450 research outputs found

    Discrete Breathers

    Full text link
    Nonlinear classical Hamiltonian lattices exhibit generic solutions in the form of discrete breathers. These solutions are time-periodic and (typically exponentially) localized in space. The lattices exhibit discrete translational symmetry. Discrete breathers are not confined to certain lattice dimensions. Necessary ingredients for their occurence are the existence of upper bounds on the phonon spectrum (of small fluctuations around the groundstate) of the system as well as the nonlinearity in the differential equations. We will present existence proofs, formulate necessary existence conditions, and discuss structural stability of discrete breathers. The following results will be also discussed: the creation of breathers through tangent bifurcation of band edge plane waves; dynamical stability; details of the spatial decay; numerical methods of obtaining breathers; interaction of breathers with phonons and electrons; movability; influence of the lattice dimension on discrete breather properties; quantum lattices - quantum breathers. Finally we will formulate a new conceptual aproach capable of predicting whether discrete breather exist for a given system or not, without actually solving for the breather. We discuss potential applications in lattice dynamics of solids (especially molecular crystals), selective bond excitations in large molecules, dynamical properties of coupled arrays of Josephson junctions, and localization of electromagnetic waves in photonic crystals with nonlinear response.Comment: 62 pages, LaTeX, 14 ps figures. Physics Reports, to be published; see also at http://www.mpipks-dresden.mpg.de/~flach/html/preprints.htm

    Nonlinear guided waves and spatial solitons in a periodic layered medium

    Full text link
    We overview the properties of nonlinear guided waves and (bright and dark) spatial optical solitons in a periodic medium created by a sequence of linear and nonlinear layers. First, we consider a single layer with a cubic nonlinear response (a nonlinear waveguide) embedded into a periodic layered linear medium, and describe nonlinear localized modes (guided waves and Bragg-like localized gap modes) and their stability. Then, we study modulational instability as well as the existence and stability of discrete spatial solitons in a periodic array of identical nonlinear layers, a one-dimensional nonlinear photonic crystal. Both similarities and differences with the models described by the discrete nonlinear Schrodinger equation (derived in the tight-binding approximation) and coupled-mode theory (valid for the shallow periodic modulations) are emphasized.Comment: 10 pages, 14 figure

    A discrete nonlinear model with substrate feedback

    Full text link
    We consider a prototypical model in which a nonlinear field (continuum or discrete) evolves on a flexible substrate which feeds back to the evolution of the main field. We identify the underlying physics and potential applications of such a model and examine its simplest one-dimensional Hamiltonian form, which turns out to be a modified Frenkel-Kontorova model coupled to an extra linear equation. We find static kink solutions and study their stability, and then examine moving kinks (the continuum limit of the model is studied too). We observe how the substrate effectively renormalizes properties of the kinks. In particular, a nontrivial finding is that branches of stable and unstable kink solutions may be extended beyond a critical point at which an effective intersite coupling vanishes; passing this critical point does not destabilize the kink. Kink-antikink collisions are also studied, demonstrating alternation between merger and transmission cases.Comment: a revtex text file and 6 ps files with figures. Physical Review E, in pres
    • …
    corecore