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This paper presents a method for interactive design by means of extending the PDE
based approach for surface generation. The governing partial differential equation is
generalized to arbitrary order allowing complex shapes to be designed as single patch
PDE surfaces. Using this technique a designer has the flexibility of creating and manip-
ulating the geometry of shape that satisfying an arbitrary set of boundary conditions.
Both the boundary conditions which are defined as curves in 3-space and the spine of the
corresponding PDE are utilized as interactive design tools for creating and manipulat-
ing geometry intuitively. In order to facilitate interactive design in real time, a compact
analytic solution for the chosen arbitrary order PDE is formulated. This solution scheme
even in the case of general boundary conditions satisfies exactly the boundary condi-
tions where the resulting surface has an closed form representation allowing real time
shape manipulation. In order to enable users to appreciate the powerful shape design
and manipulation capability of the method, we present a set of practical examples.

Keywords: Interactive Design, Free Form Surfaces, PDEs of arbitrary order

1. Introduction

There is no doubt that the search for intuitive and efficient techniques for interactive
shape design continues to be a vibrant and demanding area of research. Using
established design tools today, designers are increasingly required to produce 3D
geometry that mirrors real world objects within shorter time scales.

Broadly speaking interactive design techniques available for a designer today can
be put into three categories. They are boundary based methods such as polygon
based design18, extrusions and surface of revolution25, polynomial patches14 ; pro-
cedural modeling such as implicit surfaces1 and fractals34; and volumetric models
such as constructive solid geometry30 and subdivision11. Using these design tech-
niques the common types of geometric operation often carried out include, adding
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detail to various regions of geometry, trimming and blending, Boolean operations
and standard geometric transformations. Among the above mentioned techniques
the three most widely used are polynomial patches, implicit surfaces and subdivi-
sion. Below we discuss each of them briefly.

There exists a wide variety of methods for surface construction using polynomial
patches. These include, for example, defining the surface using an array of points, a
set of plane cross-sectional curves, or even networks of curves. For instance, earlier
work of Tiller36 describe techniques using rational B-splines, by which a surface is
defined through a series of plane curves . Woodward46, on the other hand, describes
a wide variety of methods for producing free-form surfaces whereby the surface is
defined using a collection of projection and section curves. The most widely used
polynomial surfaces for interactive design are the so called NURBS (Non Uniform
Rational B-Splines) which offer surface manipulation through manipulation of its
control points, weights, and knots27. As far as interactive design using spline based
techniques are concerned, they often require large arrays of control points which
are difficult and time consuming to manipulate. This is especially true when the
designer is working in interactive environments. There has been a lot of effort by
many researchers to make spline based techniques more intuitive and user friendly.
Some of the notable methods proposed include the technique of introducing con-
straints on the control points16, the use of deformations29 and the use of Dynamic
NURBS or D-NURBS35.

When compared to spline based techniques, Implicit functions uses a different
metaphor for interactive geometry design whereby functions based on scalar fields
are utilized to define geometric entities. Some of the notable shape manipulation
techniques that use implicit functions include the use of particles for sampling and
controlling the shape45, the use of sculpting15,31, and morphing37.

Subdivision techniques for interactive design have recently emerged to be very
popular, where such techniques are seen to be an alternative to traditional spline-
based shape modeling. Subdivision techniques are a natural extensions of the exist-
ing patch-based surface representations. Subdivision can be regarded as operating
directly on polygonal meshes, whereby direct mesh manipulation can be carried out
with ease. They can also be used to describe the geometry of objects with arbitrary
topology. Furthermore, subdivision based geometry can be modified easily to sup-
port features such as creases and boundaries. A wide variety of subdivision schemes
for surfaces exist. Two of the most well-known subdivision schemes for surfaces are
the Catmull-Clark scheme8, and the Loop scheme22. For a detailed explanation of
subdivision and subdivision surfaces, the interested reader is referred to44.

Given the task of interactively creating a complex object on the computer, a
designer would go about using one or more of the above techniques. One could
argue that non of the above techniques are right neither are they wrong. The
particular approach a designer adopts often depends on the type of design and level
of familiarity of particular set of techniques. A fine example of this perhaps is the
increasing popularity of polygon based design techniques among games developers.
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Surprising though it may be, these designers often prefer to design complex objects
and characters polygon by polygon where they have the ultimate control over shape
of the model so that they are able to give attention to every minor detail.

In broad terms the existing interactive techniques discussed above could be
thought to lie between a spectrum where the extremes are shape design and shape
representation. Bearing this in mind, the design techniques discussed in this paper
is placed nearer to the shape design than representation.

1.1. Outline of the PDE Method

Although from a traditional standpoint PDEs have played a major role in solv-
ing engineering related problems such as electromagnetism, stress/strain in phys-
ical structures and fluid flows, nowadays PDE based techniques are increasingly
becoming very popular in many application areas of geometric design. These in-
clude level set formulations for image processing, computer graphics and com-
puter vision32,26,43, mesh fairing33,10, Radial Basis Functions28, biharmonic Bézier
surfaces24 and polysplines21.

The work discussed in this paper is based around the pioneering work of Bloor
and Wilson on the so called PDE method2. The particular approach we use adopts
a boundary-value approach whereby a surface is characterized by defining a number
of space curves (with associated derivative information) so as to form the surface’s
edges, and then the surface is generated between these curves by solving an elliptic
partial differential equation (PDE). The chosen PDE is usually lower order such as
the Biharmonic equation.

The PDE method for geometric design was originally developed as a mecha-
nism of blend shape generation. Since this initial application of the method on
shape blending, in recent years PDE based shapes have broadened their uses in
shape description20,12,38. This is due to the fact that PDE based shapes in princi-
ple have the advantage that most of the information defining a shape is based on a
boundary representation making it possible for complex geometry to be generated
and controlled by very few design parameters40.

The method has been successfully utilized for automatic design for function
in various design scenarios by means of incorporating engineering design criteria
such as functional constraints into the geometric design of PDE surfaces. Exam-
ples of this include automatic design of ship hulls23, propeller blades9, engineering
components4 and thin-walled structures39. Thus, it has been shown that by uti-
lizing the PDE method it is possible to introduce geometric constraints, aesthetic
criteria, and physical and engineering restrictions into the design process. Moreover,
numerical algorithms have also been developed to approximate PDE surfaces using
standard B-splines3,19. This work demonstrates that PDE surface are compatible
with existing data exchange standards and therefore can be readily incorporated
into existing commercial design systems.

On the interactive design front there has been a number of developments which
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centre around the use of low order PDEs. For the example, Du and Qin have
developed interactive tools for sculpting PDE shapes by incorporating physics-
based modeling techniques 13,12. They also proposed a number of new techniques
for local control of shapes generated using the PDE method. To demonstrate their
techniques they have developed an interactive toolkit that utilises the PDE method
to model the real-world objects with interior material distribution. Furthermore,
their recent work also includes the integration of implicit functions with PDEs
in order to demonstrate that solid modeling based on the PDEs can potentially
unify both geometric constraints and functional requirements within a single design
framework 13. The work of Zhang and colleagues on interactive design and efficient
solution formulation for PDE based surfaces is also highly notable here 49,47.

This paper presents a methodology by which the original Biharmonic based
PDE model of Bloor and Wilson can be generalized for interactive design. Thus, we
show how the governing partial differential equation is generalized to arbitrary order
allowing complex shapes to be designed as single patch PDE surfaces. Using this
technique a designer has the flexibility of creating and manipulating the geometry
of a shape that satisfy an arbitrary set of boundary conditions. Both the boundary
conditions which are defined as curves in 3-space and the spine of the corresponding
PDE are utilized as interactive design tools for creating and manipulating geometry
interactively.

Thus, from the point of view of shape modeling in an interactive environment,
the generalization of PDE surfaces to arbitrary order presents a number of added
advantages. For example, in the case of generating a complex surface patch, using
low order PDE surfaces, it is often necessary to use a collection of PDE patches
to smoothly interpolate between a series of curves, where manual intervention of
trimming and stitching is often necessary. This is especially the case where the
derivative boundary curves have to be manually adjusted in order to ensure conti-
nuity and smoothness across blend surfaces 38. It would be highly desirable to have
mechanisms in place in order to reduce the number of PDE patches that can be used
to describe a complicated shape. In fact in certain circumstances it would be ideal
to have a single PDE patch, which would allow the production of a smooth surface
patch through a collection of curves where the number of curves would determine
the order of the chosen PDE. Other advantages of using higher order PDEs include
the ability to efficiently parameterize a complex surface so that in principle the
user can be presented with fewer number of meaningful shape parameters through
which a user can undertake interactive design with ease.

The paper is organized as follows. Section (2) presents the generalized framework
and presents an analytic solution that can be utilized to create geometry in real
time. The discussions in Section (3) focus on how the various parameters associated
with the chosen PDE can be appropriately chosen so as smooth surfaces can be
generated. A set of examples to demonstrate the capability of the method to create
complex geometry is also given. In Section (4) we discuss interactive design using
higher order PDEs. The discussion on this section focuses on how the boundary
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conditions can be chosen and utilized to manipulate geometry interactively in real
time. Furthermore, the generalization of a powerful interactive tool known as the
spine of the PDE surface is also discussed.

2. Generalized PDEs

We assume that a parametric surface patch is defined by a function X(u, v) such
that,

X(u, v) = (x(u, v), y(u, v), z(u, v)),

where u and v are parameters for a finite two-dimensional region Ω such that Ω
is the region {u, v : 0 ≤ u ≤ 1; 0 ≤ v ≤ 2π} which map onto a point in physical
space (x, y, z). In the present formulation we require an elliptic PDE that satisfies
a given number of 2N boundary conditions. Here N is an arbitrary integer such
that N ≥ 2. The boundary conditions can be written in the form,

X(0, v) = f1(v), (2)

X(ui, v) = gi(v), i = 2 . . . 2N − 1 (3)

X(1, v) = f2N (v), (4)

where f1(v) in Equation (2) and f2N (v) in Equation (4) are function boundary
conditions specified at u = 0 and u = 1 respectively. The conditions X(ui, v) =
gi(v) in Equation (3) can take the form either

X(ui, v) = fi(v) for 0 < ui < 1, i = 2 . . . 2N − 1, (5)

or

∂X
∂u

,
∂2X
∂u2

,
∂3X
∂u3

, . . . ,
∂2N−2X
∂u2N−2

for 0 ≤ ui ≤ 1, i = 2 . . . 2N − 1. (6)

In simpler terms the above boundary condition implies that for a PDE surface
patch of order 2N we can specify two function boundary conditions, as given in
Equations (2) and (4), that should be satisfied at the edges (at u = 0 and u = 1)
of the surface patch, and a number of function or derivative conditions, as given
in Equation (3), amounting to 2N − 2 boundary conditions which the PDE should
also satisfy.

With the above formulation we take standard Laplace operator, ∇ = 0, as a
base PDE and generalize it to the N th order such that,(

∂2

∂u2
+ a2 ∂2

∂v2

)N

X(u, v) = 0. (7)

As one can easily observe the above equation is a generalization of the usual 4th
order elliptic PDE where the corresponding Biharmonic equation can be derived
by choosing N to be 2.
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2.1. Analytic Solution of Generalized PDEs

Given a set of 2N boundary conditions as defined in Equations (2), (3) and (4), we
take the (u, v) parameter space Ω to be the region {u, v : 0 ≤ u ≤ 1; 0 ≤ v ≤ 2π}.
Thus, we assume that all the boundary conditions are periodic in v in the sense
f0(0) = f0(2π), f1(0) = f1(2π) and gi(0) = gi(2π). We further assume that all the
boundary conditions are continuous functions within the domain of Ω.

With the above assumptions on the boundary conditions we can utilize the
method of separation of variables to write the analytic solution of Equation (7) as,

X(u, v) = A0(u) +
∞∑

n=1

[An(u) cos(nv) + Bn(u) sin(nv)], (8)

where

A0 = a00 + a01u + a02u
2 + . . . + a(2N−1)u

2N−1, (9)

An = an1e
anu + an2ueanu + an3e

−anu + an4ue−anu + . . . +

an(2N−3)u
N−2eanu + an(2N−2)u

N−1eanu + an(2N−1)u
N−2e−anu +

an2NuN−1e−anu, (10)

Bn = bn1e
anu + bn2ueanu + bn3e

−anu + bn4ue−anu + . . . +

bn(2N−3)u
N−2eanu + bn(2N−2)u

N−1eanu + bn(2N−1)u
N−2e−anu +

bn2NuN−1e−anu, (11)

where a00 + a01, a02, . . . , a2N−1, an1 + an2, an3, an4, . . . , an(2N−3), an(2N−2),
an(2N−1), an2N and bn1 + bn2, bn3, bn4, . . . , bn(2N−3), bn(2N−2), bn(2N−1), bn2N

are vector-valued constants, whose values are determined by the imposed boundary
conditions at ui where 0 ≤ ui ≤ 1.

Since the chosen boundary conditions are all continuous functions which are
also periodic in v we can write down their Fourier series representation as,

f1(v) = C1
0 +

∞∑
n=1

[C1
n cos(nv) + S1

n sin(nv)], (12)

gi(v) = Ci
0 +

∞∑
n=1

[Ci
n cos(nv) + Si

n sin(nv)], i = 2 . . . 2N − 1, (13)

f2N (v) = C2N
0 +

∞∑
n=1

[C2N
n cos(nv) + S2N

n sin(nv)]. (14)

Let us assume for the moment that the Fourier sums in the Expressions (12), (13)
and (14) has finite M modes. Then the vector constants C1

0, C
i
0 for i = 2 . . . 2N −1,

and C2N
0 can be obtained by directly comparing them with the constants a00,
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a01, a02, . . . , a(2N−1) given in Equation (9). Now for each of the Fourier modes
n = {1, . . . , M} we can write linear systems,

⎛
⎜⎝

an1

...
a2N

⎞
⎟⎠ = A(a, n)

⎛
⎜⎝

C1
n
...

C2N
n

⎞
⎟⎠ (15)

and

⎛
⎜⎝

bn1

...
b2N

⎞
⎟⎠ = B(a, n)

⎛
⎜⎝

S1
n
...

S2N
n

⎞
⎟⎠ (16)

where A(a, n) and B(a, n) are 2N×2N matrices, whose coefficients can be obtained
by solving the linear systems (15) and (16) subject to the Fourier coefficients cor-
responding to the 2N boundary conditions.

The above solution scheme is based on the fact that the boundary conditions
can be expressed as a finite Fourier series. However, in practical design scenarios
such an assumption is not a realistic proposition. In order to take care of this, we
adopt a generalized version of the spectral approximation to the Biharmonic PDE
given in 6 as described below.

Although in practical terms we cannot assume that a given boundary condition
can be expressed accurately using a finite Fourier series, it is reasonable to assume
that the boundary conditions can be written as,

f1(v) = C1
0 +

M∑
n=1

[C1
n cos(nv) + S1

n sin(nv)] + R1(v), (17)

gi(v) = Ci
0 +

M∑
n=1

[Ci
n cos(nv) + Si

n sin(nv)] + Ri(v), i = 2 . . . 2N − 1, (18)

f2N (v) = C2N
0 +

M∑
n=1

[C2N
n cos(nv) + S2N

n sin(nv)] + R2N(v). (19)

Thus, the basic idea here is to formulate each of the boundary conditions in terms
of the sum of a finite Fourier series containing M modes and a ‘remainder’ term
Ri(v), i = 1 . . . 2N which contains the higher order Fourier modes. In Ref. 6, for the
case of Biharmonic equation, it is shown that the higher order Fourier modes make
negligible contributions to the interior of the PDE patch and the same applies for
the general case of N th order Biharmonic PDE. Hence it is reasonable to truncate
the Fourier series at some finite M , (typically M = 6 is adequate), and represent the
contribution of the high frequency modes to the surface with a remainder function
R(u, v). The format of this remainder function is somewhat arbitrary and for this
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work it is taken to be of the form,

R(u, v) = r1e
ωu + r2ueωu + r3e

−ωu + r4ue−ωu + . . . +

r(2N−3)u
N−2eωu + r(2N−2)u

N−1eωu + r(2N−1)u
N−2e−ωu +

r2NuN−1e−ωu, (20)

where r1, r2 . . . r(2N−1), r2N are vector-valued constants which depend on v.
Now by taking X̃(u, v) to the approximate solution,

X̃(u, v) = A0(u) +
M∑

n=1

[An(u) cos(nv) + Bn(u) sin(nv)], (21)

satisfying the boundary conditons of the finite Fourier series we define difference
functions such that,

df1(v) = df1(v) − X̃(0, v), (22)

dgi(v) = gi(v) − X̃(ui, v), i = 2 . . . 2N − 1, (23)

df2N (v) = df1(v) − X̃(1, v). (24)

By choosing ω in the Expression (20) to be an, the vector constants r1 . . . r2N

can be computed by means of direct comparison with the diffrence terms df1(v),
df2N (v) and dgi(v), for i = 2 . . . 2N − 1 in Equations (22) - (24).

Finally the approximate analytic solution of the PDE is given as,

X(u, v) = X̃(u, v) + R(u, v). (25)

It is important to note that the choice of the number of Fourier terms M will
affect how well X̃(u, v) approximates the solutions of the general N th order Bihar-
monic PDE. Although this may be the case, due to the choice of difference functions
utilized here, i.e. by computing the difference between the original boundary con-
ditions and the corresponding finite Fourier series, as described in Equations (22) -
(24) the approximate solution satisfies the chosen set of boundary conditions exactly
(to within the machine accuracy).

The main aim here is to obtain solutions for the N th order Biharmonic PDE
surfaces with general boundary conditions rapidly enough to be able carry out
interactive design in real-time. The above solution method can be viewed as a
spectral method for the solutions of arbitrary order linear elliptic PDEs where the
expansion functions are based upon the Fourier series . Thus, this solution scheme
can be applied in the case of general complex periodic boundary conditions which
can be seen to be suitable enough for generating a wide range of complex geometries.
In the case of non-periodic boundary conditions, an analytic approximation for
the Biharmonic case has been discussed in Ref. 7 which in principle can also be
generalized to suit for higher order PDEs.
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(a) (b)

Fig. 1. Choice of ‘u’ parameterization for higher order PDEs.

3. PDE Geometries of Generalised Higher Order Equations

For reasons that will become clearer later, for the purpose of interactive design and
manipulation of surfaces using higher order PDEs intuitively it is desirable to choose
low order derivative boundary conditions, for example derivative condition of up
to order 4. This, therefore, requires us to choose a number of function boundary
conditions where the surface patch will then pass through these boundary conditions
satisfying them exactly. Thus, in a sense we could envisage interactive design using
higher order PDEs being able to define an arbitrary set of boundary curves in the
physical space where the surface patch interpolates through most of these curves.

Bearing the above fact in mind here we provide a recipe for the choice of the
parameter a and u parameterization in order that a smooth surface is generated as
a solution to an arbitrary order N th order Biharmonic PDE. Similar to previous
work on interactive design38 here we assume that for the purpose of interactive
design a user generates and manipulates a series of general curves in the physical
space which enable to define the corresponding boundary conditions for the PDE.

3.0.1. Choice of ‘u’ parameterization

The main point to bear in mind when choosing the parameterization in the u di-
rection is that one should allow for the possibility of non-linear variation in the
Euclidean distances between individual curves defining the PDE boundary condi-
tions.

Figure 1(a) shows a typical set of 8 boundary curves in 3-space which may be
utilized to define the boundary conditions for the 8th order PDE. As can be noted
the physical variations between these curves are not necessarily linear. This should
be taken into account when the corresponding u parameterization is constructed
on the (u, v) parameter space. In order to do this the following simple procedure is
adopted. First the average Euclidean distance between individual curves are deter-
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mined. Then, the distribution of ui along u parameter direction is proportionally
determined where the u = 0 takes the position for the first boundary curve and
u = 1 takes the position for the last boundary curve. This procedure for construct-
ing u parameterization is illustrated in Figure 1(b).

3.0.2. Choice of ‘a’ parameter

As noted earlier for reason of intuitively in interactive design using higher PDEs,
generally we choose boundary curves such that most of them are function bound-
ary condition rather than higher order derivative boundary conditions. For higher
order PDEs the parameter a therefore has a different meaning when compared to
interactive design using lower order PDEs such as the Biharmonic case where two
function boundary conditions and two derivative boundary conditions are chosen at
the edges of the surface patch. Thus, in the case of Biharmonic equation the interior
surface patch can solely be controlled from these boundary conditions defined at
the edges of the surface patch.

In the case of the Biharmonic PDE the parameter a determines the rate at
which the corresponding PDE solution ‘forgets’ about the boundary condition as
one moves away from a boundary into the surface interior. This fact is utilized in
Ref. 38 to allow a to be an interactive design parameter where a controls the ‘waist’
of the surface patch, in that the higher the value of a the more prominent the waist
is.

As one can clearly see that for higher order PDEs where the surface is required
to pass through a set of intermediate curves (apart from the two edge curves), and
in such a scenario the parameter a cannot be utilized to bring about a waisting
effect to the interior of the surface patch. In fact, looking at the solution of the N th

order Biharmonic PDE given in Equation (8) we can see that we are asking for an
infinitely differentiable function which should pass through a series of space curves
whose variation may not necessarily be linear in the physical space. Thus, similar to
the problem of data interpolation using spline functions17 it is possible for a PDE
surface to posses ripples within the interior of the patch. However a careful choice
of a to suit a given number of boundary conditions takes care of this problem. To
do this we make the following observations on the behavior of a on the differential
operator given in Equation (7).

From the exponential terms involving a, in the Equations (10) and (11) we note
that the value of a influences the decay of the amplitude of the Fourier coefficients
through the exponential terms and therefore has an influence on the cross sectional
shape of the surface patch. In fact decreasing the value of a has a decreasing effect on
the smoothness of the cross sectional shape of the surface patch. In the limit when
a → 0 the N th order biharmonic PDE becomes a 2N th order ordinary differential
equation whose solution is a Hermite surface.

From the above discussions it is clear that if we are to generate a higher order
PDE surfaces, where a large number of position boundary conditions are specified,
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(a) (b)

Fig. 2. A typical higher order PDE patch generated as a solution to the 10th order equation.

we should take a suitable higher value for a depending on the number of position
boundary conditions so as the cross-sectional smoothness of the surface patch is
maintained. For the work described here for a PDE involving 2N position boundary
conditions we have chosen a to be N .

3.1. Example Geometries

In order to demonstrate the capability of complex surface generation using higher
order equations we discuss several examples. These examples are constructed by
means of defining a series of cross-sectional curves in 3-space where such curves
forms the profile geometry. Thus, in all cases the curves were taken to be function
boundary curves through which the surface is required pass. For each case the
corresponding PDE is solved within an interactive environment.

Figure (2)(b) shows a higher order PDE surface patch of order 10. The corre-
sponding position boundary curves are shown in Figure (2)(a) where these curves
are all free-hand curves generated as cubic B-splines within an interactive graphical
environment. The surface is then generated and rendered in real time where the
corresponding curves are also shown on the surface.

Figure (3) shows the shape of a sea shell generated as a single patch PDE surface



March 20, 2007 10:40 WSPC/INSTRUCTION FILE ws-ijsm

12

Fig. 3. The shape of a sea shell generated as a PDE patch of order 12

of order 12. The boundary conditions for this surface is taken to be,

x = α(1 − u/2π) cos(2u)(1 + cos(v)) + γ cos(2u), (26)

y = β(1 − u/(2π)) sin(2u)(1 + cos(v)) + γ sin(2u), (27)

z = γu/2π + α(1 − v/(2π)) sin(v). (28)

where 12 cross sectional ellipses along u were taken with 0 ≤ u ≤ π, 0 ≤ v ≤ 2π,
α = 0.2, β = 1.0 and γ = 0.1.

Figure 4 shows the familiar shape of the Klein bottle generated as solution to
the 40th order PDE. Again similar to the previous case of sea shell shape the cross
section curves of the Klein bottle was taken to be analytic functions as given below.

x =
{

α cos(u)(1 + sin(u)) + γ cos(u) cos(v) 0 ≤ u < π

α cos(u)(1 + sin(u)) + γ cos(v + π) π ≤ u ≤ 2π
(29)

y =
{

β sin(u) + γ sin(u) cos(v) 0 ≤ u < π

β sin(u) π ≤ u ≤ 2π
(30)

z = γ sin(v) (31)

where 40 cross sectional ellipses along u were taken with 0 ≤ v ≤ 2π, α = 6.0,
β = 16.0 and γ = 4(1 − cos(u)/2).

In order to test the real time capability of surface generation using the proposed
method, for each of the examples mentioned above the time it took to generate the
surface was computed. These computations were performed on a Laptop computer
with a 2.8GHz processor in which an interactive environment was set up using Mi-
crosoft Visual C++ coupled with OpenGL. Note although analytic representations
of the boundary conditions were available for both the sea shell and Klein bottle,
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Fig. 4. The Klein bottle PDE surface generated as solution to 40th order PDE

u v time (milliseconds)
Figure (2) 20 30 61
Figure (3) 30 10 94
Figure (4) 40 10 238

Table 1. Computation time along with the subdivisions taken along the parameter directions.

in all cases a discrete set of 300 points along each of the curves were taken where a
separate routine was used to generate Fourier representations of the curves with 6
Fourier modes. Table 1 shows the time it took to generate the geometries where the
number of subdivisions taken along the parameter directions are also tabulated.

4. Interactive Design using Higher Order PDEs

It is clear that for interactive design the most intuitive framework for defining the
various PDE boundary conditions is through a series of curves in 3-space where
such curves can be manipulated within a graphical environment so that the shape
of the surface can be foreseen by the designer. Thus, for the case of Biharmonic
equation, in previous works on interactive design, the boundary conditions (both in
the case of functions and derivatives) are defined to be 4 curves in 3-space where two
of them corresponds to the edges of the surface patch while the other two defines
the direction at which the surface patch leaves the boundary. One should also note
that in the case of Biharmonic equation the boundary conditions are solely defined
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(a) (b)

Fig. 5. A basic membrane shape designed as solution to the biharmonic equation with position
boundary curves. (a) The position boundary curves (b) The corresponding surface

at the edges (at u = 0 and u = 1) of the surface patch through which the interior
shape of the surface can be controlled.

For higher order PDEs one could , in principle, utilize the same framework where
function boundary conditions and a number of derivative boundary conditions can
be defined at the two edges of the surface patch. However, as discussed below,
for interactive design purposes choosing too many derivative boundary conditions
near the edge of the surface patch does not present an intuitive interface since an
excessive number of space curves can be seen to be cluttered near the boundary of
the surface patch.

Therefore, as far as possible one should try and distribute the boundary con-
ditions throughout the surface patch in order to enable intuitive surface manipu-
lation. Moreover, apart from the boundary curve manipulation, the spine of the
PDE surface41,42 can also be utilized as an added design tool. Detailed discussions
of how the spine of higher order PDE surfaces can be used to manipulate surface
is also described below.

4.1. Choosing Boundary Conditions for Interactive Design

In order to provide an understanding of how the boundary curves can be chosen
for interactive design using higher order PDEs, here we demonstrate the design of
a practical object namely the design and manipulation of a fluid membrane.

Figure (5)(b) shows the basic fluid membrane shape such as that corresponding
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to a biological vesicle. The shape is generated as a solution to the usual biharmonic
equation where only function boundary conditions were used so that the geometry
of the shape contains the corresponding boundary curves shown Figure (5)(a)

To introduce complexity within the interior of this membrane shape we add a set
of derivative boundary conditions which are also specified as curves in the physical
space. The order of the PDE is then increased appropriately and the new shape is
generated as shown in Figure (6)(b). The added boundary conditions are taken to
be the first and second derivative conditions at the u positions corresponding to
the position curves p2 and p3 such that,

∂X
∂u

|p2= [d1(v) − p2(v)] α, (32)

∂X
∂u

|p3= [p3(v) − d2(v)] β, (33)

and

∂2X
∂u2

|p2= [p2(v) − 2d1(v) + t1(v)] γ, (34)

∂2X
∂u2

|p3= [p3(v) − 2d2(v) + t2(v)] η, (35)

where α, β, γ and η are constants.
As the format of the Equations (32) - (35) suggests, the definitions of the deriava-

tive boundary conditons resemble that of a finite-difference approximation scheme.
As mentioned previously, it is important to note that the surface patch does not
necessarily pass through the curves that define the derivative boundary conditions.

To gain an understanding of how the boundary conditions, in particular the
derivative conditions, affect the geometry of a higher order surface, consider the
following simplification. Following the discussion of the effect of a on the surface
patch in Section (3.0.2) we note that in the limit when a → 0 the corresponding PDE
surface becomes a Hermite surface such that the curves of constant v are Hermite
curves. Although due to the smoothing effect of the PDE (a �= 0) the curves of
constant v are not Hermite, but considering them in these terms is useful in this
present situation. Thus, drawing this similarity, for lines of constant v we can think
that there exist (2N −1)th order polynomial function. Such a polynomial curve can
be seen as being defined by a series of control points which control the position and
derivatives of the curve along various points. In the case of the membrane shape
shown in Figure (6)(b) we can imagine four control points that control the edges
and positions at p2 and p3, two control points controlling the tangent and a further
two control points controlling the curvatures. Thus, the membrane shape can be
seen to be controlled by eight continuous curves in space.

From Figure (6)(b) one could make another important observation regarding
the effect of the derivative conditions on the surface patch. That is, the regions of
the surface affected by the derivative curves are within close proximity of the cor-
responding position curves. In fact what one would observe here is, at a particular
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(a) (b)

Fig. 6. A complex membrane shape designed as soluton to higher order PDE with a number of
position and derivative boundary conditions. (a) Position and derivative boundary curves (b) The
corresponding surfac patch.

point on the surface, as the order of derivative conditions increases the effect of
them on the surface patch is drawn closer and closer to that point on the surface.
Furthermore, as noted earlier the surface patch does not necessarily pass through
derivative curves. Thus, as the order of derivative conditions are increased at a par-
ticular position on the surface, the surface manipulation using such curves becomes
non-intuitive as the scenario will then have a similar meaning to a spline surface
manipulation using a set of closely related control points.

4.2. Spine of Higher Order PDEs

If we now draw our attention to the term A0 in the Equation (9), we note that it
takes the form of a polynomial of degree (2N − 1). By looking at the structure of
the PDE solutions given in Equation (8) we can arrive to the following conclusions.

From the structure of solution to 2N th order PDE given in Equation (8) we
observe that a surface point X(u, v) can be thought of being composed of sum of
a vector A0 giving the ‘center line’ of the surface and a radius vector defined by
the term

∑∞
n=1[An(u) cos(nv) + Bn(u) sin(nv)] providing the position of X(u, v)

relative to the ‘center line. Thus, the polynomial in the A0 term describes the spine
or the skeleton of the PDE surface. Detailed discussions on the spine of the PDE
for the Biharmonic case is provided in41,42 where it has been shown that the spine
of a PDE surface can also be utilized as a powerful as well as an intuitive shape



March 20, 2007 10:40 WSPC/INSTRUCTION FILE ws-ijsm

17

(a) (b)

Fig. 7. Spine of Higher order PDEs. (a) The spine of the typical higher order PDE surface shown
in Figure (2) (b) The spine of the manipulated surface shown in Figure (8)

Fig. 8. Spine based shape manipulation for higher order PDE surfaces.

manipulation tool. The extension of the spine based shape manipulations techniques
from Biharmonic case to higher order is relatively straightforward in that for higher
order PDEs the polynomial is of higher degree and has greater flexibility.

There are several ways one can utilize the spine to manipulate the shape. One
way of doing this is to imagine the vector constants where a00 + a01, a02, . . . ,
a2N−1, as a set of design parameters whose values can be interactively changed.
Another more intuitive method is to define the spine in terms of a spline control
curve where the control points can be manipulated to change the shape of the spine
and then a00 + a01, a02, . . . , a2N−1 recomputed to change the shape of the surface.
It is important to bear in mind that the constants a00 + a01, a02, . . . , a2N−1 are
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Fig. 9. Generic shape of a dolphin created interactively

Fig. 10. Modified shape of the dolphin using boundary curves

dependent on the boundary conditions chosen. Therefore, when these parameters
are interactively changed in order to manipulate the surface shape, the positions
of the boundary curves will indeed be altered accordingly. Hence the user has a
choice of using boundary conditions or the spine or even a combination of both to
manipulate the shape.

Figure 7(a) shows the spine of corresponding to the higher order PDE surface
patch shown in Figure (2). Figure (8) shows modified shape using the spine whereby
treating it as a cubic spline curve and then manipulating its control points. The
final shape of the spine corresponding to this modified geometry is shown in Figure
7(b).

4.3. Examples of Interactive Design

As one can clearly see that the above techniques of utilizing the boundary curves
and using the spine on higher order PDE surfaces presents a powerful tool for
complex shape design and manipulation interactively in real time. To demonstrate
this further, here we present two examples of practical significance.

Figure (9) shows the generic shape of a dolphin created using 5 surface patches,
i.e. a 14th order patch for the main body of the dolphin, a 10th order patch for the
tail flukes and 3 Biharmonic patches for the lateral fins and the dorsal fin. In all
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(a)

(b)

Fig. 11. A generic shape of Apatosaurus dinosaur created using 5 surface patches of higher or-
der PDEs. (a) The spines corresponding to individual surface patches (b) The geometry of the
dinosaur.

cases the boundary curves are taken to be position conditions thus enabling the
curves to pass through the surface patches. The curves themselves are cubic splines
which were created and manipulated within the interactive graphical environment.
The curves which form the body attachment for the lateral fins and the dorsal fin
respectively, lie on the main body surface where the portions have been trimmed off
from the main body surface. These trimming processes were performed via the use
of the (u, v) parameter space using the techniques outlined in38. Figure (10) shows
an interactive modifications carried out to shape of the dolphin. These modification
were carried by means of manipulating the four curves defining the back of the main
body of the dolphin.

Figure (11)(b) shows the generic shape of an Apatosaurus dinosaur generated
using 5 surface patches, i.e. a 40th order patch for the body (including the head,
neck, main body and the tail) and four 8th order patches for the legs. Again similar
to the previous example of the dolphin, the curves forming the body attachments
for the legs were taken on the main body surface where the portions have been
trimmed off from the main body surface. Figure (11)(a) shows the spines (marked
as S1, S2, S3, S4 and S5) corresponding to the individual surface patches forming
the dinosaur shape. Furthermore, for all the surface patches the corresponding
boundary curves were taken to position conditions thus enabling the curves to pass
through the surface patches. Again the curves themselves are cubic splines which
were created and manipulated within the interactive graphical environment.

Figure (11)(a) shows the spine corresponding to the individual surface patches of
the dinosaur geometry. Figure (12)(b) shows a modified geometry of the dinosaur
using the spine corresponding to the body marked S1. As described earlier the
shape of the spine is manipulated by treating it as a cubic spline curve where the
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(a)

(b)

Fig. 12. Modified shape of the dinosaur using the spine corresponding to the body (a) The modified
spine (b) Modified geometry of the dinosaur.

corresponding control points has been manipulated.

4.4. Conclusions

The discussions of this paper have been concerned with the generalization of the
PDE based approach for surface generation whereby interactive design of complex
geometry can be carried out. To this end the governing partial differential equa-
tion is generalized to arbitrary order where the equations are solved analytically.
This solution scheme even in the case of general boundary conditions satisfies the
boundary conditions exactly where the resulting surface has analytic representa-
tion allowing real time shape manipulation. Thus one could think that the usual
Biharmonic equation design system is a subset of this generalized framework.

For the work described here the boundary conditions are defined as curves in
3-space which can then be manipulated in real time. Furthermore, the spine of
the corresponding higher order PDEs is also utilized as an interactive design tool
for manipulating geometry. We have demonstrated the capacity of this method by
means of design and manipulation of geometry corresponding to practical examples
such as the dolphin and the dinosaur shape.

As one would observe for all the examples we have discussed in this paper we
have used even number of boundary conditions. This is essential if we are to utilize
the analytic solution form as presented in the paper. However, this is not necessarily
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a restriction on the type of geometry the method is capable of generating. In fact if
we are presented with odd number of boundary conditions we could easily create a
fictitious position boundary condition to make the number even and utilize analytic
where, upon solving the even order equation, the undesired potion can be removed.
Similarly the periodic nature of surfaces can also be removed by choosing to solve
a portion of the surface along the v parameter direction.

There are many possible extensions of this initial work. For example, we have
presented a framework where the boundary conditions are taken to be curves most
of which are cross sectional curves which lie on the surface. For interactive design
purposes this is perhaps the most appropriate choice. Another possibility is to
look into boundary conditions of mixed type, for which a different type of design
metaphor will be required however.

For the purpose of real time design we have utilized analytic solutions to solve
the generalized PDE where the boundary conditions must be of periodic nature.
However, this is not a restriction on the method since one could utilize a numerical
scheme to solve the arbitrary order PDE.

Much work has been done in the past using lower order PDEs on shape param-
eterization of generic designs where such parameterizations are ultimately utilized
for automatic design optimizations. A shape parameterization based on higher or-
der PDEs presents new avenues where it would be possible to parameterize complex
geometry very efficiently and hence enabling the possibility of for automatic design
optimization of very realistic design scenarios.

It is also noteworthy that the method discussed here has applications in other
areas of computer graphics and computer-aided geometric design. For example, gen-
eration of higher order blend surfaces, geometric data interpolation as well smooth
surface representations.
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