118 research outputs found

    A survey of partial differential equations in geometric design

    Get PDF
    YesComputer aided geometric design is an area where the improvement of surface generation techniques is an everlasting demand since faster and more accurate geometric models are required. Traditional methods for generating surfaces were initially mainly based upon interpolation algorithms. Recently, partial differential equations (PDE) were introduced as a valuable tool for geometric modelling since they offer a number of features from which these areas can benefit. This work summarises the uses given to PDE surfaces as a surface generation technique togethe

    Fast character modeling with sketch-based PDE surfaces

    Get PDF
    © 2020, The Author(s). Virtual characters are 3D geometric models of characters. They have a lot of applications in multimedia. In this paper, we propose a new physics-based deformation method and efficient character modelling framework for creation of detailed 3D virtual character models. Our proposed physics-based deformation method uses PDE surfaces. Here PDE is the abbreviation of Partial Differential Equation, and PDE surfaces are defined as sculpting force-driven shape representations of interpolation surfaces. Interpolation surfaces are obtained by interpolating key cross-section profile curves and the sculpting force-driven shape representation uses an analytical solution to a vector-valued partial differential equation involving sculpting forces to quickly obtain deformed shapes. Our proposed character modelling framework consists of global modeling and local modeling. The global modeling is also called model building, which is a process of creating a whole character model quickly with sketch-guided and template-based modeling techniques. The local modeling produces local details efficiently to improve the realism of the created character model with four shape manipulation techniques. The sketch-guided global modeling generates a character model from three different levels of sketched profile curves called primary, secondary and key cross-section curves in three orthographic views. The template-based global modeling obtains a new character model by deforming a template model to match the three different levels of profile curves. Four shape manipulation techniques for local modeling are investigated and integrated into the new modelling framework. They include: partial differential equation-based shape manipulation, generalized elliptic curve-driven shape manipulation, sketch assisted shape manipulation, and template-based shape manipulation. These new local modeling techniques have both global and local shape control functions and are efficient in local shape manipulation. The final character models are represented with a collection of surfaces, which are modeled with two types of geometric entities: generalized elliptic curves (GECs) and partial differential equation-based surfaces. Our experiments indicate that the proposed modeling approach can build detailed and realistic character models easily and quickly

    Modelling of oedemous limbs and venous ulcers using partial differential equations

    Get PDF
    BACKGROUND: Oedema, commonly known as tissue swelling, occurs mainly on the leg and the arm. The condition may be associated with a range of causes such as venous diseases, trauma, infection, joint disease and orthopaedic surgery. Oedema is caused by both lymphatic and chronic venous insufficiency, which leads to pooling of blood and fluid in the extremities. This results in swelling, mild redness and scaling of the skin, all of which can culminate in ulceration. METHODS: We present a method to model a wide variety of geometries of limbs affected by oedema and venous ulcers. The shape modelling is based on the PDE method where a set of boundary curves are extracted from 3D scan data and are utilised as boundary conditions to solve a PDE, which provides the geometry of an affected limb. For this work we utilise a mixture of fourth order and sixth order PDEs, the solutions of which enable us to obtain a good representative shape of the limb and associated ulcers in question. RESULTS: A series of examples are discussed demonstrating the capability of the method to produce good representative shapes of limbs by utilising a series of curves extracted from the scan data. In particular we show how the method could be used to model the shape of an arm and a leg with an associated ulcer. CONCLUSION: We show how PDE based shape modelling techniques can be utilised to generate a variety of limb shapes and associated ulcers by means of a series of curves extracted from scan data. We also discuss how the method could be used to manipulate a generic shape of a limb and an associated wound so that the model could be fine-tuned for a particular patient

    Fast generation of 3D deformable moving surfaces

    Get PDF
    Dynamic surface modeling is an important subject of geometric modeling due to their extensive applications in engineering design, entertainment and medical visualization. Many deformable objects in the real world are dynamic objects as their shapes change over time. Traditional geometric modeling methods are mainly concerned with static problems, therefore unsuitable for the representation of dynamic objects. Apart from the definition of a dynamic modeling problem, another key issue is how to solve the problem. Because of the complexity of the representations, currently the finite element method or finite difference method is usually used. Their major shortcoming is the excessive computational cost, hence not ideal for applications requiring real-time performance. We propose a representation of dynamic surface modeling with a set of fourth order dynamic partial differential equations (PDEs). To solve these dynamic PDEs accurately and efficiently, we also develop an effective resolution method. This method is further extended to achieve local deformation and produce n-sided patches. It is demonstrated that this new method is almost as fast and accurate as the analytical closed form resolution method and much more efficient and accurate than the numerical methods

    Interactive shape design using volumetric implicit PDEs

    Get PDF
    ABSTRACT Solid modeling based on Partial Differential Equations (PDEs) can potentially unify both geometric constraints and functional requirements within a single design framework to model real-world objects via its explicit, direct integration with parametric geometry. In contrast, implicit functions indirectly define geometric objects as the level-set of underlying scalar fields. To maximize the modeling potential of PDEbased methodology, in this paper we tightly couple PDEs with volumetric implicit functions in order to achieve interactive, intuitive shape representation, manipulation, and deformation. In particular, the unified approach can reconstruct the PDE geometry of arbitrary topology from scattered data points or a set of sketch curves. We make use of a fourth-order elliptic PDE to define the volumetric implicit function. The proposed implicit PDE model has the capability to reconstruct a complete solid model from partial information and facilitates the direct manipulation of underlying volumetric datasets via sketch curves, iso-surface sculpting, deformation of arbitrary interior regions, as well as a set of CSG operations inside the working space. The prototype system that we have developed allows designers to interactively sketch the curve outlines of the object, define intensity values and gradient directions, and specify interpolatory points in the 3D working space. The governing implicit PDE treats these constraints as generalized boundary conditions to determine the unknown scalar intensity values over the entire working space. The implicit shape is reconstructed with specified intensity value accordingly and can be deformed using a set of sculpting toolkits. We use the finite-difference discretization and variational interpolating approach with the localized iterative solver for the numerical integration of our PDEs in order to accommodate the diversity of generalized boundary constraints

    Real-time surface manipulation with C1 continuity through simple and efficient physics-based deformations

    Get PDF
    We present a novel but simple physics-based method to interactively manipulate surface shapes of 3D models with C1 continuity in real time. A fourth-order partial differential equation involving a sculpting force originating from elastic bending of thin plates is proposed to define physics-based deformations and achieve C1 continuity at the boundary of deformation regions. In order to obtain real-time physics-based surface manipulation, we construct a mapping relationship between a deformation region in a 3D coordinate space and a unit circle on a 2D parametric plane, formulate corresponding C1 continuous boundary conditions for the unit circle, and obtain a simple analytical solution to describe the physics-based deformation in the unit circle caused by a sculpting force. After that, the obtained physics-based deformation is mapped back to the 3D coordinate space, and added to the original surface to create a new surface shape with C1 continuity at the boundary of the deformation region. We also develop an interactive user interface as a plug-in of the 3D modelling software package Maya to achieve real-time surface manipulation. The effectiveness, easiness, real-time performance, and better realism of our proposed method is demonstrated by testing surface deformations on several 3D models and comparing with other methods and ground-truth deformations

    On the spine of a PDE surface

    Get PDF
    yesThe spine of an object is an entity that can characterise the object¿s topology and describes the object by a lower dimension. It has an intuitive appeal for supporting geometric modelling operations. The aim of this paper is to show how a spine for a PDE surface can be generated. For the purpose of the work presented here an analytic solution form for the chosen PDE is utilised. It is shown that the spine of the PDE surface is then computed as a by-product of this analytic solution. This paper also discusses how the of a PDE surface can be used to manipulate the shape. The solution technique adopted here caters for periodic surfaces with general boundary conditions allowing the possibility of the spine based shape manipulation for a wide variety of free-form PDE surface shapes
    corecore