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Abstract: Different time-discretization methods for equivalent-control based sliding mode control
(ECB-SMC) are presented. A new discrete-time sliding mode control scheme is proposed for linear
time-invariant (LTI) systems. It is error-free in the discretization of the equivalent part of the
control input. Results from simulations using the various discretized SMC schemes are shown,
with and without perturbations. They illustrate the different behaviours that can be observed.
Stability results for the proposed scheme are derived.
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Analyse de la discretization explicite ou implicite des controlleurs par
modes glissants

Résumé : Dans ce rapport, differentes techniques de discretisation temporelle pour le contrôle par modes
glissants sont présentées. Une nouvelle structure de contrôle par modes glissants est proposée pour des systèmes
linéaires invariants. Elle ne comporte pas d’erreur dans la discretisation de la partie équivalente du contrôle. Des
résultats de simulations avec divers contrôlleurs par modes glissants sont présentées, avec ou sans perturbation. Ils
illustrent les phénomènes qui peuvent être observés suivant le type de discretisation utilisé. Pour finir, la stabilité
de la nouvelle structure de contrôle est étudiée.

Mots-clés : contrôle par modes glissants, système échantionnés, stabilité de Lyapunov en temps discret, discreti-
sation implicite
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1 Introduction

The time discretization of sliding-mode controllers has witnessed an intense activity in the past 30 years [1–6]
and [7]. This concerns in particular the classical Equivalent-Control-Based Sliding-Mode Control (ECB-SMC),
which consists of two sub-controllers: the state-continuous equivalent control ueq and the state-discontinuous control
us. In these past research efforts, most of the focus was on the discontinuous part of the control, since it introduces
numerical chattering. Several solutions to alleviate numerical chattering (that is solely due to the time discretization
[8–12]) have been proposed [1–7,13,14], most of them consisting in the definition of a so-called quasi-sliding surface [5]
and an explicit discretization of us. The works in [2] and [6] depart from these discrete-time controllers and propose
an algorithm which allows the sliding variable to take exactly the zero value at sampling times. They are however
limited to first order, scalar systems and require some stringent assumptions. Recently a new approach, which may
be seen as a (non-trivial) extension of the controllers in [2] and [6], has been proposed in [11] and [12]. The basic
idea is to implement the discontinuous input us in an implicit form, while keeping its causality (i.e. the controller
is nonanticipative). Then this input has to be computed at each sampling time as the solution to a generalized,
set-valued equation, which takes the form of a simple projection on an interval in the simplest cases. Let us illustrate
the difference between explicit and implicit discretization with an academic example, ẋ(t) ∈ −α sgn(x(t)), α > 0.
We use the differential inclusion framework since we let sgn(0) to take any value in [−1, 1] (this is formally stated in
Definition 1 as Sgn). An explicit discretization yields x(tk+1) ∈ x(tk)−hα sgn(x(tk)), whereas the implicit one yields
x(tk+1) ∈ x(tk)− hα sgn(x(tk+1)). As long as |x(tk)| � hα, there is no difference between the two discretizations.
But if |x(tk)| < αh, then the behaviour changes with the type of discretization. With 0 < x(tk) < hα, in the
explicit case, x(tk+1) ∈ x(tk) − hα sgn(x(tk)) < 0. The sign of the state will change at every tk, leading to the
well-known chattering phenomenon. Whereas in the implicit case, it is possible to ensure x(tk+1) = 0 by choosing
sgn(x(tk+1)) = x(tk)/(αh) < 1. The implicit discretization of the sign function is rigorously presented in Section 3.

To the best of our knowledge, the discretization of the equivalent part has received little attention. In this work,
we present a study of the effects of discretization on both the equivalent and discontinuous part of the control.
After studying the different discretization methods and their shortcomings, we propose a new discrete-time control
scheme, where the equivalent part is not a discretized version of its continuous-time counterpart but is directly
designed from the discrete-time dynamics. Some properties of this scheme, like finite-time convergence to the
sliding surface and perturbation attenuation, are studied in Section 7.

In this paper, we consider systems of the form
ẋ(t) = Ax(t) +Bu(t) +Bξ(t)

u(t) = ueq(t) + us(t)

σ(t) := Cx(t)

us(t) ∈ −α Sgn (σ(x(t))) ,

(1)

with x(t) ∈ Rn, u(t) ∈ Rp, σ(t) ∈ Rp, C ∈ Rp×n, and α > 0. The function σ is called the sliding variable, the
disturbance is denoted as ξ, and Sgn is formally introduced in Definition 1. The perturbation ξ is supposed to be at
least continuous: noise is not considered in this paper. When ξ = 0, the system is said to be nominal. The method
used to discretize the dynamics is called Zero-Order Hold (ZOH), also known as exact sampled-data representation.
It is often considered for technological reasons, but also because there is no error with this discretization method.

In the remainder of this section, we introduce the notation. In Section 2 we briefly recall the ECB-SMC theory.
Then some classical discretization methods are presented in Section 3. Section 4 is dedicated to the discrete
error analysis of various controllers of Section 3. We introduce our new discrete-time SMC scheme in Section 5.
Simulation results using different time-discretization methods are shown in Section 6, to illustrate the possible
different behaviours of the closed-loop system. Finally, stability results are derived in Section 7. Conclusions end
the paper in Section 8.

Notations: Let x : R+×Rp×Rn → Rn be the solution of system (1), x := x( · , u, x0) is the solution associated
with a continuous-time control u and an initial state x0 ∈ Rn, while x̄ := x( · , ū, x0) is the solution with a step
function ū and the same initial state. In the latter case, we denote by σ̄ := Cx̄ the sliding variable. The control
values change at predefined time instants tk, defined for all k ∈ N : tk := t0 + kh, t0, h ∈ R+. The scalar h is
called the timestep. We denote x̄k := x̄(tk) and σ̄k := σ̄(tk) for all k ∈ N. For all y ∈ Rr, ‖y‖∞ = maxi |yi|. For all
M ∈ Rr×s, ‖M‖∞ = maxi

∑
j |Mij |. Let w : R→ Rr and S be any interval in R, ‖w‖∞,S = maxi ess supt∈S |wi(t)|.

Let 〈 · , · 〉 denote the standard inner product in a Euclidean space and ‖ · ‖ the norm based upon it. Let sgn be the
classical single-valued sign function: for all x > 0, sgn(x) = 1, sgn(−x) = −1 and sgn(0) = 0.

RR n° 8383



4 Olivier Huber, Vincent Acary, Bernard Brogliato

Definition 1 (Multivalued sign function). Let x ∈ R. The multivalued sign function Sgn: R ⇒ R is defined as:

Sgn(x) =


1 x > 0

−1 x < 0

[−1, 1] x = 0.

(2)

If x ∈ Rn, then the multivalued sign function Sgn: Rn ⇒ Rn is defined as: for all j = 1, . . . , n, (Sgn(x))j := Sgn(xj).

Definition 2. Let f : Rn × R→ Rp and l ∈ R. One has f = O(hl) if for all x ∈ Rn, there exists c ∈ Rp such that
f(x, h)/hl → c as h→ 0.

Definition 3. [15, p. 147] Let M ∈ Rn×n. M is a P-matrix if for all x ∈ Rn such that for all i ∈ {1, . . . , n},
xi(Mx)i ≤ 0, then x = 0.

Lemma 1. [15, p. 147] Let M ∈ Rn×n. If M is positive-definite, then M is a P-matrix.

2 The equivalent-based continuous-time sliding-mode controller

Let us assume that the triplet (A,B,C) has a strict vector relative degree (1, 1, . . . , 1). This implies that the
decoupling matrix CB is full rank. The dynamics of the sliding variable in the nominal system (1) (that is with
ξ(t) = 0) is

σ̇(t) = CAx(t) + CBueq(t) + CBus(t). (3)

The control law ueq is designed such that the system stays on the sliding surface once it has been reached (in other
word ueq renders the sliding surface invariant with us ≡ 0):

σ̇(t) = 0 and us(t) = 0 ⇒ ueq(t) = −(CB)−1CAx(t). (4)

Then the sliding variable dynamics with the equivalent control reduces to{
σ̇(t) = CBus(t)

us(t) ∈ −α Sgn(σ(t)).
(5)

The nominal system (1) can be rewritten as

ẋ(t) = (I −B(CB)−1C)Ax(t) +Bus(t), (6)

or equivalently

ẋ(t) = ΠAx(t) +Bus(t), (7)

with Π := I − B(CB)−1C. Two interesting properties of Π are CΠ = 0 and Π is a projector [16]. Taking the
integral form of system (7) yields the relation

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, τ)Bus(τ)dτ, (8)

with Φ(t, t0) = eΠA(t−t0) the state transition matrix for the system (7). Some of the properties of Φ are given in
the following lemma.

Lemma 2. One has Φ̇(t, t0) = ΠAΦ(t, t0), Φ(t0, t0) = I, and CΦ = C for all t ≥ t0.

Proof. One has CΦ̇(t, t0) = 0 so CΦ(t, t0) = CΦ(t0, t0) = C for all t ≥ t0.

Inria
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3 Discrete-time controllers

3.1 Classical discretization methods to obtain discrete-time controllers
From now on, ūeq and ūs are sampled control laws defined as right-continuous step functions:

ūeq(t) = ūeqk , t ∈ [tk, tk+1) (9)
ūs(t) = ūsk, t ∈ [tk, tk+1). (10)

The goal of the discretization process is to choose the elements of the sequences {ūeqk } and {ūsk} such that the
discrete-time system exhibits properties as close as possible to the ones with a continuous-time controller. In
continuous time, sliding-mode controlled systems have their evolution divided into two phases: the reaching phase,
where ‖σ‖ > 0 and is decreasing, and the sliding phase, where σ = 0 and the sliding motion occurs. It is well
known that the sliding motion does not occur in general in discrete time even on a nominal system because of the
error induced by the discretization. This has led to the definition of quasi-sliding surfaces [5]. By analogy with the
Filippov’s solutions we define the following.

Definition 4 (Discrete-time sliding phase). A system (1), in its sampled-data form, is in the discrete-time sliding
phase if ūs takes values in (−α, α)p.

Such a definition appears to be new in the discrete-time sliding mode control field since it implies that the
discrete-time discontinuous controller is itself set-valued, just as its continuous-time counterpart in (1) and (5).
This will be made possible with an implicit implementation, as proved in [11] and [12]. It is crucial not to define
the sliding phase in terms of σ̄k, but rather in terms of the discontinuous input ūs. In continuous-time, Definition 4
applied to us implies that the system is in the sliding phase σ ≡ 0, see (5). It holds with a matched perturbation
as long as for all t ≥ 0, ‖ξ(t)‖∞ ≤ δ < α for some δ ≥ 0.

Integrating the nominal version of (1) over [tk, tk+1) and using the expressions in (10), we obtain the ZOH
discretization of the system:

x̄k+1 = eAhx̄k +B∗ūeqk +B∗ūsk, (11)

with

B∗ :=

∫ tk+1

tk

eA(tk+1−τ)Bdτ. (12)

Let Ψ :=
∫ tk+1

tk
eA(tk+1−τ)dτ =

∑∞
l=0

Alhl+1

(l+1)! , then B
∗ = ΨB. We now present different choices for the values ūeqk and

ūsk. Firstly, standard methods are described, while the new method is studied in the next section. Here ūeqk and ūsk
are the discretized values of the continuous-time control law ueq and us. From all the possible time-discretization
schemes, we focus on the one-step explicit, implicit, and midpoint ones. With the expressions found for ueq and us
in (4) and (5), the proposed discretized values for the equivalent control ūeqk are:

ūeqk,e = −(CB)−1CAx̄k explicit input, (13a)

ūeqk,i = −(CB)−1CAx̄k+1 implicit input, (13b)

ūeqk,m = 1/2(ūeqk,e + ūeqk,i) midpoint input, (13c)

and the two possibilities for the discontinuous control ūsk are:

ūsk = −α sgn(σ̄k) explicit input, (14a)
ūsk ∈ −α Sgn(σ̄k+1) implicit input. (14b)

We use the singled-valued sgn function in (14a) since the case σ̄k = 0 is not worth considering for explicit inputs.
Moreover with the set-valued Sgn function, if σ̄k = 0, then we would have Sgn(σ̄k) ∈ [−α, α]p and there is no proper
selection procedure to get a value for ūsk. In the next subsection, we present the selection procedure in the implicit
case. The objective in Section 6 is to study the behaviour of the closed-loop system when different combinations of
equations (13a)–(13c) and (14a)–(14b) are used. The most commonly used control law is the combination of (13a)
and (14a). This kind of discretization has been studied in [8, 9, 17], with a focus on the sequence formed by σ̄k
once the system state approaches the sliding manifold. The implicit discretization (14b) was first introduced in [11]
and [12]. In the following, we provide more details on it.

RR n° 8383



6 Olivier Huber, Vincent Acary, Bernard Brogliato

3.2 Definition and properties of the implicitly discretized discontinuous control input

With the implicit method (14b), for each k ∈ N, ūsk is computed as the solution to the generalized equation{
σ̃k+1 = σ̄k + CB∗ūsk
ūsk ∈ −α Sgn(σ̃k+1).

(15)

As shown in [11], there exists k0 ∈ N such that for all k > k0, σ̃k = 0. Let us write the discrete-time system with
an implicit discretization of us and let ūeqk be computed using one of the methods in equations (13a)–(13c):

x̄k+1 = eAhx̄k +B∗ūeqk +B∗ūsk
σ̃k+1 = Cx̄k + CB∗ūsk
ūsk ∈ −α Sgn(σ̃k+1).

(16)

Nothing guarantees that C(eAhx̄k + B∗ūeqk ) = Cx̄k. Hence, σ̃k+1 is in general different from σ̄k+1 because of the
discretization error on ueq. Indeed this error, stemming from the discretization of ueq, can be seen as a perturbation
of the closed-loop system, even if ξ ≡ 0. Therefore, σ̃k+1 can be considered as an approximation of σ̄k+1.

The system (15) can be analysed using the Affine Variational Inequality (AVI) formalism [18]. Let N[−α,α]p(λ)
be the normal cone to the box [−α, α]p at λ, that is N[−α,α]p(λ) = {d ∈ Rp | 〈d, y − λ〉 ≤ 0,∀y ∈ [−α, α]p}. The
relation ūsk ∈ −Sgn(σ̃k+1)⇐⇒ σ̃k+1 ∈ −N[−α,α]p(ūsk) enables us to transform (15) into the inclusion:

0 ∈ σ̄k + CB∗ūsk +N[−α,α]p(ūsk). (17)

The inclusion (17) is satisfied if and only if ūsk is the solution of the AVI:

Find z ∈ [−α, α]p such that (y − z)T (σ̄k + CB∗z) ≥ 0, ∀y ∈ [−α, α]p. (18)

Let SOL(CB∗, Cx̄k) denote the set of all solutions to the AVI (18). The existence and uniqueness of solutions to
this AVI are now presented.

Lemma 3. The AVI (18) has always a solution.

Proof. Since the mapping z 7→ CB∗z + σ̄k is continuous, we can apply the Corollary 2.2.5, p. 148 in [18].

Lemma 4. The AVI (18) has a unique solution for all σ̄k ∈ Rn if and only if CB∗ is a P-matrix.

Proof. In [18], using Theorem 4.3.2 p. 372 and Example 4.2.9 p. 361 yields the result.

In most ECB-SMC systems, CB∗ > 0, therefore is a P-matrix. This approach enables us to analyse a large
class of systems, compared to previous approaches where it is supposed that CB∗ is scalar [6]. The solution is a
function of σ̄k (hence x̄k) and if CB∗ is a P-matrix, the solution map Cx̄k 7→ ūsk = SOL(CB∗, σ̄k) is Lipschitz
continuous. When the control is scalar or if CB∗ is diagonal, a solution to (15) can be computed as a simple
orthogonal projection: ūsk = −proj[−α,α]p((CB∗)−1σ̄k). Otherwise a quadratic problem with bounded constraints
may be considered [12]. More details on the numerical aspects and solvers for this kind of problems can be found
in [15] and [19]. Now that we have discussed the existence, uniqueness, some properties of solutions and methods
to compute them, we turn our attention to the performance of each controller.

4 Discretization performance

4.1 Discretization of the state-continuous control

Let us focus on the discretization error on ueq and more specifically on its effect on the sliding variable. In other
words we analyse how the invariance property in (4) is preserved after discretization. In the following, ūs is set to
0. Let ∆σ̄k := σ̄k+1 − σ̄k be the local variation of the sliding variable due to the discretization error on ueq.

Inria
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4.1.1 Explicit discretization

With an explicit discretization of ueq as in (13a), and using (11) the closed-loop discrete-time system dynamics is

x̄k+1 = Φekx̄k, (19)

with Φek := eAh −ΨΠBA and ΠB := B(CB)−1C = I −Π.

Lemma 5. With an explicit discretization of ueq, the discretization error ∆σ̄k is of order O(h2).

Proof. Starting from (19), one obtains

x̄k+1 − x̄k = (eAh − I)x̄k −ΨΠBAx̄k. (20)

Hence, using the definition of Ψ in Section 3.1:

∆σ̄k = σ̄k+1 − σ̄k = C
(
eAh − I −ΨΠBA

)
x̄k (21)

= C

(
Ah+

A2h2

2
−
(
h+

Ah2

2

)
ΠBA+O(h3)

)
x̄k (22)

= C

((
h+

Ah2

2

)
(I −ΠB)A

)
x̄k +O(h3) (23)

= hCΠAx̄k +
h2

2
CAΠAx̄k +O(h3) (24)

=
h2

2
CAΠAx̄k +O(h3). (25)

The action of ueqk,e does not keep σ̄ constant and the error is of order O(h2).

4.1.2 Implicit discretization

The recurrence equation (11) combined with (13b) yields

x̄k+1 = eAhx̄k −ΨΠBAx̄k+1, (26)

that is:

x̄k+1 = W−1eAhx̄k, (27)

with W = I + ΨΠBA.

Lemma 6. With an implicit discretization of ueq, the discretization error ∆σ̄k is of order O(h2).

Proof. There exists a Taylor expansion for W−1 if ΨΠBA has all its eigenvalues in the unit disk. Since Ψ → 0 as
h→ 0, it is always possible to find an h0 such that this condition holds for all h0 > h > 0. Since we are interested
in an asymptotic property, such restriction on h does not play any role. Let us compute the finite expansion of
W−1eAh:

W−1eAh =
(
I −ΨΠBA+ (ΨΠBA)2

)(
I +Ah+

A2h2

2

)
+O(h3) (28)

= I −ΨΠBA+Ah+ (ΨΠBA)2 − hΨΠBA
2 +

A2h2

2
+O(h3) (29)

= I − (ΠBA−A)h+

(
−ΠBAΠBA

2
+ ΠBAΠBA−ΠBA

2 +
A2

2

)
h2 +O(h3) (30)

= I − (ΠBA−A)h+

(
ΠBAΠBA

2
−ΠBA

2 +
A2

2

)
h2 +O(h3). (31)

Then the variation of the sliding variable is

∆σ̄k = C(W−1eAh − I)x̄k = h(−A+A)x̄k + h2

(
CAΠBA

2
− CA2

2

)
x̄k +O(h3) (32)

RR n° 8383



8 Olivier Huber, Vincent Acary, Bernard Brogliato

=
h2

2
CA(I −ΠB)Ax̄k +O(h3) (33)

= −h
2

2
CAΠAx̄k +O(h3). (34)

Lemma 7. With a midpoint method (13c), the error is of order O(h3).

Proof. With the midpoint method (13c), the recurrence equation is

x̄k+1 = 1/2(eAhx̄k −ΨΠBAx̄k) + 1/2(eAhx̄k −ΨΠBAx̄k+1). (35)

The two terms are the right-hand side in (20) and (26). Then the discretization error is the mean of the discretization
error of the explicit and implicit case. Since the first term in (34) is the opposite of the first one in (25), the term
in h2 vanishes and the error is of order O(h3).

4.2 Discretization of both control inputs
In the following, we consider the sliding variable dynamics with the state-continuous and discontinuous control. It
is expected that σ̄ goes to 0 and once it reaches zero, stays at this value. The proposed metric to measure the
performance of the discrete-time controller is the Euclidean norm of the sliding variable when the system state is
close to the sliding manifold. Let εk := ‖σ̄k+1‖ be the discretization error when ‖σ̄k‖ is small enough.

4.2.1 Explicit discretization

In the sliding mode literature, several proposals (seven of them are listed in [20]) have been made to analyse
the behaviour of the closed-loop system near the sliding manifold and to propose new variable structure control
strategies. Despite this, it is still difficult to analyse the behaviour near the sliding manifold, besides stability. Thus
we only study the invariance of a close neighborhood of the sliding manifold, also to provide an estimate of the
chattering due to the discrete discontinuous control.

Lemma 8. Let the closed-loop system state in (11) be in an O(h2)-neighborhood of the sliding manifold at t = tk,
i.e. σ̄k = O(h2), but with σ̄k 6= 0. If the discontinuous part us of the control is discretized using the explicit
scheme (14a), then the discretization error εk is of order O(h) and the system exits the O(h2)-neighborhood.

Proof. Starting from equation (11) and using the control inputs ūeqk = −(CB∗)−1CAx̄k and ūsk = −α sgn(Cx̄k), we
have the following:

σ̄k+1 = C(eAh −ΨΠBA)x̄k − CB∗ sgn(Cx̄k) (36)

that is

σ̄k+1 = σ̄k + ∆k − CB∗ sgn(σ̄k), (37)

with

∆k := C(eAh − I −ΨΠBA)x̄k. (38)

Let us study the square of the norm of the sliding variable:

σ̄Tk+1σ̄k+1 = ‖σ̄k‖2 + ‖∆k‖2 + ‖CB∗ sgn(σ̄k)‖2 + σ̄Tk ∆k − σ̄Tk CB∗ sgn(σ̄k)−∆T
kCB

∗ sgn(σ̄k). (39)

From Lemma 5, we have ‖∆k‖2 = O(h4). For each other term, we can compute its order with respect to h:

‖CB∗α sgn(σ̄k)‖2 =

∥∥∥∥∥
∞∑
k=0

hl+1 CA
lB

(l + 1)!
α sgn(σ̄k)

∥∥∥∥∥
2

≤ ‖hCBα sgn(σ̄k)‖2 +O(h3) (40)

∆T
kCB

∗α sgn(σ̄k) = O(h3). (41)

Inria
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Using the Cauchy-Schwarz inequality on the remaining terms yields

|σ̄Tk ∆k| ≤ ‖σ̄k‖‖∆k‖ (42)

|σ̄Tk CB∗ sgn(σ̄k)| ≤ ‖σ̄k‖‖CB∗ sgn(σ̄k)‖. (43)

If ‖σ̄k‖ = O(h2), then the above terms are of order O(h4) and O(h3). Hence, the dominant term in (39) will
be ‖hCBα sgn(σ̄k)‖2. Let {λi} be the spectrum of hCB, with λm = mini |λi| and λM = maxi |λi|. We have the
following:

λmhα
√
p ≤ ‖hCB sgn(σ̄k)‖ ≤ λMhα

√
p. (44)

Inserting this in (39) yields that ‖σ̄k+1‖ has order O(h).

Therefore with an explicit discretization of us, the main error comes from the discretization of the discontinuous
control us, since it increases the error by an order h.

4.2.2 Implicit discretization

In the following, we are interested in studying the discretization error in the same context as for the previous lemma.

Lemma 9. Let the closed-loop system be in the discrete-time sliding phase, as defined in Definition 4. If the
discontinuous part us of the control is discretized using an implicit scheme, then the discretization error εk has the
same order as the discretization error ∆σ̄k on ueq. That is O(h2) for the methods (13a) and (13b), and O(h3) for
the midpoint method (13c).

Proof. Let ∆k = C(eAh − I)xk + CΨBūeqk , with ūeqk any method in (13a)-(13c). The system is supposed to be in
the discrete-time sliding phase, that is usk ∈ (−α, α)p. Then σ̃k+1 = σ̄k + CB∗ūsk = 0. From (11) one has:

σ̄k+1 = σ̄k + ∆k + CB∗ūsk = ∆k (45)

Let us go through all the possible discretization of ueq. In the explicit case (13a), ∆k is the quantity studied in (21)-
(25) and is of order O(h2). With the implicit method (13b), the order of ∆k is O(h2), as shown in (32)-(34). With
the midpoint method (13c), going along the lines of the proof of Lemma 7, we get that ∆k is of order O(h3).

Remark 1. In Section 7, conditions are derived to ensure that the system stays in the discrete-time sliding phase
once it reaches it, with or without perturbation.

4.3 Disturbance and chattering
We consider the system (1) with a non-zero perturbation. In the following we consider only continuous perturbations.
Let us first recall some facts with a continuous-time controller. The design procedure for the equivalent part is the
same as in the unperturbed case. If the system is in the sliding phase, it can stay on the sliding surface despite the
perturbation ξ(t), if the origin is contained in the set obtained using the Filippov’s convexification procedure. We
suppose here that CB is nonsingular. Then the condition for rejection can be reformulated as 0 ∈ −α Sgn(0)+ ξ(t).
The condition α > ‖ξ‖∞ ensures the unconditional existence of the sliding motion.

We now investigate the performance of the discretization scheme with respect to the perturbation. First we
analyse how the perturbation affects the discrete-time dynamics of the system. To take it into account, we just
need to add a term pk :=

∫ tk+1

tk
eA(tk+1−τ)Bξ(τ)dτ to the recurrence relation (11). This yields:

x̄k+1 = eAhx̄k +B∗ūeqk +B∗ūsk + pk. (46)

Note that with the type of perturbation we consider, pk is of order O(h2).

4.3.1 Explicit case

Given the expression in (46), to take into account the perturbation, we just have to add the term Cpk to (37):

σ̄k+1 = σ̄k + ∆k − CB∗ sgn(σ̄k) + Cpk. (47)

Using the same analysis as in the previous subsection, that is computing ‖σ̄k+1‖2, we have all the terms in (39),
plus the following:

|σ̄Tk Cpk| ≤ ‖σ̄k‖‖Cpk‖ = O(h3) by Cauchy-Schwarz inequality (48)
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|∆T
kCpk| ≤ ‖∆k‖‖Cpk‖ = O(h3) by Cauchy-Schwarz inequality (49)

(CB∗α sgn(σ̄k))TCpk = O(h2) (50)

‖Cpk‖2 = O(h2). (51)

Thus the dominant terms in (47) are of order h and are: ‖Cpk‖, ‖CB∗α sgn(σ̄k)‖ and (CB∗α sgn(σ̄k))TCpk. Those
terms induce chattering and they all have the same order with respect to the timestep h.

4.3.2 Implicit case

Updating (45) to take into account the perturbation yields:

σ̄k+1 = σ̄k + ∆k − CB∗ sgn(σ̄k+1) + Cpk (52)
= ∆k + Cpk. (53)

Recall that ∆k has order O(h2). Hence the chattering due to the perturbation will be predominant. In the next
Section, we present a method for computing ūeqk such that the discretization error ∆k = 0. Then the chattering is
solely due to the perturbation.

5 Exact discrete equivalent control
Let us propose a new control scheme for a discrete-time LTI plant using sliding mode control. Its derivation is along
the same lines as in Section 2, that is we first design the equivalent control ūeq and then the discontinuous part ūs.

As showed in (5), ueq is defined such that the dynamics of the sliding variable depends only on the input us.
Starting from (11) and left multiplying by C, one obtains:

Cx̄k+1 = CeAhx̄k + CB∗ūeqk + CB∗ūsk. (54)

Using (8) with t = tk+1 and t0 = tk, we obtain

σ(tk+1) = CΦ(tk+1, tk)x(tk) + C

∫ tk+1

tk

Φ(tk+1, τ)Bus(τ)dτ. (55)

Our goal is to have Cx̄k+1 = Cx(tk+1) if x(tk) = x̄k and both us and ūs set to 0. Then setting the last term of
(54) and (55) to 0 and using Lemma 2, the following condition holds:

CΦ(tk+1, tk)x(tk) = CeAhx̄k + CB∗ūeqk , (56)

that is

CB∗ūeqk = C(I − eAh)x̄k. (57)

In [3], this expression for the equivalent control was already derived, when the sliding variable is scalar. In [4],
using a deadbeat-like approach, a term similar to (57) can also be found. If we substitute this expression for ūeqk in
(54), then, as expected, we obtain

σ̄k+1 = σ̄k + CB∗ūsk, (58)

which is the discrete counterpart of (5). For the design of ūs, let us choose ūsk such that ūs steers σ̄k to 0 in finite
time. Following the work in [11] and [12], we use an implicit discretization of the continuous-time control law.
The discrete-time sliding variable dynamics is given by (58) and ūsk ∈ −α Sgn(σ̄k+1). Inserting (57) in (11), the
discrete-time dynamics of the nominal controlled plant is{

x̄k+1 = (eAh +B∗(CB∗)−1C(I − eAh))x̄k +B∗ūsk
σ̄k+1 = σ̄k + CB∗ūsk.

Using the framework of generalized (set-valued) equations, the discrete-time sliding variable dynamics is{
σ̄k+1 = σ̄k + CB∗ūsk
ūsk ∈ −α Sgn(σ̄k+1).

(59)

This system has the same structure as in (15), although with the important difference that we have here σ̃k+1 = σ̄k+1.
Therefore, we can show that σ̄k goes to 0 in finite time, see Proposition 1 in Section 7. Hence in the nominal case,
the system reaches the sliding surface at a certain time tk0 and then for all k > k0, σ̄k = 0.
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Analysis of explicit and implicit discrete-time equivalent-control based sliding mode controllers 11

Lemma 10. Suppose CB∗ is a P-matrix. Then the only equilibrium pair of the system (59) is (σ̄∗, ūs∗) = (0, 0).

Proof. A pair (σ̄, ūs) is an equilibrium of (59) if and only if CB∗ūs = 0. If CB∗ is a P-matrix, then it has full-rank
and CB∗ūs = 0 is equivalent to ūs = 0. By the definition of the Sgn multifunction in (2), this is only possible if
σ̄ = 0.

With this scheme the two control inputs are{
ūeqk = (CB∗)−1

C(I − eAh)x̄k

ūsk solution of (59).
(60)

This controller is nonanticipative since ūeqk depends only on the model parameters and x̄k. Moreover ūsk is the
unique solution to (59) given that CB∗ > 0, using similar arguments as in Lemma 4. This controller retains the
structure of the continuous-time sliding mode controller. It is different from the approach that can be found in [4]
or [21] since the equivalent part ueq is not chosen as the solution to a deadbeat control problem. As a result, the
magnitude of the control is of order O(1) with respect to the timestep h, whereas it is of order O(h−1) in the
deadbeat case, see [21].

6 Simulations of a 2-dimensional system
To illustrate the results obtained with different discretization methods, let us simulate the following controlled
system: 

ẋ(t) = Ax(t) +Bū(t)

σ = Cx

ū(t) = ūeq(t) + ūs(t)

A =

(
0 1
19 −2

)
,

B =

(
0
1

)
, CT =

(
1
1

)
.

(61)

The matrix A has the eigenvalues λ1 = 3.47 and λ2 = −5.47. The dynamics on the sliding surface is given by

ΠA =

(
0 1
0 −1

)
, which has eigenvalues 0 and −1. Through this section, we chose α = 1. The initial state

is (−15, 20)T . The first set of simulations uses a timestep 0.3 s for the control and the second one a timestep
0.03 s. The simulations run for 150 s and were carried out with the siconos software package [22]1. Figures were
created using Matplotlib [23]. The schemes presented in equations (13a)–(13c) are used, as well as the two schemes
in equations (14a)–(14b) for the discretization of us, on the ZOH sampled-data version of the system (61). In
Subsection 6.1, the nominal system (61) is simulated and in Subsection 6.2 a matching perturbation is added. For
each set of simulations, three types of figure are shown. The first one present an overview of the trajectories of the
different closed-loop systems (like Fig. 1 and 4). The next one displays some details, around the origin (Fig. 2, 5
and 7). Finally, we present plots of the different discontinuous inputs (Fig. 3, 6 and 8). Markers are also added to
help visualize the position of the closed-loop system at some of the time instants tk.

6.1 Nominal case
The trajectories for the different closed-loop systems are plotted in Fig. 1. The motion in the reaching phase
depends only on the discretization method used for the equivalent control ueq. It is only near the sliding manifold
that the discretization method of the discontinuous control us plays a role. If the explicit scheme in (13a) is used
for the discretization of ueq, the system diverges (Fig. 1a and 1b, curves (ei) and (ee)). This sampling method can
destabilize a system which is stable in continuous time. If the implicit scheme in (13b) is used for the discretization
of ueq, then the discretization error may not affect stability but it can induce some unexpected behaviour. As we
can see in Fig. 1, curves (ii) and (ie), the trajectories are crossing the sliding manifold. This phenomenon can
be explained by the following fact: let ∆k be the discretization error on ueq at time tk. We have the recurrence
equation σ̄k+1 = σ̄k + ∆k + CB∗ūsk. Let us consider the implicit discretization of us. If 0 < σ̄k < CB∗, then
the system should enter the discrete-time sliding phase. However if ∆k + σ̄k < −2CB∗, then for any value of ūsk,
σ̄k+1 < −CB∗. Hence, due to the discretization error, ūs fails to bring σ̄k+1 to 0 and the trajectory of the system
crosses the sliding manifold. The same happens with the explicit discretization of us. With the midpoint method
in (13c), curves (mi) and (me), and with the new control scheme (60), curve (ex), the system state reaches the
sliding manifold.

1http://siconos.gforge.inria.fr
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(a) Implicit discretization of us. (ei) is for pair (13a), (14b);
(ii) for (13b), (14b); (mi) for (13c), (14b); (ex) for (60).
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Figure 1: Simulations of system (61) using different discretization methods, with h = 0.3 s and α = 1.
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Figure 2: Detail of Fig. 1, h = 0.3 s, α = 1.

Near the sliding manifold (Fig. 2a and 2b), the behaviour of the system is more sensitive to the discretization
of us. In the implicit case (method (14b), Fig. 2a), in the discrete-time sliding phase, σ̄k is very close to 0 (σ̄k = 0
with the exact method). In each case, it converges to the origin (at the machine precision). This is visible on the
zoom box in Fig. 2a, where markers indicate the state of the system at each time instant tk, during the last second
of each simulation. When the explicit method (14a) is used, the system chatters around the sliding manifold, within
a neighborhood of order h (0.3 s here), see Fig. 2b.
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Figure 3: Evolution of ūs for different discretization methods, with h = 0.3 s and α = 1.

In Fig. 3b, the explicitly discretized discontinuous control ūs takes its values in {−1, 1} and starts at some point
a limit cycle, as studied in [9]. This cycle is also visible on the zoom box in Fig. 2b with the help of the markers.
In Fig. 3a, for each discretization of ueq, ūs converges to 0, which is the value that us takes in the sliding phase.
In the implicit and midpoint cases, at the beginning of the discrete-time sliding phase, ūs takes non zero values
since there are discretization errors on ueq. That is, if σ̄k = 0, σ̄k+1 6= 0. The discontinuous control tries to bring
σ̄k+1 to 0 and counteracts the error. As the state goes to the origin, the error converges to 0. These simulations
illustrate the fact that error is smaller in the midpoint case than in the implicit case, as shown in Lemma 7. With
the exact method of Section 5, ūs goes to 0 after 1 timestep in the discrete-time sliding phase. In Fig. 3a and 3b,
with the explicit discretization of ueq, ūs takes always the same value, since the closed-loop system moves away
from the sliding manifold. In terms of convergence to the sliding manifold, the first closed-loop system to enter the
discrete-time sliding phase is the exact method (Fig. 3a), then the midpoint, finally the implicit method. With the
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explicit method on ueq, the system moves away from the sliding manifold and thus cannot enter the discrete-time
sliding phase.
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Figure 4: Simulations of system (61) using different discretization methods, with h = 0.03 s and α = 1.
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Figure 5: Detail of Fig. 4, h = 0.03 s, α = 1.

The next set of simulations uses the same parameters as the previous one, except for the timestep which is
smaller: h = 0.03 s. In contrast with the results presented in Fig. 1, the closed-loop system is stable in all cases,
see Fig. 4. As expected, the discretization error is smaller and no trajectory crosses the sliding manifold. It is not
possible to distinguish the solutions associated with the midpoint from the one obtained with the exact method
in Fig. 4a. In Fig. 5a with the implicit discretization of us, the states converge again to a very small ball near
the origin. In the explicit case, there is some numerical chattering, again with the same order of magnitude as the
timestep (h = 0.03 s, Fig. 5b). In Fig. 6a, once in the discrete-time sliding phase, ūs counteracts the discretization
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Figure 6: Evolution of ūs for different discretization methods, with h = 0.03 s and α = 1.

error on ueq, which is smaller than in Fig. 3a. The discretization error for the midpoint discretization in (13c) is
much smaller, and its curve overlaps completely with the one of the exact discretization method.

The results presented here bring into view the numerical chattering caused by an explicit discretization of us,
while the implicit method is free of it. The importance of the discretization of ueq is also illustrated, with the
explicit method leading to a diverging system and the counterintuitive behaviour yielded by the implicit method.
The exact method from Section 5 produces good results and in agreement with the theoretical results.
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6.2 Perturbed case
We now add a perturbation ξ(t) in the system (61). In the next set of simulations, the perturbation is ξ(t) =
0.6exp(min(6− t, 0)) sin(2πt). Note that for all t, ‖ξ(t)‖ ≤ 0.6. This particular ξ has been chosen to highlight that
if the perturbation vanishes, with the implicit discretization in (14b), ūs goes to 0, whereas in the explicit case (14a),
ūs continues to switch between −1 and 1. With the implicit discretization of us (Fig. 7a) the closed-loop system
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Figure 7: Simulations of system (61) using different discretization methods for ueq and h = 0.03 s (perturbed case).

enters the discrete-time sliding phase at some point. Then ūsk = −(CB∗)−1Cpk−1, if some simple assumptions
are satisfied, see the proof of Proposition 2 below. It takes such value in order to counteract the effect of the
perturbation during the elapsed time interval, hence imitating the continuous-time Filippov solutions. However
the trajectories are now clearly only in a neighborhood of the sliding manifold. Finally in each case in Fig. 8a, ūsk
settles to 0, as in continuous time. Indeed, the perturbation ξ used in this simulation goes to 0 exponentially fast
at some point. On the other hand, with an explicit discretization of us (Fig. 8b), it is much harder to witness the
influence of the perturbation on ūs since filtering would be necessary to see the effect. The control input chattering
is striking with the explicit discretization in Fig. 3b, 6b, and 8b. In Fig. 9 we further illustrate the phenomenon

0 2 4 6 8 10 12 14

t

−1.0

−0.5

0.0

0.5

1.0

ū
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Figure 8: Evolution of ūs for different discretization methods for ueq and us, h = 0.03 s. (perturbed case)
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Figure 9: Evolution of ūs and the perturbation using the new control scheme for two different timesteps.

in the implicit case: ūs approximates −ξ with a delay depending on h. This is close to the behaviour one expects
from the Filippov’s framework in continuous-time. We shall investigate this phenomenon in Section 7.

The following simulation results illustrate that with an implicit discretization of us, the chattering in the discrete-
time sliding phase is solely due to the perturbation. The setup is the same as in Section 6.1, except that there is
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a perturbation ξ(t) = 0.9 sin(t) and α, the magnitude of the discontinuous control, changes. For the present set
of simulation, we use α = 1, 3 and 10, values large enough to ensure that the perturbation is always dominated
by the control. On Fig. 10a, we cannot distinguish the three trajectories in the discrete-time sliding phase, since
even if ūsk takes value in a larger set, the selected value within (α, α) does not change. This is supported by the
Fig. 11a: it is again not possible to differentiate the values taken by the controllers. On the contrary, in Fig. 10b,
the three different trajectories are clearly visible. Here we observe that the numerical chattering is dominant. Each
time we increase α, the amplitudes of the oscillation around the manifold are getting bigger. We also observe that
the precision of the system seems to be affected by the magnitude of the control. The bigger it is, the farther the
system oscillates from the origin.
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Figure 10: Simulations of system (61) with a perturbation, using different values for α and with h = 0.1s.
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Figure 11: Evolution of ūs, using different values for α and with h = 0.1 s.

7 Stability properties

7.1 Nominal case

In this subsection, the stability of the system (59) is analyzed. Using the equivalent control proposed in Section 5,
the obtained properties can be transposed to the original nominal system (1). Note that the mapping Sgn( · ), as
introduced in Definition 1, has the following properties:

〈v1 − v2, x1 − x2〉 ≥ 0, ∀vi ∈ Sgn(xi), i = 1, 2 (62)
0 /∈ Sgn(x), ∀x 6= 0. (63)

Property (62) is known as the monotonicity of the Sgn set-valued function. The positive-definitiveness property of
CB∗ is pivotal to the results presented in this section. Even if it is not explicit with the current notations, CB∗
depends on the timestep h. The following lemma gives some insight of when this condition is fulfilled.

Lemma 11. Suppose that CB is positive-definite. There exists an interval I = [0, h∗] ⊂ R+, h∗ > 0 such that if
the timestep h is chosen in I, then CB∗/h is positive-definite (and so is CB∗ if h 6= 0).

Proof. Let h > 0, CBs and CB∗s are the symmetric part of CB and CB∗, respectively. Let ∆ := CB∗s/h− CBs =∑∞
l=1

CAlB+BT (Al)TCT

2(l+1)! hl = O(h). Since CBs is symmetric, it is also normal. Hence we can apply Corollary 4.2.16,
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p. 405 in [24], which yields that for any eigenvalue µ of CB∗s/h, minλ |λ − µ| ≤ ‖∆‖2,2, with λ an eigenvalue of
CBs and ‖ · ‖2,2 the spectral norm. By definition, ∆ is a symmetric matrix with real entries. Hence ‖∆‖2,2 = δmax,
the largest module of any eigenvalue of ∆. Let γ > 0 be the smallest eigenvalue of CBs. If δmax < γ, then every
eigenvalue of CB∗s/h is positive and since CB∗s/h is by definition symmetric, CB∗s/h is positive definite. It is easy
to see that ∆ → 0 as h → 0 and that ∆ depends continuously on h. Therefore by Corollary 4.2.4, p. 399 in [24],
the eigenvalues of ∆ are continuous functions of h. Then it is always possible to find h∗ such that δmax < γ for all
h < h∗, which implies that CB∗s/h is positive-definite and finally CB∗s is positive definite.

Lemma 12. If CB∗ is symmetric positive-definite, then the equilibrium state σ̄∗ = 0 of (59) is globally Lyapunov
stable.

Proof. Let V (σ̄k) := σ̄Tk Pσ̄k with P = (CB∗)−1, be a candidate Lyapunov function. Along the trajectories of the
system (59), one obtains:

V (σ̄k+1)− V (σ̄k) = σ̄Tk+1Pσ̄k+1 − σ̄Tk Pσ̄k
= σ̄Tk+1Pσ̄k+1 − (σ̄k+1 − CB∗ūsk)TP (σ̄k+1 − CB∗ūsk)

= −(ūsk)TCB∗ūsk + 2(ūsk)T σ̄k+1. (64)

Using (62) with v1 = ūsk, v2 = 0, x1 = σ̄k+1, and x2 = 0 yields (ūsk)T σ̄k+1 ≤ 0. Since CB∗ is positive-definite, the
first term is always nonpositive. This completes the proof.

We can also use a non-quadratic Lyapunov function, inspired by the one presented in [25]. As we shall see, it
relaxes the symmetry condition on the matrix CB∗.

Lemma 13. If CB∗ is positive-definite, then the equilibrium state σ̄∗ = 0 of (59) is globally Lyapunov stable.

Proof. Let V (σ̄k) := −(ūsk−1)T σ̄k be the candidate Lyapunov function, and ūsk−1 ∈ −α Sgn(σ̄k). The function V
is positive definite, radially unbounded, and decrescent since −(ūsk−1)T σ̄k = α‖σ̄k‖21 and α > 0. Let us study the
variations of V :

V (σ̄k+1)− V (σ̄k) = −(ūsk)T σ̄k+1 + (ūsk−1)T σ̄k

= −(ūsk)T (σ̄k + CB∗ūsk) + (ūsk−1)T σ̄k

= −(ūsk)TCB∗ūsk + 〈ūsk−1 − ūsk, σ̄k〉. (65)

The first term is always nonpositive with the hypothesis on CB∗. For the second term, if ūsk ∈ −α Sgn(σ̄k+1), then
it also belongs to −α Sgn(0). Hence, by (62), the second term is always nonpositive. This completes the proof.

Proposition 1. If the hypothesis of either Lemma 12 or 13 are satisfied, then the fixed point (σ̄, ū) = (0, 0) of (59)
is globally finite-time Lyapunov stable.

Proof. In each case, the difference V (σ̄k+1)− V (σ̄k) consists of −(ūsk)TCB∗ūsk plus a nonpositive term. Since CB∗
is positive-definite, it holds that −(ūsk)TCB∗ūsk ≤ −β‖ūsk‖2, with β > 0 the smallest eigenvalue of CB∗s . Note that
if σ̄k+1 6= 0, then ‖ūsk‖ ≥ α and V (σ̄k+1) − V (σ̄k) ≤ −α2β. Iterating, one obtains V (σ̄k+1) − V (σ̄0) ≤ −kα2β.
Let k0 := dV (σ̄0)/βα2e. Suppose V (σ̄k0+1) 6= 0. Then V (σ̄k0+1) − V (σ̄0) ≤ −k0α

2β ≤ −V (σ̄0). This yields
V (σ̄k0+1) ≤ 0, which implies V (σ̄k0+1) = 0. Then σ̄k0+1 = 0 and σ̄k = 0 for all k > k0.

7.2 Perturbed case

Let us now consider the case with perturbation. The evolution of the sliding variable σ̄ is governed by

σ̄k+1 = σ̄k + CB∗ūsk + Cpk, (66)

where pk :=
∫ tk+1

tk
eA(tk+1−τ)Bξ(τ)dτ and ūsk is the unique solution of the generalized equation (15). Although the

system will never reach and stay on the sliding manifold as in the continuous-time case, it enters the discrete-time
sliding phase as stated in Definition 4 and stays in it. Let us first present a technical lemma.

Lemma 14. Let M ∈ Rn×n and Ms := 1/2(M + MT ). Suppose M is positive-definite. Let β > 0 be the smallest
eigenvalue of Ms. Then for all x ∈ Rn, ‖M−1x‖ ≤ β−1‖x‖.
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Analysis of explicit and implicit discrete-time equivalent-control based sliding mode controllers 17

Proof. M−1 exists since Ms is positive-definite. Let νmin (resp. νmax) be the smallest (resp. largest) singular
values of M (resp. M−1). Two relations hold: νmax = ν−1

min [26, Fact 6.3.21, p.233] and νmin ≥ β > 0 [27,
Corollary 3.1.5, p.151]. Then using the spectral norm definition, ‖M−1x‖ ≤ ‖M−1‖‖x‖ = νmax‖x‖ ≤ β−1‖x‖.

From now on, let CB∗s := 1/2(CB∗ + (CB∗)T ) and let β be its smallest eigenvalue.

Proposition 2. Suppose that CB∗ is positive-definite. If α > 0 is such that for all k ∈ N ‖Cpk‖ < αβ, then
the perturbed closed-loop system (66)-(15) will enter the discrete-time sliding phase in finite time and stay in it.
Furthermore if h ∈ [0, h∗], as defined in Lemma 11, then there exists an upper bound T ∗ on the duration of the
reaching phase.

Proof. Let V (σ̄k) := −ūsTk−1σ̄k, ū
s
k−1 ∈ −α Sgn(σ̄k). Assume that the system is initialized outside the discrete-

time sliding phase. From Definition 4, it follows that ‖ūsk‖ ≥ α. Starting from (65), doing as in the proof of
Proposition 1 and adding the contribution of the perturbation, we have V (σ̄k+1)− V (σ̄k) ≤ −β‖ūsk‖2 − (ūsk)TCpk.
Using the Cauchy-Schwarz inequality, we obtain |(ūsk)TCpk| ≤ ‖ūsk‖‖Cpk‖. To ensure that V decreases strictly,
we need ‖Cpk‖ < β‖ūsk‖. This condition is satisfied using the hypothesis on the gain α and the fact that β > 0.
Note that even in the case with multiple switching surfaces, V decreases as long as the system is not “sliding” on
the intersection of all the manifolds. If σ̃k+1 = 0, then we enter the discrete-time sliding phase. The finite-time
property is derived as in the proof of Proposition 1. Let κ = αβ − ‖Cpk‖. From the assumption, κ > 0 holds.
In the reaching phase, V decreases by at least κα at each timestep. Hence, V (σ̄k) converges to 0 in finite-time.
Now if the system is in the discrete-time sliding phase at tk, then σ̃k+1 = 0 and σ̄k+1 = Cpk. At time tk+1, we
have σ̃k+2 = Cpk + CB∗ūsk+1. Let us show that ūsk+1 = −(CB∗)−1Cpk is the unique solution to the generalized
equation (15). With this value, σ̃k+2 = 0. Using Lemma 14 and the hypothesis, ‖ūsk+1‖ ≤ β−1‖Cpk‖ < α. Relations
between norms yield ‖ūsk+1‖∞ < α. Then ūsk+1 ∈ (α, α)p ⊂ α Sgn(0) and ūsk+1 is a solution to (15). With the
hypothesis of the proposition, CB∗ is also a P-matrix. Then Lemma 4 can be applied and yields the uniqueness
property. Thus ūsk+1 = −(CB∗)−1Cpk is the unique solution to (15) at time tk+1, and by induction, the system
stays in the discrete-time sliding phase.

In the following, we suppose that 0 < h < h∗. Let δ∗max = ‖∆‖2,2 when h = h∗. From the expression of
k0 in the proof of Proposition 1, the duration of the reaching phase is hk0 < V (σ̄0)h

βα2 + h. Note that β/h is an
eigenvalue of CB∗s/h. Applying again Corollary 4.2.16, p. 405 in [24], we have λ − β/h ≤ δmax ≤ δ∗max, with λ
an eigenvalue of CBs. This yields γ − δ∗max ≤ λ − δ∗max ≤ β/h. Using this in the previous inequality, we get
hk0 <

V (σ̄0)
α2(γ−δ∗max) + h∗ =: T ∗.

Remark 2. In continuous time, the condition commonly found is α > ‖ξ‖∞,R+
. If the perturbation ξ is continuous,

then it is possible to link this condition to the one used in the previous theorem, ‖Cpk‖ < αβ for all k ∈ N.
Using the mean value theorem for integration, we get Cpk = hCeA(tk+1−t′)Bξ(t′) = hCBξ(t′) + O(h2), with
t′ ∈ [tk, tk+1]. Hence the first-order estimation for ‖Cpk‖ is h‖CB‖2,2‖ξ‖2 ≤ ‖CB‖2,2

√
p‖ξ‖∞. From the proof

of Lemma 11, we have β = hλmin(CB) + O(h2). Then we get α > ‖CB‖2,2
√
p‖ξ‖∞/β + O(h). Note that

‖CB‖2,2 > λmax(CB) [27, Corollary 3.1.5, p.151]. Therefore ‖CB‖2,2
√
p‖ξ‖∞/β ≥ 1 and for h small enough,

‖Cpk‖ < αβ implies α > ‖ξ‖∞,R+
. If the sliding variable is a scalar, then the converse is also true at the limit.

In the classical literature on discrete-time sliding mode, dealing with the explicit discretization (14a) [1,3,7], two
conditions related to the sliding variable emerged: (σ̄k+1− σ̄k)i(σk)i < 0 for all i = 1, . . . , n, which is necessary; and
the second one is |(σ̄k+1)i| < |(σ̄k)i|. The conditions for linear systems, stated in Lemma 12, 13, and Proposition 2
are directly on the system parameters and not on the evolution on the sliding variable, which derives from the
dynamics. This fact is, in our sense, much closer to the stability results obtained in continuous-time [25].

Let us now turn our attention to the relationship between u and ū. In particular, we study the convergence of
ū to u during the discrete-time sliding phase, which is established after T ∗ < +∞.

Proposition 3. Consider the discrete-time closed-loop system given by (66) and (15). Let {hn}n∈N be any strictly
decreasing sequence of positive numbers converging to 0 and with h0 < h∗ (see Lemma 11). Suppose that the
perturbation ξ : R→ Rp is uniformly continuous, that CB is positive-definite and that α > 0 is chosen such that the
conditions of Proposition 2 are satisfied for each timestep hn. Then for any S ⊆ [T ∗,∞), limhn→0‖ūs−us‖∞,S = 0.

Proof. Let {tk} be a sequence such that for all k ∈ N, tk+1 − tk = hn. For the sake of clarity, we omit to
write explicitly the dependence on n. From Proposition 2 and Lemma 11, we know that for all k such that
tk ≥ T ∗, ūsk = −(CB∗)−1Cpk−1 = −(CB∗)−1C

∫ tk
tk−1

eA(tk−τ)Bξ(τ)dτ . During the sliding phase, the continuous-
time controller satisfies us(t) = −ξ(t). Let S be any time interval contained in [T ∗,+∞). Let t ∈ S and k ∈ N is
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18 Olivier Huber, Vincent Acary, Bernard Brogliato

such that t ∈ [tk, tk+1). Hence ūs(t) = ūsk. Let us study ū
s
k − us(t):

ūsk − us(t) = −(CB∗)−1C

∫ tk

tk−1

eA(tk−τ)Bξ(τ)dτ + ξ(t) (67)

= −(CB∗)−1

(∫ tk

tk−1

CeA(tk−τ)Bξ(τ)dτ − CB∗ξ(t)

)
. (68)

Using (12), we obtain:

ūsk − us(t) = −(CB∗)−1

(∫ tk

tk−1

CeA(tk−τ)Bξ(τ)dτ −
∫ tk+1

tk

CeA(tk+1−τ)Bξ(t)dτ

)
. (69)

With the change of variable τ ′ = τ + hn in the first integral, we can group the two integrals in (69) as follows:

ūsk − us(t) = −(CB∗)−1

(∫ tk+1

tk

CeA(tk+1−τ)B(ξ(τ − hn)− ξ(t)dτ
)

(70)

= −(CB∗)−1

(∫ tk+1

tk

CB(ξ(τ − hn)− ξ(t)) +

∞∑
l=1

CAlB

l!

(
(tk+1 − τ)l(ξ(τ − hn)− ξ(t))

)
dτ

)
. (71)

Using again (12), let us provide an approximation for the first factor:

(CB∗)−1 =

(
hnCB +

∞∑
l=1

CAlB

(l + 1)!
hl+1
n

)−1

(72)

=

(
I +

∞∑
l=1

(CB)−1CAlB

(l + 1)!
hln

)−1

(hnCB)−1 (73)

=

(
I − (CB)−1CAB

2
hn +O(h2

n)

)
(hnCB)−1. (74)

The Taylor expansion holds if
∑∞
l=1

(CB)−1CAlB
(l+1)! hln has all its eigenvalues in the unit disk. This is a mere technical

restriction, since it is always possible to find a small enough positive number hn0 such this condition is satisfied.
Since we are interested in the case where {hn} converges to 0, this requirement is supposed to hold. For the first
term in the integrand in (71), we apply the mean value theorem for integration. If ξ is a vector-valued function
(this is the case when the sliding variable has dimension greater than 1), we apply the theorem for each component
separately. This yields for i = 1, . . . , n (

∫ tk+1

tk
ξ(τ − hn)− ξ(t)dτ)i = hn(ξi(t

′
i− hn)− ξi(t)) for some t′i ∈ [tk, tk+1].

For the second part of the integrand in (71), we exchange the summation and integral signs. This is possible since
the matrix exponential converges normally and ξ is bounded on any interval [tk, tk+1] (ξ is continuous). Moreover for
all l ≥ 1, with τ ∈ [tk, tk+1], (tk+1−τ)lξ(τ−hn)−ξ(t)) = O(hn). Thus

∫ tk+1

tk
(tk+1−τ)l(ξ(τ−hn)−ξ(t))dτ = O(h2

n).
Then (71) can be rewritten as:

ūsk − us(t) = −(I +O(hn))

(∫ tk+1

tk

h−1
n (ξ(τ − hn)− ξ(t))dτ +O(hn)

)
. (75)

Taking the supremum norm yields:

‖ūsk − us(t)‖∞ ≤ ‖I +O(hn))‖∞

(
max
i

sup
t∈[tk,tk+1]

|ξi(t′i − h)− ξi(t)|+ ‖O(hn)‖∞

)
(76)

≤ max
i

sup
t∈[tk,tk+1]

|ξi(t′i − hn)− ξi(t)|+O(hn). (77)

Since ξ is uniformly continuous, for every ε > 0, there exists δ > 0 such that for all t1, t2 ∈ R, |t1 − t2| ≤ δ implies
‖ξ(t1)− ξ(t2)‖ ≤ ε. Then the right-hand side of (77) is converging to 0 as hn → 0. Since this is true for all t ∈ S,
the proof is complete.
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It is also interesting to study the convergence of the variation of the control variable, which may be thought of
as a measure of the control input chattering. Let us first define the variation of a function in some special cases.
The material in Definitions 5 and 6 is adapted from [28].

Definition 5. Let f : R→ Rm be a right-continuous step function, discontinuous at finitely many time instants tk
and t0, T ∈ R, t0 < T . Then the variation of f on [t0, T ] is defined as:

VarTt0(f) :=
∑
k

‖f(tk)− f(tk−1)‖, (78)

with k ∈ N such that tk ∈ (t0, T ].

Definition 6. Let f : R→ Rm be a continuously differentiable function, with bounded derivatives and let t0, T ∈ R,
t0 < T . Then the variation of f on [t0, T ] is defined as:

VarTt0(f) :=

∫ T

t0

‖ḟ(τ)‖dτ. (79)

Proposition 4. Let {hn}n∈N be any strictly decreasing sequence of positive numbers converging to 0 with h0 < h∗.
Suppose that CB is positive-definite, and ξ is a real-valued continuously differentiable with bounded derivative
function. Let α be chosen such that the conditions of Proposition 2 are verified for each hn. Then lim

hn→0
VarTT∗(ū

s) =

VarTT∗(u
s).

Proof. Let {tk} be a sequence such that for all k ∈ N, tk+1− tk = hn. Let us recall that, with the implicit controller
defined in Equations (66) and (15), the reaching phase duration is bounded and that the sliding phase is established
at t = T ∗ if h is small enough. Let VarTT∗(ū

s) denote the variation of the function ūs on the time interval [T ∗, T ].
The variation of the step function ūs is:

VarTt0(ūs) =
∑
k

‖ūsk+1 − ūsk‖ =
∑
k

‖(CB∗)−1C

∫ tk+1

tk

eA(tk+1−τ)Bξ(τ)dτ − (CB∗)−1C

∫ tk

tk−1

eA(tk−τ)Bξ(τ)dτ‖ (80)

=
∑
k

‖(CB∗)−1

(∫ tk+1

tk

CB(ξ(τ)− ξ(τ − hn))dτ +

∫ tk+1

tk

C(eA(tk+1−τ) − I)B(ξ(τ)− ξ(τ − hn))

)
‖. (81)

Using the approximation for (CB∗)−1 obtained in (74), we get:

VarTt0(ūs) ≤ (I +O(hn))
∑
k

‖
∫ tk+1

tk

ξ(τ)− ξ(τ − hn)

hn
dτ‖ (82)

+ (I +O(hn))
∑
k

‖(CB)−1

∫ tk+1

tk

C(eA(tk+1−τ) − I)B
ξ(τ)− ξ(τ − hn)

hn
dτ‖ (83)

≤ (I +O(hn))

∫ T

t0

‖ξ(τ)− ξ(τ − hn)

hn
‖dτ (84)

+ (I +O(hn))
∑
k

‖(CB)−1

∫ tk+1

tk

C(eA(tk+1−τ) − I)B
ξ(τ)− ξ(τ − hn)

hn
dτ‖. (85)

Using standard estimation inequalities, we obtain the following estimation for all integrals in the sum:

‖
∫ tk+1

tk

C(eA(tk+1−τ) − I)B
ξ(τ)− ξ(τ − hn)

hn
dτ‖ ≤

∫ tk+1

tk

‖C‖‖B‖(e‖A‖hn − 1)‖ξ(τ)− ξ(τ − hn)

hn
‖dτ. (86)

Then we can group the terms in (85) as:

VarTt0(ūs) ≤ (I +O(hn))

∫ T

t0

‖ξ(τ)− ξ(τ − hn)

hn
‖dτ

+ (I +O(hn))‖(CB)−1‖
∫ T

t0

‖C‖‖B‖(e‖A‖hn − 1)‖ξ(τ)− ξ(τ − hn)

hn
‖dτ. (87)

Since ξ is continuously differentiable,
∫ T
t0
‖ ξ(τ)−ξ(τ−hn)

hn
‖dτ converges to

∫ T
t0
‖ξ̇(τ)‖dτ = VarTt0(us) as hn → 0. All the

other terms in the right-hand side of (87) converge to 0 as hn → 0.
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7.3 Comparison with saturated SMC
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(a) Simulation results with 100 regularly spaced values for
the timestep h and 100 logarithmically spaced values for the
saturation parameter ε.
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(b) Detail of Fig. 12a, 300 values for h and 1000 values for ε,
forming a regular grid. Level sets were also added to show
the difference in performance between the implicit discretiza-
tion and the explicit one with saturation. If the difference is
positive, the explicit saturated control is performing better
than the implicit one.

Figure 12: Simulation results of a perturbed system controlled using sliding mode with a saturation. The perfor-
mance index is the sum of the |σk| for the last 20s.

We simulate the system (61) with a perturbation ξ(t) = sin 4πt. Instead of using a discontinuous control, we

use the following input: us(t) = − satε(σ(t)) with satε(x) =

{
x/ε if |x| ≤ ε
sgn(x) if |x| > ε

. As in Section 6, each simulation

lasts 150s. We use two metrics to measure the performance of the different controllers. To measure the (output)
chattering, due to the discretization and the perturbation, we sum the absolute value of the sliding variable σ̄k for
the last 20s: C1 :=

∑
k |σ̄k|. To measure the control effort (or input chattering), we measure the variation of the

control for the last 20s: C2 := VarTT−20(ūs). Each quantity defines the performance index in Fig. 12 or 13. We
choose to consider only the last 20s of each simulation to capture the behaviour near the sliding manifold. Let
us recall that without perturbation, the implicit controller always supersedes the saturated explicit one, since it
suppresses numerical chattering and ūsk = 0 in the discrete-time sliding phase. With both index, we can divide the
space into 3 cones, numbered 1, 2 and 3 in Fig. 12 and 13. This separation helps us to compare both controllers. In
Fig. 12a the performance in term of chattering is presented. For large values of ε, the chattering does not change
when the timestep varies: the control action does not attenuate the effect of the perturbation. With a small ε, the
behaviour is richer, as depicted in Fig.12b. On Fig. 12b, the overall best performance is obtained with small values
for both ε and h. However for small values of ε, the performance can degrade rapidly if the sampling period h is
not small enough, as seen in region 1. The dark points indicate for each value of h the pair (ε, h) of parameters
yielding the best performance. It seems that there is a linear relationship between those values. However it is
unclear if this observation on one particular system remains valid with a different perturbation. The level sets in
Fig. 12b are used to compare the performance of the implicit and the saturated explicit controllers. On Fig. 13, the
performance in terms of control cost is presented. The best performance is achieved for large ε since the slope of
the saturated function is gentle. On the other hand in Fig. 13b, with a small ε, the cost increases and explodes with
ε close to 0, as in region 1. The level sets indicate the difference between the costs of the 2 different controllers. It
is worth noting that on region 2 where the saturated controller is better in Fig. 12b, it has a higher cost in term of
control (Fig. 13b). In region 3, where the saturated controller performs less in terms of chattering (Fig. 12a), it has
a smaller cost in terms of control (Fig. 13a). Indeed with a large ε, the control input is small when the closed-loop
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(a) Simulation results with 100 regularly spaced values for
the timestep h and 100 logarithmically spaced values for the
saturation parameter ε.
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(b) Detail of Fig. 13a, 300 values for h and 1000 values for ε,
forming a regular grid. Level sets were also added to show
the difference in performance between the implicit discretiza-
tion and the explicit one with saturation. If the difference is
positive, the explicit saturated control is performing better
than the implicit one.

Figure 13: Simulation results of the same perturbed system controlled using sliding mode with a saturation. The
performance index is the sum of the |ūsk+1 − ūsk| for the last 20s.

system is close to the sliding manifold. The cost is then very small, but the disturbance is not attenuated at all.
The implicit controller appeals to us as the best compromise between the input and output chattering. It is also
very easy to use, since it requires no particular tuning with respect to the timestep or the perturbation.

8 Conclusion

In this article several time discretizations of the classical ECB-SMC method are analysed, from the point of view
of their ability to alleviate or suppress the numerical chattering, and to guarantee the finite-time reachability of the
sliding surface. A new discrete-time sliding mode control scheme is also proposed. The analysis is led from analytical
estimations, as well as numerical simulations obtained with the INRIA software package siconos. In particular the
influence of the discretization method of the state-continuous equivalent controller is studied, as well as the one of
the discontinuous part of the input (explicit versus implicit discretizations). The nominal and perturbed cases are
considered. The simulation results indicate that the use of an explicit discretization for the discontinuous part of
the input yields numerical chattering. This is not the case when using an implicit discretization. We also provide
an example where the use of an explicit discretization of ueq makes the closed-loop system diverge, whereas with
the other methods it attains the sliding surface. The issues related to the Lyapunov stability of the discrete-time
sliding variable are also studied, using the monotonicity properties of the underlying discontinuous (set-valued)
controller. Further works will include conducting experimental studies and also improvements in the perturbation
attenuation.
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