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ABSTRACT
Solid modeling based on Partial Differential Equations (PDEs)
can potentially unify both geometric constraints and func-
tional requirements within a single design framework to model
real-world objects via its explicit, direct integration with
parametric geometry. In contrast, implicit functions indi-
rectly define geometric objects as the level-set of underlying
scalar fields. To maximize the modeling potential of PDE-
based methodology, in this paper we tightly couple PDEs
with volumetric implicit functions in order to achieve in-
teractive, intuitive shape representation, manipulation, and
deformation. In particular, the unified approach can recon-
struct the PDE geometry of arbitrary topology from scat-
tered data points or a set of sketch curves. We make use of
a fourth-order elliptic PDE to define the volumetric implicit
function. The proposed implicit PDE model has the ca-
pability to reconstruct a complete solid model from partial
information and facilitates the direct manipulation of un-
derlying volumetric datasets via sketch curves, iso-surface
sculpting, deformation of arbitrary interior regions, as well
as a set of CSG operations inside the working space. The
prototype system that we have developed allows designers to
interactively sketch the curve outlines of the object, define
intensity values and gradient directions, and specify inter-
polatory points in the 3D working space. The governing
implicit PDE treats these constraints as generalized bound-
ary conditions to determine the unknown scalar intensity
values over the entire working space. The implicit shape is
reconstructed with specified intensity value accordingly and
can be deformed using a set of sculpting toolkits. We use the
finite-difference discretization and variational interpolating
approach with the localized iterative solver for the numer-
ical integration of our PDEs in order to accommodate the
diversity of generalized boundary constraints.
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1. INTRODUCTION AND MOTIVATION
PDE techniques are very popular in many applications

of graphics, animation, and visualization, such as nature
phenomena simulation and animation [17], variational fair-
ing[33], image inpainting[2], etc. They also provide an alter-
native way for geometric design [5, 6, 7, 43]. Different from
the traditional geometric representations, the PDE methods
model graphical objects as the solution of certain elliptic
PDEs with boundary constraints inside the parametric do-
main. Although the parametric PDE model simplifies the
geometric design process by using only boundary conditions
to recover the whole interior information and offers high-
order continuity as well as energy minimization properties,
like traditional parametric approaches, it’s extremely diffi-
cult to model arbitrary shapes of general topology, because
the PDE is defined over regular parametric domain.
In contrast, instead of constructing the mapping between

parametric and physical spaces, implicit functions use the
level-set of certain field functions in the physical domain di-
rectly to design, model, and interact with 3D objects. They
offer a fundamentally different yet convenient and natural
design paradigm (in comparison with parametric represen-
tations) in visual computing fields such as graphics, anima-
tion, and geometric design. This is because of their unique
properties such as arbitrary topology, collision detection,
free of parametric correspondence, etc. Applications of im-
plicit functions include shape blending, surface reconstruc-
tion from scattered data points, shape transformation, and
interactive modeling [3, 4, 8, 9, 10, 12, 13, 18, 21, 22, 26,
27, 29, 31, 34, 37, 38, 41, 42, 45].
In essence, implicit functions offer several modeling ad-

vantages such as flexible topology, simple data structure,
efficient storage, volumetric data information, unbounded
geometry, etc. Nonetheless, most of implicit functions focus
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on surface models. The previous techniques for interactive
implicit volume sculpting have certain modeling limitations.
Recently, Cutler et.al.[11] presented a procedural framework
for specifying layered solid models and applying a series of
simulation operations (serving as sculpting tools described
by a script language) to complex models. Bærentzen and
Christensen [1] developed an interactive volume sculpting
system using level-set method. Museth et.al.[28] proposed
level-set-based editors for CSG operations, blending, em-
bossing, and smoothing for implicit surfaces. However, these
tools are associated with the specification of speed functions
for the evolving level-set, which are non-intuitive for com-
mon users. Turk and O’Brien [39] presented interactive im-
plicit surface sculpting via particles, but each operation re-
quires reformatting and recalculation of the entire system,
which is difficult to model large datasets. In general, the
modeling potential of implicit functions has not been fully
explored yet and there is a lack of systematic toolkits to
design, reconstruct, and sculpt implicit models.
To maximize the modeling capabilities of PDE techniques

and implicit functions in geometric and visual computing
areas, we propose a PDE-based modeling paradigm which
integrates the PDE techniques with implicit functions into
one single framework for interactive shape design and ma-
nipulation on PDE-based volumetric implicit models. We
develop an implicit modeling system governed by a fourth-
order elliptic PDE of scalar intensity fields. In particular,
our prototype system can reconstruct implicit objects and
the embedding implicit 3D working space as the solution
of PDE by specifying a set of curve outlines or scattered
data points of certain intensity values as general boundary
constraints with the assistance of variational interpolating
approaches. Because the curves and datasets are not re-
quired to be closed, open surfaces can be modeled within
our system. Moreover, it offers a set of sculpting toolkits to
manipulate implicit objects, such as interactively modifying
the geometric shape, intensity value, and gradient direction
of selected sketch curves, directly changing intensity values
of selected regions in the working space, as well as deform-
ing iso-contours at specified intensity values of the objects.
Because the working space is governed by the PDE, any
missing information inside the space can be recovered by
the PDE according to the given constraints. Our system
is able to recover damaged datasets using partial informa-
tion, smooth the intensity distribution of volume data, and
smoothly blend objects inside the working space. In gen-
eral, our system allows intensity manipulation anywhere in
the implicit working space to model the implicit objects at
any iso-value either directly or indirectly, which offers users
both local and global control of the implicit PDE model.
This implicit PDE approach offers advantages of both

parametric PDE techniques and implicit functions. First,
the behavior of the implicit PDE model is governed by dif-
ferential equations. Solving the PDEs results in both bound-
ary and interior information simultaneously, which offers
an alternative way to model implicit objects by using only
boundary information. This property makes PDE meth-
ods extremely suitable for shape blending process. Second,
many natural physical processes are characterized by dif-
ferential equations in principle [19, 20, 35]. Hence, PDE
models are natural and close to the real world. They are
potentially ideal candidates for design, simulation, and anal-
ysis tasks. Furthermore, geometric objects with high-order

continuity requirements can be readily defined through high-
order PDEs because of their differential properties. Third,
smooth objects that minimize certain energy functionals are
the solutions of differential equations from the variational
analysis point of view, so optimization techniques can be
unified with PDE models. In addition, because the implicit
PDE is formulated on a scalar intensity field and defines
objects by collecting points of certain iso-values, it is capa-
ble of designing arbitrary topological shapes and recovering
the full information from partial input, which reduces the
burden of specifying the large quantity of constraints for
complete datasets. It offers users a natural way to design ob-
jects easily with general non-isoparametric arbitrary curve
outlines, reconstruct objects from scattered data points, and
recover the damaged datasets.
The remainder of the paper is structured as follows. Sec-

tion 2 reviews the related work of PDE techniques and im-
plicit models. We detail the PDE formulation and present
our integrated approach for implicit PDE objects in Sec-
tion 3. We introduce possible applications of our implicit
PDE model by enforcing different types of boundary and
additional constraints in Section 4. Section 5 discusses tech-
niques of directly manipulating implicit PDE objects with
constraints to construct more flexible topological shapes,
such as sketch sculpting and local region manipulations. We
outline the system implementation in Section 6. Section 7
concludes the paper.

2. PRIOR WORK
Different from traditional free-form spline-based model-

ing techniques, Bloor and Wilson [5] introduced a method
that defines a smooth surface as a solution of elliptic PDEs.
Since its initial application on surface blending, PDE ap-
proach has broadened its uses in free-form surface design,
solid modeling, and interactive surface editing [6, 7, 40] dur-
ing the past decade. In principle, the PDE-based method
has the advantage that most of the information defining an
object comes from its boundaries. This permits an object to
be generated and controlled by a very few parameters such
as boundary-value conditions and global coefficients asso-
ciated with an elliptic PDE. This PDE technique was then
used for modeling parametric surfaces and solids with global
geometric features. To obtain interactive sculpting and lo-
cal control, we [14, 15] proposed an integrated model which
combined the PDE surfaces and the physics-based modeling
techniques to offer users direct manipulation for the PDE
surfaces with generalized boundary constraints and user-
specified features. We [16] extended the PDE techniques
coverage from surfaces to solids in order to provide users
a set of direct editing toolkits to model the real-world ob-
jects with interior material distribution. Zhang and You
[43] investigated three different orders, i.e., second, mixed,
and fourth order of PDEs as surface representation tech-
niques and demonstrated the use and effectiveness of the
PDE method for free-form surface design.
However, because the aforementioned PDE methods de-

fine objects over the regular parametric domain, they (like
other parametric representation techniques) have limitations
in handling arbitrary topological shapes, which can be easily
achieved by implicit functions.
Implicit functions offer a different way for shape mod-

eling by using certain scalar field functions to define geo-
metric entities. In the past several years, implicit functions
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have been widely developed as a powerful design and ma-
nipulation tool for graphical models. In 1994, Witkin and
Heckbert [42] introduced an approach using particles to
sample and control implicit surfaces. Ferley et.al. [18]
presented a sculpture metaphor for rapid shape prototyp-
ing. These techniques only provide interactive and prac-
tical sculpting tools for implicit surfaces. As for implicit
solids, Savchenko et.al. [32] introduced a novel approach
to the reconstruction of geometric models from given point
sets using volume splines. Raviv and Elber [31] presented
an interactive sculpting technique that uses the zero level
set of the scalar, tensor-product, uniform trivariate B-spline
functions to represent 3D objects. The trivariate functions
have a control volume that consists of scalar control coeffi-
cients. Users can indirectly sculpt the object by modifying
relevant scalar control coefficients of the trivariate B-spline
functions in different levels of details. Hua and Qin [23, 24]
developed interactive solid sculpting toolkits with haptics on
implicit B-spline solids defined through the use of B-spline
control coefficients over the intensity field. However, the
control of B-spline coefficients is less intuitive to ordinary
users in general. Implicit functions can also be used for
shape reconstruction and 3D morphing process. Turk and
O’Brien [38] used variational implicit functions to achieve
shape morphing and surface reconstruction. They employed
the Radial Basis Function (RBF) method to construct an
implicit function which interpolates the given dataset and
minimizes the thin-plate energy. Yet since the RBF method
is a global variational interpolating approach, any changes
in the dataset will cause recalculation of the entire system.
It’s time-consuming for direct manipulation and not appli-
cable for local sculpting of complex implicit surfaces. Level-
set method is another popular technique to model implicit
surfaces. Zhao et.al. [45] proposed a weighted minimal sur-
face model based on variational formulations and PDE tech-
niques to construct a surface from scattered data. They used
the level-set method as a numerical technique to evolve the
implicit surface continuously following the gradient descent
of the energy functional for the final reconstruction. Their
level-set model is governed by a time evolution PDE with
velocity at the level-sets given by the motion equation of the
original surface. The level-set method is based on a continu-
ous formulation using PDEs and deforms an implicit surface
according to various equations of motion depending on ge-
ometry, external forces, or certain energy minimization. It
can easily handle topological changes and reduce noises in
the dataset. The level-set method mainly focused on im-
plicit objects reconstructed from scattered datasets. Prob-
lems for interpolating curve sketches, especially open curve
sketches have not been addressed. The shape deformation
using the level-set method is often obtained by manipulat-
ing the speed functions in the level-set formulation [1, 28],
which is non-intuitive for general users.
Despite the modeling advantages of implicit functions,

there is a lack of systemic modeling toolkits for design and
direct manipulation of implicit surfaces and solids in gen-
eral. We integrate the implicit functions with the paramet-
ric PDE to offer users modeling advantages of both types
of techniques. Instead of time evolution PDEs used in the
level-set method, we employ static elliptic PDEs for bound-
ary value problems. In particular, we introduce a novel
technique which defines the volumetric implicit objects as
the solution of the fourth-order elliptic PDE of scalar inten-

sity fields under generalized boundary constraints, includ-
ing sketch curves, scattered data points, as well as volu-
metric datasets. The constraints may be associated by in-
tensity values different from each other, which offers more
degrees of freedom than the previous implicit techniques.
This method can be used for geometric shape design, object
reconstruction, damaged data recovery, and shape blending.
The implicit PDE objects can be manipulated by modifying
the initial constraints or directly changing intensity values
in the interior of the volumetric space. Using the implicit
PDE, not only the objects, but also the entire working space
can be recovered by the given information. Our system does
not require the constraints to be closed datasets, which pro-
vides modeling potentials for open surfaces. To visualize the
scalar intensity field, we can either use the Marching Cube
method [25] which calculates the triangulated iso-surface at
selected intensity value on discretized sampling grids, or out-
put the volume data to other volume rendering systems such
as Pov-Ray and Vol-Vis systems.

3. FORMULATING IMPLICIT PDE
This section formulates the fourth-order elliptic PDE of

scalar intensity fields in 3D, and outlines major properties of
the unified principle of PDE techniques. We also propose the
constrained implicit PDE for direct manipulation and the
numerical techniques discretizing and solving the equations.

3.1 Implicit Elliptic PDE
The implicit PDE formulation employed in this paper is

founded upon the parametric PDE solid models[16]. In or-
der to take advantage of the interactive feature associated
with the parametric PDE modeling techniques, we use ellip-
tic PDEs to define scalar intensity field for modeling implicit
objects. Because higher-order PDEs can provide higher-
order continuity for the scalar intensity value distribution,
we use the fourth order elliptic PDE to model the scalar
field to obtain smooth results with tangential continuity, es-
pecially when dealing with shape blending and damage data
recovery in which most of information are specified as con-
straints. In particular, we formulate the unknown function
as the intensity field function d(x, y, z) defined in the physi-
cal space of x, y, and z. The corresponding implicit PDE is
formulated as follows:

(a2 ∂2

∂x2
+ b2 ∂2

∂y2
+ c2 ∂2

∂z2
)2d(x, y, z) = 0, (1)

where x, y, and z are coordinate variables of 3D physical
space varying from 0 to 1, respectively, which form a unit
cube as the working space; a, b, and c are arbitrary blending
coefficient functions of x, y, z defining material properties of
the implicit space, which are initially defined as constants
throughout the entire working space.
Because a(x, y, z), b(x, y, z), and c(x, y, z) are allowed to

vary across d(x, y, z), i.e., different locations in the physi-
cal domain may have different smoothing coefficient values,
local control on implicit PDE objects can be easily achieved.
To obtain direct and local manipulation on the implicit

PDE objects, we solve (1) using numerical methods based on
finite-difference approximations of the PDE, which require
at least six boundary conditions at x = 0, x = 1, y = 0, y =
1, z = 0, z = 1 defining the intensity values at three bound-
ary surface pairs of the 3D physical working space in order
to derive a unique solution. However, in most applications,
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there are no such boundary conditions available for model-
ing implicit objects, especially in the case of using implicit
functions for shape reconstruction, where the constraints are
usually defined by certain contouring sketch curves or scat-
tered points assigned with specified intensity values inside
the 3D working space. In such cases, the intensity distribu-
tions on the boundaries are unknown. Thus, such problems
cannot be solved by traditional finite-difference methods di-
rectly. We can solve this type of problems by first finding an
initial guess of the volumetric working space, then approx-
imating the solution of the implicit PDE using the guessed
boundary values with the given constraints. After that, we
can enforce direct manipulations inside the working space
by adding additional constraints to the PDE. Variational
interpolating approaches are good candidates for shape re-
construction from scattered points, such as the RBF method
[26, 38] which creates a 3D implicit function to give an ap-
proximation interpolating the given constraints by minimiz-
ing certain energy functional. We employ the RBF method
to compute the initial guess of the implicit PDE objects.
We can also calculate the intensity values on sampled grids
using their distance to the constraints, because the implicit
objects can be defined by distance functions. The algorithm
we use to compute the distance field is the fast-tagging ap-
proach proposed by [44].

3.2 Radial Basis Function
The RBF approach is commonly used for scattered data

interpolation, which is to generate a smooth surface that
passes through a given set of (unorganized) data points.
Scattered data interpolation sometimes can also be addressed
using variational analysis where the desired solution is a
function, f(�x), that will minimize certain energy function-
als. In principle, the energy functional measures the qual-
ity of interpolation subject to the interpolatory constraints
f(�ci) = hi. It can be solved by a weighted sum of certain
radial basis functions (note that, we use φ(�x) = |�x|3 in this
paper). Then the interpolation function can be formulated
as:

f(�x) =
nX

i=1

wiφ(�x − �ci) + P (�x), (2)

where �ci’s are the coordinate vectors of the constraints, the
wi’s are the weights, and P (�x) is a polynomial only consist-
ing of the linear and constant portions of f . According to
the properties of the appropriate radial basis functions, the
interpolation function minimizes the thin-plate energy while
satisfying the data interpolation requirement. By applying
the constraints to (2), we can obtain a linear equation sys-
tem whose unknowns are the weights and coefficients of the
polynomial P . This system can be solved using standard
solvers of linear equations.
However, the RBF method requires gradient information

of the datasets, and space complexity of the equation system
depends on the number of constraints, so it’s not suitable
for reconstruction of arbitrary scattered datasets and inter-
active sculpting of large number of constraints. Because our
goal here is simply making an initial guess for our implicit
PDE shape, fast-tagging algorithm to approximate distance
functions gives satisfactory results for such input.

3.3 Numerical Simulation
In order to easily apply additional constraints for direct

manipulation of the implicit objects, we resort to the nu-
merical techniques based on the finite-difference approxima-
tion and iterative method for linear equations to solve the
implicit PDE with predefined boundary values or approxi-
mated initial guess from sketch curves/scattered points and
arrive at an approximated solution with user-specified error
tolerances. Numerical algorithms also facilitate the mate-
rial modeling of anisotropic distribution. A multi-grid-like
iterative solver is used to improve the system performance.
The finite-difference method divides the working space

into discrete grids along x, y, z directions and transforms a
continuous PDE into a set of simultaneous algebraic equa-
tions by sampling the partial derivatives in differential equa-
tions for each grid point with their discretized approxima-
tions. The algebraic equation system can be solved numer-
ically either through a direct procedure or an iterative pro-
cess for an approximated solution of the continuous PDE.

Figure 1: The point discretization of an implicit
function.

Based on Taylor’s expansion, the derivatives of a univari-
ate function can be approximated using the central-difference
approximation f ′(x) = (f(x + h) − f(x − h))/2h, f ′′(x) =
[f(x+h)−2f(x)+f(x−h)]/h2, where h denotes the spatial
step. This can be generalized to all partial derivatives on
trivariate implicit geometry, by dividing the x, y, z domain
into l, m, and n discretized grids respectively. We repre-
sent the function d(x, y, z) by its values at the discrete set
of points (xi = i∆x, yj = j∆y, zk = k∆z), i = 0, 1, ..., l − 1,
j = 0, 1, ..., m − 1, and k = 0, 1, ..., n − 1. ∆x,∆y,∆z are
the grid spacing along x, y, z directions. We write di,j,k for
d(xi, yj , zk) and {i, j, k} for grid point (xi, yj , zk) for sake of
simplicity (Fig. 1). We use the finite-difference representa-

tion of fourth order partial derivatives
∂4di,j,k

∂x4 and
∂4di,j,k

∂x2∂y2 at

{i, j, k} as examples:

∂4di,j,k

∂x4
=

di−2,j,k + di+2,j,k − 4di−1,j,k − 4di+1,j,k + 6di,j,k

(∆x)4
,

∂4di,j,k

∂x2∂y2
=

di−1,j−1,k+di−1,j+1,k+di+1,j−1,k+di+1,j+1,k

(∆x)2(∆y)2
+

−2di−1,j,k−2di+1,j,k−2di,j−1,k−2di,j+1,k+4di,j,k

(∆x)2(∆y)2

.

Substituting by the finite-difference representation at grid
points, (1) can be rewritten as:

AD = b, (3)

where A represents the discretized differential operator in
(l×m×n)×(l×m×n) matrix form, where each row in A is
corresponding to the difference equation at a grid point. A is
also controlled by the blending functions a(x, y, z), b(x, y, z),
and c(x, y, z). D collects the unknown intensity values at the
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grid points, and b is defined by the value of constraints:

A =
�
A(0,0,0),A(0,0,1), · · · ,A(l−1,m−1,n−1)

��
,

A(i,j,k) =
�
A(i,j,k),(0,0,0), · · · , A(i,j,k),(l−1,m−1,n−1)

�
,

D =
�
d(0,0,0), d(0,0,1), · · · , d(l−1,m−1,n−1)

��
,

b =
�
b(0,0,0), b(0,0,1), · · · , b(l−1,m−1,n−1)

��
.

A and b are defined as follows: Given a grid point {i, j, k},
let its index d = i × l × m + j × m + k be represented as
(i, j, k). If it’s a constraint point, all elements in A(i,j,k)

have value 0 except A(i,j,k),(i,j,k) = 1, and b(i,j,k) is set to be
the intensity value defined by the constraint. If it’s free, the
value of A(i,j,k),(i′,j′,k′) depends on contribution of {i′, j′, k′}
in the difference equation at {i, j, k}, and b(i,j,k) = 0. Fig.

1 shows the grid points contributing for {i, j, k} in the dth

row of A, A(i,j,k). All the values of A(i,j,k),(i′,j′,k′) are set
to be 0 except:

A(i,j,k),(i,j,k) = 6(
a4

i,j,k

∆x4 +
b4i,j,k

∆y4 +
c4i,j,k

∆z4 )+

8(
a2

i,j,kb2i,j,k

∆x2∆y2 +
a2

i,j,kc2i,j,k

∆x2∆z2 +
b2i,j,kc2i,j,k

∆y2∆z2 ),

A(i,j,k),(i±1,j,k) = −4(
a4

i,j,k

∆x4 +
a2

i,j,kb2i,j,k

∆x2∆y2 +
a2

i,j,kc2i,j,k

∆x2∆z2 ),

A(i,j,k),(i,j±1,k) = −4(
b4i,j,k

∆y4 +
a2

i,j,kb2i,j,k

∆x2∆y2 +
b2i,j,kc2i,j,k

∆y2∆z2 ),

A(i,j,k),(i,j,k±1) = −4(
c4i,j,k

∆z4 +
a2

i,j,kc2i,j,k

∆x2∆z2 +
b2i,j,kc2i,j,k

∆y2∆z2 ),

A(i,j,k),(i±2,j,k) =
a4

i,j,k

∆x4 ,

A(i,j,k),(i,j±2,k) =
b4i,j,k

∆y4 ,

A(i,j,k),(i,j,k±2) =
c4i,j,k

∆z4 ,

A(i,j,k),(i±1,j±1,k) =
2a2

i,j,kb2i,j,k

∆x2∆y2 ,

A(i,j,k),(i±1,j,k±1) =
2a2

i,j,kc2i,j,k

∆x2∆z2 ,

A(i,j,k),(i,j±1,k±1) =
2b2i,j,kc2i,j,k

∆y2∆z2 .

The matrix A is called ”tridiagonal with fringes” [30].
Our implicit PDE is open along all of x, y, and z direc-

tions, so forward/backward difference approximations shall
be utilized for the computation of partial derivatives near
the six boundaries instead. Arbitrary boundary/additional
constraints can be easily enforced by finite-difference method.
In our system, after making the initial guess of the intensity
values, we fix the intensity values at those boundaries, so
that the manipulations on the implicit objects can be per-
formed using the finite-difference iterative solver. In general,
this type of elliptic PDEs allows designers to choose (vari-
ous) constraints based on diverse design tasks.

3.4 Constrained System
The PDE modeling techniques have an attractive advan-

tage that the interior of the objects is controlled by PDEs
without the need of extra specification for interior material
distribution. More importantly, users can modify an im-
plicit PDE object by enforcing additional hard constraints
of desired intensity values anywhere inside the working space
without violating all the previously defined conditions. Ad-
ditional hard constraints inside the working space introduce
a set of new equations into the system to replace the cor-
responding original difference equations. For example, if we
want to set the intensity value di,j,k as a particular constant
value d0, the equation di,j,k = d0 will be used to replace the
equation the discretized difference equation approximating
the PDE at the point {i, j, k}, i.e. A(i,j,k)(i,j,k) = 1, all other
A(i,j,k)(i′,j′,k′) = 0, and b(i,j,k) = d0. After replacing all the

equations according to the constraints, (3) becomes

AcD = bc, (4)

where Ac and bc are obtained by replacing k(k > 0) equa-
tions in the original system with those derived from addi-
tional k constraints at the corresponding coordinate posi-
tions.

3.5 Iterative Method
With predefined or approximated boundary conditions

from initial guess, (3) and (4) are solved using finite-difference-
based iterative techniques. These methods make immediate
use of the structure of the sparse matrix on the left-hand
side of the equations, e.g., A in (3). The matrix is split into
two parts

A = Ad −Ar, (5)

where Ad consists of the diagonal elements of A and zeros
elsewhere, Ar is the remainder. Then (3) becomes

AdD = ArD+ b. (6)

The iterative methods start from choosing an initial guess
D(0) and then solving successively for iterates D(s) from

AdD
(s) = ArD

(s−1) + b. (7)

The same idea can be applied to the constrained system (4).
In the case of predefined boundary conditions, we compute

the initial guess by simple linear interpolation based on the
constraints. The iteration will stop at D(s) for an approxi-
mated solution when the difference betweenD(s) andD(s−1)

is less than a threshold (we use 10−9 in this paper). Certain
variants of iterative techniques exist for solving the afore-
mentioned linear equations [36]. In this paper, we employ
the Gauss-Seidel iteration which uses the updated value of
the iteration result at a grid point on the right-hand side
of (7) as soon as it becomes available. To further speed up
the converging rate of Gauss-Seidel iteration, we take into
account the error factor which is characterized by the dif-
ference between the approximation and the real solution.
This leads to the method of Successive Over-Relaxation it-
eration, or SOR iteration. Nonetheless, the discretization of
volumetric implicit PDE space results in a very large num-
ber of linear equations. This causes the slow convergence
of iterative methods. To achieve a solution faster, we start
solving the equations at a coarse grid with down-sampled
constraints and interpolate the solution at finer grids to com-
pute the initial guess for the iterative methods at the finer
resolution. The convergent rate of the iterative solvers can
be greatly increased.

4. BOUNDARY CONDITIONS FOR DIFFER-
ENT APPLICATIONS

To construct an implicit PDE object, first we need to
outline the rough shape of the object, which can be defined
through boundary conditions or special constraints such as
curve contours and scattered data points in the working
space that the object interpolates. The form of boundary
constraints varies for different applications. Our implicit
PDE techniques cover the boundary conditions for appli-
cations such as shape blending, shape reconstruction from
sketch curves and scattered data points. Fig. 2 illustrates
different types of boundary conditions in simplified 2D cases.
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(a) (b) (c) (d)

Figure 2: 2D illustrations of different types of boundary conditions. (a) Traditional boundary constraints;
(b) boundary conditions for shape blending; (c) sketch-curve constraints; (d) scattered-point constraints.

(a) (b) (c)

Figure 3: An implicit PDE object generated from cross-sectional boundary conditions: (a) Original object;
(b) cross-sectional boundary conditions by removing several data slices along the y-direction from the original
data; (c) is the generated implicit object from (b).

4.1 Shape Design Using Traditional Boundary
Constraints

The implicit PDE can model geometric shapes by comput-
ing the information of the whole working space based on tra-
ditional boundary constraints with optional cross-sectional
details inside the working space. Such boundary conditions
are defined as intensity values sampled at certain resolu-
tion from input or use some analytic functions to generate
implicit boundary functions d(0, y, z), d(1, y, z), d(x, 0, z),
d(x, 1, z), d(x, y, 0), d(x, y, 1) and a collection of cross-sectional
scalar intensity functions d(xi, y, z), d(x, yj , z), or d(x, y, zk),
where xi, yj , zk ∈ (0, 1) are constants. These functions are
sampled at specified resolution to provide a set of inten-
sity values inside the working space. Using these values as
generalized boundary conditions, we introduce certain num-
ber of new equations and the linear equation system has
the form of (4) which can be solved using above mentioned
techniques. Fig. 3 shows an example.

4.2 Shape Blending
Our PDE formulation defines the interior information of

the implicit object via the differential properties, which means
that it is possible to automatically recover the missing in-
formation from partial data with our prototype system and
guarantee intensity continuity of non-constrained parts of
the working space. This feature can be applied for shape
blending process by placing the objects to be blended into
the working space and the system will compute the con-
necting parts between those objects. Such kind of datasets
form another type of initialization with pre-defined bound-
ary constraints, which gives most of the information and
only a small portion of the working space is missing. The
missing information of the working space can be approxi-
mated based on the remaining part using our PDE formula-
tion. An example of shape blending is shown in Fig. 4. The

above two types of boundary conditions allow our system to
model volumetric datasets.

4.3 Shape Reconstruction from Sketch Curves
and Scattered Data points

The implicit functions are very useful for shape recon-
struction from scattered data points. To maximize the mod-
eling potential of implicit PDEs, we develop a set of toolkits
using PDE techniques to reconstruct objects from spatial
sketch curves or scattered data points of specified intensity
values. Because with this type of constraints, the bound-
ary information around the working space is missing, it’s
extremely difficult to directly solve the implicit PDE under
such constraints. Therefore, we employ techniques such as
the RBF method for the interpolation problems and signed
distance field approximation to obtain an initial guess for
the implicit PDE shapes subject to those constraints. We
then use the iterative solver to get a smooth solution. When
performing the RBF method, the gradient information in-
dicating the change of the intensity values around the con-
straints will be needed to define the inside and the outside
of the reconstructed shape. If the gradient information is
not provided by users, our system calculates the gradient at
each sample point of the constraints according to the nor-
mal of the local tangent plane of the curve at that point,
as explained in Fig. 6. Our system also allows designers
to interactively input certain sketch curves such as B-spline
curves with specified intensity value, which permits the ini-
tial sketch curves being modified directly. Note that, the
sketch curves are not required to be planar curves. More-
over, they can even be open curves, which may result in open
iso-surfaces instead of solid objects. Fig. 5 shows examples
using sketch curves.
When modeling more complex shapes from sketch, usu-

ally there are a large number of sketch curves need to be
enforced, which will increase the number of calculations dra-
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(a) (b) (c) (d)

Figure 4: An example of shape blending. (a) Original dataset; (b) cross-section view of the working space
for (a) where darkness increases with intensity; (c) blended object from (a); (d) cross-section view of (c).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Examples of shape reconstruction from sketch curves. (a) is a set of open curves without specified
gradient information; (b) and (c) are iso-surfaces at different iso-values, respectively; (d) is a cross-section
view of the implicit shape; (e), (f), and (g) show an example of generating implicit shapes by incrementally
defining a set of B-spline curves; (e) is an object defined by two curves; (f) is the refined object by adding
two additional sketch curves; (g) is the shape reconstructed from six B-spline sketch curves; and (h) is a
cross-section view.

Figure 6: Illustration of computing the gradient di-
rection.

matically. Moreover, sometimes the sketch curves are only
designed to model the local area they resides, so their global
contribution are not desirable. To address such issues, our
system allows users to compute the initial guess of implicit
PDE objects using the RBF method for selected subset of
sketch curves at any local region of the working domain with-
out disturbing the outside areas. At the initialization stage,
when using RBF method to compute the initial guess of
the implicit shape, users are prompted to select interested
curves, define the region in the working space to reconstruct
the subset of the object, as well as to indicate if curves that
only part of them inside the specified area can make contri-
bution to the reconstruction. After all the sampled intensity

values in each of the sub-regions of the working space are
computed, our system can perform a global blending pro-
cess to put sub-regions together. This feature can reduce
the number of calculations of the RBF method, and provide
fast reconstruction by sculpting sketch curves. Moreover,
CSG sculpting tools can be easily enforced accordingly. Fig.
7 shows an example. To reconstruct shapes from scattered
data points where the number of constraints is extremely
large and there is no gradient information available, we use
the signed distance field approximation to compute the ini-
tial guess. The initial intensity value on the sample grids are
computed by the fast-tagging algorithm introduced by [44]
based on their signed distance to the data point constraints
and we then use iterative solver to conduct a smoothing
task. Two examples are shown in Fig. 8.

5. INTERACTIVE SCULPTING TOOLKITS
FOR IMPLICIT PDES

This section details manipulating techniques for implicit
PDE modeling. Fig. 9 shows a snapshot of our proto-
type system while manipulating a selected sketch curve.
Besides the constraints, the coefficient functions a(x, y, z),
b(x, y, z), and c(x, y, z) can also be modified locally to de-
form the shape. They control the relative intensity blend-
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(a) (b) (c) (d)

Figure 7: Example for performing the RBF initialization locally. (a) Two set of sketch curves; (b) a cross-
section view; (c) and (d) are reconstructed implicit shapes at different iso-values.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Examples of shape reconstruction from scattered data points. (b) and (f) are cross-section views;
(c) and (d) are iso-surface at different intensity values of the object reconstructed from point set (a); (g) and
(h) represent the reconstructed shape from data set (e) at different iso-values.

ing and the level of variable dependence among x, y, and z
directions, thus they can be treated as generalized material
properties over the volumetric working space. Consequently,
users can control how the boundary and additional condi-
tions influence the interior intensity distribution by modify-
ing the length scale at arbitrary location (i.e., ai,j,k, bi,j,k,
and ci,j,k).

5.1 Sketch Curve Sculpting
Implicit objects can be defined by specifying a set of sketch

curves which outline the rough shape of the objects. More-
over, our implicit PDE model provides interactive shape de-
sign toolkits to allow users manipulating the sketch curves
in order to deform the underlying reconstructed implicit ob-
jects. The sketch curves defining the rough shape of the
object can be obtained by either predefined curve network
or B-spline curves from users’ direct input. Our system al-
lows users to modify the geometric shape, intensity value, as
well as gradient directions of the sketch curves interactively
in order to get the desired objects.
In order to modify the sketch curves smoothly, B-spline

approximations for those curves are calculated at the initial-
ization stage, then users can sculpt the curves interactively
by manipulating the B-spline control points via translation
and rotation. Because the reconstructed implicit object
is required to interpolate those sketch curves which define
its outlining shape approximately, it will follow the shape
changes accordingly. Fig. 11 has an example of sculpting the

shape of selected sketch curves. The intensity value of the
sketch curves decides where the final shape of the implicit
objects should pass through at the level set of its value. By
modifying the intensity values of selected curves, users can
manipulate the objects accordingly. Furthermore, accord-
ing to the gradient definition, the intensity value increases
along the gradient direction of sketch curves and decreases in
the opposite direction in general. They provide information
of the intensity distributions starting at the sketch curves
and propagating to the neighborhood, which defines the in-
side and outside of the object. Without the predefinition of
gradient directions, the PDE solution will be trivial. There-
fore, gradient information of sketch curves are required for
reconstructing a unique shape. Accordingly, changing the
gradient direction at selected sketch curves means modify-
ing directions where the intensity will increase or decrease
in the implicit working space and will result in different im-
plicit shapes. Our system allows users to specify the gra-
dient direction of each individual sketch curve to construct
different implicit PDE objects. Refer to Fig. 10 for exam-
ples of specifying and modifying gradient directions at the
sketch curves. Without further specification, other exam-
ples in this paper have gradient directions pointing inward
the curves by default.

5.2 Local Manipulation of Implicit PDE Solids
Usually the sketch curve sculpting will deform the en-

tire reconstructed shape, which only offers global manip-
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Figure 9: Snapshot of the interface of our implicit PDE system.

(a) (b) (c) (d)

Figure 10: Examples for specifying and changing gradient directions of sketch curves. (a) and (c) are two
sets of curves with same geometric shape but different gradient directions, where the arrows show intensity
increasing directions; (b) and (d) are corresponding implicit objects.

ulation and is less intuitive for ordinary users to handle.
Even with the specification of local areas of interests con-
taining the sculpted sketch curve, the sculpting will affect all
the points in the selected regions. Moreover, sometimes the
input constraints alone can not guarantee a satisfactory so-
lution of constructed shape. Therefore, direct modification
on selected areas is desirable, especially when the overall
recovered shape is satisfactory but minor changes in small
localized areas are needed. Our system provides interactive
tools of the intensity values modification in selected regions
to sculpt the reconstructed shape. The modification will be
enforced into (4). Using the aforementioned techniques, we
can solve (4) to obtain the modified objects.
Traditional implicit techniques for data reconstruction does

not support direct manipulations on the arbitrary locations
in the volumetric working space. The changes on the prede-
fined constraints will cause global deformation. It is more
desirable to offer users editing functionalities on the interior
properties with interactive interface. Besides the local RBF
approximation for local sketch curve sculpting, our system
also allows users to specify any interior region of the sam-
pling grids, and only applies intensity changes within the
specified region. Alternatively, we can freeze the selected
region and disallow any changes in the specified region. In
our system, this can be done through interactively speci-

fying the maximum and minimum sampling grid in x, y,
and z direction of the desired region in the sampling volu-
metric working space. Subsequently, any change within the
region will have no influence on sampling points outside the
region. The localized deformation can be easily achieved
because only those equations corresponding to the points of
the specified regions in (4) will be solved. In addition, the
number of computations is reduced due to fewer number of
equations involved in the local sculpting. In principle, all
hard constraints can be viewed as some sort of local defor-
mation. Fig. 11 shows an example of local deformation.
Users can also specify an iso-surface at a particular in-

tensity value and use a cutting plane inside the volumetric
working space to get a 2D iso-contour on the plane, then
stretch, push, rotate the contour, as well as add desired in-
tensity values at specified locations to modify the shape of
the iso-surface and the intensity distribution of the inter-
ested areas. Refer to Fig. 11 for an illustrative example.
We also offer several CSG sculpting tools such as sphere and
cube to trim/extrude/sculpt the implicit objects by adding
more constraints on the sampling grids of the working space.
This is extremely useful for such situations when there are
some minor changes needed to be done in some local small
regions. Such sculpting tools make our system compatible
with CSG-based implicit models by treating those models
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(a) (b) (c)

(d) (e) (f)

Figure 11: Examples of enforcing curve and direct manipulation constraints. (a) Original object with sketch
curves; (b) deformed object by sculpting a selected curve; (c) changing an iso-contour; (d) deformed object
subject to local region constraints; (e) adding a sphere in the working space; and (f) is the corresponding
deformed object subject to (e).

as modeling tools. An example is shown in Fig. 11.

Figure 12: System architecture and functionalities.

6. IMPLEMENTATION AND DISCUSSION
We develop a prototype software that permits users to re-

construct geometric shapes defined by PDE-based implicit
functions from a set of sketch curves or scattered data points.
Our system also allows interactive manipulation of recon-
structed implicit PDE objects with various intensity con-
straints in the volumetric working space. The interactive
sculpting of implicit PDE objects can be obtained via mod-
ification of predefined conditions and interior operations.

The system is written in Visual C++ and runs on Win-
dows95/98/NT/2000/XP. Fig. 12 illustrates the architecture
of our modeling environment for implicit PDE objects. In
particular, our system provides the following functionalities:
Shape Reconstruction. Users can interactively input

and edit scattered data points or sketch curves with specified
intensity value, then the system uses the RBF method or
distance field approximation to calculate intensity values on
the sampling grids within the volumetric working space as
the initial guess for the iterative solver of the discretized
implicit PDE to obtain an approximated solution for implicit
PDE objects satisfying these conditions. Our system can
model both close and open implicit shapes.
Missing Information Recovery and Shape Blend-

ing. The underlying implicit PDE of our system provides a
simple yet systematic mechanism to obtain the volumetric
information satisfying specified constraints automatically.
Such an advantage makes it possible to recover missing in-
formation of input datasets with our system. It can also
be used to compute the connecting part between different
objects in the working space which leads to shape blending.
Discrete Models. Our system supports implicit PDE

objects obtained from solving the fourth order elliptic PDE
using: (1) finite-difference discretization for the numerical
solution of the fourth order elliptic PDE in 3D working
space; and (2) RBF approximation at arbitrary sub-regions
in the working space for modeling localized details and per-
formance speedup.
Interactive and Direct Operations. Users can also

work directly on the implicit PDE objects through: (1)
sketch curve sculpting using B-spline manipulation; (2) gra-
dient specification of selected curves; (3) local RBF approxi-
mation for improved time performance and interactive CSG
manipulation; (4) interior deformation with additional con-
straints inside the working space; (5) iso-surface manipu-
lation and direct manipulation of iso-contours at selected
intensity values; and (6) local modification of blending co-
efficient functions.
We employ two iterative techniques (Gauss-Seidel and

SOR) with multi-grid like techniques to solve the implicit
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PDE subject to various constraints. Besides original datasets
or predefined sketch curves, our system allows users to in-
teractively define and sculpt sketch curves through B-spline
manipulation and specify gradients at selected curves. These
constraints provide more freedom to designers and make in-
teractive design of implicit objects more cost-effective. We
also enforce additional constraints directly inside the volu-
metric working space, apply local operations, and provide
sculpting toolkits for the implicit objects, which facilitate
the construction of implicit PDE objects of arbitrary topol-
ogy. The PDE is solved by finite-difference techniques be-
cause they are simple, easy to implement, and suitable for
complicated, flexible constraints. In general, the time and
space complexity are increased with higher resolution as well
as increased accuracy. Examples in this paper are rendered
by POV-RAY.

Examples Constraints Initial G-S M-G
Fig. 3 169888 N/A 15.801 7.992
Fig. 4 840 23.855 60.048 32.134
Fig. 5 (a) 180 5.889 739.063 379.766
Fig. 5 (g) 720 18.872 760.244 416.312
Fig. 8 (a) 1219 267.925 N/A 113.432
Fig. 8 (e) 3154 359.657 N/A 148.283

Table 1: CPU-time (seconds) of different solvers for
several examples of implicit PDE objects with dif-
ferent number of constraints.

Table 1 summarizes the numbers of constraints and CPU
time of different numerical solvers for the implicit PDE ex-
amples when running on a Pentium 4 1.4GHz PC. The res-
olution of the working space is 64 × 64 × 64 for Fig. 3 and
65 × 65 × 65 for other examples. The stopping threshold
(difference between two iteration steps) is 10−9. ”Initial”
stands for the initial guess where we use RBF method for
sketch curve datasets and fast-tagging approximation for the
scattered data points input. G-S and M-G indicate the CPU
time for solving the entire implicit PDE working space based
on the initial guess using Gauss-Seidel iteration and multi-
grid improvement.
Although the initialization of the implicit models are time-

consuming because of the approximation of the entire work-
ing space, the local sculpting afterwards will be interactive
because only small number of sampling grids are involved.
The time performance of RBF and fast-tagging algorithms
depends on the number of constraints enforced, while the
convergent speeds of iterative methods are mainly deter-
mined by the sampling rates of the implicit working space.
Despite the direct and powerful modeling advantages of

our PDE framework, the major difficulty associated with our
PDE techniques is the convergent speed of finite-difference
approximation. Thus, faster numerical approximation tech-
niques for solving PDEs need to be considered to improve
the time performance of our PDE modeling system.

7. CONCLUSION
We have unified the popular implicit function techniques

with the powerful parametric PDE framework to demon-
strate more modeling advantages of the PDE-based paradigm.
Our prototype system supports interactive shape design of
implicit PDE objects through global and local deformation
of scattered data points or sketch curves. The implicit PDE

model can be defined as the solution of the fourth order el-
liptic PDE over a scalar intensity field with either scattered-
point datasets or a set of sketch curves as generalized bound-
ary and additional constraints. Our implicit PDE approach
can also provide an approximation for the missing part in
the working space with most of the intensity information al-
ready known. Our software environment affords users a set
of interactive and direct shape modeling toolkits including:
sketch curve sculpting and gradient manipulation, intensity
value modification on selected regions, and iso-contour ma-
nipulation of specified intensity value inside the volumetric
domain. These toolkits provide users an intuitive interface
to model implicit PDE objects satisfying a set of design cri-
teria and functional requirements. Our integrated approach
and novel PDE techniques further expand the geometric cov-
erage and the topological flexibility of the conventional PDE
methodology to implicit functions, and forge ahead towards
the realization of the full potential of PDE technology in
solid modeling and other visual computing fields.
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