We overview the properties of nonlinear guided waves and (bright and dark)
spatial optical solitons in a periodic medium created by a sequence of linear
and nonlinear layers. First, we consider a single layer with a cubic nonlinear
response (a nonlinear waveguide) embedded into a periodic layered linear
medium, and describe nonlinear localized modes (guided waves and Bragg-like
localized gap modes) and their stability. Then, we study modulational
instability as well as the existence and stability of discrete spatial solitons
in a periodic array of identical nonlinear layers, a one-dimensional nonlinear
photonic crystal. Both similarities and differences with the models described
by the discrete nonlinear Schrodinger equation (derived in the tight-binding
approximation) and coupled-mode theory (valid for the shallow periodic
modulations) are emphasized.Comment: 10 pages, 14 figure