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ABSTRACT

The discussion in this paper focuses on how boundary
based smooth shape design can be carried out. For this we
treat surface generation as a mathematical boundary-value
problem. In particular, we utilize elliptic Partial Differen-
tial Equations (PDEs) of arbitrary order. Using the method-
ology outlined here a designer can therefore generate the
geometry of shapes satisfying an arbitrary set of boundary
conditions. The boundary conditions for the chosen PDE
can be specified as curves in 3-space defining the profile
geometry of the shape.

We show how a compact analytic solution for the cho-
sen arbitrary order PDE can be formulated enabling com-
plex shapes to be designed and manipulated in real time.
This solution scheme, although analytic, satisfies exactly,
even in the case of general boundary conditions, where the
resulting surface has a closed form representation allow-
ing real time shape manipulation. In order to enable users
to appreciate the powerful shape design and manipulation
capability of the method, we present a set of practical ex-
amples.
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1 Introduction

An important requirement of any three-dimensional (3D)
geometric design system is that it should facilitate easy
and accurate creation of free-form surfaces [22]. Nu-
merous techniques for geometric design have been pro-
posed. These include implicit surfaces [8], the B-rep
based on polygonal meshes [15], spline based modeling
schemes such as Bezier and Non-Uniform Rational B-
Splines (NURBS) [14] and subdivision techniques [9]. In
particular, both spline and subdivision based techniques
tend to be very popular and can be found in most 3D mod-
eling software packages.

In contrast to the above geometric design techniques,
the method discussed here uses solutions to elliptic Par-
tial Differential Equations (PDEs). Although tradition-
ally elliptic PDEs have been mainly utilized in solving
engineering related problems such as electromagnetism,
stress/strain in physical structures and fluid flows, nowa-
days PDE based techniques are increasingly becoming
popular in many applications of geometric design. These

include computer simulation of natural phenomena and an-
imation [13], variational fairing [18], and image inpainting
[1].

The work discussed in this paper is based around
the pioneering work of Bloor and Wilson on the so called
PDE method [2]. The particular approach we use adopts
a boundary-value approach whereby a surface is character-
ized by defining a number of space curves (with associated
derivative information) so as to form the surface’s edges,
and then the surface is generated between these curves by
solving a PDE. The chosen PDE is usually lower order such
as the Biharmonic equation.

The PDE method for geometric design is originally
developed by Bloor and Wilson as a mechanism of blend
shape generation [2]. Since this initial developments, the
applications of the method have broadened (e.g. [16, 12,
10, 11, 19]). Thus, apart from the method being utilized in
blend and free form shape design, it has been successfully
utilized for automatic design for function in various design
scenarios. This is achieved by means of incorporating en-
gineering design criteria such as functional constraints into
the geometric design of PDE surfaces. Examples of au-
tomatic design using the PDE method include automatic
design of ship hulls [17], propeller blades [7], engineer-
ing components [5, 17] and thin-walled structures [21, 20].
Furthermore, several numerical algorithms have also been
developed to approximate PDE surfaces using standard B-
splines [4, 16]. This work was intended to demonstrate that
PDE surfaces are virtually compatible with other mature
and well established spline-based techniques for surface
design and hence PDE surfaces can be readily incorporated
into existing commercial design systems.

Recent contributions of Du and Qin and others on
the PDE method is also notable. In particular, these re-
cent work include the development of interactive tools for
sculpting PDE shapes by incorporating physics-based mod-
eling techniques [12, 10]. Furthermore, such recent work
also includes the integration of implicit functions with
PDEs in order to demonstrate that solid modeling based on
the PDE method can potentially unify both geometric con-
straints and functional requirements within a single design
framework [12].

This paper presents a methodology which describes
how the original Biharmonic based PDE model of Bloor
and Wilson can be extended. In particular, we show how
the governing partial differential equation is generalized to



arbitrary order allowing complex shapes to be designed as
single patch PDE surfaces. Using this technique a designer
has the flexibility of creating and manipulating the geom-
etry of a shape that satisfies an arbitrary set of boundary
conditions.

The paper is organized as follows. Section (2) dis-
cusses the PDE method within the context of the Bihar-
monic equation based PDE model of Bloor and Wilson.
Section (3) then presents the methodology by which the
PDE method can be generalized to arbitrary order PDEs.
This section also presents an analytic solution technique
that can be utilized to create PDE surfaces of arbitrary or-
der very efficiently in real time. In Section (4) we present
a set of examples to demonstrate how the method of gen-
eralized PDE surfaces of arbitrary order can be utilized to
generate complex geometry.

2 PDE Surfaces

A PDE surface is a parametric surface patch X(u,v), de-
fined as a function of two parameters u and v on a finite
domain Q C R?2, by specifying boundary data around the
edge region of 912. Typically the boundary data are speci-
fied in the form of X (u, v) and a number of its derivatives
on 0f). Here one should note that the coordinates of a point
u and v is mapped from that point in € to a point in the
physical space. To satisfy these requirements the surface
X (u,v) is regarded as a solution of a PDE of the form,

Dy X (u,v) = F(u,v), M

where D", X (u,v) is a partial differential operator of or-
der m in the independent variables u and v, while F'(u,v)
is vector valued function of u and v. Since boundary-
value problems are of concern here, it is natural to choose
D, X (u, ) to be elliptic.

The most widely used PDE is based on the Bihar-
monic equation namely,

o? 9% \”
(ﬁ + a2w> X (u,v) = 0. 2)

Here the boundary conditions on the function X (u,v) and
its normal derivatives % are imposed at the edges of the

surface patch.

With this formulation one can see that the elliptic
partial differential operator in Equation (2) represents a
smoothing process in which the value of the function at
any point on the surface is, in some sense, a weighted av-
erage of the surrounding values. In this way a surface is
obtained as a smooth transition between the chosen set of
boundary conditions. Note that the parameter a is a special
design parameter which controls the relative smoothing of
the surface in the v and v directions [3].

3 Generalized PDEs of Arbitrary Order

As described above, we assume that the surface we are
dealing with is described by a parametric function X (u, v).
In order to enable us to utilise the analytic solution method
described later in the paper we further assume that para-
metric region ) to be bounded by {u,v : 0 < u < 1;0 <
v < 27}, so that the resulting surface patch is periodic.

With the above formulations we now seek a general-
ization to Equation (2) such that the arbitrary elliptic PDE
satisfies a given number of 2/V boundary conditions. Here
N is an arbitrary integer such that N > 2. The general 2N
boundary conditions can be written in the form,

X(O, U) = f (U), 3)
X(ui,v) = gi(v),1=2...2N —1, “)
X(1,v) = fon(v), )

where f; (v) in Equation (3) and f2 5 (v) in Equation (5) are
function boundary conditions specified at u = O andu = 1
respectively. The conditions X (u;,v) = g;(v) in Equation
(4) can take the form either

X (uj,v) = fi(v) for0 <u; <1,i=2...2N —1, (6)

or
X 9?°X 093X 92N—2x
Ou’ Ou?’ Oud’ 7 OQu2N—2
for0<uw; <1,i=2...2N — 1. %)

In simpler terms the above boundary condition im-
plies that for a PDE surface patch of order 2N we can spec-
ify two function boundary conditions, as given in Equations
(3) and (5), that should be satisfied at the edges (at u = 0
and u = 1) of the surface patch, and a number of function
or derivative conditions, as given in Equation (4), amount-
ing to 2N — 2 boundary conditions which the PDE should
also satisfy.

With the above formulation we take standard Laplace
operator, V = 0, as a base PDE and generalize it to the
Nth order such that,

52 2 \"
<ﬁ + a2w> X(u,v) =0. (8)

As one can easily observe the above equation is a general-
ization of the usual 4th order elliptic PDE where the corre-
sponding Biharmonic equation can be derived by choosing
N to be 2.

3.1 Analytic Solution of PDEs of Arbitrary
Order

Given a set of 2N boundary conditions as defined in Equa-
tions (3), (4) and (5), we take the (u,v) parameter space
Q to be the region {u,v : 0 < u < 1;0 < v < 27},
Thus, we assume that all the boundary conditions are peri-
odic in v in the sense f;(0) = f;(27), fo5(0) = fon(27)



and g;(0) = g;(27). We further assume that all the bound-
ary conditions are continuous functions within the domain
of ().

With the above assumptions on the boundary condi-
tions, we can utilize the method of separation of variables
to write the analytic solution of Equation (8) as,

X(u,v Z

where

) cos(nv)+ By, (u) sin(nwv)],

C))

Ay = agy +ag1u +agpu® + ...+ a(2N—1)U2N71, (10)

An — anleanu + an2ueanu + anSefanu + an4ue7anu
—2 anu —1_anu
+a,onN- 2)u e

+apanuN e (11)

+...+ an(2N,3)u

N—-2_—anu
+a,eN-_1)U e

Bn — bnleanu + bnzueanu +b 367anu + bn4ue7anu
o+ bn(2N73)u —2 anu + b (2N72)uNfleanu

+bn(2N71)uN—26—anu + anNuN—le—anu’ (12)

where agp + ap1, g2, ..., A2N—_1, Anp1 + Ap2, Ap3, Ang,
-> Ap(2N—3)> Ap(2N—2)> An(2N—1)> An2N and by + bpa,
b3, bra, ..., bpn-_3). bran-2), baen-1), bnan are
vector-valued constants, whose values are determined by
the imposed boundary conditions at v ; where 0 < u; < 1.
Since the chosen boundary conditions are all contin-
uous functions which are also periodic in v we can write
down their Fourier series representation as,

fi(v) = C) + Z[C}L cos(nv) + Sl sin(nwv)],  (13)

n=1

= Ci + Z ¢ cos(nv)

Si sm(nv)], i=2...2N -1, (14)

fon (v) = C3N + > [C2N cos(nv) + 82N sin(nw)] (15)

n=1

Let us assume for the moment that the Fourier sums in
the Expressions (13), (14) and (15) have finite M/ modes.
Then the vector constants C§, Cj fori = 2...2N — 1,
and C2V can be obtained by directly comparing them with
the constants agg, ag1, ago, ..., apN-_1) given in Equation
(10). Now for each of the Fourier modes n = {1,..., M}
we can write linear systems,

1
anl Cn

= A(a,n) (16)

2N
asN Cn

and
= B(a,n) (17)
SQN

b1 S,

ban

where A(a,n) and B(a,n) are 2N x 2N matrices, whose
coefficients can be obtained by solving the linear systems
(16) and (17) subject to the Fourier coefficients correspond-
ing to the 2N boundary conditions.

The above solution scheme is based on the fact that
the boundary conditions can be expressed as a finite Fourier
series. However, in practice this cannot be assumed. We,
therefore, adopt a generalized version of the spectral ap-
proximation to the Biharmonic PDE given in [6] as de-
scribed below.

Although in practical terms we cannot assume that a
given boundary condition can be expressed accurately us-
ing a finite Fourier series, it is reasonable to assume that
the boundary conditions can be written as,

M
fi(v) = Cy + Z[C}L cos(nv) + S} sin(nv)]
n=1

+Ri(v), (18)

C’+Z

i cos(nv) + S sin(nv)]

+Ri( ), i=2...2N-1, (19
M
fon (v) = CEV + Z[CiN cos(nv) + SN sin(nv)]
n=1

+Ron(v). (20)

Thus, the basic idea here is to formulate each of the
boundary conditions in terms of the sum of a finite Fourier
series containing A/ modes and a ‘remainder’ term R ;(v),
t = 1...2N which contains the higher order Fourier
modes. In [6], for the case of Biharmonic equation, it is
shown that the higher order Fourier modes make negligi-
ble contributions to the interior of the PDE patch and the
same applies for the general case of N ** order Biharmonic
PDE. Hence it is reasonable to truncate the Fourier series
at some finite M, (typically M = 6 is adequate), and rep-
resent the contribution of the high frequency modes to the
surface with a remainder function R(u,v). The format of
this remainder function is somewhat arbitrary and for this
work it is taken to be of the form,

—wu —wu

R(u,v) =rie*" + rgue“’“ +r3e + r4ue
+...+I‘(2N73) N-— 2 +I‘(2N 2)'U, lewu
tron-nu’ e fropuN e, (21)

where ry, rs ...T(aN_1), TaN are vector-valued constants
which depend on v.



Now by taking )~((u, v) to the approximate solution,

M
X(u,v) = Ag(u)+ Y _[An(u) cos(nv)+ By (u) sin(nv)],
n=1
(22)
satisfying the boundary conditons of the finite Fourier se-
ries we define difference functions such that,

df,(v) = df (v) — X(0,0), (23)

dg;(v) = gi(v) — X(us,v),
i=2...2N—1, (24)

dfyn(v) = df (v) — X(1,v). (25)

By choosing w in the Expression (21) to be an, the
vector constants ry...rsy can be computed by means
of direct comparison with the difference terms df(v),
df,n(v) and dg;(v), fori = 2...2N — 1 in Equations
(23) - (29).

Finally the approximate analytic solution of the PDE
is given as,

X(u,v) = X(u,v) + R(u, v). (26)

It is important to note that the choice of the number
of Fourier terms M will affect how well X (u, v) approxi-
mates the solutions of the general N*" order Biharmonic
PDE. Although this may be the case, due to the choice
of difference functions utilized here, i.e. by computing
the difference between the original boundary conditions
and the corresponding finite Fourier series, as described in
Equations (23) - (25) the approximate solution satisfies the
chosen set of boundary conditions exactly (to within the
machine accuracy).

The above solution method can be viewed as a spec-
tral method for the solutions of arbitrary order linear ellip-
tic PDEs where the expansion functions are based upon the
Fourier series . Thus, this solution scheme can be applied in
the case of general complex periodic boundary conditions
which can be seen to be suitable enough for generating a
wide range of complex geometries.

4 Examples of Higher Order PDE Surfaces

In order to demonstrate the capability of complex surface
generation using higher order equations we discuss several
examples. As one can clearly see, there are several ways by
which one could specify the boundary conditions for the
N*" order Biharmonic PDE. One way to do is to specify
all the boundary conditions in terms of function boundary
conditions whereby the resulting surface patch will contain
all the conditions. Another way is to specify two function

Figure 1. A typical higher order PDE patch generated as a
solution to the 8" order equation.

boundary conditions corresponding to the edges of the sur-
face patch and then specify a number of derivative condi-
tions. Furthermore, a combination of function and deriva-
tive boundary conditions within the interior of the surface
path is also possible.

Figure (1) shows a typical higher order PDE surface
patch of order 8, whereby all the boundary conditions for
the PDE are chosen to be function boundary conditions de-
fined as curves in 3-space. These curves are all free-hand
curves generated as cubic B-Splines within an interactive
graphical environment. The surface is then generated and
rendered in real time where the corresponding boundary
curves are also shown on the surface.

Figure 2 shows the familiar shape of the Klein bot-
tle generated as solution to the 40" order PDE. For the
boundary conditions, we have taken cross section curves of
the Klein bottle using its analytic representation as given
below.

acos(u)(1 + sin(u)) + vy cos(u) cos(v)

. 0<u<m
=Y a cos(u)(1 + sin(u)) 4+ v cos(v + )
Tm<u<2r
27
| Bsin(u) + ysin(u)cos(v) 0<u<m
y—{ Bsin(u) 7m<u<2r (28)
z = ysin(v) (29)

Thus, using the above analytic form, we utilized 40
cross sectional ellipses along v with 0 < v < 27, @ = 6.0,
B =16.0and v = 4(1 — cos(u)/2).

Figure (3)(b) shows a fluid membrane shape such
as that corresponding to a red blood cell generated as an
8th order PDE with function and derivative conditions as
shown in Figure (3)(a). The function boundary conditions
in this case are p1, p2, p3 and p4 where p; and p4 are taken
to be points correspond to the edges of the surface patch.
The other boundary conditions are taken to be the first and



Figure 2. The Klein bottle PDE surface generated as solu-
tion to 40" order PDE.
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Figure 3. A membrane shape generated as solution to
higher order PDE with a number of position and derivative
boundary conditions. (a) Function and derivative boundary
curves (b) The corresponding surface patch.

second derivative conditions at the u to be positions corre-
sponding to the position curves p» and p3 such that,

0X
D0 lp2= [d1(v) — p2(v)] , (30
0X
Ju lps= [P3(v) — d2(v)] B, (1)
and 9%
el lpz= [P2(v) —2d1(v) + t1(v)]y,  (32)
02X
Ou2 |P3: [p3(’l}) - QdZ(U) + tg(U)] n, (33)

where a, 3, v and 7 are constants.

As the format of the Equations (30) - (33), as shown
in Figure (3)(a), suggests the definitions of the derivative
boundary conditions resemble that of a finite-difference ap-
proximation scheme. It is important to note that the surface
patch does not necessarily pass through the curves that de-
fine the derivative boundary conditions.

Figure 4. Generic shape of a dolphin created interactively.

Finally as a practical surface design example we
present the generic shape of a dolphin shown in Figure (4)
created interactively using 5 surface patches. ie. a 14"
order patch for the main body of the dolphin, a 10" or-
der patch for the tail flukes and 3 Biharmonic patches for
the lateral fins and the dorsal fin. In all cases the boundary
curves are taken to be function boundary conditions thus
enabling the curves to pass through the surface patches.
The curves themselves are cubic splines which were cre-
ated and manipulated within the interactive graphical en-
vironment. The curves which form the body attachment
for the lateral fins and the dorsal fin respectively, lie on the
main body surface where the portions have been trimmed
off from the main body surface. These trimming processes
were performed via the use of the (u,v) parameter space
using the techniques outlined in [19].

5 Conclusions

The discussions of paper this have been concerned with
the generalization of the PDE based approach for surface
generation. The governing PDE is generalized to arbitrary
order where the equations are solved analytically. This so-
lution scheme even in the case of general boundary con-
ditions satisfies the boundary conditions exactly where the
resulting surface has an analytic representation.

As one would observe, for all the examples we have
discussed in this paper we have used even number of
boundary conditions. This is essential if we are to utilize
the analytic solution form as presented in the paper. How-
ever, this is not necessarily a restriction on the type of ge-
ometry the method is capable of generating. In fact if we
are presented with odd number of boundary conditions we
could easily create a fictitious position boundary condition
to make the number even and utilize the analytic solution
where, upon solving the even order equation, the undesired
potion can be removed.

There are many possible extensions of this ini-
tial work. For example, much work has been done in
the past using lower order PDEs on shape parameteri-
zation of generic designs where such parameterizations
are ultimately utilized for automatic design optimizations.
A shape parameterization based on higher order PDEs
presents new avenues where it would be possible to param-
eterize complex geometry very efficiently and hence enable
the possibility for automatic design optimization of very re-



alistic design scenarios.

It is also noteworthy that the method discussed
here has applications in other areas of computer graphics
and computer-aided geometric design, e.g., generation of
higher order blend surfaces, geometric data interpolation
as well smooth surface representations.
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