31,812 research outputs found

    Local and global controllers for decentralized discrete-time variable structure control technique for large-scale systems

    Get PDF
    This thesis presents a research on new discrete-time integral variable structure controllers for large-scale systems in the presence of matched and unmatched uncertainties. It is found in the literatures that limited works have been done on variable structure control for discrete-time large-scale system. Current computer technology allows direct implementation of discrete-time controller to control a system with greater simplicity and cost saving. The controllers developed in this research are able to achieve system stability in terms of both global and local controls. A global controller makes use of feedback from all subsystems to achieve the quasi-sliding surface and remains on it, with better performance than local controller. A local controller is able to perform the controlling task with feedback solely from the local subsystem itself, with simpler design but is compromised in performance. New theorems with mathematical proof for both local and global controllers are presented and simulations are carried out using Matlab for three different types of large-scale systems to test the proposed controllers. The simulation results also showed that the global controller has better performance than the local controller. Discrete-time integral variable structure control lets the implementation of the controller for large-scale systems a much more straight forward approach with computer. Furthermore, the characteristic of robustness in variable structure control ensures systems fast convergence to the desired value and rejects uncertainties and disturbances, which makes it very practical to be applied to many large-scale systems in real world applications. These newly developed controllers are able to provide cost effective implementations of discrete-time variable structure controllers using current digital hardware for various large-scale plants such as petrochemical, traffic control, telecommunication and robotic system

    Proportional-integral-plus (PIP) control of the ALSTOM gasifier problem

    Get PDF
    Although it is able to exploit the full power of optimal state variable feedback within a non-minimum state-space (NMSS) setting, the proportional-integral-plus (PIP) controller is simple to implement and provides a logical extension of conventional proportional-integral and proportional-integral-derivative (PI/PID) controllers, with additional dynamic feedback and input compensators introduced automatically by the NMSS formulation of the problem when the process is of greater than first order or has appreciable pure time delays. The present paper applies the PIP methodology to the ALSTOM benchmark challenge, which takes the form of a highly coupled multi-variable linear model, representing the gasifier system of an integrated gasification combined cycle (IGCC) power plant. In particular, a straightforwardly tuned discrete-time PIP control system based on a reduced-order backward-shift model of the gasifier is found to yield good control of the benchmark, meeting most of the specified performance requirements at three different operating points

    Feedback control of unsupported standing in paraplegia. Part I: optimal control approach

    Get PDF
    This is the first of a pair of papers which describe an investigation into the feasibility of providing artificial balance to paraplegics using electrical stimulation of the paralyzed muscles. By bracing the body above the shanks, only stimulation of the plantarflexors is necessary. This arrangement prevents any influence from the intact neuromuscular system above the spinal cord lesion. Here, the authors extend the design of the controllers to a nested-loop LQG (linear quadratic Gaussian) stimulation controller which has ankle moment feedback (inner loops) and inverted pendulum angle feedback (outer loop). Each control loop is tuned by two parameters, the control weighting and an observer rise-time, which together determine the behavior. The nested structure was chosen because it is robust, despite changes in the muscle properties (fatigue) and interference from spasticity

    Proportional-integral-plus (PIP) control of the ALSTOM gasifier problem

    Get PDF
    Although it is able to exploit the full power of optimal state variable feedback within a non-minimum state-space (NMSS) setting, the proportional-integral-plus (PIP) controller is simple to implement and provides a logical extension of conventional proportional-integral and proportional-integral-derivative (PI/PID) controllers, with additional dynamic feedback and input compensators introduced automatically by the NMSS formulation of the problem when the process is of greater than first order or has appreciable pure time delays. The present paper applies the PIP methodology to the ALSTOM benchmark challenge, which takes the form of a highly coupled multi-variable linear model, representing the gasifier system of an integrated gasification combined cycle (IGCC) power plant. In particular, a straightforwardly tuned discrete-time PIP control system based on a reduced-order backward-shift model of the gasifier is found to yield good control of the benchmark, meeting most of the specified performance requirements at three different operating points

    Regulation Theory

    Full text link
    This paper reviews the design of regulation loops for power converters. Power converter control being a vast domain, it does not aim to be exhaustive. The objective is to give a rapid overview of the main synthesis methods in both continuous- and discrete-time domains.Comment: 23 pages, contribution to the 2014 CAS - CERN Accelerator School: Power Converters, Baden, Switzerland, 7-14 May 201

    Analysis of explicit and implicit discrete-time equivalent-control based sliding mode controllers

    Get PDF
    Different time-discretization methods for equivalent-control based sliding mode control (ECB-SMC) are presented. A new discrete-time sliding mode control scheme is proposed for linear time-invariant (LTI) systems. It is error-free in the discretization of the equivalent part of the control input. Results from simulations using the various discretized SMC schemes are shown, with and without perturbations. They illustrate the different behaviours that can be observed. Stability results for the proposed scheme are derived

    Proportional-Integral-Plus Control Strategy of an Intelligent Excavator

    Get PDF
    This article considers the application of Proportional-Integral-Plus (PIP) control to the Lancaster University Computerised Intelligent Excavator (LUCIE), which is being developed to dig foundation trenches on a building site. Previous work using LUCIE was based on the ubiquitous PI/PID control algorithm, tuned on-line, and implemented in a rather ad hoc manner. By contrast, the present research utilizes new hardware and advanced model-based control system design methods to improve the joint control and so provide smoother, more accurate movement of the excavator arm. In this article, a novel nonlinear simulation model of the system is developed for MATLAB/SIMULINK, allowing for straightforward refinement of the control algorithm and initial evaluation. The PIP controller is compared with a conventionally tuned PID algorithm, with the final designs implemented on-line for the control of dipper angle. The simulated responses and preliminary implementation results demonstrate the feasibility of the approach
    corecore