is justified in [Marques-de Sá 05], where better results were reported in

Fetal Heart Rate (FHR) Variability assessment by setting r fixed for all the datasets.

5.3 Discriminating Tests for Healthy and CHF Subjects

Discriminating tests for healthy and pathological subjects are divided in two parts:

• First, only the recordings with available time information are used, in order to obtain

SampEn values for the night period (24:00 - 06:00), the day period (8:00 - 24:00) and the

whole recording time (approx. 24 hour).
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• Second, all the recordings are taken into account, and SampEn is computed for all of

them in the entire recording time.

5.3.1 Tests for Different Time Periods

The tests in this section are divided according to the method of setting parameter r. First,

the tests using method 1 are performed, and then the tests using method 2.

Since the number of recordings with time information is not large enough (< 25) to assume a

normal distribution of the data average values, the Lilliefors test allowed to accept the normality

hypothesis at the 1% significance level at least, for all the experiments.

Tests with Variable Threshold Value r

First, parameter r is set by method 1. Table 5.1 shows the results for the different possible

combinations of r and m values, for both, healthy and pathological groups, and for each time

period.

Major differences between the means are obtained for the night period. For this period some

of the combinations of m and r give significant differences in the Student’s t test for the means

(p < 0.05) (See Table 5.1 ). For the day period and for the 24 hour period, significant differences

are not found for any combination of m and r.

For the day period, CHF group has higher mean SampEn values than the healthy group, for

most of the parameter combinations. Whereas for the night period healthy subjects have higher

values of SampEn than the pathological subjects. This is due to the fact that SampEn increases

in the night period with respect to the day period, and although this increase is present for

both, healthy an pathological groups, is by far more marked for the healthy group.

For the 24 hour period, healthy subjects obtain higher values than the CHF ones in most of

the cases, but with very small differences between the means.

Figure 5.1 (a), (c) and (e) shows the parameters combinations that show larger discrimination

(lower p-value in the t test), for each period. Note that these parameter combinations are the

same for the day period, and the 24 hour periods, m = 2 and r = 0.15sd, and different for the

night period, m = 1 and r = 0.1sd.
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Table 5.1: Mean ± sd of SampEn for r set by method 1. Significant variation (p < 0.05) between

pathological and healthy subjects has been highlighted.

CHF Healthy

SampEn(m, r) Nigth Day 24 hour Nigth Day 24 hour

SampEn(3, 0.1sd) 1.39 ± 0.41 1.23± 0.44 1.10± 0.45 1.76 ± 0.50 1.20± 0.25 1.09± 0.23

SampEn(2, 0.1sd) 1.47 ± 0.41 1.31± 0.45 1.18± 0.44 1.98 ± 0.53 1.30± 0.26 1.20± 0.26

SampEn(1, 0.1sd) 1.59 ± 0.40 1.45± 0.46 1.32± 0.45 2.12 ± 0.53 1.43± 0.29 1.34± 0.26

SampEn(3, 0.15sd) 1.21± 0.45 0.92± 0.38 0.77± 0.42 1.22± 0.27 0.97± 0.18 0.86± 0.26

SampEn(2, 0.15sd) 1.29± 0.43 1.00± 0.38 0.84± 0.42 1.42± 0.28 1.06± 0.20 0.96± 0.27

SampEn(1, 0.15sd) 1.40± 0.43 1.13± 0.41 0.98± 0.44 1.54± 0.29 1.17± 0.20 1.07± 0.27

SampEn(3, 0.2sd) 0.80 ± 0.38 0.68± 0.32 0.59± 0.35 1.05 ± 0.29 0.70± 0.15 0.63± 0.18

SampEn(2, 0.2sd) 0.86 ± 0.40 0.74± 0.32 0.65± 0.34 1.23 ± 0.34 0.77± 0.16 0.71± 0.20

SampEn(1, 0.2sd) 0.97 ± 0.36 0.87± 0.35 0.78± 0.36 1.33 ± 0.34 0.85± 0.16 0.80± 0.19

Tests with Fixed Threshold Value r

Second, parameter r is set by method 2. Table 5.2 shows the results for the different possible

combinations of r and m values, for both, healthy and pathological groups, and for each time

period.

For fixed r, a considerably larger discrimination between CHF and healthy subjects is

achieved for the three time periods and for any choice of parameters m and r. All the ex-

periments give significant differences (p < 10−4) (See Tab 5.2).

SampEn increases for the night period respect to the day period, and for both healthy and

pathological groups. This could be due to the fact that during the day period, besides the

complex physiological fluctuations that modulate the HR, other fluctuations with more regular

patterns, which are the response to changes in the environmental conditions, are present, and

this last fluctuations may disguise the irregularity inherent in the HRV signal.

SampEn also presents higher standard deviation for the night time period than for the others.

Larger discrimination between healthy and pathological subjects is obtained for the day and
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Table 5.2: Mean ± sd of SampEn for r set by method 2. Significant variation (p < 10−4) between

pathological and healthy subjects has been highlighted.

CHF Healthy

SampEn(m, r) Nigth Day 24 hour Nigth Day 24 hour

SampEn(3, 10) 0.66 ± 0.22 0.52 ± 0.16 0.53 ± 0.15 1.36 ± 0.38 1.15 ± 0.23 1.16 ± 0.23

SampEn(2, 10) 0.72 ± 0.25 0.58 ± 0.18 0.60 ± 0.18 1.57 ± 0.44 1.25 ± 0.25 1.29 ± 0.25

SampEn(1, 10) 0.82 ± 0.25 0.71 ± 0.21 0.73 ± 0.21 1.70 ± 0.49 1.37 ± 0.26 1.43 ± 0.27

SampEn(3, 15) 0.45 ± 0.19 0.33 ± 0.13 0.35 ± 0.13 1.36 ± 0.38 1.15 ± 0.23 1.16 ± 0.23

SampEn(2, 15) 0.50 ± 0.21 0.39 ± 0.15 0.40 ± 0.15 1.57 ± 0.44 1.25 ± 0.25 1.29 ± 0.25

SampEn(1, 15) 0.59 ± 0.21 0.50 ± 0.18 0.52 ± 0.17 1.70 ± 0.49 1.37 ± 0.26 1.43 ± 0.27

SampEn(3, 20) 0.25 ± 0.14 0.18 ± 0.09 0.18 ± 0.09 0.97 ± 0.34 0.77 ± 0.19 0.79 ± 0.20

SampEn(2, 20) 0.29 ± 0.15 0.15 ± 0.08 0.23 ± 0.10 1.14 ± 0.40 0.85 ± 0.21 0.88 ± 0.22

SampEn(1, 20) 0.36 ± 0.16 0.30 ± 0.13 0.32 ± 0.13 1.25 ± 0.45 0.94 ± 0.22 0.99 ± 0.23

24 hour period than for the night period.

It is also remarkable that for fixed r, healthy subjects show higher SampEn values for the

three time periods, which is in agreement with the idea of loss of HRV in pathological conditions.

Figure 5.1 (b), (d) and (f) shows the parameters combinations that show larger discrimination

(lower p-value), for each time period. These parameter combinations are, m = 3 and r = 15 for

the day and 24 hour periods, and m = 2, r = 15 for the night period.

The reason for obtaining better results by setting a fixed r, instead of setting r as a percentage

of each data series standard deviation, could be that subjects with CHF have lower standard

deviation than the healthy ones (see Table 5.3), and therefore, the relative differences among

samples could not be fairly preserved when each recording is divided by its standard deviation

in the computation of the distance between samples.

As an example, Table 5.4 shows two data series, each one with four samples of RR-intervals.

The first one from a healthy subject and the second one from a CHF subject. The standard devi-

ation of each data series is also presented. Following, the distance between the two first samples is

computed, by setting m = 1 and r to a certain percentage of each data series standard deviation,
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Boxplot for SampEn computed with r set by method 1 a), c) and e); and with r set

by method 2 b), d) and f). For night period a) and b). For day period c) and d). For 24 hour e)

and f). The boxes have lines at the lower quartile, median, and upper quartile values. Whiskers

extend from each end of the box to 1.5 times the interquartile range. Outliers are displayed with

a + sign. Notches display the variability of the median between samples.
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Table 5.3: Standard deviation of the different groups. Mean ± sd.

Standard Deviation

Healthy 136.84±32.67

Healthy-Young 136.20±35.51

Healthy-Elderly 137.20±31.36

CHF 66.98±38.87

Table 5.4: The table shows four samples of RR-intervals from a healthy subject and from a CHF

subject. The standard deviation of each data series is showed.

RR1(ms) RR2(ms) RR3(ms) RR4(ms) Standard Deviation

Healthy 844 867 891 844 22.46

CHF 580 592 596 592 6.93

• For the healthy subject we have the following situation,

|844− 867| = 23 ≤ r × 22.46

23/22.46 ≤ r

1.02 ≤ r

• Whereas for the CHF subject we have,

|580− 592| = 12 ≤ r × 6.93

12/6.93 ≤ r

1.7 ≤ r

For method 2 of setting r, the comparison between the samples would be 23 ≤ r for the

healthy subject and 12 ≤ r for the CHF subject, while for method 1 of setting r, the comparison

would be 1.02 ≤ r for the healthy subject and 1.7 ≤ r for the CHF subject. Therefore, with

method 1, recordings from healthy subjects are scaled by higher values than recordings from CHF

subjects, which does not only affect the amplitude of the data, but also the relative difference

between samples.
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Table 5.5: Mean ± sd of SampEn computed by segments over the 24 hour period, for r set by

method 2. Significant variation (p < 10−6) between pathological and healthy subjects has been

highlighted.

CHF Healthy

SampEn(m, r) Nigth Day 24 hour Nigth Day 24 hour

SampEn(3, 10) 0.64 ± 0.21 0.51 ± 0.17 0.53 ± 0.16 1.32 ± 0.36 1.15 ± 0.23 1.20 ± 0.24

SampEn(2, 10) 0.69 ± 0.23 0.56 ± 0.19 0.59 ± 0.18 1.51 ± 0.41 1.25 ± 0.25 1.32 ± 0.26

SampEn(1, 10) 0.77 ± 0.24 0.65 ± 0.21 0.68 ± 0.19 1.65 ± 0.46 1.36 ± 0.26 1.44 ± 0.29

SampEn(3, 15) 0.43 ± 0.19 0.32 ± 0.14 0.34 ± 0.13 1.32 ± 0.36 1.15 ± 0.23 1.20 ± 0.24

SampEn(2, 15) 0.47 ± 0.20 0.36 ± 0.15 0.39 ± 0.15 1.51 ± 0.41 1.25 ± 0.25 1.32 ± 0.26

SampEn(1, 15) 0.54 ± 0.21 0.45 ± 0.17 0.47 ± 0.16 1.65 ± 0.46 1.36 ± 0.26 1.44 ± 0.29

SampEn(3, 20) 0.23 ± 0.14 0.16 ± 0.10 0.17 ± 0.09 0.93 ± 0.32 0.77 ± 0.20 0.81 ± 0.21

SampEn(2, 20) 0.26 ± 0.15 0.19 ± 0.11 0.20 ± 0.11 1.09 ± 0.37 0.85 ± 0.21 0.91 ± 0.23

SampEn(1, 20) 0.31 ± 0.16 0.25 ± 0.13 0.26 ± 0.12 1.20 ± 0.42 0.93 ± 0.23 1.00 ± 0.26

Computationally Efficient Method of Calculating SampEn for 24-hour Holter Record-

ings

The computation of SampEn on large data series has very high computational cost. If a real

life application is aimed to be implemented, the computing time should be reduced. For this

purpose, in this section a method of calculating the SampEn of the data series in an efficient

way, in terms of time, is studied.

First, the recordings are divided into non-overlapping segments of 4000 samples (one hour

of recording approximately); next, SampEn is computed for each segment, and finally the mean

of the SampEn values is calculated.

For this study, parameter m is set to 1, 2, 3 and r to 10, 15, 20 in order to compare the results

with the ones obtained on the previous section. Table 5.5 shows the results for the different

possible combinations of r and m values, for both, healthy and pathological groups, and for each

time period. All the parameter combinations give significant differences (p < 10−6).
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Figure 5.2 shows the parameter combinations exhibiting larger discrimination for each time

period. It also shows the plots obtained in the previous section, where the SampEn was com-

puted in a single step for the whole recording length, in order to allow a better visual comparison

between the two approaches. Note that the parameter combinations that give larger discrimi-

nation are the same for both approaches, r = 15 for the three time periods, m = 2 for the night

period and m = 3 for the day and 24 hour periods.

Obtaining SampEn by the segments approach severely reduces the computation time, about

20 times less of computation time is needed, which means that a 24 hour recording (approx.

100.000 samples) which needs 80 min of computation time by computing it in a single step for

the whole recording length, with the segments approach needs 4 min of computation time1.

This approach also maintains the discriminating capabilities between healthy and pathological

subjects.

5.3.2 Tests For 24 Hour

In this section all the recordings are used to perform the tests, and therefore only the time

period of 24 hour is now considered. Free parameters are set to m = 1, 2, 3, and r is set using

methods 1 and 2. The approach of SampEn computation by segments is used.

First, method 1 of setting r is studied. Table 5.6 presents the results for all the possible

combinations of m and r, for healthy and CHF groups, and for both methods of setting r. All

the experiments give significant differences (p < 0.05).

Figure 5.3 (a) shows the box plot of the parameter combination that achieve higher discrim-

ination (lower p-value in the t test).

Second, r is set according to the method 2, Table 5.6 presents the results for all the possible

combinations of m and r, for CHF and healthy groups. All the parameter combinations give

significant differences (p < 10−13).

Figure 5.3 shows the results for both methods of setting r. The parameter combination that

achieves greater discrimination for each method is shown. Method 2 of setting r achieves higher

discrimination between the CHF and the healthy groups, and also gives higher SampEn values

for the healthy group than for the pathological group.

Note that since in this section, both healthy and pathological groups have similar age ranges

1Computations were made with an Intel Core 2 at 1.67 GHz and 2046 MB of RAM.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Boxplot for SampEn computed in a single step for the whole recording length, with r

set by method 2 a), c) and e). SampEn computed by segments over the 24 hour period, with r set

by method 2 b), d) and f). For night period a) and b) . For day period c) and d). For 24 hour e)

and f). The boxes have lines at the lower quartile, median, and upper quartile values. Whiskers

extend from each end of the box to 1.5 times the interquartile range. Outliers are displayed with

a + sign. Notches display the variability of the median between samples.
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Table 5.6: Mean ± sd of SampEn computed by segments over the 24 hour, for both methods of

setting r. All the available recordings are used. Significant variation between pathological and

healthy subjects has been highlighted (p < 0.05 for r set by method 1 and p < 10−13 for r set by

method 2).

SampEn(m, rsd) CHF Healthy SampEn(m, r) CHF Healthy

SampEn(3, 0.1sd) 1.16 ± 0.36 0.91 ± 0.23 SampEn(3, 10) 0.58 ± 0.23 1.00 ± 0.23

SampEn(2, 0.1sd) 1.24 ± 0.35 0.99 ± 0.26 SampEn(2, 10) 0.64 ± 0.25 1.08 ± 0.26

SampEn(1, 0.1sd) 1.37 ± 0.36 1.09 ± 0.27 SampEn(1, 10) 0.75 ± 0.25 1.18 ± 0.27

SampEn(3, 0.15sd) 0.83 ± 0.39 0.66 ± 0.23 SampEn(3, 15) 0.51 ± 0.25 1.00 ± 0.23

SampEn(2, 0.15sd) 0.90 ± 0.39 0.72 ± 0.26 SampEn(2, 15) 0.57 ± 0.28 1.08 ± 0.26

SampEn(1, 0.1sd) 1.01 ± 0.41 0.80 ± 0.27 SampEn(1, 15) 0.68 ± 0.29 1.18 ± 0.27

SampEn(3, 0.2sd) 0.62 ± 0.33 0.47 ± 0.17 SampEn(3, 20) 0.28 ± 0.18 0.64 ± 0.20

SampEn(2, 0.2sd) 0.68 ± 0.33 0.52 ± 0.19 SampEn(2, 20) 0.32 ± 0.20 0.70 ± 0.22

SampEn(1, 0.2sd) 0.78 ± 0.34 0.58 ± 0.20 SampEn(1, 20) 0.39 ± 0.21 0.78 ± 0.24

(see 5.1), a more balanced study is performed. The increased separation between groups in the

previous section, for method 2 of setting r, may be due to the fact that the CHF group had a

larger age range than the healthy group.

5.3.3 And If ApEn Had Been Chosen?

At this point, once realized that the SampEn computation by segments reduces drastically

the computation time, it is almost irresistible to also test ApEn statistics on real data in order

to compare the results with the ones obtained with SampEn. Table 5.7 show the results for all

the possible combinations of m and r, for CHF and healthy groups, and for methods of setting

r.

Figure 5.4 shows the parameter combinations that achieve higher discrimination for each

method of setting r. Note that these parameters are the same as the ones obtained for the

SampEn.

The ApEn results and discrimination capabilities are very similar to the ones from the

SampEn. The use of both statistics gives redundant information and none of them have proved
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(a) (b)

Figure 5.3: Boxplot for SampEn computed by segments over the 24 hour, for the healthy and the

CHF groups. For r set by method 1 a). For r set by method 2 b).

to largely outperform the other.

5.4 HRV Loss with Aging

In this section, first the discrimination capabilities of SampEn to distinguish between the

young and the elderly groups are studied. Second, the recordings are split into six different

groups according to the age of the subjects, and the evolution of the statistic is analyzed.

5.4.1 Discrimination Between Young and Elderly Subjects

The discrimination capabilities of the statistic to distinguish between young healthy and

elderly healthy subjects are studied, by splitting the databases into two groups:

• Young group, from 20 to 50 years (26 recordings).

• Elderly group, from 51 to 80 years (46 recordings).

Table 5.8 shows the results for both methods of setting r and for all possible parameter com-

binations. Both methods provide higher values for young than for elderly subjects and similar

discrimination capabilities between both groups. The reason is that the standard deviations

from healthy young and healthy elderly groups are very similar (see 5.3), and therefore, in this

case the standard deviation does not interfere in the computation of the irregularity degree when

using method 1 for setting r.
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Table 5.7: Mean ± sd of ApEn computed by segments for both methods of setting r. All the

available recordings are used. Significant variation between pathological and healthy subjects has

been highlighted (p < 0.05 for r set by method 1 and p < 10−11 for r set by method 2).

ApEn(m, rsd) CHF Healthy ApEn(m, r) CHF Healthy

ApEn(3, 0.1sd) 1.01 ± 0.16 0.93 ± 0.15 ApEn(3, 10) 0.65 ± 0.22 0.97 ± 0.12

ApEn(2, 0.1sd) 1.30 ± 0.29 1.10 ± 0.24 ApEn(2, 10) 0.75 ± 0.27 1.18 ± 0.23

ApEn(1, 0.1sd) 1.53 ± 0.38 1.23 ± 0.29 ApEn(1, 10) 0.88 ± 0.29 1.33 ± 0.28

ApEn(3, 0.15sd) 0.84 ± 0.27 0.74 ± 0.22 ApEn(3, 15) 0.59 ± 0.25 0.97 ± 0.12

ApEn(2, 0.15sd) 1.00 ± 0.38 0.83 ± 0.28 ApEn(2, 15) 0.67 ± 0.30 1.18 ± 0.23

ApEn(1, 0.15sd) 1.16 ± 0.45 0.91 ± 0.30 ApEn(1, 15) 0.80 ± 0.32 1.33 ± 0.28

ApEn(3, 0.2sd) 0.77 ± 0.24 0.56 ± 0.17 ApEn(3, 20) 0.34 ± 0.21 0.73 ± 0.19

ApEn(2, 0.2sd) 0.79 ± 0.34 0.61 ± 0.22 ApEn(2, 20) 0.33 ± 0.17 0.82 ± 0.24

ApEn(1, 0.2sd) 0.91 ± 0.37 0.67 ± 0.23 ApEn(1, 20) 0.47 ± 0.25 0.89 ± 0.26

(a) (b)

Figure 5.4: Boxplot for ApEn computed by segments over the 24 hour, for the healthy and the

CHF groups. For r set by method 1 a). For r set by method 2 b).
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Table 5.8: Mean ± sd of SampEn computed for young and elderly groups and for both methods

of setting r. Significant variation (p < 10−4) between pathological and healthy subjects has been

highlighted.

SampEn(m, rsd) Young Elderly SampEn(m, r) Young Elderly

SampEn(3, 0.10sd) 1.07 ± 0.19 0.82 ± 0.19 SampEn(3, 10) 1.16 ± 0.23 0.91 ± 0.17

SampEn(2, 0.10sd) 1.17 ± 0.22 0.88 ± 0.21 SampEn(2, 10) 1.27 ± 0.26 0.97 ± 0.19

SampEn(1, 0.10sd) 1.28 ± 0.24 0.98 ± 0.23 SampEn(1, 10) 1.38 ± 0.28 1.07 ± 0.20

SampEn(3, 0.15sd) 0.81 ± 0.21 0.57 ± 0.20 SampEn(3, 15) 1.16 ± 0.23 0.91 ± 0.17

SampEn(2, 0.15sd) 0.89 ± 0.24 0.62 ± 0.22 SampEn(2, 15) 1.27 ± 0.26 0.97 ± 0.19

SampEn(1, 0.10sd) 0.98 ± 0.25 0.70 ± 0.23 SampEn(1, 15) 1.38 ± 0.28 1.08 ± 0.20

SampEn(3, 0.20sd) 0.60 ± 0.15 0.40 ± 0.13 SampEn(3, 20) 0.80 ± 0.20 0.56 ± 0.14

SampEn(2, 0.20sd) 0.66 ± 0.18 0.43 ± 0.14 SampEn(2, 20) 0.87 ± 0.23 0.61 ± 0.13

SampEn(1, 0.20sd) 0.73 ± 0.19 0.50 ± 0.15 SampEn(1, 20) 0.95 ± 0.25 0.69 ± 0.17

Figure 5.5 shows the parameter combination that achieves larger discrimination between

young healthy and elderly healthy subjects for each method of setting r. These parameters are

m = 3 for both methods, r = 0.2sd for method 1 and r = 20 for method 2.

Figure 5.6 shows boxplots for young healthy, elderly healthy and CHF subjects for method 2

of setting r, and for the parameter combination that gives higher discrimination between healthy

and pathological subjects (Fig 5.6 (a)); it also shows the parameter combination that gives higher

discrimination between young and elderly subjects (Fig 5.6 (b)). For both cases m = 3, but

the threshold r has a more stringent value for the second case: r = 15 and r = 20 respectively.

These r values can be interpreted as if a thinner filter is necessary to differentiate between young

and elderly subjects, than to differentiate between healthy and pathological subjects.

5.4.2 Aging Curve

As described above, both pathology and aging produce a HRV loss. It would be very helpful,

if one could establish a normal loss of HRV due to aging in order to differentiate between this

loss and the one caused by a pathology or any other disorder.

In this section the building of a possible aging curve is studied. For this purpose, the
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(a) (b)

Figure 5.5: Boxplot for SampEn computed for young and elderly groups. For r set by method 1

a). For r set by method 2 b).

(a) (b)

Figure 5.6: Boxplot for SampEn computed for young healthy, elderly healthy and CHF groups.

For the parameter combination that gives higher discrimination between healthy and CHF groups

a). For the parameter combination that gives higher discrimination between young and elderly

groups b).
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Table 5.9: SampEn evolution with age for the healthy group. Mean ± sd for both methods of

setting r.

Age(years) SampEn(2, 0.2sd) SampEn(2, 20)

20-30 0.61±0.13 0.91±0.29

31-40 0.68±0.21 0.86±0.21

41-50 0.63±0.20 0.76±0.24

51-60 0.58±0.07 0.67±0.16

61-70 0.42±0.14 0.61±0.15

71-80 0.47±0.16 0.54±0.20

recordings from the healthy subjects are divided into six different groups according to the age

of the subjects, and SampEn is computed for each group in order to analyze the evolution of

the statistic.

Table 5.9 and Figure 5.7 show the results for each age group and for both methods of

setting r. With fixed r, it is possible to quantify the loss of HRV due to the aging in healthy

subjects, which is less clearly present with variable r, since it does not show a steady increasing

or decreasing tendency.

Following, the relation of the statistic with the age is analyzed using linear regression of the

SampEn vs. age, and then obtaining the slope (variation vs. year index) and its determination

coefficient, for both healthy and CHF groups.

Although linear regression shows significant variation for both methods of setting r (p <

0.05), the determination coefficient is higher for method 2.

The linear regression also shows that for CHF subjects no correlation is found between the

age and the variation of SampEn results. An aging curve for CHF is not represented in this

work since more recordings would be needed even for an initial study.

5.5 Normalized Entropies

In this section, normalized entropies are obtained for the healthy and CHF groups, as well as

for the young and elderly groups. The aim of these experiments is to obtain a known maximum

entropy value in order to allow a better comparison among the entropy values of the different
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(a) (b)

Figure 5.7: Evolution of SampEn with age for healthy subjects. Circles represent the SampEn

for each subject, the squares the mean of each age group, the bars the standard deviation of each

age group, and the straight line represents the fitted regression line. (a) For r as a percentage of

each data series standard deviation. (b) For fixed r.

Table 5.10: Results of the linear regression of SampEn vs. age. Significant variation (p < 0.05)

has been highlighted.

Index var/year r2

Healthy
SampEn(2, 0.2sd) -0.0065 0.2935

SampEn(2, 20) -0.0085 0.3653

CHF
SampEn(2, 0.2sd) -0.0125 0.1857

SampEn(2, 20) -0.0011 0.0036
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Table 5.11: Mean ± sd of normalized SampEn. Significant variation (p < 0.05) between healthy

and pathological subjects has been highlighted.

SampEn(3, 0) SampEn(2, 0) SampEn(1, 0)

Healthy 0.31 ± 0.12 0.34 ± 0.13 0.40 ± 0.13

CHF 0.20 ± 0.09 0.25 ± 0.10 0.33 ± 0.12

Table 5.12: Mean ± sd of normalized SampEn. Significant variation (p < 0.001) between healthy

and pathological subjects has been highlighted

SampEn(3, 0) SampEn(2, 0) SampEn(1, 0)

Young 0.40 ± 0.12 0.44 ± 0.13 0.48 ± 0.14

Elderly 0.26 ± 0.08 0.29 ± 0.09 0.15 ± 0.03

groups.

To obtain these normalized results, first, the original time series must be normalized following

the process explained in the example 3.2.1, therefore, 1 is now the maximum entropy value. Free

parameters are set to, m = 1, 2, 3 and r = 0.

Tables 5.11 and 5.12 show the results for all possible parameter combinations. SampEn(3,0)

achieves the larger discrimination between healthy and CHF groups and also between young

and elderly subjects (Fig 5.8).

The discrimination capabilities of the normalized entropies are almost equal to the non-

normalized ones between young and elderly groups. However, for the discrimination between

healthy and CHF subjects, these capabilities are very inferior than the ones achieved with the

non-normalized entropies, which is a limiting factor for using this approach.

5.6 MSE Analysis

In order to see if further relevant information can be obtained, related to the discrimination

between healthy young, healthy elderly and CHF groups, an MSE analysis is performed with

the real data.

Figure 5.9 (a) shows the MSE analysis for r set by method 1, the mean SampEn values

are represented for each scale factor. The results are in agreement with the ones obtained
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(a) (b)

Figure 5.8: Box plot for normalized SampEn. For healthy and CHF groups a). For young and

elderly groups b).

in [Costa 03a]. For scale one, CHF subjects are assigned higher entropy values than healthy

subjects, and time series of elderly healthy subjects are assigned the lowest entropy values.

However, for all scales but the first one, healthy young subjects are assigned the highest entropy

values. Although elderly healthy subjects only achieve higher entropy values than CHF subjects

for a few scales.

Figure 5.9 (b) shows the MSE analysis for r set by method 2. The results show that similar

discrimination between the groups is achieved, for all scale factors, and therefore the multiscale

approach is unnecessary when a fixed threshold r is used.

5.7 Conclusion

In this chapter SampEn has been used to asses the variability of the RR-interval signals from

24-hour Holter recordings from healthy subjects and from patients suffering from CHF.

The experiments in this study have been divided in to two main parts; on one hand, the

experiments that aim to discriminate between healthy and pathological subjects, and on the

other hand, the experiments that study the relation of SampEn with aging.

From the first ones, the following conclusions can be extracted:

• The use of a fixed threshold value r, obtained as the mean standard deviation of the whole

data set ensemble, instead of the more divulged use of r as a percentage of the standard

deviation of each data series, produces better discrimination between healthy and CHF
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(a) (b)

Figure 5.9: MSE analysis for healthy young subjects, healthy elderly subjects and CHF subjects.

Symbols represent mean values for each scale factor. For r set by method 1 a). For r set by

method 2 b).

subjects. Also, higher SampEn values are obtained for healthy subjects than for CHF

subjects, which is in agreement with the idea of loss of HRV in pathological conditions,

whereas, for r set as a percentage of the standard deviation of each data series, higher

SampEn values for CHF subjects than for healthy subjects are obtained.

• Computing SampEn by the proposed segments approach instead of doing it in a single step

for the whole recording length, drastically reduces the computation time, maintaining the

discriminating capabilities between healthy and pathological subjects.

• The results obtained from the study of the different time periods show that entropy values

increase in the night period with respect to the day period. This could be attributed to

the fact that during the day period, besides the complex physiological fluctuations that

modulate the HR, other fluctuations with more regular patterns, which are the response

to changes in the environmental conditions, are present, and this last fluctuations may

disguise the irregularity inherent in the HRV signal.

• Largest discrimination between healthy and CHF subjects is achieved with the threshold

value r = 15, that is, the 15% of the mean standard deviation of the whole data sets, for

the three time periods, night, day and 24 hour. For the embeded dimension, m = 3 for

the day and 24 hour periods, and m = 2 for the nigth period achieve the best results.
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• ApEn statistics present similar results and discrimination capabilities to the ones from

SampEn. The use of both statistics gives redundant information, and none of them have

proved to largely outperform the other.

About the relation of SampEn with aging, the following conclusions can be drawn:

• Both methods of setting the threshold filter r provide higher entropy values for young

than for elderly subjects, and they also present similar discrimination capabilities between

both groups. The reason is that the standard deviations from healthy young and healthy

elderly groups are very similar, and therefore, the standard deviation does not interfere in

the computation of the irregularity degree when using method 1 for setting r.

• Free parameter combination m = 3, and r = 20 or r = 0.2sd, achieve the largest discrimi-

nation between the young and elderly groups.

• As expected, it is found that not only pathologies but also aging involves a loss of HRV.

• With a fixed threshold r, it is possible to quantify the loss of HRV due to aging in healthy

subjects, which is less clearly present with variable r, since it does not show a fixed

increasing or decreasing tendency.

• The performed linear regression shows that for CHF subjects no correlation is found be-

tween the age and the variation of SampEn results.

• Further studies with larger number of recordings are needed for the aim of building an

usable aging curve of HRV loss for healthy subjects.

• An MSE analysis is unnecessary when a fixed threshold r is used, since similar discrim-

ination is obtained, between healthy young, healthy elderly and CHF groups, for all the

scale factors.
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Chapter 6
Conclusions and Further Studies

In this work, a survey of the main HRV assessing methods has been presented, each one with

different advantages and drawbacks. Among them, the signal entropy-based methods have been

chosen in this work, for the good properties they present in the analysis of physiological signals.

Entropy-based methods stand up as a useful tool in the study of cardiac signals, and their

possible application as a clinical tool for diagnosis or prediction of different cardiac patholo-

gies has been widely explored [Magenes 03, Ferrario 06, Pincus 01, Marques-de Sá 05, Lake 02,

Costa 02, Schuckers 99]. However, so far few attempts to introduce these applications on the

clinical practice have been done, perhaps because there is not yet a clear consensus about the

physiological meaning of the indices.

In this work, the three main entropy-based methods for the analysis of physiological signals

have been presented and studied, namely, ApEn, SampEn and MSE. They were first tested in a

controlled environment with well known synthetic signals, and then on real signals from both,

healthy subjects and patients suffering from CHF.

The dependence of the algorithms on their free parameters and on the data length was

tested, as well as the relative consistency of the methods. From the experiments performed on

synthetic signals, it was concluded that although SampEn is sometimes not defined for extreme

values of its free parameters, in the statistical valid range of these parameters, it achieves a

better separation of processes with well known irregularity degrees than ApEn. Furthermore, it

was found that SampEn agrees with theory in more situations, than ApEn does. However, it

was also observed, the quite good performance of ApEn in the statistical valid range of its free

parameters, which is the one used in the practice.

77
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Due to the high computational cost of the algorithms for large data sets, SampEn was

chosen, between both statistics, to perform the tests on RR-interval signals from 24-hour Holter

recordings from healthy subjects and from patients suffering from CHF. By means of such tests,

it was aimed to study the influence of the parameter tuning in the assessment of the HRV loss

due to aging, and in the characterization of the HRV of patients affected by CHF, having in

view a reliable discrimination between healthy and pathological subjects.

One of the most relevant findings was that the use of a fixed threshold value r, obtained as the

mean standard deviation of the whole data sets, instead of the more widely popularized setting

of r as a percentage of the standard deviation of each data series, yielded better discrimination

between healthy and CHF subjects. Also, higher SampEn values were obtained for healthy

subjects than for CHF subjects, which is in agreement with the idea of loss of HRV in pathological

conditions, whereas, for r set as a percentage of the standard deviation of each data series, higher

SampEn values for CHF subjects than for healthy subjects were obtained.

An approach of computing SampEn by segments over the 24 hour period instead of doing

it in a single step for the whole recording length was proposed. This approach severely reduced

the computation time, about 20 times less of computation time is needed, maintaining the

discriminating capabilities.

Tests for different time periods of the day were performed, finding that entropy values in-

crease in the night period with respect to the day period. This might be attributed to the fact

that during the day period, besides the complex physiological fluctuations that modulate the

HR, other fluctuations with more regular patterns, which are the response to changes in the

environmental conditions, are present, and this last fluctuations may disguise the irregularity

inherent in the HRV signal.

Once realized that the SampEn computation by segments drastically reduced the computa-

tion time, it was almost irresistible to also test ApEn statistics on real data in order to compare

the results with the ones obtained with SampEn. The results showed similar discrimination

capabilities than SampEn and none of them proved to largely outperform the other. Therefore,

was verified that the use of both statistics gives redundant information.

The discrimination capabilities of the SampEn to distinguish between young and elderly

groups of healthy subjects were also studied, and higher entropy values for young than for

elderly subjects were obtained. Furthermore, a significant linear model explaining the variability

decrease with age was derived.
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Free parameter combination m = 3, and r = 15, achieved the largest discrimination between

healthy and CHF groups, whereas, m = 3, and r = 20 achieved the largest discrimination

between young and elderly groups, which can be seen as if a thinner filter is necessary to

differentiate between young and elderly subjects, than to differentiate between healthy and

pathological subjects.

Therefore and as expected, it was found that not only pathologies but also aging involves a

loss of HRV, and it was an interesting finding that, with a fixed threshold r, it was possible to

quantify the loss of HRV due to aging in healthy subjects which was not possible with variable

r, since it did not show a fixed increasing or decreasing tendency. Moreover, no correlation was

found for CHF subjects between the age and the variation of SampEn results.

MSE analysis were performed, and it was found that for r set as a percentage of each

data series standard deviation, the results were in agreement with the ones found in the litera-

ture [Costa 03a], and showed better results for all the scales but the first one. However, when a

fixed threshold r was used, similar discrimination capabilities were obtained for all scales, and

therefore, the MSE analysis did not reveal further relevant information.

Further studies could derive from this work,

• First, the good discriminating capabilities that SampEn shows between healthy and CHF

subjects could be tested for other cardiac pathologies that affect the HRV in order to have

a more general tool for a possible clinical application.

• To implement a real clinical application, first, more intensive robustness tests should be

performed. Also, the idea of combining SampEn with another index or indices, in order

to enhance its discriminating capabilities seems interesting.

• Although promising results were found in the assessment of the HRV loss due to aging,

further studies, with larger number of recordings are needed for the aim of building an

usable aging curve of HRV loss for healthy subjects.
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Appendix A
MATLAB Functions

In this appendix the synthetic signals and the main functions implemented for the experi-

ments in this work are presented.

A.1 MATLAB Function for ApEn Computation

function [res] = ApEn(X,r,m)

%""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

% PURPOSE:

% Function that estimates the aproximate entropy (ApEn) of a signal.

% USE:

% [res] = ApEn(X,r,m)

% ARGUMENTS...

% ...INPUT:

% .-X ---> signal from which we want to compute ApEn.

% .-r ---> noise filter threshold.

% .-m ---> embedded dimension.

% ...OUTPUT:

% .-res ---> computed ApEn value.

%""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

X = X(:);

% ApEn final calculation.

83
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res = Phym(m,r,X)-Phym(m+1,r,X);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Phy computation

function phym = Phym(m,r,X)

N = length(X);

% Matrix that contains all the template vectors to be compared to each other.

M = zeros(N-m+1,m);

[f,c] = size(M);

for i = 1:f

M(i,:) = X(i:i+m-1);

end

% Computation of the correlation measure.

cm = zeros(f,1);

for i = 1:f

% Matrix whose rows are the template vectors to be compared with the rest of the

% vectors.

Mi = repmat(M(i,:),f,1);

% For each row, the maximun of the columns from the differences matrix is obtained.

dist = max(abs(Mi-M),[],2);

cm(i) = length(find(dist<=r))/(N-m+1);

end

phym = mean(log(cm));
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A.2 MATLAB Function for SampEn Computation

function [res] = SampEn(X,r,m)

%""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

% PURPOSE:

% Function that estimates the sample entropy (SampEn) of a signal.

% USE:

% [res] = SampEn(X,r,m)

% ARGUMENTS...

% ...INPUT:

% .-X ---> signal from which we want to compute SampEn.

% .-r ---> noise filter threshold.

% .-m ---> embedded dimension.

% ...OUTPUT:

% .-res ---> computed SampEn value.

%""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

% Initial variables definition.

N = length(X);

X = X(:);

B_m_i = zeros(1,N-m);

A_m_i = zeros(1,N-m);

% Matrix that contains all the template vectors to be compared to each other.

for n = 1:2

M = zeros(N-m,m+n-1);

[f,c] = size(M);

for i = 1:f

M(i,:) = X(i:i+m+n-2);

end

% Computation of the correlation measure.

for i = 1:f

% Matrix whose rows are the template vectors to be compared with the rest of the

% vectors.
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Mi = repmat(M(i,:),f,1);

% For each row, the maximun of the columns from the differences matrix is obtained.

dist = max(abs(Mi-M),[],2);

% To avoid selfmatches

dist(i,:) = [];

if n == 1

B_m_i(i) = length(find(dist<=r))/(N-m-1);

else

A_m_i(i) = length(find(dist<=r))/(N-m-1);

end

end

end

B_m = mean(B_m_i);

A_m = mean(A_m_i);

% ApEn final calculation

res = log(B_m) - log(A_m);



A.3. MATLAB FUNCTION FOR MSE COMPUTATION 87

A.3 MATLAB Function for MSE Computation

function [entropies] = MSE(X,tau,r,m)

%""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

% PURPOSE:

% Function that estimates the multiscale entropy (MSE) of a signal.

% USE:

% [entropies] = MSE(X,tau,r,m)

% ARGUMENTS...

% ...INPUT:

% .-X ---> signal from which we want to compute MSE.

% .-r ---> noise filter threshold.

% .-m ---> embedded dimension.

% .-tau ---> scale number.

% ...OUTPUT:

% .-entropies ---> computed MSE values.

%""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

X = X(:);

N = length(X);

% Coarse graining process

entropies = zeros(1,tau);

for n = 1:tau

y_tau=zeros(1,N/tau);

for j = 1:N/n

y_tau(j) = mean(X(((j-1)*n+1):j*n));

end

% SampEn is computed for each coarse grained signal.

entropies(n) = SampEn(y_tau,r,m);

end
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A.4 MATLAB Function for Logistic Map

[logistic] = logisticMap(num,x0,a)

%""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

% PURPOSE:

% Function that generates a Logistic Map followin the equation:

% x(n+1)=ax(n)(1-x(n)).

% USE:

% [logistic] = logisticMap(num,x0,a)

% ARGUMENTS...

% ...INPUT:

% .-num ---> number of points in the resulting signal.

% .-x0 ---> initial value.

% .-a ---> map parameter.

% ...OUTPUT:

% .-logistic ---> output Logistic Map.

%""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

%Input variables validation

if nargin<3 | isempty(a)

% Default parameter value to obtain a cahotic behavior

a = 3.8;

elseif ~isscalar(a)

error(’Parameter is not scalar’);

end

if nargin<2 | isempty(x0)

x0 = 0.1;

elseif ~isscalar(x0)

error(’The initial value must be scalar’);

end

if nargin<1 | isempty(num)

num = 5000;
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elseif ~isscalar(num) | num<0

error(’Parameter must be scalar y positive.’);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Map calculation

logistic = zeros(num,1);

%Initial value

logistic(1) = x0;

for m = 2:num

logistic(m) = a*logistic(m-1)*(1-logistic(m-1));

end
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A.5 MATLAB Function for MIX Processes

function [res] = MIX(n,p)

%""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

% PURPOSE:

% Function that generates a MIX process, that is, a signal with both

% deterministic and stochastic components, each one to a greater or

% lesser extent depending on parameter p. For p=0, the signal will be

% completly deterministic and for p=1 the signal will be completly stochastic.

% USE:

% [res] = MIX(n,p)

% ARGUMENTS...

% ...INPUT:

% .-n ---> number of points in the resulting signal.

% .-p ---> parameter that controls the percentage of each signal

% component.

%...OUTPUT:

% .-res---> MIX process.

%""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

%Deterministic component

X = sqrt(2)*sin((2*pi*(1:n))/12);

%Stochastic component

Y = sqrt(3) + (-sqrt(3)-sqrt(3)) *rand(1,n);

Z = zeros(1,n);

t=rand(1,n);

uno=find(t<p);

cero=find(t>p);

Z(uno) = 1;

Z(cero) = 0;

%Final MIX process

res = (1-Z).*X+Z.*Y;
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A.6 MATLAB Function for AR Models

function [rrReposo,rrIncorporado,pxxR,fR,pxxI,fI]= ARmodelHRV(n)

%""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

% PURPOSE:

% Function that generates synthetic sequences which simulate HRV

% by adequate AR models.

% USE:

% [rrReposo,rrIncorporado,pxxR,fR,pxxI,fI] = ARmodelHRV(n);

% ARGUMENTS...

% ...INPUT:

% .-n ---> number of points in the resulting sequences.

% ...OUTPUT:

% .-rrReposo ---> output sequence that simulates RR intervals for

% a patient in rest.

% .-rrIncorporado --->output sequence that simulates RR intervals for

% a patient in tilt.

% BIBLIOGRAFY:

% .-Mateo, J. (1999). Anlisis espectral de la variabilidad del ritmo

% cardaco mediante la seal de temporizacin cardaca. Departamento de

% Ingeniera Electrnica y Comunicaciones. Zaragoza, Universidad de

% Zaragoza.

%""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

% Input noise for the rest model.

ruidoR = wgn(1,n,db((404e-6)/2,’power’));

% Input noise for the tilt model.

ruidoI = wgn(1,n,db((137e-6)/2,’power’));

% Rest model parameters

aR = [1 -1.6265 1.8849 -1.8327 1.2970 -0.7758 0.4133 -0.2136];

% Rest model parameters

aI = [1 -1.8149 2.1365 -2.1703 1.7194 -0.9221 0.5311 -0.3262];

%Final synthetic signals
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rrReposo = filter(1,aR,ruidoR);

rrIncorporado = filter(1,aI,ruidoI);
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